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Abstract. In Part I of this series, we presented the microscopic approach to
Souslin-tree constructions, and argued that all known ♢-based constructions

of Souslin trees with various additional properties may be rendered as appli-

cations of our approach. In this paper, we show that constructions following
the same approach may be carried out even in the absence of ♢. In particular,

we obtain a new weak sufficient condition for the existence of Souslin trees at

the level of a strongly inaccessible cardinal.
We also present a new construction of a Souslin tree with an ascent path,

thereby increasing the consistency strength of such a tree’s nonexistence from

a Mahlo cardinal to a weakly compact cardinal.
Section 2 of this paper is targeted at newcomers with minimal background.

It offers a comprehensive exposition of the subject of constructing Souslin trees

and the challenges involved.
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1. Introduction

The systematic study of set-theoretic trees was pioneered by D̄uro Kurepa in the
1930s [Kur35], in the context of examining Souslin’s Problem. Souslin’s Problem
goes back a century, to 1920 [Sou20], and its most succinct formulation is:

Is every linearly ordered topological space satisfying the countable
chain condition (ccc) necessarily separable?

A counterexample would be called a Souslin line,2 while the conjecture that the
answer is “yes” (meaning that a Souslin line does not exist) has come to be called
Souslin’s Hypothesis (SH).

In the course of attempting to settle SH, Kurepa showed in 1935 [Kur35] that the
problem can be reformulated in terms of trees,3 and thus “eliminated topological
considerations from Souslin’s Problem and reduced it to a problem of combinatorial
set theory” [Kan11, p. 3]. Kurepa’s result is that the existence of a Souslin line
is equivalent to the existence of (what we now call) an ℵ1-Souslin tree, that is,
a tree of size ℵ1 that includes neither an uncountable branch nor an uncountable
antichain.4

Further progress toward resolving Souslin’s problem came only in the 1960s, after
the advent of the forcing technique, when it became apparent that Souslin’s problem
(at the level of ℵ1) is independent of ZFC: Jech [Jec67], Tennenbaum [Ten68],
and Jensen [Jen68] gave consistent constructions of ℵ1-Souslin trees, while Solovay
and Tennenbaum [ST71] proved the consistency of SH. Amazingly enough, the
resolution of this single problem led to key discoveries in set theory: various notions
of trees [Kur35], forcing axioms and the method of iterated forcing [ST71], the
diamond and square principles [Jen72, S5–6], and the theory of iteration without
adding reals [DJ74, Chapter VIII].

Most of the early work around Souslin’s problem focused on the level of ℵ1, and
even to this day, most of the standard references in set theory, including [Dra74],
[Kun80], [Tod84], [Roi90], [JW97], [HJ99], [Lev02], provide a construction of a
𝜅-Souslin tree only for the case 𝜅 = ℵ1. However, Souslin’s problem admits a
natural generalization to higher cardinals. Indeed, Kurepa proved the following
more general equivalence:

2If we remove the constraint that the topology be induced by a linear order, then there is
no difficulty in obtaining a counterexample, such as the countable complement topology on any

uncountable set [SS78, Counterexample 20], or c+2 [Kun80, p. 51].
3Kurepa states the equivalence between the topological and tree-based formulations of Souslin’s

Problem (at the level of ℵ1) explicitly in [Kur35, S12.D.2, pp. 124–125] [Kur96, p. 111] and [Kur38,
Section 8, p. 134] [Kur96, p. 119]. Several sources [Rud69, p. 1116], [ST71, Section 2.1, p. 202],

[DJ74, p. 12], [Mal96, S2, p. 421] attribute the reformulation to E. W. Miller in 1943 [Mil43],
perhaps because Kurepa’s thesis and early papers were written in French. Others ([Alv99, p. 213],

[Kan11, p. 3], Todorcevic in [Kur96, p. 9]) acknowledge that Miller rediscovered Kurepa’s result.
4Detailed definitions will be given in Section 2.
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Fact 1.1 (Kurepa, [Kur35]). For any regular uncountable cardinal 𝜅, the following
are equivalent:5

∙ Every tree of size 𝜅 contains either a branch of size 𝜅 or an antichain of
size 𝜅 (that is, there is no 𝜅-Souslin tree);

∙ Every linearly ordered topological space satisfying the 𝜅-chain condition
(𝜅-cc) has a dense subset of cardinality < 𝜅.

The preceding leads to the following definition.

Definition 1.2 ([Jen72, p. 292]). For any regular uncountable cardinal 𝜅, the
𝜅-Souslin hypothesis (SH𝜅) asserts that there are no 𝜅-Souslin trees.

Jensen proved [Jen72, Theorem 6.2] that, assuming 𝑉 = 𝐿, for every regular
uncountable cardinal 𝜅, SH𝜅 holds iff 𝜅 is weakly compact. Subsequently, many
combinatorial constructions of 𝜅-Souslin trees (for regular uncountable cardinals 𝜅
that are not weakly compact) from axioms weaker than 𝑉 = 𝐿 have appeared.6

However, the classical constructions of 𝜅-Souslin trees generally depend on the
nature of 𝜅: that is, on whether 𝜅 is the successor of a regular cardinal [Gre76],
[She84a], [Vel86]; the successor of a singular cardinal [BS86], [Rin14, S4]; or an
inaccessible cardinal [She99].

Furthermore, the classical ♢-based constructions all require ♢ to concentrate
on a nonreflecting stationary set, in order to ensure that sealing antichains doesn’t
prevent us from later building higher levels of the tree. Thus, classical methods
cannot be applied in scenarios where all stationary sets reflect, and thus they allow
inferring the consistency of only a Mahlo cardinal from GCH and the non-existence
of a higher Souslin tree.

In addition, there is a zoo of consistent constructions of 𝜅-Souslin trees satisfying
additional properties, such as complete, regressive, rigid, homogeneous, specializ-
able, non-specializable, admitting an ascent path, omitting an ascending path, free
and uniformly coherent. Again, construction of a 𝜅-Souslin tree with any desired
property often depends on the nature of 𝜅, and in some cases even depends on
whether 𝜅 is the successor of a singular cardinal of countable or of uncountable
cofinality [Cum97]. To obtain the additional features, constructions include exten-
sive bookkeeping, counters, timers, coding and decoding, whose particular nature
makes it difficult to transfer the process from one type of cardinal to another.

What happens if we want to replace an axiom known to imply the existence of
a 𝜅0-Souslin tree with strong properties by an axiom from which a plain 𝜅1-Souslin
tree can be constructed? Do we have to revisit each scenario and tailor each of
these particular constructions in order to derive a tree with strong properties?

In [BR17a], which forms the starting point of this research project, we set out
to develop new foundations that enable uniform construction of 𝜅-Souslin trees;
we introduced a single (parameterized) proxy principle from which 𝜅-Souslin trees
with various additional features can be constructed, regardless of the identity of
𝜅. In that paper, we also built the bridge between the old and new foundations,
establishing, among other things, that all known ♢-based constructions of 𝜅-Souslin
trees may be redirected through this new proxy principle. There was one scenario
that was not covered by that paper, namely, Jensen’s construction from �(𝐸) +
♢(𝐸) [Jen72, Theorem 6.2], and in Subsection 4.3 of the present paper, we cover
it. This means that any 𝜅-Souslin tree with additional features that will be shown

5Although Kurepa’s explicit statements (referenced in footnote 3) refer specifically to the level
of ℵ1, he proves the result for arbitrary infinite cardinals via the equivalence 𝑃2 ⇐⇒ 𝑃5 of the
Fundamental Theorem in the Appendix [Kur35, SC.3, pp. 132–133].

6See [Dev84, Theorem IV.2.4], as well as Fact 1.2 of [Rin17] and the historical remarks preceding

it.
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to follow from the proxy principle will automatically be known to hold in many
unrelated models.

But the parameterized proxy principle gives us more:
I It suggests a way of calibrating the fineness of a particular class of Souslin trees,

by pinpointing the weakest vector of parameters sufficient for the proxy principle
to enable construction of a member of this class. This leads, for instance, to the
understanding that uniformly coherent > free > specializable > plain. This is
explained in Section 6 below.
I It allows comparison and amplification of previous results.
In [Jus01],[KLY07], and [Rin11b], new weak forms of ♢ at the successor of a

regular cardinal 𝜆 were proposed and shown to entail the existence of 𝜆+-Souslin
trees. In this project, we put all of these principles under a single umbrella by com-
puting the corresponding vector of parameters for which the proxy principle holds
in each of the previously studied configurations. From this and the constructions
we presented in [BR19c], it follows, for example, that the Gregory configuration
[Gre76] suffices for the construction of a specializable 𝜆+-Souslin tree, and the
König–Larson–Yoshinobu configuration [KLY07] suffices for the construction of a
free 𝜆+-Souslin tree.

Moreover, pump-up lemmas such as [BR19a, Lemma 4.9] and [BR19c, Lemma 3.8]
establish that strong instances of the proxy principle may be derived from appar-
ently weaker ones, leading, for example, to the existence of 𝜅-Souslin trees with a
maximal degree of completeness in unexpected scenarios.
I It allows the construction of various types of trees at a broader class of cardi-

nals. To give two examples:
II A combinatorial construction of a free 𝜅-Souslin tree for 𝜅 = ℵ1 may be

found in [DJ74, Theorem V.1], [Tod84, Theorem 6.6] and [AS93, S2.1]. In [BR17b,
S6] and in [BR19c, S4.3], we gave new combinatorial constructions of free 𝜅-Souslin
trees, both using the proxy principle, and therefore they automatically apply to all
regular uncountable cardinals 𝜅, including successors of singular cardinals.
II A combinatorial construction of a uniformly coherent 𝜅-Souslin tree for a

successor of a regular cardinal 𝜅 may be found in [DJ74, Theorem IV.1], [Lar99],
and [Vel86]. In [BR17a, Theorem 2.5], we gave a proxy-based construction of
a uniformly coherent 𝜅-Souslin tree, and therefore it automatically applies to all
regular uncountable cardinals 𝜅, including inaccessible cardinals.
I It allows obtaining completely new types of Souslin trees.
Once we have suitable foundations, the construction of Souslin trees becomes

simple, and it is then easier to carry out considerably more complex constructions.
For example, in [BR17b, Theorem 1.1], we gave the first example of a Souslin
tree whose reduced powers behave independently of each other; starting from a
combinatorial hypothesis that follows from “𝑉 = 𝐿”, we constructed an ultrafilter
𝒰0 over ℵ0 and an ultrafilter 𝒰1 over ℵ1 such that, for every (𝑖, 𝑗) ∈ 2 × 2, there
exists an ℵ3-Souslin tree 𝑇 for which 𝑇ℵ0/𝒰0 is ℵ3-Aronszajn iff 𝑖 = 1 and 𝑇ℵ1/𝒰1

is ℵ3-Aronszajn iff 𝑗 = 1.
I It paves the way to finding completely new scenarios in which Souslin trees

must exist, by finding new configurations in which an instance of the proxy principle
holds. To give several examples:
II In [BR17a, Corollary 1.20], we constructed a model of Martin’s Maximum

in which, for every regular cardinal 𝜅 > ℵ2, a strong instance of the proxy principle
at 𝜅 (strong enough to yield a free 𝜅-Souslin tree) holds.
II In [BR17a, Theorem 6.3], we proved that the sufficient condition of Gregory

for the existence of a Souslin tree at the successor of a regular uncountable cardinal
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[Gre76] yields an instance of the proxy principle, and then, in [BR19c, Corollary 3.4],
this was generalized to include successors of singulars, as well.
II In [Rin17, Corollary 4.14], the second author proved that for every uncount-

able cardinal 𝜆, GCH + �(𝜆+) entails an instance of the proxy principle sufficient
for the construction of a cf(𝜆)-complete 𝜆+-Souslin tree. It follows that if GCH
holds and there are no ℵ2-Souslin trees, then ℵ2 is a weakly compact cardinal in 𝐿,
thus improving the lower bound obtained by Gregory 40 years earlier [Gre76].
II In [She84b], Shelah proved that adding a single Cohen real indirectly adds an

ℵ1-Souslin tree. In the same spirit, in [BR19b], we identified a large class of notions
of forcing that, assuming a GCH-type hypothesis, add a very strong instance of the
proxy principle at the level of 𝜆+. This class includes (but is not limited to) notions
of forcing for changing the cofinality of an inaccessible cardinal 𝜆, such as Prikry,
Magidor and Radin forcing.
I It gives rise to combinatorial constructions of 𝜅-Souslin trees even in the

absence of ♢, which is something we did not anticipate, but is established in Sections
5 and 6 below.
I It even gives rise to results in other topics, such as special and non-special

Aronszajn trees [BR19a], infinite graph theory [LR19] and Ramsey theory [RZ20].

1.1. Two results of particular interest. In the 1980s (see [Dev83]), Baumgart-
ner proved that GCH + �ℵ1

entails the existence of an ℵ2-Souslin tree with an
𝜔-ascent path (see Definition 6.9 below). A special case of Corollary 6.12 reads as
follows.

Theorem A. GCH + �(ℵ2) entails the existence of an ℵ2-Souslin tree with an
𝜔-ascent path.

Remark 1.3. The significance of this improvement is that the consistency strength
of the failure of �ℵ1 is a Mahlo cardinal, whereas the consistency strength of the
failure of �(ℵ2) is a weakly compact cardinal.

As alluded to earlier, Jensen’s construction of 𝜅-Souslin trees in 𝐿 [Jen72, The-
orem 6.2] goes through the hypothesis that there exists a stationary subset 𝐸 ⊂ 𝜅
for which �(𝐸) and ♢(𝐸) both hold. Here, we obtain the same conclusion from
weaker hypotheses, which is best seen for 𝜅 inaccessible and 𝐸 ⊆ 𝐸𝜅>𝜔:

Theorem B. Suppose that 𝜅 is a strongly inaccessible cardinal, and there exists a
sequence ⟨𝐴𝛼 | 𝛼 ∈ 𝐸⟩ such that:

∙ 𝐸 is a nonreflecting stationary subset of 𝐸𝜅>𝜔;
∙ For every 𝛼 ∈ 𝐸, 𝐴𝛼 is a cofinal subset of 𝛼;
∙ For every cofinal 𝐵 ⊆ 𝜅, there exists 𝛼 ∈ 𝐸 for which

{𝛿 < 𝛼 | min(𝐴𝛼 ∖ (𝛿 + 1)) ∈ 𝐵}
is stationary in 𝛼.

Then there exists a 𝜅-Souslin tree.

1.2. Conventions. Throughout the paper, 𝜅 stands for an arbitrary regular un-
countable cardinal; 𝜃, 𝜆, 𝜇, 𝜈, 𝜒 are (possibly finite) cardinals ≤ 𝜅; and 𝜉, 𝜎 are
ordinals ≤ 𝜅.

1.3. Notation. We let 𝐻𝜅 denote the collection of all sets of hereditary cardinality
less than 𝜅 (cf. [Kun80, IV, S6]). We let Reg(𝜆) denote the set of all infinite regular
cardinals below 𝜆. We say that 𝜅 is (<𝜒)-closed iff 𝜆<𝜒 < 𝜅 for every 𝜆 < 𝜅.
Denote 𝐸𝜆𝜃 := {𝛼 < 𝜆 | cf(𝛼) = 𝜃}, and define 𝐸𝜆̸=𝜃, 𝐸

𝜆
<𝜃, 𝐸

𝜆
>𝜃, and 𝐸𝜆≥𝜃 in a

similar fashion. Write [𝜆]𝜃 for the collection of all subsets of 𝜆 of cardinality 𝜃, and
define [𝜆]<𝜃 similarly. Write CH𝜆 for the assertion that 2𝜆 = 𝜆+.
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Suppose that 𝐶 is a set of ordinals. Write acc(𝐶) := {𝛼 ∈ 𝐶 | sup(𝐶 ∩ 𝛼) =
𝛼 > 0}, nacc(𝐶) := 𝐶 ∖ acc(𝐶), acc+(𝐶) := {𝛼 < sup(𝐶) | sup(𝐶 ∩ 𝛼) = 𝛼 > 0}.
In particular, acc(𝜅) is the set of all nonzero limit ordinals below 𝜅. For any
𝑗 < otp(𝐶), denote by 𝐶(𝑗) the unique element 𝛿 ∈ 𝐶 for which otp(𝐶 ∩ 𝛿) = 𝑗.
Write succ𝜎(𝐶) := {𝐶(𝑗+1) | 𝑗 < 𝜎 & 𝑗+1 < otp(𝐶)}. In particular, for all 𝛾 ∈ 𝐶
such that sup(otp(𝐶 ∖ 𝛾)) ≥ 𝜎, succ𝜎(𝐶 ∖ 𝛾) consists of the next 𝜎 many successor
elements of 𝐶 above 𝛾.

The class of ordinals is denoted by ORD.
For all 𝛼 < 𝜅, 𝑡 : 𝛼 → 𝜅, and 𝑖 < 𝜅, we denote by 𝑡y𝑖 the unique function 𝑡′

extending 𝑡 and satisfying dom(𝑡′) = 𝛼+ 1 and 𝑡′(𝛼) = 𝑖.

2. How to construct a Souslin tree the right way

This section is accessible to novices with just basic background in Set Theory.

2.1. Trees. A tree is a partially ordered set (𝑇,<𝑇 ) with the property that, for
every 𝑡 ∈ 𝑇 , the downward cone 𝑡↓ := {𝑠 ∈ 𝑇 | 𝑠 <𝑇 𝑡} is well-ordered by <𝑇 . The
height of 𝑡 ∈ 𝑇 , denoted ht(𝑡), is the order-type of (𝑡↓, <𝑇 ). Then, for any ordinal
𝛼, the 𝛼th level of (𝑇,<𝑇 ) is the set 𝑇𝛼 := {𝑡 ∈ 𝑇 | ht(𝑡) = 𝛼}; the height of the
tree (𝑇,<𝑇 ) is the smallest ordinal 𝛼 such that 𝑇𝛼 = ∅. For 𝑋 ⊆ ORD, we write
𝑇 � 𝑋 := {𝑡 ∈ 𝑇 | ht(𝑡) ∈ 𝑋} =

⋃︀
𝛼∈𝑋 𝑇𝛼; in particular, if 𝛼 is any ordinal, then

the tree 𝑇 � 𝛼 has height ≤ 𝛼. For any 𝑠, 𝑡 ∈ 𝑇 , we say that 𝑠 and 𝑡 are comparable
if 𝑠 <𝑇 𝑡 or 𝑡 <𝑇 𝑠 or 𝑠 = 𝑡; otherwise they are incomparable.

There are several natural properties that the trees we construct will always
satisfy. In particular, a tree (𝑇,<𝑇 ) is said to be:

∙ Hausdorff if for any limit ordinal 𝛼 and 𝑠, 𝑡 ∈ 𝑇𝛼, (𝑠↓ = 𝑡↓) =⇒ (𝑠 = 𝑡);7

∙ normal if for any pair of ordinals 𝛼 < 𝛽 and every 𝑠 ∈ 𝑇𝛼, if 𝑇𝛽 ̸= ∅ then
there exists some 𝑡 ∈ 𝑇𝛽 such that 𝑠 <𝑇 𝑡;

∙ ever-branching if, for every node 𝑠 ∈ 𝑇 , the upward cone 𝑠↑ := {𝑡 ∈ 𝑇 |
𝑠 <𝑇 𝑡} is not linearly ordered by <𝑇 .

2.2. Souslin trees. Suppose that (𝑇,<𝑇 ) is a tree. For any ordinal 𝛼, we say
that a subset 𝐵 ⊆ 𝑇 is an 𝛼-branch if (𝐵,<𝑇 ) is linearly ordered and {ht(𝑡) |
𝑡 ∈ 𝐵} = 𝛼. We say that 𝐵 ⊆ 𝑇 is a cofinal branch if it is a 𝜅-branch, where 𝜅
is the height of (𝑇,<𝑇 ). We say that 𝐴 ⊆ 𝑇 is an antichain if any two distinct
𝑠, 𝑡 ∈ 𝐴 are incomparable.

A tree (𝑇,<𝑇 ) is a 𝜅-tree whenever its height is 𝜅 and |𝑇𝛼| < 𝜅 for all 𝛼 < 𝜅.8

A 𝜅-Aronszajn tree is a 𝜅-tree with no cofinal branches. A 𝜅-Souslin tree is a
𝜅-Aronszajn tree that has no antichains of size 𝜅.

A significant focus of this paper is the construction of 𝜅-Souslin trees. The most
natural way to do this is to construct, recursively, a sequence ⟨𝑇𝛼 | 𝛼 < 𝜅⟩ of
levels whose union will ultimately be the desired 𝜅-Souslin tree. However, in order
to ensure that the outcome tree will have neither any cofinal branches nor any
antichains of size 𝜅, we must find ways to anticipate these “global properties” of
the tree when constructing each level. The following well-known lemma (cf. [Kun80,
Lemma II.7.4]) shows that if we ensure throughout the construction that our 𝜅-tree
is ever-branching (a “local property”, which can be ensured level by level throughout
the construction), then we can avoid the necessity of verifying that it has no cofinal
branches.

Lemma 2.1. For any ever-branching 𝜅-tree 𝒯 , the following are equivalent:

7As 0 is a limit ordinal, any (nonempty) Hausdorff tree is, in particular, rooted — that is, the
level 𝑇0 is a singleton, whose unique element is called the root.

8Recall that 𝜅 denotes a regular uncountable cardinal.
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∙ 𝒯 is 𝜅-Souslin;
∙ 𝒯 has no antichains of size 𝜅.

Proof. The forward implication is obvious. Next, assume that 𝒯 = (𝑇,<𝑇 ) is an
ever-branching 𝜅-tree, having no antichains of size 𝜅. Towards a contradiction,
suppose that 𝒯 admits a cofinal branch, say, 𝐵. As 𝒯 is ever-branching, for every
𝑡 ∈ 𝐵, 𝑡↑ is not linearly ordered, so that we may fix 𝑡′ ∈ 𝑡↑ ∖ 𝐵. Recursively
construct 𝐵∙ ∈ [𝐵]𝜅 such that, for any two 𝑠 <𝑇 𝑡 both in 𝐵∙, ht(𝑠′) < ht(𝑡). As
ht(𝑡) < ht(𝑡′) for every 𝑡 ∈ 𝐵, it follows that {𝑡′ | 𝑡 ∈ 𝐵∙} forms an antichain of
size 𝜅, contradicting our hypothesis and thereby completing the proof. �

It follows that if we construct an ever-branching 𝜅-tree, our main worry is to
ensure the non-existence of large antichains. Furthermore, the following well-known
fact (cf. [BR17b, Lemma 2.4]) shows that we do not lose any opportunities by
insisting that the trees we construct are normal and ever-branching.

Fact 2.2. Suppose (𝑇,<𝑇 ) is a 𝜅-Souslin tree. Then there is a normal and ever-
branching subtree which is again 𝜅-Souslin. In fact, there is a club 𝐶 ⊆ 𝜅 such that
(𝑇 � 𝐶,<𝑇 ) is normal and ever-branching.

Thus, the existence of a 𝜅-Souslin tree is equivalent to the existence of a normal
ever-branching one. In fact, the same is true for 𝜅-Aronszajn trees (cf. [Kun80,
Lemmas II.5.11–12]).9

2.3. Streamlined trees. What will our trees (𝑇,<𝑇 ) look like? What are the
elements of a tree, anyway?

Formally, of course, elements of a tree can be anything we choose. However, for
all of the trees that we construct here, elements of the tree will be (transfinite)
sequences of ordinals, and the tree-order <𝑇 will be the initial-sequence ordering
(which is the same as ordinary proper inclusion ((), if we view a sequence as a
function). To ensure that the height of an element in the tree corresponds to the
element’s length as a sequence, we must ensure that our collection of sequences is
closed under initial segments (“downward-closed”).

In order to formalize this intuition while retaining some flexibility, we introduce
the following definition (recall that for an ordinal 𝛼 and any set 𝑋, 𝛼𝑋 denotes the
set of functions from 𝛼 to 𝑋, and <𝛼𝑋 :=

⋃︀
𝛽<𝛼

𝛽𝑋):

Definition 2.3. A set 𝑇 is a streamlined tree iff there exists some cardinal 𝜅 such
that 𝑇 ⊆ <𝜅𝐻𝜅 and, for all 𝑡 ∈ 𝑇 and 𝛽 < dom(𝑡), 𝑡 � 𝛽 ∈ 𝑇 .10

We shall freely use the following basic properties, whose verification is left to the
reader.

Lemma 2.4. For every streamlined tree 𝑇 ⊆ <𝜅𝐻𝜅 and every ordinal 𝛼:

∙ (𝑇,() is a Hausdorff tree in the abstract sense of Subsection 2.1.
∙ Assuming 𝑇 is nonempty, its root is the empty sequence, ∅.
∙ For every 𝑡 ∈ 𝑇 , ht(𝑡) = dom(𝑡) and 𝑡↓ = {𝑡 � 𝛽 | 𝛽 < dom(𝑡)}.
∙ 𝑇𝛼 = 𝑇 ∩ 𝛼𝐻𝜅. In particular, 𝑇 � 𝛼 = 𝑇 ∩ <𝛼𝐻𝜅.
∙ For every 𝑡 ∈ 𝑇 , if 𝛼 < dom(𝑡), then 𝑡 � 𝛼 is the unique element of 𝑡↓ ∩ 𝑇𝛼.
∙ Any 𝛼-branch 𝐵 ⊆ 𝑇 can be written as 𝐵 = {𝑡 � 𝛽 | 𝛽 < 𝛼} for some

function 𝑡 : 𝛼→ 𝐻𝜅.
∙ For all 𝑠, 𝑡 ∈ 𝑇 , 𝑠 and 𝑡 are comparable iff 𝑠 ∪ 𝑡 ∈ 𝑇 . �

9In a sense, normality is exactly the portion of Kőnig’s Lemma that can be salvaged at the
height of an arbitrary regular cardinal, and this is what makes the problem of constructing 𝜅-
Aronszajn and 𝜅-Souslin trees challenging.

10All of the 𝜅-trees that we actually construct will be subsets of <𝜅𝜅, but we shall also consider
the broader 𝑇 ⊆ <𝜅𝐻𝜅 when analyzing derived trees in Subsection 6.7.
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The main advantage of streamlined trees is the identification of a limit of an
increasing sequence of nodes. Indeed, for any (-increasing sequence 𝜂 of nodes,
say, 𝜂 = ⟨𝑡𝛾 | 𝛾 < 𝛽⟩, the unique limit of this sequence, which may or may not be
a member of the tree, is nothing but

⋃︀
𝛾<𝛽 𝑡𝛾 , that is,

⋃︀
Im(𝜂).

It follows that when constructing a streamlined tree, for any limit nonzero ordinal
𝛼 such that all of the previous levels ⟨𝑇𝛽 | 𝛽 < 𝛼⟩ have already been determined,
the definition of 𝑇𝛼 amounts to deciding which 𝛼-branches will have their limits
inserted into the tree. Equivalently, for any cofinal subset 𝐶 of 𝛼, we shall have
𝑇𝛼 ⊆ {𝑡 ∈ 𝛼𝐻𝜅 | ∀𝛽 ∈ 𝐶(𝑡 � 𝛽 ∈ 𝑇𝛽)}.

But are there any disadvantages here? It turns out that we lose no generality by
insisting on constructing only streamlined trees:

Lemma 2.5. Suppose that (𝑋,<𝑋) is a 𝜅-tree. Then:

(1) If (𝑋,<𝑋) is Hausdorff, then there exists a streamlined tree 𝑇 ⊆ <𝜅𝜅 such
that (𝑋,<𝑋) is order-isomorphic to (𝑇,().

(2) Regardless of whether or not (𝑋,<𝑋) is Hausdorff, there exists a stream-
lined tree 𝑆 ⊆ <𝜅𝜅 such that (𝑋,<𝑋) is order-isomorphic to a cofinal subset
of (𝑆,() via a level-preserving map.

Proof. As |𝑋𝛼| < 𝜅 for all 𝛼 < 𝜅, we may recursively find a sequence of injections
⟨𝜋𝛼 : 𝑋𝛼 → 𝜅 | 𝛼 < 𝜅⟩ such that for all 𝛼 < 𝛽 < 𝜅, sup(Im(𝜋𝛼)) < min(Im(𝜋𝛽)).
Let 𝜋 :=

⋃︀
𝛼<𝜅 𝜋𝛼. Note that if 𝑦, 𝑧 ∈ 𝑋 satisfy 𝑦 <𝑋 𝑧, then 𝜋(𝑦) < 𝜋(𝑧).

(1) Suppose (𝑋,<𝑋) is Hausdorff. For all 𝛿 < 𝜅 and 𝑥 ∈ 𝑋𝛿, the set of ordinals

⌈𝑥⌉ := {𝜋(𝑦) | 𝑦 ∈ 𝑋, 𝑦 <𝑋 𝑥}

has order-type 𝛿, so we may let 𝑡𝑥 : 𝛿 → ⌈𝑥⌉ denote the order-preserving
isomorphism. Evidently, 𝑇 := {𝑡𝑥 | 𝑥 ∈ 𝑋} is a streamlined tree, and 𝑥 ↦→
𝑡𝑥 forms an isomorphism between (𝑋,<𝑋) and (𝑇,(), where injectivity is
due to the fact that (𝑋,<𝑋) is Hausdorff.

(2) For all 𝛿 < 𝜅 and 𝑥 ∈ 𝑋𝛿, the set of ordinals

[𝑥] = {𝜋(𝑦) | 𝑦 ∈ 𝑋, (𝑦 <𝑋 𝑥 or 𝑦 = 𝑥)}

has order-type 𝛿 + 1, so we may let 𝑠𝑥 : 𝛿 + 1 → [𝑥] denote the order-
preserving isomorphism. Evidently, 𝑆 := {𝑠𝑥 � 𝛽 | 𝑥 ∈ 𝑋,𝛽 < 𝜅} is a
streamlined tree, and 𝑥 ↦→ 𝑠𝑥 forms an isomorphism between (𝑋,<𝑋) and
a cofinal subset of (𝑆,() sending level 𝛿 to level 𝛿 + 1, where this time
injectivity is due to the fact that we have included 𝜋(𝑥) in [𝑥]. �

Thus, the existence of a 𝜅-Aronszajn is equivalent to the existence of a stream-
lined one, and the same is true for 𝜅-Souslin trees.

Convention 2.6. We shall say that 𝑇 is a streamlined 𝜅-tree if 𝑇 ⊆ <𝜅𝐻𝜅 is a
streamlined tree and (𝑇,() is a 𝜅-tree. Furthermore, whenever we say that a
streamlined tree 𝑇 is normal, ever-branching, Souslin, etc., we mean to refer to the
tree (𝑇,().

Remark 2.7. Notice that any streamlined 𝜅-tree 𝑇 is a subset of 𝐻𝜅 and also has
cardinality 𝜅; thus 𝑇 and all of its subsets are elements of 𝐻𝜅+ .

2.4. Completing canonical branches and sealing antichains. What does it
take to build a 𝜅-Souslin tree? Based on our previous discussion, we shall want to
build, level by level, a normal, ever-branching, streamlined 𝜅-tree.

When constructing the level 𝑇𝛼, ensuring that the tree remains normal amounts
to ensuring that for every 𝑠 ∈ 𝑇 � 𝛼 we insert some 𝑡 into 𝑇𝛼 satisfying 𝑠 ( 𝑡. On
the other hand, as all levels must be kept of size < 𝜅 and as we must prevent the
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birth of large antichains, there will be a stationary subset Γ ⊆ 𝜅 on which, for every
𝛼 ∈ Γ, 𝑇𝛼 necessarily must be some proper subset of {𝑡 ∈ 𝛼𝐻𝜅 | ∀𝛽 < 𝛼(𝑡�𝛽 ∈ 𝑇𝛽)}.

But let us point out the challenge now arising in securing normality at the level
𝑇𝛼, where 𝛼 < 𝜅 is some nonzero limit ordinal. Suppose 𝑥 ∈ 𝑇 �𝛼; we must include
a node b𝛼𝑥 in 𝑇𝛼 extending 𝑥 (the limit of the “canonical 𝛼-branch for 𝑥”). The
natural way to do so is to pick a club 𝐶𝛼 in 𝛼 (“a ladder climbing up to 𝛼”), and
then recursively identify an increasing and continuous sequence ⟨𝑥𝛽 | 𝛽 ∈ 𝐶𝛼⟩ of
nodes of 𝑇 �𝛼 comparable with 𝑥 and satisfying 𝑥𝛽 ∈ 𝑇𝛽 for all 𝛽 ∈ 𝐶𝛼. Normality
up to level 𝛼 makes the successor step of this recursion possible; however, when we
reach a limit step 𝛽 (that is, 𝛽 ∈ acc(𝐶𝛼)), this ordinal 𝛽 may be an element of
Γ, meaning that the unique limit of our partial sequence might have been excluded
from 𝑇𝛽 . If we are extremely unlucky, we may have constructed 𝑇 � 𝛼 to be an
Aronszajn tree, with no 𝛼-branches at all! Thus, we have to define 𝑇𝛽 for 𝛽 ∈ Γ
in an educated way so as to avoid such unfortunate scenarios. In the special case
where 𝜅 = 𝜆+ for a (regular) cardinal 𝜆 = 𝜆<𝜆,11 one can avoid this problem by

simply taking Γ to be 𝐸𝜆
+

𝜆 and letting each ladder have order-type ≤ 𝜆. However,
in the general case, there is a need for some coherent ladder system, as we shall see
in Definition 2.16 below.

Recalling Lemma 2.1, we must also ensure that the resulting tree 𝑇 will not
have any antichains of size 𝜅. The number of candidates for antichains of size 𝜅
is |<𝜅𝐻𝜅|𝜅, which is bigger than 𝜅, the length of our recursive construction. Put
differently, there are not enough stages to take care of all of the candidates for
large antichains, if we need to deal with them one at a time! In contrast, assuming
𝜅<𝜅 = 𝜅, the number of candidates for proper initial segments of antichains is
merely 𝜅. The upcoming lemma reduces the problem of eliminating antichains of
size 𝜅 to a problem of addressing their proper initial segments.

Definition 2.8. Suppose 𝑇 is a streamlined 𝜅-tree. An antichain 𝐴 ⊆ 𝑇 is said to
be sealed at level 𝛼 iff every element of 𝑇𝛼 extends some element of 𝐴.

Lemma 2.9. Suppose 𝑇 is a streamlined 𝜅-tree. Then the following are equivalent:

(1) 𝑇 has no antichains of size 𝜅;
(2) For every antichain 𝐴 ⊆ 𝑇 , there is some ordinal 𝛼 < 𝜅 such that 𝐴 ⊆ 𝑇 �𝛼;
(3) For every maximal antichain 𝐴 ⊆ 𝑇 , there is some ordinal 𝛼 < 𝜅 such that

𝐴 ∩ (𝑇 � 𝛼) is sealed at level 𝛼.

Proof. (1) =⇒ (2): Let 𝐴 ⊆ 𝑇 be any given antichain. By (1), |𝐴| < 𝜅, so that
by regularity of 𝜅, we obtain sup{dom(𝑥) | 𝑥 ∈ 𝐴} < 𝜅, as sought.

(2) =⇒ (3): Given any maximal antichain 𝐴 ⊆ 𝑇 , fix 𝛼 as in Clause (2), so that
𝐴 ⊆ 𝑇 � 𝛼. Let 𝑡 ∈ 𝑇𝛼 be given. As 𝐴 is a maximal antichain, there must
be some 𝑠 ∈ 𝐴 comparable with 𝑡. But dom(𝑠) < 𝛼 = dom(𝑡), so it follows
that 𝑡 extends 𝑠.

(3) =⇒ (1): Using Zorn’s lemma, it is easy to see that every antichain is included
in a maximal antichain. Thus, it suffices to verify that 𝑇 has no maximal
antichains of size 𝜅.

Given any maximal antichain 𝐴 ⊆ 𝑇 , fix 𝛼 as in Clause (3). As 𝑇 is
a 𝜅-tree, |𝑇𝛽 | < 𝜅 for every 𝛽, so that by regularity of 𝜅 it follows that
|𝑇 � 𝛼| =

∑︀
𝛽<𝛼 |𝑇𝛽 | < 𝜅. Thus, it suffices to prove that 𝐴 ⊆ (𝑇 � 𝛼).

Consider any 𝑢 ∈ 𝑇 � [𝛼, 𝜅); we shall show that 𝑢 /∈ 𝐴. Let 𝑡 := 𝑢 � 𝛼,
which is an element of 𝑇𝛼. By our choice of 𝛼 we can fix 𝑠 ∈ 𝐴 with 𝑠 ( 𝑡.
Altogether, 𝑠 ( 𝑢. As 𝑠 is an element of the antichain 𝐴 and 𝑢 properly
extends 𝑠, we infer that 𝑢 /∈ 𝐴. �

11Including, for example, the simple case 𝜅 = ℵ1.
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In our discussion of the normality requirement, we already agreed that at limit
levels 𝛼, 𝑇𝛼 will consist of elements b𝛼𝑥 extending nodes 𝑥 ∈ 𝑇 � 𝛼. In order
to accomplish Clause (3) of the preceding, we now need to ensure that given an
antichain 𝐴, each b𝛼𝑥 extends some element of 𝐴 ∩ (𝑇 � 𝛼). For this to be possible,
every 𝑥 ∈ 𝑇 � 𝛼 must be comparable with some element of 𝐴 ∩ (𝑇 � 𝛼), meaning
that 𝐴 ∩ (𝑇 � 𝛼) must be a maximal antichain in 𝑇 � 𝛼. How do we locate ordinals
at which properties of a given structure are replicated? This question prompts the
introduction of elementary submodels.

2.5. Elementary submodels and diamonds. Recall that for every regular un-
countable cardinal κ, (𝐻κ ,∈) models all axioms of ZFC except possibly for the
power-set axiom. We shall be working extensively with elementary submodels
(ℳ,∈) of (𝐻κ ,∈), though, by a slight abuse of notation, we will identify these
structures with their underlying sets ℳ and 𝐻κ , omitting the mention of the ∈-
relation.

A comprehensive exposition of elementary submodels of 𝐻κ may be found in
[JW97, Chapter 24] and [HSW10, Chapter 4]. For now, we shall only need to be
aware of the following corollary of the downward Löwenheim–Skolem theorem.

Fact 2.10. For every parameter 𝑝 ∈ 𝐻𝜅+ , the following set is cofinal in 𝜅:

𝐵(𝑝) := {𝛽 < 𝜅 | ∃ℳ ≺ 𝐻𝜅+(𝑝 ∈ ℳ & ℳ∩ 𝜅 = 𝛽)}.

Remark 2.11. It is not hard to verify that the set 𝐵(𝑝) is, in fact, a club in 𝜅. But
we shall not need that.

Given a well-founded poset P = (𝑃,�) which is a subset of 𝐻𝜅 and 𝛽 ∈ 𝐵(P),
for any ℳ ≺ 𝐻𝜅+ witnessing that 𝛽 ∈ 𝐵(P), the intersection 𝑃 ∩ℳ is a subset of
𝑃 that we can think of as being an initial segment of P. The following proposition
shows that this is precisely the case when P = (𝑇,() and 𝑇 is a streamlined 𝜅-
tree, in which case the initial segment of P determined by ℳ is nothing but 𝑇 � 𝛽.
Furthermore, global properties of (𝑇,() and its derivatives are reflected down to 𝛽:

Proposition 2.12. Suppose that 𝑇 is a streamlined 𝜅-tree, and 𝛽 ∈ 𝐵(𝑇 ) as
witnessed by ℳ ≺ 𝐻𝜅+ . Then:

(1) 𝑇 ∩ℳ = 𝑇 � 𝛽;
(2) If 𝐴 ⊆ 𝑇 is a maximal antichain and 𝐴 ∈ ℳ, then 𝐴∩ℳ = 𝐴∩ (𝑇 � 𝛽) is

a maximal antichain in 𝑇 � 𝛽;
(3) If 𝑓 : 𝑇 → 𝑇 is a nontrivial automorphism, and 𝑓 ∈ ℳ, then 𝑓 ∩ ℳ =

𝑓 � (𝑇 � 𝛽) is a nontrivial automorphism of 𝑇 � 𝛽.

Proof. (1) For all 𝛼 < 𝛽, by 𝛼, 𝑇 ∈ ℳ, we obtain 𝑇𝛼 ∈ ℳ, and by ℳ |= |𝑇𝛼| < 𝜅,
we infer that 𝑇𝛼 ⊆ ℳ. So 𝑇 � 𝛽 ⊆ ℳ.

As dom(𝑧) ∈ ℳ∩ 𝜅 for all 𝑧 ∈ 𝑇 ∩ℳ, we conclude that 𝑇 ∩ℳ = 𝑇 � 𝛽.
(2) Suppose 𝐴 ∈ ℳ is a maximal antichain in 𝑇 . Since 𝐻𝜅+ |= 𝐴 is a maximal

antichain in 𝑇 , it follows by elementarity that

ℳ |= 𝐴 is a maximal antichain in 𝑇,

so that in fact 𝐴 ∩ ℳ is a maximal antichain in 𝑇 ∩ ℳ. But 𝑇 ∩ ℳ = 𝑇 � 𝛽
by Clause (1), so that also 𝐴 ∩ ℳ = 𝐴 ∩ (𝑇 � 𝛽). Altogether, we infer that
𝐴 ∩ℳ = 𝐴 ∩ (𝑇 � 𝛽) is a maximal antichain in 𝑇 � 𝛽, as sought.

(3) Left to the reader. �

It thus follows from Fact 2.10 and Proposition 2.12(2) that for any maximal
antichain 𝐴 ⊆ 𝑇 , we can find cofinally many ordinals 𝛽 < 𝜅 such that 𝐴 ∩ (𝑇 � 𝛽)
is a maximal antichain in 𝑇 � 𝛽. Coming back to our previous discussion, we see
that as we build our tree, we will be able to seal maximal antichains of the form
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𝐴 ∩ (𝑇 � 𝛽), so that the challenge boils down to predicting 𝐴 ∩ (𝑇 � 𝛽) for each
and every maximal antichain 𝐴 of the eventual tree 𝑇 . This leads us to discussing
diamonds.

The combinatorial principle ♢(𝜅) was coined by Jensen in [Jen72, p. 293]. Rather
than giving its original definition, we focus here on an equivalent formulation that
is motivated by Fact 2.10.

Fact 2.13 ([BR17a, Lemma 2.2]). ♢(𝜅) is equivalent to the existence of a sequence

�⃗� = ⟨𝐴𝛽 | 𝛽 < 𝜅⟩ of elements of 𝐻𝜅 such that, for every parameter 𝑝 ∈ 𝐻𝜅+ and
every subset Ω ⊆ 𝐻𝜅, the following set is cofinal in 𝜅:

𝐵(Ω, 𝑝) := {𝛽 < 𝜅 | ∃ℳ ≺ 𝐻𝜅+(ℳ∩ Ω = 𝐴𝛽 & 𝑝 ∈ ℳ & ℳ∩ 𝜅 = 𝛽)}.

Remark 2.14. It is not hard to verify that the cofinal set 𝐵(Ω, 𝑝) is, in fact, sta-

tionary in 𝜅. Also note that a sequence �⃗� as above must form an enumeration
(with repetition) of all elements of 𝐻𝜅, thus witnessing the fact that ♢(𝜅) implies
|𝐻𝜅| = 𝜅<𝜅 = 𝜅.

It follows from Fact 2.13 that ♢(𝜅) provides us a way to anticipate instances of
Clause (2) of Proposition 2.12.

Lemma 2.15 (cf. [BR17a, Claim 2.3.2]). Suppose ♢(𝜅) holds, as witnessed by a

sequence �⃗� = ⟨𝐴𝛽 | 𝛽 < 𝜅⟩ as in Fact 2.13.
If 𝐴 is a maximal antichain in a given streamlined 𝜅-tree 𝑇 , then the following

set is cofinal in 𝜅:

𝐵 := {𝛽 < 𝜅 | 𝐴 ∩ (𝑇 � 𝛽) = 𝐴𝛽 is a maximal antichain in 𝑇 � 𝛽}.

Proof. Let 𝑝 := {𝑇,𝐴} and Ω := 𝐴. Recalling Remark 2.7, we infer that 𝑝 ∈ 𝐻𝜅+

and Ω ⊆ 𝐻𝜅, so that by our choice of �⃗�, the corresponding set 𝐵(Ω, 𝑝) of Fact 2.13 is
cofinal in 𝜅. To see that 𝐵(Ω, 𝑝) ⊆ 𝐵, consider any given 𝛽 ∈ 𝐵(Ω, 𝑝), as witnessed
by some ℳ ≺ 𝐻𝜅+ . Since 𝑝 ∈ ℳ, by elementarity we infer that 𝑇,𝐴 ∈ ℳ. By
Proposition 2.12(2), we then deduce that 𝐴∩ℳ = 𝐴∩(𝑇 �𝛽) is a maximal antichain
in 𝑇 �𝛽. But ℳ∩𝐴 = ℳ∩Ω = 𝐴𝛽 by our choice of ℳ, and it follows that 𝛽 ∈ 𝐵,
as sought. �

Thus, when building the tree at the outset using a fixed diamond sequence �⃗�,
we take advantage of the fact that, for many ordinals 𝛽, 𝐴𝛽 will be a maximal
antichain in 𝑇 � 𝛽.

2.6. Coherent ladder systems. We now return to a point we alluded to earlier,
in Subsection 2.4. Suppose we are building a limit level 𝑇𝛼. For 𝑥 ∈ 𝑇 �𝛼, in order
to construct b𝛼𝑥 , the limit of the “canonical 𝛼-branch for 𝑥”, we want to identify
an increasing and continuous sequence ⟨𝑥𝛽 | 𝛽 ∈ 𝐶𝛼⟩ of nodes of 𝑇 � 𝛼 comparable
with 𝑥 and satisfying 𝑥𝛽 ∈ 𝑇𝛽 for all 𝛽 ∈ 𝐶𝛼. In order to continue this recursion
through a limit step 𝛽 ∈ acc(𝐶𝛼), we need to ensure that the limit of the partial
sequence so-far identified was not excluded from 𝑇𝛽 . We do this by insisting on a
uniform method for constructing b𝛼𝑥 , so that the limit of the partial sequence ⟨𝑥𝛽 |
𝛽 ∈ 𝐶𝛼∩𝛽⟩ is exactly b𝛽𝑥 , the limit of the canonical 𝛽-branch for 𝑥, which we would
have inserted into 𝑇𝛽 when constructing that level. This insistence suggests several
requirements whenever 𝛽 ∈ acc(𝐶𝛼):

(1) Coherence of the ladder system: 𝐶𝛽 = 𝐶𝛼 ∩ 𝛽;
(2) Microscopic perspective: the identification of the node 𝑥𝛽′ , for 𝛽′ ∈ 𝐶𝛽 ,

must not depend on whether we are heading towards b𝛽𝑥 or b𝛼𝑥 ;
(3) Smoothness: we must never exclude any b𝛽𝑥 when constructing the level

𝑇𝛽 .
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It should be clear that if we can comply with requirements (1)–(3) above, then we
can construct a normal ever-branching 𝜅-tree. But we must not forget the task of
sealing antichains, and requirement (3) appears to conflict with the need to comply
with Lemma 2.9(3). How can this be resolved?12

The answer lies in the subtlety of how we seal the antichains, more precisely,
in how we decide which maximal antichain to seal at level 𝑇𝛼. Constructing the
level 𝑇𝛼 will not involve consulting the set 𝐴𝛼 given by Fact 2.13. Rather, when
constructing 𝑇𝛼, we will seal antichains that are predicted by 𝐴𝛽 , for ordinals
𝛽 ∈ nacc(𝐶𝛼). This approach respects requirements (2) and (3) above, but raises
the concern of whether every maximal antichain will be predicted by 𝐴𝛽 for enough
ordinals 𝛽 with 𝛽 ∈ nacc(𝐶𝛼). This concern, together with requirement (1) above,
motivates the following principle:

Definition 2.16 ([BR17a, Definition 1.3]). �−(𝜅) asserts the existence of a se-

quence �⃗� = ⟨𝐶𝛼 | 𝛼 < 𝜅⟩ such that:

∙ for all 𝛼 < 𝜅, 𝐶𝛼 is a closed subset of 𝛼 with sup(𝐶𝛼) = sup(𝛼);
∙ for all 𝛼 < 𝜅 and 𝛽 ∈ acc(𝐶𝛼), 𝐶𝛽 = 𝐶𝛼 ∩ 𝛽;
∙ for every cofinal 𝐵 ⊆ 𝜅, there exists an infinite ordinal 𝛼 < 𝜅 such that

sup(nacc(𝐶𝛼) ∩𝐵) = 𝛼.

Remarks 2.17. (1) The first bullet of Definition 2.16 implies that 𝐶0 = ∅, that
max(𝐶𝛼+1) = 𝛼 for every 𝛼 < 𝜅, and that 𝐶𝛼 is a club in 𝛼 for every
𝛼 ∈ acc(𝜅). In particular, any 𝛼 whose existence is asserted in the last
bullet must be a nonzero limit ordinal.

(2) If we omit the last bullet, or even weaken it by removing “nacc”, then
we can trivially build a witnessing sequence by setting 𝐶𝛼 := 𝛼 for every
𝛼 < 𝜅. As we have alluded to in this section, and will see in detail in the
proof of Proposition 2.18, it is the action of �−(𝜅) at the non-accumulation
points that enables the construction of a 𝜅-Souslin tree by appropriately
sealing the antichains without ruining the smoothness of the identification
of canonical 𝛼-branches throughout the construction.

(3) The last bullet implies that the sequence �⃗� is unthreadable, that is, there
is no club 𝐷 ⊆ 𝜅 such that 𝐷 ∩ 𝛼 = 𝐶𝛼 for all 𝛼 ∈ acc(𝐷) (see [BR17a,
Lemma 3.2]). This bullet should be understood as a genericity feature of
the coherent sequence (cf. [LR19, Lemma 3.20]).

(4) Notice that in our primary application of the last bullet of �−(𝜅), as ex-
emplified by the upcoming proof of Proposition 2.18, the set 𝐵 will be the
set of ordinals where a maximal antichain is predicted, while the ordinal
𝛼 will give us a level 𝑇𝛼 at which such antichains are sealed. As we shall
see, separating the set of ordinals where we predict a maximal antichain
from the set of ordinals where we seal the predicted antichain will provide
a great deal of flexibility.

(5) We encourage the reader who is already familiar with the diamond and
club principles to verify that ♢(𝜔1) =⇒ ♣(𝜔1) =⇒ �−(𝜔1).13 We also
mention that, by [BR17a, Corollary 1.10(5)], if 𝑉 = 𝐿, then �−(𝜅) holds
for every (regular uncountable cardinal) 𝜅 that is not weakly compact. In
contrast, by [BR17a, Example 1.26], after Lévy collapsing a weakly compact
cardinal to 𝜔2, ♢(𝜔2) holds, but �−(𝜔2) fails.

12A brief comparison of the classic non-smooth approach (requiring nonreflecting stationary
sets) and the modern approach may be found on [BR17a, p. 1965]. The smoothness of our
approach is witnessed by Fact 2.20 below.

13See Section 3.
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(6) The minus sign in the notation �−(𝜅) is there to distinguish the latter from
the stronger principle �(𝜅) of [BR17a, Definition 1.4].

2.7. A simple construction. Having developed the machinery in the preceding
subsections, we are now ready to prove the following proposition.

Proposition 2.18 ([BR17a, Proposition 2.3]). Suppose that �−(𝜅) + ♢(𝜅) holds.
Then there exists a 𝜅-Souslin tree.

Proof. Let �⃗� = ⟨𝐶𝛼 | 𝛼 < 𝜅⟩ be a witness to �−(𝜅). Let �⃗� = ⟨𝐴𝛽 | 𝛽 < 𝜅⟩ be
given by Fact 2.13. In addition, let � be some well-ordering of <𝜅2.

As outlined earlier, we shall recursively construct a sequence ⟨𝑇𝛼 | 𝛼 < 𝜅⟩ of
levels such that 𝑇 :=

⋃︀
𝛼<𝜅 𝑇𝛼 will form a normal, ever-branching, streamlined

𝜅-Souslin tree. Furthermore, in this construction we shall ensure that for all 𝛼 < 𝜅,
𝑇𝛼 will be a subset of 𝛼2 of size ≤ max{ℵ0, |𝛼|}.14

I Of course, we begin by letting 𝑇0 := {∅}.
I Successor levels are where we will ensure that the tree is ever-branching. The

simplest way to do that is to assign two immediate successors to every node from
the previous level. That is, for every 𝛼 < 𝜅, we let

𝑇𝛼+1 := {𝑡y0, 𝑡y1 | 𝑡 ∈ 𝑇𝛼}.
I Suppose that 𝛼 ∈ Γ, where Γ := acc(𝜅), and that ⟨𝑇𝛽 | 𝛽 < 𝛼⟩ has already

been defined. Recall that 𝑇 � 𝛼 =
⋃︀
𝛽<𝛼 𝑇𝛽 , and that constructing the level 𝑇𝛼

involves deciding which 𝛼-branches through 𝑇 � 𝛼 will have their limits placed into
the tree. As discussed in Subsection 2.4, we must balance the normality requirement
with the need to bound the size of 𝑇𝛼 and to seal antichains.

Normality requires that for every 𝑥 ∈ 𝑇 � 𝛼 we include in 𝑇𝛼 some node extend-

ing 𝑥. As 𝛼 is a nonzero limit ordinal, our choice of the sequence �⃗� implies that
𝐶𝛼 is a club in 𝛼. Thus, relying on the fact that the tree 𝑇 � 𝛼 was constructed to
be normal (in particular, it is normal at each level 𝑇𝛽 for 𝛽 ∈ 𝐶𝛼), and recalling
that 𝑇 �𝐶𝛼 =

⋃︀
𝛽∈𝐶𝛼

𝑇𝛽 , the idea for ensuring normality at level 𝑇𝛼 is to attach to
each node 𝑥 ∈ 𝑇 � 𝐶𝛼 some node b𝛼𝑥 ∈ 𝛼2 above it, and then let

(*)𝛼 𝑇𝛼 := {b𝛼𝑥 | 𝑥 ∈ 𝑇 � 𝐶𝛼}.
Let 𝑥 ∈ 𝑇 � 𝐶𝛼 be arbitrary. We want b𝛼𝑥 to be the limit of some canoni-

cal 𝛼-branch for 𝑥, that is, some 𝛼-branch through 𝑇 � 𝛼 that contains 𝑥. As
sup(𝐶𝛼) = 𝛼, it makes sense to describe b𝛼𝑥 as the limit

⋃︀
Im(𝑏𝛼𝑥) of a sequence

𝑏𝛼𝑥 ∈
∏︀
𝛽∈𝐶𝛼∖dom(𝑥) 𝑇𝛽 such that:

∙ 𝑏𝛼𝑥(dom(𝑥)) = 𝑥;
∙ 𝑏𝛼𝑥(𝛽′) ( 𝑏𝛼𝑥(𝛽) for any pair 𝛽′ < 𝛽 of ordinals from 𝐶𝛼 ∖ dom(𝑥);
∙ 𝑏𝛼𝑥(𝛽) =

⋃︀
Im(𝑏𝛼𝑥 � 𝛽) for all 𝛽 ∈ acc(𝐶𝛼 ∖ dom(𝑥)).

We build the sequence 𝑏𝛼𝑥 by recursion:
Let 𝑏𝛼𝑥(dom(𝑥)) := 𝑥. Next, suppose 𝛽− < 𝛽 are successive points of 𝐶𝛼∖dom(𝑥),

and 𝑏𝛼𝑥(𝛽−) has already been defined. In order to decide 𝑏𝛼𝑥(𝛽), we consult the
following set:

𝑄𝛼𝑥,𝛽 := {𝑡 ∈ 𝑇𝛽 | ∃𝑠 ∈ 𝐴𝛽 (𝑠 ∪ 𝑏𝛼𝑥(𝛽−)) ( 𝑡}.
Now, there are the two possibilities:

∙ If 𝑄𝛼𝑥,𝛽 ̸= ∅, then let 𝑏𝛼𝑥(𝛽) be its �-least element.

∙ Otherwise, let 𝑏𝛼𝑥(𝛽) be the �-least element of 𝑇𝛽 that extends 𝑏𝛼𝑥(𝛽−). Such
an element must exist, as the level 𝑇𝛽 was constructed so as to preserve
normality.

14This means that 𝑇 will be slim, see Definition 6.3.
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The following is obvious, and is aligned with the microscopic perspective de-
scribed in requirement (2) of Subsection 2.6.

Dependencies 2.18.1. For any two consecutive points 𝛽− < 𝛽 of dom(𝑏𝛼𝑥), the
value of 𝑏𝛼𝑥(𝛽) is completely determined by 𝑏𝛼𝑥(𝛽−), 𝐴𝛽 , and 𝑇𝛽 .

Finally, suppose 𝛽 ∈ acc(𝐶𝛼 ∖ dom(𝑥)) and 𝑏𝛼𝑥 � 𝛽 has already been defined. As
promised, we let 𝑏𝛼𝑥(𝛽) :=

⋃︀
Im(𝑏𝛼𝑥 � 𝛽). It is clear that 𝑏𝛼𝑥(𝛽) ∈ 𝛽2, but we need

more than that:

Claim 2.18.2. 𝑏𝛼𝑥(𝛽) ∈ 𝑇𝛽.

Proof. First, note that since 𝛽 ∈ acc(𝐶𝛼) and �⃗� is a �−(𝜅)-sequence, 𝐶𝛼∩𝛽 = 𝐶𝛽 ,
so that 𝑥 ∈ 𝑇 � 𝐶𝛽 . So, by the induction hypothesis (*)𝛽 , we infer that b𝛽𝑥 is in
𝑇𝛽 . As b𝛽𝑥 =

⋃︀
Im(𝑏𝛽𝑥) and 𝑏𝛼𝑥(𝛽) =

⋃︀
Im(𝑏𝛼𝑥 � 𝛽), it thus suffices to prove that

𝑏𝛽𝑥 = 𝑏𝛼𝑥 � 𝛽.
From 𝐶𝛼 ∩ 𝛽 = 𝐶𝛽 , we obtain dom(𝑏𝛽𝑥) = 𝐶𝛽 ∖ dom(𝑥) = 𝐶𝛼 ∩ 𝛽 ∖ dom(𝑥) =

dom(𝑏𝛼𝑥)∩𝛽. Call the latter by 𝑑. Now, we prove that, for every 𝛿 ∈ 𝑑, 𝑏𝛽𝑥(𝛿) = 𝑏𝛼𝑥(𝛿).
By induction:

∙ Clearly, 𝑏𝛽𝑥(min(𝑑)) = 𝑥 = 𝑏𝛼𝑥(min(𝑑)).
∙ Suppose 𝛿− < 𝛿 are successive points of 𝑑, and 𝑏𝛽𝑥(𝛿−) = 𝑏𝛼𝑥(𝛿−). Then by

Dependencies 2.18.1, also 𝑏𝛽𝑥(𝛿) = 𝑏𝛼𝑥(𝛿).
∙ For 𝛿 ∈ acc(𝑑): If the sequences are identical up to 𝛿, then their limits must

be identical. �

This completes the definition of the sequence 𝑏𝛼𝑥 , and thus of its limit b𝛼𝑥 , for
each 𝑥 ∈ 𝑇 � 𝐶𝛼. Consequently, the level 𝑇𝛼 is defined as promised in (*)𝛼.

Having constructed all levels of the tree, we then let 𝑇 :=
⋃︀
𝛼<𝜅 𝑇𝛼. It is clear

from the construction that 𝑇 is a normal, ever-branching, streamlined 𝜅-tree. By
Lemma 2.1, to prove that 𝑇 is 𝜅-Souslin, it suffices to show that it has no 𝜅-sized
antichains. By Lemma 2.9, we thus fix an arbitrary maximal antichain 𝐴 ⊆ 𝑇 , and
argue that there is some ordinal 𝛼 < 𝜅 such that 𝐴 ∩ (𝑇 � 𝛼) is sealed at level 𝛼.

To find the sought-after ordinal 𝛼, let

𝐵 := {𝛽 < 𝜅 | 𝐴 ∩ (𝑇 � 𝛽) = 𝐴𝛽 is a maximal antichain in 𝑇 � 𝛽}.

By Lemma 2.15, 𝐵 is cofinal in 𝜅. Thus, by our choice of the sequence �⃗�, let
us fix an infinite ordinal 𝛼 < 𝜅 for which sup(nacc(𝐶𝛼) ∩ 𝐵) = 𝛼. Note that by
Remark 2.17(1), 𝛼 ∈ Γ.

Claim 2.18.3. Every node of 𝑇𝛼 extends some element of 𝐴 ∩ (𝑇 � 𝛼).

Proof. Let 𝑡 ∈ 𝑇𝛼 be arbitrary. As 𝛼 ∈ Γ, the construction of 𝑇𝛼 entails that
𝑡 = b𝛼𝑥 for some node 𝑥 ∈ 𝑇 � 𝐶𝛼. Fix such an 𝑥. By our choice of 𝛼, fix 𝛽 ∈
nacc(𝐶𝛼) ∩ 𝐵 above dom(𝑥). Denote 𝛽− := sup(𝐶𝛼 ∩ 𝛽). Since 𝛽 ∈ 𝐵, we know
that 𝐴𝛽 = 𝐴 ∩ (𝑇 � 𝛽) is a maximal antichain in 𝑇 � 𝛽, and hence there is some
𝑠 ∈ 𝐴𝛽 comparable with 𝑏𝛼𝑥(𝛽−), so that by normality of the tree, 𝑄𝛼𝑥,𝛽 ̸= ∅. It

follows that we chose 𝑏𝛼𝑥(𝛽) to extend some 𝑠 ∈ 𝐴𝛽 . Altogether,

𝑠 ( 𝑏𝛼𝑥(𝛽) (
⋃︁

𝛽∈𝐶𝛼∖dom(𝑥)
𝑏𝛼𝑥(𝛽) = b𝛼𝑥 = 𝑡. �

This completes the proof. �

Now that we have built a 𝜅-Souslin tree from �−(𝜅) +♢(𝜅), we mention various
scenarios in which these hypotheses are known to be valid:

Fact 2.19. �−(𝜅) + ♢(𝜅) holds, assuming any of the following:

(1) 𝜅 is a regular uncountable cardinal that is not weakly compact, and 𝑉 = 𝐿
[BR17a, Corollary 1.10(5)];
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(2) 𝜅 = ℵ1 and ♢(ℵ1) holds [BR17a, Theorem 3.6];
(3) 𝜅 = 𝜆+ for 𝜆 uncountable, and �(𝜆+) + GCH holds [Rin17, Corollary 4.5];
(4) 𝜅 = 𝜆+ for 𝜆 uncountable, and �𝜆 + CH𝜆 holds [BR17a, Corollary 3.9];
(5) 𝜅 = 𝜆+ for 𝜆 ≥ i𝜔, and �(𝜆+) + CH𝜆 holds [Rin17, Corollary 4.7].

It follows from Clause (3) of the preceding that in the Harrington–Shelah model
[HS85, Theorem A], �−(𝜅) + ♢(𝜅) holds for 𝜅 = ℵ2, and, in addition, every sta-

tionary subset of 𝐸ℵ2

ℵ0
reflects, meaning we are far away from the Gregory scenario

[Gre76]. Furthermore, �−(𝜅) + ♢(𝜅) is compatible with the reflection of all sta-
tionary subsets of 𝜅:

Fact 2.20 ([Lam17a, Theorem 1.12]). Modulo a large cardinal hypothesis, there is
a model of ZFC + GCH in which �−(𝜅) + ♢(𝜅) holds, and every stationary subset
of 𝜅 reflects, where 𝜅 can be taken to be ℵ𝜔+1, or the first inaccessible cardinal.

By Proposition 2.18, we get a 𝜅-Souslin tree uniformly in all of these scenarios!
After developing some more machinery in the next few sections, we shall return

in Section 6 to construct a 𝜅-Souslin tree from hypotheses considerably weaker than
the ones here.

3. Interlude: The ♣ principle

The following principle was introduced by Ostaszewski [Ost76] for the special
case 𝑆 = 𝜅 = ℵ1.

Definition 3.1. For a stationary set 𝑆 ⊆ 𝜅, the principle ♣(𝑆) asserts the existence
of a sequence ⟨𝑋𝛿 | 𝛿 ∈ 𝑆⟩ such that:

(1) for every 𝛿 ∈ 𝑆 ∩ acc(𝜅), 𝑋𝛿 is a cofinal subset of 𝛿 with order-type cf(𝛿);
(2) for every cofinal subset 𝑋 ⊆ 𝜅, the following set is stationary:

{𝛿 ∈ 𝑆 | 𝑋𝛿 ⊆ 𝑋}.

As ♣(𝜔1) entails �−(𝜔1), it is worth spending some time to present some of the
techniques involved in manipulating and improving the former.

Definition 3.2. For any two sets of ordinals 𝐴 and 𝐵, we say that 𝐴 is 𝐵-separated
iff for every pair 𝛼 < 𝛼′ of ordinals from 𝐴, there exists 𝛽 ∈ 𝐵 with 𝛼 < 𝛽 < 𝛼′.

Lemma 3.3. For any two cofinal subsets 𝐴,𝐵 of some limit nonzero ordinal 𝛿,
there exists a cofinal subset 𝐴′ ⊆ 𝐴 such that 𝐴′ is 𝐵-separated.

Proof. Let ⟨𝛿𝑖 | 𝑖 < cf(𝛿)⟩ be a strictly increasing sequence of ordinals converging
to 𝛿. Recursively construct a sequence ⟨(𝛼𝑖, 𝛽𝑖) | 𝑖 < cf(𝛿)⟩ such that, for all
𝑖 < 𝑗 < cf(𝛿):

∙ 𝛼𝑖 ∈ 𝐴,
∙ 𝛽𝑖 ∈ 𝐵, and
∙ 𝛿𝑖 < 𝛼𝑖 < 𝛽𝑖 < 𝛼𝑖+1 ≤ 𝛼𝑗 .

Evidently, 𝐴′ := {𝛼𝑖 | 𝑖 < cf(𝛿)} is as sought. �

Corollary 3.4. Suppose 𝑆 ⊆ 𝜅 is stationary. Then ♣(𝑆) is equivalent to the
existence of a sequence ⟨𝐴𝛿 | 𝛿 ∈ 𝑆⟩ such that, for every cofinal subset 𝐴 ⊆ 𝜅, there
exists a nonzero 𝛿 ∈ 𝑆 such that 𝐴𝛿 ⊆ 𝐴 ∩ 𝛿 and sup(𝐴𝛿) = 𝛿.

Proof. We focus on the nontrivial (that is, backward) implication. Let �⃗� = ⟨𝐴𝛿 |
𝛿 ∈ 𝑆⟩ be as above. For every 𝛿 ∈ 𝑆 ∩ acc(𝜅), if 𝐴𝛿 happens to be a cofinal subset
of 𝛿, then let 𝑋𝛿 be a cofinal subset of 𝐴𝛿 of order-type cf(𝛿); otherwise, let 𝑋𝛿 be
an arbitrary cofinal subset of 𝛿 of order-type cf(𝛿). For every 𝛿 ∈ 𝑆 ∖ acc(𝜅), just
let 𝑋𝛿 := ∅.
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To see that ⟨𝑋𝛿 | 𝛿 ∈ 𝑆⟩ is a ♣(𝑆)-sequence, fix an arbitrary cofinal subset
𝑋 ⊆ 𝜅 and a club 𝐵 ⊆ 𝜅; we must find 𝛿 ∈ 𝑆 ∩𝐵 with 𝑋𝛿 ⊆ 𝑋.

By Lemma 3.3, let 𝐴 be a cofinal subset of 𝑋 that is 𝐵-separated. By the choice

of �⃗�, let us fix a nonzero ordinal 𝛿 ∈ 𝑆 such that 𝐴𝛿 ⊆ 𝐴 ∩ 𝛿 and sup(𝐴𝛿) = 𝛿. In
particular sup(𝐴 ∩ 𝛿) = 𝛿, and so by 𝐵-separation, also sup(𝐵 ∩ 𝛿) = 𝛿. But 𝐵 is
closed, so that 𝛿 ∈ 𝐵. In addition, 𝑋𝛿 ⊆ 𝐴𝛿 ⊆ 𝐴 ⊆ 𝑋, as sought. �

Lemma 3.5. Suppose that 𝜅𝜃 = 𝜅, 𝑆 ⊆ 𝜅, and ♣(𝑆) holds. Then there exists
a matrix ⟨𝑋𝜏

𝛿 | 𝛿 ∈ 𝑆, 𝜏 ≤ 𝜃⟩ such that, for every sequence ⟨𝑋𝜏 | 𝜏 ≤ 𝜃⟩ of
cofinal subsets of 𝜅, there exist stationarily many 𝛿 ∈ 𝑆, such that, for all 𝜏 ≤ 𝜃,
𝑋𝜏
𝛿 ⊆ 𝑋𝜏 ∩ 𝛿 and sup(𝑋𝜏

𝛿 ) = 𝛿.

Proof. Let ⟨𝐴𝛿 | 𝛿 ∈ 𝑆⟩ be a ♣(𝑆)-sequence. Fix an enumeration ⟨𝑓𝛼 | 𝛼 < 𝜅⟩ of
𝜃+1𝜅. Fix a club 𝐷 such that for all 𝛿 ∈ 𝐷 and 𝛼 < 𝛿, sup(Im(𝑓𝛼)) < 𝛿. For all
𝛿 ∈ 𝑆 and 𝜏 ≤ 𝜃, let 𝑋𝜏

𝛿 := {𝑓𝛼(𝜏) | 𝛼 ∈ 𝐴𝛿}. To see that ⟨𝑋𝜏
𝛿 | 𝛿 ∈ 𝑆, 𝜏 ≤ 𝜃⟩ is

as sought, fix an arbitrary sequence ⟨𝑋𝜏 | 𝜏 ≤ 𝜃⟩ of cofinal subsets of 𝜅. For every
𝜄 < 𝜅, let 𝑋𝜏 (𝜄) denote the unique element 𝛾 ∈ 𝑋𝜏 such that otp(𝑋𝜏 ∩ 𝛾) = 𝜄.
Define 𝑔 : 𝜅→ 𝜅 by stipulating:

𝑔(𝜄) := min{𝛼 < 𝜅 | ∀𝜏 ≤ 𝜃(𝑓𝛼(𝜏) = 𝑋𝜏 (𝜄))}.
Notice that 𝑔 is injective, so that Im(𝑔) is a cofinal subset of 𝜅. Fix a cofinal
subset 𝐴 of Im(𝑔) such that, for any pair 𝛼 < 𝛼′ of ordinals from 𝐴, we have
𝛼 < min𝜏≤𝜃 𝑓𝛼′(𝜏). Consider the stationary set:

𝑆′ := {𝛿 ∈ 𝑆 ∩𝐷 ∩ acc(𝜅) | 𝐴𝛿 ⊆ 𝐴}.
Let 𝛿 ∈ 𝑆′ and 𝜏 ≤ 𝜃. We claim that 𝑋𝜏

𝛿 ⊆ 𝑋𝜏 ∩ 𝛿 and sup(𝑋𝜏
𝛿 ) = 𝛿. To see this,

let 𝛼 ∈ 𝐴𝛿 be arbitrary. As 𝐴𝛿 ⊆ 𝐴 ⊆ Im(𝑔) and 𝛼 ∈ 𝛿 ∈ 𝐷, this means that
𝑓𝛼(𝜏) ∈ 𝑋𝜏 ∩ 𝛿. Finally, as sup(𝐴𝛿) = 𝛿 and 𝛼 < 𝑓𝛼′(𝜏) for any pair 𝛼 < 𝛼′ of
ordinals from 𝐴, we infer that sup(𝑋𝜏

𝛿 ) = 𝛿. �

It follows from Remark 2.14 and Corollary 3.4 that ♢(𝜅) =⇒ ♣(𝜅). More
generally, we have the following.

Fact 3.6 (Devlin, [Ost76, p. 507]). For every stationary 𝑆 ⊆ 𝜅, the following are
equivalent:

∙ ♢(𝑆);
∙ ♣(𝑆) and 𝜅<𝜅 = 𝜅.

In [Dev78], Devlin proved that if ♢(𝑆) holds for a stationary subset 𝑆 ⊆ 𝜅, then
there exists a partition ⟨𝑆𝜄 | 𝜄 < 𝜅⟩ of 𝑆 such that ♢(𝑆𝜄) holds for every 𝜄 < 𝜅. His
proof makes essential use of the consequence 𝜅<𝜅 = 𝜅 of ♢(𝑆). We now generalize
Devlin’s theorem and show that its analogue is valid for the weaker principle ♣
(even in the absence of 𝜅<𝜅 = 𝜅), along the way, giving a proof that applies to
other variants of ♣ and ♢.

Theorem 3.7. Suppose that ♣(𝑆) holds for a stationary subset 𝑆 ⊆ 𝜅. Then there
exists a partition ⟨𝑆𝜄 | 𝜄 < 𝜅⟩ of 𝑆 such that ♣(𝑆𝜄) holds for every 𝜄 < 𝜅.

Proof. Fix a sequence �⃗� = ⟨𝑋𝛿 | 𝛿 ∈ 𝑆⟩ witnessing ♣(𝑆). Fix a bijection 𝜋 : 𝜅 ↔
𝜅 × 𝜅. Define ℎ : 𝑆 → 𝜅 by letting ℎ(𝛿) := 0 for 𝛿 ∈ 𝑆 ∖ acc(𝜅), and, for every
𝛿 ∈ 𝑆 ∩ acc(𝜅),

ℎ(𝛿) := min{𝜄 < 𝜅 | (𝜅× {𝜄}) ∩ 𝜋[𝑋𝛿] ̸= ∅}.
For every 𝜄 < 𝜅, let 𝑆𝜄 := {𝛿 ∈ 𝑆 | ℎ(𝛿) = 𝜄}, so that ⟨𝑆𝜄 | 𝜄 < 𝜅⟩ is a partition of 𝑆.

Next, for every 𝛿 ∈ 𝑆 ∩ acc(𝜅), let

𝐴𝛿 := {𝛾 < 𝛿 | (𝛾, ℎ(𝛿)) ∈ 𝜋[𝑋𝛿]},
while for 𝛿 ∈ 𝑆 ∖ acc(𝜅), just let 𝐴𝛿 := ∅.
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Claim 3.7.1. Let 𝐴 ⊆ 𝜅 be cofinal. For every 𝜄 < 𝜅, there exists a nonzero 𝛿 ∈ 𝑆𝜄
such that 𝐴𝛿 ⊆ 𝐴 and sup(𝐴𝛿) = 𝛿.

Proof. Let 𝜄 < 𝜅 be arbitrary. Put 𝑋 := 𝜋−1[𝐴 × {𝜄}]. As 𝜋 is bijective, |𝑋| =
|𝐴| = 𝜅, so that 𝑋 is cofinal in 𝜅. Consider the club 𝐵 := {𝛽 < 𝜅 | 𝜋[𝛽] = 𝛽 × 𝛽}.

By Lemma 3.3, fix a cofinal 𝑋 ′ ⊆ 𝑋 that is 𝐵-separated. Now, by the choice of �⃗�,
the following set is stationary:

𝐺(𝑋 ′) := {𝛿 ∈ 𝑆 | 𝑋𝛿 ⊆ 𝑋 ′}.
Fix 𝛿 ∈ 𝐺(𝑋 ′) ∩ acc(𝜅) above 𝜄. As 𝑋𝛿 ⊆ 𝑋 ′, we infer 𝜋[𝑋𝛿] ⊆ 𝜋[𝑋 ′] ⊆ 𝜋[𝑋] =

𝐴 × {𝜄}, so that ℎ(𝛿) = 𝜄. It thus follows that 𝛿 ∈ 𝑆𝜄 and 𝐴𝛿 ⊆ 𝐴. Finally, to see
that sup(𝐴𝛿) = 𝛿, let 𝛼 < 𝛿 be arbitrary, and we shall find 𝛾 ∈ 𝐴𝛿 above 𝛼. As
sup(𝑋𝛿) = 𝛿, we may assume that 𝛼 ∈ 𝑋𝛿 ∖ 𝜄. Let 𝛼′ := min(𝑋𝛿 ∖ (𝛼 + 1)). As
𝑋𝛿 ⊆ 𝑋 ′ and the latter is 𝐵-separated, let us also fix 𝛽 ∈ 𝐵 with 𝛼 < 𝛽 < 𝛼′. Since
𝜋[𝑋𝛿] ⊆ 𝐴 × {𝜄}, we can fix 𝛾 such that 𝜋(𝛼′) = (𝛾, 𝜄). Since 𝜋[𝛽] = 𝛽 × 𝛽 while
𝜄 ≤ 𝛼 < 𝛽 < 𝛼′, it follows that 𝛾 ≥ 𝛽. As sup(𝑋𝛿) = 𝛿 and 𝑋𝛿 ⊆ 𝑋 ′, we infer that
sup(𝑋 ′∩ 𝛿) = 𝛿, so that by 𝐵-separation of 𝑋 ′, we also obtain sup(𝐵∩ 𝛿) = 𝛿. But
𝐵 is closed, so that 𝛿 ∈ 𝐵, meaning that 𝜋[𝛿] = 𝛿 × 𝛿. As 𝛼′ < 𝛿, it follows that
𝛾 < 𝛿. Altogether, 𝛾 is an element of 𝐴𝛿 above 𝛼. �

As 𝐴𝛿 ⊆ 𝐴 for all 𝛿 ∈ 𝑆, it now follows from Corollary 3.4 that ♣(𝑆𝜄) holds for
all 𝜄 < 𝜅. �

When replacing sets of ordinals by sets of sets of ordinals, it is natural to replace
the sup measure by a sup-over-min measure which we call mup:

Definition 3.8. For every 𝒜 ⊆ 𝒫(𝜅), let mup(𝒜) := sup{min(𝑎) | 𝑎 ∈ 𝒜, 𝑎 ̸= ∅}.

A minor variation of the proof of Theorem 3.7 establishes yet another equiva-
lence, which will be utilized in deriving Theorem 4.16 below.

Lemma 3.9. For every stationary 𝑆 ⊆ 𝜅, ♣(𝑆) holds iff there exists a sequence
⟨𝒳𝛿 | 𝛿 ∈ 𝑆⟩ such that:

(1) for every 𝛿 ∈ 𝑆 ∩ acc(𝜅), 𝒳𝛿 ⊆ [𝛿]<𝜔 with mup(𝒳𝛿) = 𝛿;
(2) for every 𝒳 ⊆ [𝜅]<𝜔 with mup(𝒳 ) = 𝜅, the following set is stationary:

{𝛿 ∈ 𝑆 | 𝒳𝛿 ⊆ 𝒳}.

Proof. We focus on the nontrivial (that is, forward) implication. Fix a sequence

�⃗� = ⟨𝐴𝛿 | 𝛿 ∈ 𝑆⟩ witnessing ♣(𝑆). Fix a bijection 𝜋 : 𝜅↔ [𝜅]<𝜔. For every 𝛿 ∈ 𝑆,
let

𝒳𝛿 :=

{︃
𝜋[𝐴𝛿], if 𝛿 ∈ acc(𝜅) & 𝜋[𝐴𝛿] ⊆ [𝛿]<𝜔 & mup(𝜋[𝐴𝛿]) = 𝛿;

[𝛿]<𝜔, otherwise.

To see that ⟨𝒳𝛿 | 𝛿 ∈ 𝑆⟩ satisfies Clause (2) of the lemma, fix an arbitrary 𝒳 ⊆ [𝜅]<𝜔

with mup(𝒳 ) = 𝜅. By thinning 𝒳 out, we may assume that ∅ /∈ 𝒳 and that
𝑥 ↦→ min(𝑥) is injective over 𝒳 . Now, let 𝐴 := 𝜋−1[𝒳 ], so that |𝐴| = 𝜅. Consider
the following set:

𝐵 := {𝛽 < 𝜅 | 𝜋[𝛽] = [𝛽]<𝜔 & ∀𝑥 ∈ 𝒳 (min(𝑥) < 𝛽 =⇒ max(𝑥) < 𝛽)}.
It is not hard to see that for 𝑝 := {𝜋,𝒳}, our set 𝐵 covers the set 𝐵(𝑝) of Fact 2.10,
so that 𝐵 is cofinal in 𝜅. By Lemma 3.3, fix a cofinal 𝐴′ ⊆ 𝐴 that is 𝐵-separated.

Now, by the choice of �⃗�, there are stationarily many 𝛿 ∈ 𝑆 ∩ acc(𝜅) for which
𝐴𝛿 ⊆ 𝐴′. Fix such a 𝛿, and we shall show that 𝒳𝛿 ⊆ 𝒳 .

As 𝐴𝛿 ⊆ 𝐴′, we infer 𝜋[𝐴𝛿] ⊆ 𝜋[𝐴′] ⊆ 𝜋[𝐴] = 𝒳 . By definition of 𝒳𝛿, then, it
suffices to prove that 𝜋[𝐴𝛿] ⊆ [𝛿]<𝜔 and mup(𝜋[𝐴𝛿]) = 𝛿. To prove the former: As
sup(𝐴𝛿) = 𝛿 and 𝐴𝛿 ⊆ 𝐴′, we infer that sup(𝐴′ ∩ 𝛿) = 𝛿, so that by 𝐵-separation
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of 𝐴′, we also obtain sup(𝐵∩ 𝛿) = 𝛿. But 𝐵 is closed, so that 𝛿 ∈ 𝐵, and as 𝐴𝛿 ⊆ 𝛿
we infer that 𝜋[𝐴𝛿] ⊆ 𝜋[𝛿] = [𝛿]<𝜔. To see that mup(𝜋[𝐴𝛿]) = 𝛿, let 𝛼 < 𝛿 be
arbitrary, and we shall find 𝛼′ ∈ 𝐴𝛿 with min(𝜋(𝛼′)) > 𝛼. As sup(𝐴𝛿) = 𝛿, we
may assume that 𝛼 ∈ 𝐴𝛿. Let 𝛼′ := min(𝐴𝛿 ∖ (𝛼+ 1)). As 𝐴𝛿 ⊆ 𝐴′ and the latter
is 𝐵-separated, let us also fix 𝛽 ∈ 𝐵 with 𝛼 < 𝛽 < 𝛼′. Since 𝜋[𝛽] = [𝛽]<𝜔, we
know that max(𝜋(𝛼′)) ≥ 𝛽. Since 𝛽 ∈ 𝐵 and 𝜋(𝛼′) ∈ 𝜋[𝐴𝛿] ⊆ 𝒳 , we infer that also
min(𝜋(𝛼′)) ≥ 𝛽 > 𝛼, as sought. �

4. A generalization of �−(𝜅)

In this section and the next one, we shall present generalizations of the concepts
that arose in Section 2. Here, we present a principle P−

𝜉 (𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈, 𝜎) that

generalizes the ladder system principle �−(𝜅). Then, in the next section, we shall
present P∙

𝜉(𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈), which serves as a generalization and weakening of the

conjunction �−(𝜅) + ♢(𝜅).

4.1. Ladder systems. We assume the reader is comfortable with Conventions 1.2
from Page 5.

Definition 4.1 ([BR19a]). Let 𝒦(𝜅) := {𝑥 ∈ 𝒫(𝜅) | 𝑥 ̸= ∅ & acc+(𝑥) ⊆ 𝑥 &
sup(𝑥) /∈ 𝑥} denote the collection of all nonempty 𝑥 ⊆ 𝜅 such that 𝑥 is a club
subset of sup(𝑥).

For each 𝐶 ∈ 𝒦(𝜅), denote 𝛼𝐶 := sup(𝐶)

For a binary relation ℛ over 𝒦(𝜅), and a nonempty collection 𝒮 of stationary
subsets of 𝜅, we shall define a principle P−

𝜉 (𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈, 𝜎) in two stages. In the
first stage, we focus on the first four parameters.

Definition 4.2. We say that ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ is a P−
𝜉 (𝜅, 𝜇,ℛ, . . .)-sequence iff, for

every 𝛼 ∈ acc(𝜅), all of the following hold:

∙ 𝒞𝛼 ⊆ {𝐶 ∈ 𝒦(𝜅) | otp(𝐶) ≤ 𝜉 & 𝛼𝐶 = 𝛼};
∙ 0 < |𝒞𝛼| < 𝜇;
∙ for all 𝐶 ∈ 𝒞𝛼 and �̄� ∈ acc(𝐶), there exists 𝐷 ∈ 𝒞�̄� with 𝐷 ℛ 𝐶.

Convention 4.3. If we omit the subscript 𝜉, then we mean that 𝜉 := 𝜅.

Convention 4.4. We shall always assume that 𝒞0 := {∅} and 𝒞𝛼+1 := {{𝛼}} for all
𝛼 < 𝜅. Likewise, whenever we construct a P−

𝜉 (𝜅, 𝜇,ℛ, . . .)-sequence ⟨𝒟𝛼 | 𝛼 < 𝜅⟩,
we shall never bother to define 𝒟0 and 𝒟𝛼+1 for 𝛼 < 𝜅.

Example 4.5. The binary relations over 𝒦(𝜅) that fit as the parameter ℛ should be
understood as coherence relations. The basic example is the end-extension relation,
⊑, where, for 𝐶,𝐷 ∈ 𝒦(𝜅), we define 𝐶 ⊑ 𝐷 iff 𝐶 = 𝐷∩𝛼𝐶 . More nuanced binary
relations over 𝒦(𝜅) are obtained by modifying the ⊑ relation as follows:

∙ We define 𝐶 ⊑* 𝐷 iff there exists 𝛾 < 𝛼𝐶 such that 𝐶 ∖ 𝛾 ⊑ 𝐷 ∖ 𝛾;
∙ For ℛ ∈ {⊑,⊑*}, we define 𝐶 𝜒ℛ 𝐷 iff ((𝐶 ℛ 𝐷) or (cf(𝛼𝐶) < 𝜒));
∙ For ℛ ∈ {⊑,⊑*}, we define 𝐶 ℛ𝜒 𝐷 iff ((𝐶 ℛ 𝐷) or (otp(𝐷) < 𝜒 and

nacc(𝐷) consists only of successor ordinals));
∙ For any binary relation ℛ over 𝒦(𝜅) and any class Ω ⊆ ORD, we define
𝐶 Ωℛ 𝐷 iff ((𝐶 ℛ 𝐷) and (𝛼𝐶 /∈ Ω)).

P−(𝜅, 2,⊑, . . . )- and P−
𝜆 (𝜆+, 2, 𝜆⊑, . . . )-sequences may be constructed in ZFC,

but there are stronger variations. For instance, Jensen’s axiom �𝜆 (resp. �*
𝜆) is

equivalent to the existence of a P−
𝜆 (𝜆+, 2,⊑, . . .)-sequence (resp. P−

𝜆 (𝜆+, 𝜆+,⊑, . . .)-
sequence). More examples in this spirit may be found in [BR17a].

Convention 4.6. We may put “∞” in place of 𝜇 in Definition 4.2, in which case we
mean that |𝒞𝛼| ≤ |𝛼| for every nonzero 𝛼 < 𝜅.
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Remark 4.7. The relation ⊑ coincides with Ω
𝜒⊑ for (Ω, 𝜒) := (∅, 0), as well as

(Ω, 𝜒) := (∅, 𝜔). Note that if 𝜅 = 𝜆+ is a successor cardinal, then for every relation
ℛ ∈ {Ω𝜒⊑,Ω𝜒⊑*} with Ω ∩ 𝜆 = ∅, any P−

𝜉 (𝜅, 𝜅,ℛ, . . .)-sequence may be improved

into a P−
𝜉 (𝜅,∞,ℛ, . . .)-sequence while preserving its further crucial features. The

simple proof may be found in the construction before Claim 3.4.6 of [BR19b].

Let us stress that a study of coherence relations weaker than ⊑ is necessary.
For instance, unlike coherent square sequences that are refuted by large cardinals,
⊑𝜒-coherent square sequences provide an effective means to obtain optimal incom-
pactness results above large cardinals (cf. [LR19]), as well as 𝜅-Souslin trees in a
model in which all 𝜅-Aronszajn trees are nonspecial (cf. [BR17a, Corollary 1.20,
Examples 1.26 and 1.27]).

In [BR19a], we introduced the following definition as a tool for manipulating and
improving ladder systems.

Definition 4.8 ([BR19a, Definition 1.8]). A function Φ : 𝒦(𝜅) → 𝒦(𝜅) is a post-
processing function iff for every 𝐶 ∈ 𝒦(𝜅):

∙ sup(Φ(𝐶)) = sup(𝐶);
∙ acc(Φ(𝐶)) ⊆ acc(𝐶);
∙ Φ(𝐶) ∩ �̄� = Φ(𝐶 ∩ �̄�) for every �̄� ∈ acc(Φ(𝐶)).

If, in addition, min(Φ(𝐶)) = min(𝐶) (resp. acc(Φ(𝐶)) = acc(𝐶)) for every 𝐶 ∈
𝒦(𝜅), then Φ is said to be min-preserving (resp. acc-preserving).

The point is that whenever ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ is a P−
𝜉 (𝜅, 𝜇,Ω𝜒⊑, . . .)-sequence, then

for every postprocessing function Φ, by setting 𝒟𝛼 := {Φ(𝐶) | 𝐶 ∈ 𝒞𝛼}, we get
that ⟨𝒟𝛼 | 𝛼 < 𝜅⟩ is yet again a P−

𝜉 (𝜅, 𝜇,Ω𝜒⊑, . . .)-sequence.15 We now present a
sufficient condition for preserving all binary relations from Example 4.5.

Lemma 4.9. Suppose that x = ⟨𝑥𝛾,𝛽 | 𝛾 < 𝛽 < 𝜅⟩ is a triangular array of nonempty
finite sets such that, for all 𝛾 < 𝛽 < 𝜅, 𝑥𝛾,𝛽 ⊆ (𝛾, 𝛽], and if 𝛽 is a successor ordinal,
then 𝑥𝛾,𝛽 = {𝛽}. Define a corresponding function Φx : 𝒦(𝜅) → 𝒦(𝜅) via:

Φx(𝐶) := {min(𝐶)} ∪
⋃︁{︀

𝑥𝛾,𝛽
⃒⃒
𝛾 ∈ 𝐶, 𝛽 = min(𝐶 ∖ (𝛾 + 1))

}︀
∪ acc(𝐶).

Then Φx is a min-preserving, acc-preserving postprocessing function. Further-

more, for every P−
𝜉 (𝜅, 𝜇,ℛ, . . .)-sequence with ℛ taken from Example 4.5, if we set

𝒟𝛼 := {Φx(𝐶) | 𝐶 ∈ 𝒞𝛼}, then ⟨𝒟𝛼 | 𝛼 < 𝜅⟩ is yet again a P−
𝜉 (𝜅, 𝜇,ℛ, . . .)-sequence.

Proof. Left to the reader (cf. [BR19a, Lemma 2.8]). �

4.2. Ladder systems with hitting features. We now arrive at the second stage
of the definition of the proxy principle.

Definition 4.10 (Proxy principle). P−
𝜉 (𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈, 𝜎) asserts the existence of a

P−
𝜉 (𝜅, 𝜇,ℛ, . . .)-sequence 𝒞 = ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ satisfying the following hitting feature.

For every sequence ⟨𝐵𝑖 | 𝑖 < 𝜃⟩ of cofinal subsets of 𝜅, and every 𝑆 ∈ 𝒮, there
exist stationarily many 𝛼 ∈ 𝑆 such that:

(1) |𝒞𝛼| < 𝜈; and
(2) for all 𝐶 ∈ 𝒞𝛼 and 𝑖 < min{𝛼, 𝜃},

(⋆) sup{𝛾 ∈ 𝐶 | succ𝜎(𝐶 ∖ 𝛾) ⊆ 𝐵𝑖} = 𝛼.

15In fact, postprocessing functions can be viewed as actions on square-like sequences, see
Notation 2.15, Lemma 2.16 and Lemma 4.17 of [BR19a]. Also, please keep Convention 4.4 in
mind.
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Remark 4.11. The reader can verify that the proxy principle satisfies monotonic-
ity properties with respect to most of its parameters: Any sequence witnessing
P−
𝜉 (𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈, 𝜎) remains a witness to the principle if any of 𝜉, 𝜇, or 𝜈 are

increased; if 𝜃 or 𝜎 are decreased; if ℛ is weakened; if 𝒮 is shrunk; or if any el-
ement of 𝒮 is expanded. Furthermore, increasing 𝜒 or shrinking Ω both weaken
the relations Ω

𝜒⊑, Ω
𝜒⊑*, Ω⊑𝜒, and Ω⊑*

𝜒. Note also that P−
𝜉 (𝜅, 𝜇,Ωℛ𝜒, . . .) entails

P−
𝜉 (𝜅, 𝜇,Ω𝜒ℛ, . . .). These monotonicity properties will be used freely without expla-

nation as the need arises.

Remark 4.12. In the special case 𝜎 = 1, Equation (⋆) above is equivalent to the
assertion that sup(nacc(𝐶) ∩ 𝐵𝑖) = 𝛼. Thus, applying an argument just as in
the proof of Corollary 3.4, we infer that the principle �−(𝜅) of Definition 2.16 is
equivalent to the instance P−(𝜅, 2,⊑, 1, {𝜅}, 2, 1).

Convention 4.13. In Definition 4.10, by putting “<𝜃” in place of 𝜃, we mean that

𝒞 simultaneously witnesses P−
𝜉 (𝜅, 𝜇,ℛ, 𝜃′,𝒮, 𝜈, 𝜎) for all 𝜃′ < 𝜃.

Convention 4.14. In Definition 4.10, by putting “<𝜎” in place of 𝜎, we mean that

𝒞 simultaneously witnesses P−
𝜉 (𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈, 𝜎′) for all 𝜎′ < 𝜎.

We may also put “<∞” in place of 𝜎, in which case we mean to replace the
assertion of Equation (⋆) of Definition 4.10 by:

∀𝜎 < otp(𝐶) sup{𝛾 ∈ 𝐶 | succ𝜎(𝐶 ∖ 𝛾) ⊆ 𝐵𝑖} = 𝛼.

Theorem 4.15. Suppose ℛ is taken from Example 4.5. Then all of the following
are equivalent:

(i) P−
𝜉 (𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈,<𝜔);

(ii) P−
𝜉 (𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈, 2);

(iii) There exists a P−
𝜉 (𝜅, 𝜇,ℛ, . . .)-sequence ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ satisfying the follow-

ing. For every 𝑆 ∈ 𝒮 and every sequence ⟨𝐵𝑖 | 𝑖 < 𝜃⟩ of cofinal subsets
of 𝜅, there exist stationarily many 𝛼 ∈ 𝑆 with |𝒞𝛼| < 𝜈 such that, for all
𝐶 ∈ 𝒞𝛼 and 𝑖 < min{𝛼, 𝜃},

sup{𝛿 ∈ 𝐵𝑖 ∩ 𝛼 | min(𝐶 ∖ (𝛿 + 1)) ∈ 𝐵𝑖} = 𝛼;

(iv) There exists a P−
𝜉 (𝜅, 𝜇,ℛ, . . .)-sequence ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ satisfying the follow-

ing. For every 𝑆 ∈ 𝒮, every sequence ⟨𝐵𝑖 | 𝑖 < 𝜃⟩ of cofinal subsets of 𝜅,
and every every club 𝐷 ⊆ 𝜅, there exists 𝛼 ∈ 𝑆 ∩ acc(𝜅) with |𝒞𝛼| < 𝜈 such
that, for all 𝐶 ∈ 𝒞𝛼 and 𝑖 < min{𝛼, 𝜃},

sup{𝛿 ∈ 𝐷 ∩ 𝛼 | min(𝐶 ∖ (𝛿 + 1)) ∈ 𝐵𝑖} = 𝛼;

(v) There exists a P−
𝜉 (𝜅, 𝜇,ℛ, . . .)-sequence ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ satisfying the follow-

ing. For every 𝑆 ∈ 𝒮 and every sequence ⟨ℬ𝑖 | 𝑖 < 𝜃⟩ with ℬ𝑖 ⊆ [𝜅]<𝜔

and mup(ℬ𝑖) = 𝜅 for all 𝑖 < 𝜃,16 there exist stationarily many 𝛼 ∈ 𝑆 with
|𝒞𝛼| < 𝜈 such that, for all 𝐶 ∈ 𝒞𝛼, 𝑖 < min{𝛼, 𝜃} and 𝜖 < 𝛼, there exist
𝛾, 𝛽 with 𝜖 ≤ 𝛾 < 𝛽 < 𝛼 for which 𝐶 ∩ (𝛾, 𝛽) is in ℬ𝑖;

(vi) There exists a P−
𝜉 (𝜅, 𝜇,ℛ, . . .)-sequence ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ satisfying the follow-

ing. For every 𝑆 ∈ 𝒮, every sequence ⟨𝐵𝑖 | 𝑖 < 𝜃⟩ of cofinal subsets of 𝜅,
and every 𝑛 < 𝜔, there exist stationarily many 𝛼 ∈ 𝑆 with |𝒞𝛼| < 𝜈 such
that, for all 𝐶 ∈ 𝒞𝛼 and 𝑖 < min{𝛼, 𝜃},

sup{𝛾 ∈ 𝐶 | succ𝑛(𝐶 ∖ 𝛾) = succ𝑛(𝐵𝑖 ∖ 𝛾)} = 𝛼.

16For the definition of mup, see Definition 3.8.
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Proof. It is clear that any sequence witnessing (i) will witness (ii), any sequence
witnessing (ii) will witness (iii), and any sequence witnessing (vi) will witness (i).
Next, to see that any sequence witnessing (iii) will witness (iv), suppose that we
are given a club 𝐷 and a sequence ⟨𝐵𝑖 | 𝑖 < 𝜃⟩ of cofinal subsets of 𝜅. For each
𝑖 < 𝜃, by Lemma 3.3, fix a cofinal subset 𝐵′

𝑖 of 𝐵𝑖 that is 𝐷-separated. Then,
for every 𝛼 ∈ acc(𝜅), every club 𝐶 in 𝛼, and every 𝑖 < 𝜃, if sup{𝛿 ∈ 𝐵′

𝑖 ∩ 𝛼 |
min(𝐶 ∖ (𝛿 + 1)) ∈ 𝐵′

𝑖} = 𝛼, then sup{𝛿 ∈ 𝐷 ∩ 𝛼 | min(𝐶 ∖ (𝛿 + 1)) ∈ 𝐵𝑖} = 𝛼.
(iv) =⇒ (v): Fix an injection 𝜓 : [𝜅]<𝜔 → acc(𝜅) such that, for all 𝑥 ∈ [𝜅]<𝜔,

𝜓(𝑥) > sup(𝑥). Denote Ω := Im(𝜓), and let 𝜋 : Ω → [𝜅]<𝜔 denote the inverse of 𝜓.
Fix a triangular array x = ⟨𝑥𝛾,𝛽 | 𝛾 < 𝛽 < 𝜅⟩, such that for all 𝛾 < 𝛽 < 𝜅:

∙ if 𝛽 ∈ Ω, then 𝑥𝛾,𝛽 = (𝜋(𝛽) ∖ (𝛾 + 1)) ∪ {𝛽};
∙ if 𝛽 /∈ Ω, then 𝑥𝛾,𝛽 = {𝛽}.

Evidently, 𝑥𝛾,𝛽 ⊆ (𝛾, 𝛽] for all 𝛾 < 𝛽 < 𝜅. Thus, consider the corresponding

postprocessing function Φx from Lemma 4.9. Let 𝒞 = ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ be a sequence as

in (iv). For every 𝛼 ∈ acc(𝜅), let 𝒞∙
𝛼 := {Φx(𝐶) | 𝐶 ∈ 𝒞𝛼}, so that 𝒞∙ := ⟨𝒞∙

𝛼 | 𝛼 < 𝜅⟩
is a P−

𝜉 (𝜅, 𝜇,ℛ, . . .)-sequence. The following claim shows that 𝒞∙ witnesses (v):

Claim 4.15.1. Suppose 𝑆 ∈ 𝒮, ⟨ℬ𝑖 | 𝑖 < 𝜃⟩ is a sequence with ℬ𝑖 ⊆ [𝜅]<𝜔 and
mup(ℬ𝑖) = 𝜅 for all 𝑖 < 𝜃, and 𝐷 ⊆ 𝜅 is a club. Then there exists 𝛼 ∈ 𝑆 ∩𝐷 such
that:

(1) |𝒞∙
𝛼| < 𝜈; and

(2) for all 𝐶∙ ∈ 𝒞∙
𝛼, 𝑖 < min{𝛼, 𝜃} and 𝜖 < 𝛼, there exist 𝛾, 𝛽 with 𝜖 ≤ 𝛾 < 𝛽 <

𝛼 for which 𝐶∙ ∩ (𝛾, 𝛽) is in ℬ𝑖.

Proof. For all 𝑖 < 𝜃 and 𝛾 < 𝜅, fix 𝑏𝛾𝑖 ∈ ℬ𝑖 with min(𝑏𝛾𝑖 ) > 𝛾. Fix a club 𝐷′ ⊆ 𝐷
such that, for all 𝛿 ∈ 𝐷′:

∙ 𝜓“[𝛿]<𝜔 ⊆ 𝛿;
∙ for all 𝛾 < 𝛿 and 𝑖 < min{𝜃, 𝛿}, 𝑏𝛾𝑖 ⊆ 𝛿.

For each 𝑖 < 𝜃, let

𝐵𝑖 := {𝜓({𝛾} ∪ 𝑏𝛾𝑖 ) | 𝛾 ∈ 𝐷′}.

Now, by the choice of 𝒞, fix 𝛼 ∈ 𝑆 ∩ acc(𝜅) such that:

∙ |𝒞𝛼| < 𝜈, and
∙ for all 𝑖 < min{𝛼, 𝜃} and 𝐶 ∈ 𝒞𝛼,

sup{𝛿 ∈ 𝐷′ ∩ 𝛼 | min(𝐶 ∖ (𝛿 + 1)) ∈ 𝐵𝑖} = 𝛼.

In particular, 𝛼 ∈ acc+(𝐷′) ⊆ 𝐷′ ⊆ 𝐷. Furthermore, |𝒞∙
𝛼| ≤ |𝒞𝛼| < 𝜈. Finally, let

𝑖 < min{𝛼, 𝜃} and 𝐶∙ ∈ 𝒞∙
𝛼 be arbitrary. Fix 𝐶 ∈ 𝒞𝛼 such that 𝐶∙ = Φx(𝐶). Let

∆𝑖 := {𝛿 ∈ 𝐷′ ∩ 𝛼 | min(𝐶 ∖ (𝛿 + 1)) ∈ 𝐵𝑖 & max{𝑖,min(𝐶)} < 𝛿}.

By the choice of 𝛼, ∆𝑖 is cofinal in 𝛼. Let 𝛿 ∈ ∆𝑖 be arbitrary. Set 𝛽 := min(𝐶 ∖(𝛿+
1)) and 𝛽− := sup(𝐶 ∩ 𝛽). As 𝛽 ∈ 𝐵𝑖, let us fix 𝛾 ∈ 𝐷′ such that 𝜋(𝛽) = {𝛾} ∪ 𝑏𝛾𝑖 .
Evidently, 𝑥𝛾,𝛽 = 𝑏𝛾𝑖 ∪ {𝛽}. As 𝜓“[𝛿]<𝜔 ⊆ 𝛿 and 𝛽 > 𝛿, we infer that 𝜋(𝛽) /∈ [𝛿]<𝜔,
so that 𝑏𝛾𝑖 * 𝛿. As 𝛿 ∈ 𝐷′ and 𝑖 < min{𝜃, 𝛿}, this means that 𝛾 ≥ 𝛿. So,
min(𝜋(𝛽)) = 𝛾 ≥ 𝛿 ≥ 𝛽−, and hence 𝑥𝛽−,𝛽 ∩ (𝛾, 𝛽) = 𝑏𝛾𝑖 . It thus follows from the
definition of Φx that 𝐶∙ ∩ (𝛾, 𝛽) = (𝑥𝛽−,𝛽 ∩ (𝛾, 𝛽)) ∈ ℬ𝑖, as sought. �

Finally, to see that any sequence witnessing (v) will witness (vi), let ⟨𝐵𝑖 | 𝑖 < 𝜃⟩
be an arbitrary sequence of cofinal subsets of 𝜅, and let 𝑛 < 𝜔 be arbitrary. For
each 𝑖 < 𝜃, set ℬ𝑖 := {succ𝑛+1(𝐵𝑖 ∖ 𝜖) | 𝜖 < 𝜅}. Then, for every 𝛼 ∈ acc(𝜅),
every club 𝐶 in 𝛼, every 𝑖 < 𝜃, and every 𝛾, 𝛽 such that 𝐶 ∩ (𝛾, 𝛽) is in ℬ𝑖, setting
𝛾′ := min(𝐶 ∩ (𝛾, 𝛽)), we obtain succ𝑛(𝐶 ∖ 𝛾′) = succ𝑛(𝐵𝑖 ∖ 𝛾′). �
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It is clear that a sequence witnessing any one of the clauses of Theorem 4.15 will
also witness P−

𝜉 (𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈, 1). Clause (1) of the following Theorem shows that

in the presence of ♣(𝜅), the principles are equivalent.

Theorem 4.16. Suppose ♣(𝜅) and P−
𝜉 (𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈, 1) both hold, with ℛ taken

from Example 4.5. Then:

(1) P−
𝜉 (𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈,<𝜔) holds;

(2) If 0 < 𝜃 < 𝜔, then P−
𝜉 (𝜅, 𝜇,ℛ, <𝜔,𝒮, 𝜈,<𝜔) holds.

Proof. (1) Denote Ω := acc(𝜅). By ♣(𝜅) and Lemma 3.9, we may fix a sequence

𝒳 = ⟨𝒳𝛽 | 𝛽 ∈ Ω⟩ such that:

(a) for every 𝛽 ∈ Ω, 𝒳𝛽 ⊆ [𝛽]<𝜔 with mup(𝒳𝛽) = 𝛽;
(b) for every 𝒳 ⊆ [𝜅]<𝜔 with mup(𝒳 ) = 𝜅, there are stationarily many 𝛽 ∈ Ω

for which 𝒳𝛽 ⊆ 𝒳 .

Fix a triangular array x = ⟨𝑥𝛾,𝛽 | 𝛾 < 𝛽 < 𝜅⟩ such that for all 𝛾 < 𝛽 < 𝜅:

∙ if 𝛽 ∈ Ω, then 𝑥𝛾,𝛽 ∈ 𝒳𝛽 ∖ {∅} with min(𝑥𝛾,𝛽) > 𝛾;
∙ if 𝛽 /∈ Ω, then 𝑥𝛾,𝛽 = {𝛽}.

Now, consider the corresponding postprocessing function Φx from Lemma 4.9.

Let 𝒞 = ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ be a sequence witnessing P−
𝜉 (𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈, 1). For every

𝛼 ∈ acc(𝜅), let 𝒟𝛼 := {Φx(𝐶) | 𝐶 ∈ 𝒞𝛼}, so that �⃗� := ⟨𝒟𝛼 | 𝛼 < 𝜅⟩ is a

P−
𝜉 (𝜅, 𝜇,ℛ, . . .)-sequence. To see that P−

𝜉 (𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈,<𝜔) holds, we shall verify

that �⃗� witnesses Clause (v) of Theorem 4.15:

Claim 4.16.1. Suppose 𝑆 ∈ 𝒮 and ⟨ℬ𝑖 | 𝑖 < 𝜃⟩ is a sequence with ℬ𝑖 ⊆ [𝜅]<𝜔 and
mup(ℬ𝑖) = 𝜅 for all 𝑖 < 𝜃. Then there exist stationarily many 𝛼 ∈ 𝑆 such that:

(1) |𝒟𝛼| < 𝜈; and
(2) for all 𝐷 ∈ 𝒟𝛼, 𝑖 < min{𝛼, 𝜃} and 𝜖 < 𝛼, there exist 𝛾, 𝛽 with 𝜖 ≤ 𝛾 < 𝛽 <

𝛼 for which 𝐷 ∩ (𝛾, 𝛽) is in ℬ𝑖.

Proof. For every 𝑖 < 𝜃, we know from our choice of 𝒳 that 𝐵𝑖 := {𝛽 ∈ Ω | 𝒳𝛽 ⊆ ℬ𝑖}
is stationary. Thus, by our choice of 𝒞, the following set is stationary:

𝑆′ := {𝛼 ∈ 𝑆 | |𝒞𝛼| < 𝜈 & ∀𝑖 < min{𝛼, 𝜃}∀𝐶 ∈ 𝒞𝛼[sup(nacc(𝐶) ∩𝐵𝑖) = 𝛼]}.

Now, let 𝛼 ∈ 𝑆′ be arbitrary. We have |𝒟𝛼| ≤ |𝒞𝛼| < 𝜈. Finally, let 𝑖 < min{𝛼, 𝜃}
and 𝐷 ∈ 𝒟𝛼 be arbitrary. Pick 𝐶 ∈ 𝒞𝛼 such that 𝐷 = Φx(𝐶). For all 𝛽 ∈
nacc(𝐶) ∩ 𝐵𝑖 above min(𝐶), we have 𝒳𝛽 ⊆ ℬ𝑖 so that for 𝛾 := sup(𝐶 ∩ 𝛽), we
obtain 𝑥𝛾,𝛽 ∈ ℬ𝑖 and 𝑥𝛾,𝛽 ⊆ (𝛾, 𝛽), and we infer from the definition of Φx that
𝐷 ∩ (𝛾, 𝛽) = 𝑥𝛾,𝛽 ∈ ℬ𝑖. �

Thus, P−
𝜉 (𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈,<𝜔) follows, by the implication (𝑣) =⇒ (𝑖) of Theo-

rem 4.15.
(2) Left to the reader to show that a sequence as in Clause (v) of Theorem 4.15

with 𝜃 = 1 also witnesses P−
𝜉 (𝜅, 𝜇,ℛ, <𝜔,𝒮, 𝜈,<𝜔). �

Remark 4.17. Clause (1) of the preceding is used in the proofs of Theorems 3.11
and 3.12 of [LR19], and also, implicitly, in the proof of Corollary 3.15(2) of the
same paper.

In [BR17a, p. 1953], we wrote that if we omit 𝜎, then we mean that 𝜎 = 1, but
given Theorems 4.15 and 4.16, we now upgrade it as follows.

Convention 4.18. Whenever we omit 𝜎, we mean that we put “<𝜔” in place of 𝜎.
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4.3. Jensen’s classical result and nonreflecting sets. In [Jen72, Theorem 6.2],
Jensen showed that, assuming 𝑉 = 𝐿, there is a 𝜅-Souslin tree for every regular
uncountable cardinal 𝜅 that is not weakly compact. The proof of that theorem
actually derives a 𝜅-Souslin tree from the existence of a stationary set 𝐸 ⊂ 𝜅 for
which �(𝐸) + ♢(𝐸) holds,17 where �(𝐸) is the principle asserting the existence of
a P−(𝜅, 2,𝐸⊑, . . . )-sequence, and should not be confused with the weaker principle
�(𝜅). Here, we show how to redirect this result through our framework:18

Corollary 4.19. Suppose �(𝐸) + ♢(𝐸) holds for some stationary 𝐸 ⊂ 𝜅. Then:

(1) P−(𝜅, 2,⊑*, 1, {𝐸}, 2);
(2) If 𝜅 > ℵ1, then P−(𝜅, 2,⊑*, 1, {𝑆}, 2) holds for every stationary 𝑆 ⊆ 𝜅.

Proof. (1) By Corollary 4.22 below, there exists a stationary Ω ⊆ 𝐸 such that
P−(𝜅, 2,Ω𝜒⊑*, 1, {Ω}, 2) holds for 𝜒 := 𝜔. In particular, P−(𝜅, 2,⊑*, 1, {𝐸}, 2) holds.

(2) This follows from Clause (1), [Rin17, Theorem 4.13], and Theorem 4.16. �

We now present the main technical lemma of this subsection. In order to enable
applications of this lemma to scenarios beyond the scope of this paper (see [RZ20]),
we temporarily suspend our usual convention requiring 𝜇 ≤ 𝜅. Thus, for the rest
of this subsection only, a P−(𝜅, 𝜅+,ℛ, . . . )-sequence is a sequence just as in Defi-
nition 4.2, with the second bullet replaced by 0 < |𝒞𝛼| ≤ 𝜅.

Lemma 4.20. Suppose 𝜅ℵ0 = 𝜅, 𝑆 ⊆ 𝜅 is stationary, ♣(𝑆) holds, and 𝒞0 = ⟨𝒞0
𝛼 |

𝛼 < 𝜅⟩ is a P−(𝜅, 𝜅+, 𝑆𝜒⊑*, . . .)-sequence. Then there exist:

(1) a subset Ω ⊆ 𝑆 ∩ acc(𝜅);
(2) a sequence ⟨𝑋𝛽 | 𝛽 ∈ Ω⟩, where each 𝑋𝛽 is a cofinal subset of 𝛽;

(3) a P−(𝜅, 𝜅+,Ω𝜒⊑*, . . .)-sequence, ⟨𝒞𝛼 | 𝛼 < 𝜅⟩, with |𝒞𝛼| ≤ |𝒞0
𝛼| for all 𝛼 < 𝜅,

together satisfying the following hitting feature:

(4) for every cofinal 𝑋 ⊆ 𝜅, there exists some 𝛼 ∈ Ω such that 𝒞𝛼 is a singleton,
say, 𝒞𝛼 = {𝐶𝛼}, and

sup{𝛽 ∈ nacc(𝐶𝛼) ∩ Ω | 𝑋𝛽 ⊆ 𝑋} = 𝛼.

Proof. Following Convention 4.4, we assume that 𝒞0
𝛼+1 = {{𝛼}} for every 𝛼 < 𝜅.

Furthermore, by 𝑆
𝜒⊑*-coherence of the sequence 𝒞0, we may assume that

⃒⃒
𝒞0
𝛼

⃒⃒
= 1

for every 𝛼 ∈ 𝑆.
Let ⟨𝑋𝑛

𝛽 | 𝛽 ∈ 𝑆, 𝑛 ≤ 𝜔⟩ be given by Lemma 3.5 using 𝜃 := 𝜔. Without loss of

generality, for all 𝛽 ∈ 𝑆 ∩ acc(𝜅) and 𝑛 ≤ 𝜔, 𝑋𝑛
𝛽 is a cofinal subset of 𝛽.

Suppose first that, for every cofinal 𝑋 ⊆ 𝜅, the set

𝐵𝑋 := {𝛽 ∈ 𝑆 ∩ 𝐸𝜅𝜔 | 𝑋𝜔
𝛽 ⊆ 𝑋}

is stationary. In this case, let Ω := 𝑆 ∩ 𝐸𝜅𝜔, define ⟨𝑋𝛽 | 𝛽 ∈ Ω⟩ via 𝑋𝛽 := 𝑋𝜔
𝛽 ,

and define a sequence 𝒞 = ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ by letting 𝒞𝛼 := 𝒞0
𝛼 for every 𝛼 /∈ Ω, and

𝒞𝛼 := {𝑋𝜔
𝛼} for every 𝛼 ∈ Ω. It is clear that 𝒞 is a P−(𝜅, 𝜅+, 𝑆𝜒⊑*, . . .)-sequence,

satisfying |𝒞𝛼| ≤ |𝒞0
𝛼| for all 𝛼 < 𝜅. In particular, it is a P−(𝜅, 𝜅+,Ω𝜒⊑*, . . .)-

sequence. To see that Clause (4) is satisfied, let 𝑋 ⊆ 𝜅 be an arbitrary cofinal
set. As 𝐵𝑋 is stationary, it is in particular cofinal, so that 𝐵𝐵𝑋

is stationary as
well. Pick 𝛼 ∈ 𝐵𝐵𝑋

. Then 𝛼 ∈ Ω, 𝒞𝛼 = {𝑋𝜔
𝛼}, and 𝑋𝜔

𝛼 ⊆ 𝐵𝑋 . So, if 𝐶𝛼 denotes
the unique element of 𝒞𝛼, then every 𝛽 ∈ nacc(𝐶𝛼) is an element of 𝐵𝑋 , so that
𝛽 ∈ 𝑆 ∩ 𝐸𝜅𝜔 = Ω and 𝑋𝛽 = 𝑋𝜔

𝛽 ⊆ 𝑋, as sought.

17See [Dev84, Theorem IV.2.4] and [Sch14, Lemma 11.68].
18By Theorem 6.8 together with Proposition 5.10, the instances obtained in Corollary 4.19

suffice for the construction of a 𝜅-Souslin tree
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From now on, suppose that there exists a cofinal 𝑋𝜔 ⊆ 𝜅 for which 𝐵𝑋𝜔 is
nonstationary. Denote Ω0 := 𝑆 ∩ 𝐸𝜅>𝜔. It follows that, for every sequence ⟨𝑋𝑛 |
𝑛 < 𝜔⟩ of cofinal subsets of 𝜅, there exist stationarily many 𝛽 ∈ Ω0, such that, for
all 𝑛 < 𝜔, 𝑋𝑛

𝛽 ⊆ 𝑋𝑛. In particular, 𝜅 ≥ ℵ2. The proof in this case is based on the

arguments of [KS93, Theorem 3] and [BR19c, Claim 3.8.1].

We have already defined Ω0 and 𝒞0. We now attempt to construct a sequence

⟨(Ω𝑛+1, 𝒞𝑛+1, 𝑋𝑛) | 𝑛 < 𝜔⟩ satisfying the following properties for all 𝑛 < 𝜔:

(a) Ω𝑛+1 ⊆ Ω𝑛;

(b) 𝒞𝑛 = ⟨𝒞𝑛𝛼 | 𝛼 < 𝜅⟩ = ⟨{𝐶𝑛𝛼,𝜄 | 𝜄 < 𝜅} | 𝛼 < 𝜅⟩ is a P−(𝜅, 𝜅+,Ω
𝑛

𝜒 ⊑*, . . .)-

sequence,19 such that 𝒞𝑛𝛼+1 = {{𝛼}} for every 𝛼 < 𝜅, and |𝒞𝑛𝛼| = 1 for every
𝛼 ∈ 𝑆;

(c) 𝐶𝑛𝛼,𝜄 ⊆ 𝐶𝑛+1
𝛼,𝜄 for every 𝛼 < 𝜅 and every 𝜄 < 𝜅;

(d) for every 𝛼 < 𝜅 and all 𝜄, 𝜄′ < 𝜅, if 𝐶𝑛𝛼,𝜄 = 𝐶𝑛𝛼,𝜄′ , then 𝐶𝑛+1
𝛼,𝜄 = 𝐶𝑛+1

𝛼,𝜄′ ;

(e) 𝑋𝑛 is a cofinal subset of 𝜅;
(f) sup(𝐶𝑛𝛼,0 ∩ Ω𝑛+1) < 𝛼 for every 𝛼 ∈ Ω𝑛;
(g) for every 𝛼 ∈ acc(𝜅), all 𝜄, 𝜄′ < 𝜅, every �̄� ∈ acc(𝐶𝑛𝛼,𝜄′), and every 𝜂 ∈

𝐶𝑛�̄�,𝜄 ∩ 𝐶𝑛𝛼,𝜄′ , if 𝐶𝑛�̄�,𝜄 ∖ 𝜂 = 𝐶𝑛𝛼,𝜄′ ∩ [𝜂, �̄�) then 𝐶𝑛+1
�̄�,𝜄 ∖ 𝜂 = 𝐶𝑛+1

𝛼,𝜄′ ∩ [𝜂, �̄�);

(h) nacc(𝐶𝑛𝛼,𝜄) ∩ Ω𝑛+1 ⊆ nacc(𝐶𝑛+1
𝛼,𝜄 ) for all 𝛼, 𝜄 < 𝜅;

(i) for all 𝛼, 𝜄 < 𝜅 and any two consecutive points 𝛽− < 𝛽 of 𝐶𝑛𝛼,𝜄, either

𝐶𝑛+1
𝛼,𝜄 ∩ (𝛽−, 𝛽) = ∅ or 𝐶𝑛+1

𝛼,𝜄 ∩ [𝛽−, 𝛽) = 𝐶𝑛+1
𝛽,0 ∖ 𝛽−.20

We proceed by recursion. Fix 𝑛 < 𝜔 for which Ω𝑛 and 𝒞𝑛 have already been

successfully constructed. By (a) and (b), ⟨𝑋𝑛
𝛽 | 𝛽 ∈ Ω𝑛⟩ and 𝒞𝑛 satisfy properties

(1)–(3) of the conclusion of the lemma. If they satisfy property (4) as well, then
the lemma is proven and we abandon the recursive construction at this point.

Otherwise, let us pick a cofinal subset 𝑋𝑛 ⊆ 𝜅 witnessing the failure of (4). That
is, sup(nacc(𝐶𝑛𝛼,0) ∩ Ω𝑛+1) < 𝛼 for every 𝛼 ∈ Ω𝑛, where we define:

Ω𝑛+1 := {𝛽 ∈ Ω𝑛 | 𝑋𝑛
𝛽 ⊆ 𝑋𝑛}.

Define 𝒞𝑛+1 = ⟨𝒞𝑛+1
𝛼 | 𝛼 < 𝜅⟩ by recursion over 𝛼 < 𝜅, as follows. Let 𝒞𝑛+1

0 :=
{∅}, and 𝒞𝑛+1

𝛼+1 := {{𝛼}} for every 𝛼 < 𝜅. Now, if 𝛼 ∈ acc(𝜅) and ⟨𝒞𝑛+1
�̄� | �̄� < 𝛼⟩

has already been defined, then, for every 𝜄 < 𝜅, let:

(*) 𝐶𝑛+1
𝛼,𝜄 := 𝐶𝑛𝛼,𝜄 ∪

⋃︁{︀
𝐶𝑛+1
𝛽,0 ∖ sup(𝐶𝑛𝛼,𝜄 ∩ 𝛽)

⃒⃒
𝛽 ∈ nacc(𝐶𝑛𝛼,𝜄) ∖ Ω𝑛+1

}︀
.

Claim 4.20.1. Ω𝑛+1, 𝒞𝑛+1, and 𝑋𝑛 satisfy properties (a)–(i) of the recursion.

Proof. (a), (c), (d), (e), (g), (h), and (i) are easily verified from the construction.

(f) Consider any given 𝛼 ∈ Ω𝑛. By Ω𝑛

𝜒 ⊑*-coherence of 𝒞𝑛, we obtain acc(𝐶𝑛𝛼,0)∩
Ω𝑛 = ∅, so that certainly acc(𝐶𝑛𝛼,0) ∩ Ω𝑛+1 = ∅. Thus 𝐶𝑛𝛼,0 ∩ Ω𝑛+1 = nacc(𝐶𝑛𝛼,0) ∩
Ω𝑛+1, and it follows from our choice of 𝑋𝑛 and 𝐷𝑛 that

sup(𝐶𝑛𝛼,0 ∩ Ω𝑛+1) = sup(nacc(𝐶𝑛𝛼,0) ∩ Ω𝑛+1) < 𝛼.

(b) It is clear from the construction that 𝐶𝑛+1
𝛼,𝜄 is a club subset of 𝛼 for every

limit ordinal 𝛼 < 𝜅, that 𝒞𝑛+1
𝛼+1 = {{𝛼}} for every 𝛼 < 𝜅, and (using (d)) that

0 <
⃒⃒
𝒞𝑛+1
𝛼

⃒⃒
≤ |𝒞𝑛𝛼| ≤

⃒⃒
𝒞0
𝛼

⃒⃒
for every 𝛼 < 𝜅 and

⃒⃒
𝒞𝑛+1
𝛼

⃒⃒
= 1 for every 𝛼 ∈ 𝑆.

To verify Ω𝑛+1

𝜒 ⊑*-coherence of the sequence 𝒞𝑛+1, consider any given 𝛼 ∈ acc(𝜅),

𝜄 < 𝜅, and �̄� ∈ acc(𝐶𝑛+1
𝛼,𝜄 ); we shall show that �̄� /∈ Ω𝑛+1, and also find some 𝜄′ < 𝜅

such that 𝐶𝑛+1
�̄�,𝜄′ 𝜒⊑* 𝐶𝑛+1

𝛼,𝜄 , by considering three cases. We may assume, as an

19The enumeration {𝐶𝑛
𝛼,𝜄 | 𝜄 < 𝜅} of 𝒞𝑛

𝛼 need not be injective.
20We do not assume here that 𝛽 is a limit ordinal.
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induction hypothesis, that the restriction of 𝒞𝑛+1 up to 𝛼, that is, ⟨𝒞𝑛+1
𝛽 | 𝛽 < 𝛼⟩,

is already known to be Ω𝑛+1

𝜒 ⊑*-coherent.

I Suppose �̄� ∈ acc(𝐶𝑛𝛼,𝜄). Then by Ω𝑛

𝜒 ⊑*-coherence of 𝒞𝑛, it follows that
�̄� /∈ Ω𝑛 and also we can choose some 𝜄′ < 𝜅 such that 𝐶𝑛�̄�,𝜄′ 𝜒⊑* 𝐶𝑛𝛼,𝜄.

As Ω𝑛+1 ⊆ Ω𝑛, we obtain �̄� /∈ Ω𝑛+1. If cf(�̄�) < 𝜒, then automatically
𝐶𝑛+1
�̄�,0 𝜒⊑* 𝐶𝑛+1

𝛼,𝜄 . Otherwise, we have 𝐶𝑛�̄�,𝜄′ ⊑* 𝐶𝑛𝛼,𝜄, and we fix 𝜂 ∈ 𝐶𝑛�̄�,𝜄′ ∩
𝐶𝑛𝛼,𝜄 such that 𝐶𝑛�̄�,𝜄′ ∖ 𝜂 = 𝐶𝑛𝛼,𝜄 ∩ [𝜂, �̄�). Then, by Clause (g), we obtain

𝐶𝑛+1
�̄�,𝜄′ ∖ 𝜂 = 𝐶𝑛+1

𝛼,𝜄 ∩ [𝜂, �̄�), so that 𝐶𝑛+1
�̄�,𝜄′ ⊑* 𝐶𝑛+1

𝛼,𝜄 .

I Suppose �̄� ∈ nacc(𝐶𝑛𝛼,𝜄). As we have assumed that �̄� ∈ acc(𝐶𝑛+1
𝛼,𝜄 ), we ob-

tain from Clause (h) that �̄� /∈ Ω𝑛+1. Furthermore, it follows from Clause (i)
(with 𝛽 := �̄� and 𝛽− := sup(𝐶𝑛𝛼,𝜄 ∩ 𝛽)) that 𝐶𝑛+1

�̄�,0 ⊑* 𝐶𝑛+1
𝛼,𝜄 .

I The remaining case is �̄� /∈ 𝐶𝑛𝛼,𝜄. Let 𝛽− < 𝛽 be the two consecutive points

of 𝐶𝑛𝛼,𝜄 such that 𝛽− < �̄� < 𝛽. In particular, 𝛽 ∈ nacc(𝐶𝑛𝛼,𝜄). Since

�̄� ∈ acc(𝐶𝑛+1
𝛼,𝜄 ) ∩ (𝛽−, 𝛽), it follows from Clause (i) that 𝐶𝑛+1

𝛽,0 ∖ 𝛽− =

𝐶𝑛+1
𝛼,𝜄 ∩ [𝛽−, 𝛽), so that �̄� ∈ acc(𝐶𝑛+1

𝛽,0 ∖ 𝛽−). As 𝛽 < 𝛼 and �̄� ∈ acc(𝐶𝑛+1
𝛽,0 ),

by induction hypothesis we can choose some 𝜄′ < 𝜅 such that 𝐶𝑛+1
�̄�,𝜄′

Ω𝑛+1

𝜒 ⊑*

𝐶𝑛+1
𝛽,0 . Thus, in particular, �̄� /∈ Ω𝑛+1 and 𝐶𝑛+1

�̄�,𝜄′ 𝜒⊑* 𝐶𝑛+1
𝛽,0 . If cf(�̄�) < 𝜒,

then automatically 𝐶𝑛+1
�̄�,0 𝜒⊑* 𝐶𝑛+1

𝛼,𝜄 . Otherwise, we have 𝐶𝑛+1
�̄�,𝜄′ ⊑* 𝐶𝑛+1

𝛽,0 ,

and as 𝛽− < �̄�, it follows that 𝐶𝑛+1
�̄�,𝜄′ ⊑* 𝐶𝑛+1

𝛼,𝜄 , as sought. �

If we reach the end of the above recursive process, then we are altogether

equipped with a sequence ⟨(𝒞𝑛,Ω𝑛, 𝑋𝑛) | 𝑛 < 𝜔⟩, from which we shall derive a
contradiction. By the choice of 𝑋𝜔, the following set must be stationary:

Ω∙ :=
⋂︁
𝑛<𝜔

Ω𝑛 =
{︀
𝛽 ∈ Ω0

⃒⃒
∀𝑛 < 𝜔(𝑋𝑛

𝛽 ⊆ 𝑋𝑛)
}︀
.

Thus, acc+(Ω∙) is a club in 𝜅, and we may pick 𝛼 ∈ Ω∙∩acc+(Ω∙). For every 𝑛 < 𝜔,
put 𝛼𝑛 := sup(𝐶𝑛𝛼,0 ∩ Ω𝑛+1), which by Clause (f) is < 𝛼. As 𝛼 ∈ Ω∙ ⊆ Ω0 ⊆ 𝐸𝜅>𝜔,
we infer that 𝛼* := sup𝑛<𝜔 𝛼𝑛 is smaller than 𝛼. Clearly,

(**) 𝐶𝑛𝛼,0 ∩ Ω𝑛+1 ∩ (𝛼*, 𝛼) = ∅ for every 𝑛 < 𝜔.

Since Ω∙ ∩ 𝛼 is cofinal in 𝛼, let us pick 𝛽 ∈ Ω∙ ∩ (𝛼*, 𝛼).
For all 𝑛 < 𝜔, let 𝛽𝑛 := min(𝐶𝑛𝛼,0 ∖ 𝛽). As {𝐶𝑛𝛼,0 | 𝑛 < 𝜔} is a ⊆-increasing

chain, it follows that ⟨𝛽𝑛 | 𝑛 < 𝜔⟩ is a ≤-decreasing sequence of ordinals, and
hence stabilizes. Fix 𝑛 < 𝜔 such that 𝛽𝑛 = 𝛽𝑛+1. Since 𝛽 ∈ Ω∙ ⊆ Ω𝑛+1, (**)
gives 𝛽 /∈ 𝐶𝑛𝛼,0, so that 𝛽𝑛 > 𝛽. In particular, 𝛽𝑛 = min(𝐶𝑛𝛼,0 ∖ (𝛽 + 1)), so
that 𝛽𝑛 ∈ nacc(𝐶𝑛𝛼,0). By (**) again and 𝛼 > 𝛽𝑛 > 𝛽 > 𝛼*, it follows that

𝛽𝑛 ∈ nacc(𝐶𝑛𝛼,0) ∖ Ω𝑛+1. Thus we infer from (*) that

𝐶𝑛+1
𝛼,0 ∩

[︀
sup(𝐶𝑛𝛼,0 ∩ 𝛽𝑛), 𝛽𝑛

)︀
= 𝐶𝑛+1

𝛽𝑛,0
∩
[︀
sup(𝐶𝑛𝛼,0 ∩ 𝛽𝑛), 𝛽𝑛

)︀
,

and from 𝛽𝑛 = min(𝐶𝑛𝛼,0 ∖ 𝛽), we obtain sup(𝐶𝑛𝛼,0 ∩ 𝛽𝑛) ≤ 𝛽, and hence

𝐶𝑛+1
𝛼,0 ∩ [𝛽, 𝛽𝑛) = 𝐶𝑛+1

𝛽𝑛,0
∩ [𝛽, 𝛽𝑛).

Since 𝛽 < 𝛽𝑛, it follows that 𝛽𝑛+1 = min(𝐶𝑛+1
𝛼,0 ∖ 𝛽) = min(𝐶𝑛+1

𝛽𝑛,0
∖ 𝛽) < 𝛽𝑛,

contradicting the choice of 𝑛 and completing the proof. �

Remark 4.21. It follows from Lemma 3.3 that, in Clause (4) of the preceding, the
existence of an 𝛼 is equivalent to the existence of stationarily many such 𝛼.

Corollary 4.22. Suppose 𝜅ℵ0 = 𝜅, and ♣(𝐸) holds for a stationary 𝐸 ⊆ 𝜅. If
there exists a P−(𝜅, 𝜇,𝐸𝜒⊑*, . . .)-sequence, then there exists a stationary Ω ⊆ 𝐸 such

that P−(𝜅, 𝜇,Ω𝜒⊑*, 1, {Ω}, 2) holds.
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Proof. Let Ω ⊆ 𝐸∩acc(𝜅), ⟨𝑋𝛽 | 𝛽 ∈ Ω⟩, and ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ be given by Lemma 4.20,
using 𝑆 := 𝐸. For every 𝛽 ∈ Ω, let 𝒳𝛽 := {{𝛿} | 𝛿 ∈ 𝑋𝛽}.

Set 𝜈 := 2. By Clause (4) of Lemma 4.20 together with Remark 4.21, for every
cofinal 𝑋 ⊆ 𝜅, letting 𝒳 := {{𝛿} | 𝛿 ∈ 𝑋} and 𝐵0 := {𝛽 ∈ Ω | 𝒳𝛽 ⊆ 𝒳}, the set 𝑆′

of all 𝛼 ∈ Ω such that:

∙ |𝒞𝛼| < 𝜈, and
∙ for every 𝐶 ∈ 𝒞𝛼, sup(nacc(𝐶) ∩𝐵0) = 𝛼

is stationary. The rest of the proof is now identical to that of Theorem 4.16(1),
using ℛ := Ω

𝜒⊑* and 𝜃 := 1. �

Suppose 𝜅 > ℵ1. Recall that a subset Ω ⊆ 𝜅 is said to be nonreflecting iff
Tr(Ω) := {𝛼 < 𝜅 | cf(𝛼) > 𝜔 & Ω ∩ 𝛼 is stationary in 𝛼} is empty. In particular,
any Ω ⊆ 𝜅 for which there exists a P−(𝜅, 𝜇,Ωℛ, . . . )-sequence (regardless of the
value of 𝜇) must be a nonreflecting set, so that a set 𝑆 as in the hypothesis of
Lemma 4.20 must be a nonreflecting stationary set. In [BR19c], more applications
of the existence of nonreflecting stationary sets were presented:

Fact 4.23 ([BR19c, Theorem A]). Suppose that CH𝜆 holds for a regular uncountable

cardinal 𝜆 = 2<𝜆, and there exists a nonreflecting stationary subset of 𝐸𝜆
+

̸=𝜆. Then

P−
𝜆 (𝜆+, 𝜆+,⊑, <𝜆, {𝜆+}, 2, <𝜆) and P−(𝜆+, 𝜆+,⊑*, 1, {𝐸𝜆+

𝜆 }, 2, 1) both hold.

Fact 4.24 ([BR19c, Theorem B]). Suppose that �*
𝜆 + CH𝜆 holds for a singular

cardinal 𝜆 = 2<𝜆, and either of the following two conditions holds:

(1) there exists a nonreflecting stationary subset of 𝐸𝜆
+

̸=cf(𝜆); or

(2) there exists a regressive function 𝑓 : 𝐸𝜆
+

cf(𝜆) → 𝜆+ such that 𝑓−1{𝑖} is

nonreflecting for each 𝑖 < 𝜆+.

Then P−
𝜆2(𝜆+, 𝜆+,⊑, 𝜆+, {𝜆+}, 2, <𝜆) holds.

Our next task is to prove analogous results for strongly inaccessible cardinals.
For this, let us first recall a result from [BR19a].

Fact 4.25 (Special case of [BR19a, Lemma 4.9]). Suppose that:

(a) ♢(𝜅) holds;

(b) 𝒞 = ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ is a P−(𝜅, 𝜅,Ω⊑, . . .)-sequence for some fixed subset
Ω ⊆ 𝜅 ∖ {𝜔};

(c) �⃗� = ⟨𝐶𝛼 | 𝛼 ∈ acc(𝜅)⟩ is an element of
∏︀
𝛼∈acc(𝜅) 𝒞𝛼;

(d) for every cofinal 𝐵 ⊆ 𝜅 and every Λ′ < 𝜅, the following is stationary in 𝜅:

{𝛼 ∈ 𝜅 ∖ Ω | ∃𝐶 ∈ 𝒞𝛼[min(𝐶) = min(𝐵),Λ′ ≤ otp(𝐶),nacc(𝐶) ⊆ 𝐵]}.

Then there exists a P−(𝜅, 𝜅,Ω⊑, . . .)-sequence, �⃗� = ⟨𝒟𝛼 | 𝛼 < 𝜅⟩, with an

element �⃗� = ⟨𝐷𝛼 | 𝛼 ∈ acc(𝜅)⟩ of
∏︀
𝛼∈acc(𝜅) 𝒟𝛼, satisfying the following properties:

(1) |𝒟𝛼| ≤ |𝒞𝛼| for all 𝛼 < 𝜅;
(2) For every cofinal 𝐴 ⊆ 𝜅, there exists a stationary 𝐵 ⊆ 𝜅 for which the set

{𝛼 ∈ acc(𝜅) | otp(𝐷𝛼) = 𝛼,nacc(𝐷𝛼) ⊆ 𝐴}
covers the set

{𝛼 ∈ acc(𝜅) | min(𝐶𝛼) = min(𝐵), otp(𝐶𝛼) = cf(𝛼),nacc(𝐶𝛼) ⊆ 𝐵}.

Clause (2) of the next theorem is used in the proof of [BR19c, Corollary 4.13].

Theorem 4.26. Suppose that 𝑆 is a nonreflecting stationary subset of a strongly
inaccessible cardinal 𝜅 and ♢(𝑆) holds. Then:

(1) P−(𝜅, 𝜅, 𝑆⊑, 1, {𝑆}, 2, 𝜅) holds;
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(2) P−(𝜅, 𝜅, 𝑆⊑, 𝜅, {𝑆}, 2, <∞) holds.

Proof. Fix a ♢(𝑆)-sequence �⃗� = ⟨𝐴𝛼 | 𝛼 ∈ 𝑆⟩. As 𝑆 is nonreflecting, for every
𝛼 ∈ acc(𝜅), we may pick a closed and cofinal subset 𝐵𝛼 of 𝛼 with otp(𝐵𝛼) = cf(𝛼)

and acc(𝐵𝛼) ∩ 𝑆 = ∅. Now, define a sequence �⃗� = ⟨𝐶𝛼 | 𝛼 ∈ acc(𝜅)⟩, as follows.

I If 𝛼 ∈ 𝑆 and 𝐴𝛼 is a cofinal subset of 𝛼, then by Lemma 3.3, fix a cofinal
subset 𝐴′

𝛼 of 𝐴𝛼 that is 𝐵𝛼-separated, and then let 𝐶𝛼 be the closure of
(𝐴′

𝛼 ∪ {min(𝐴𝛼)}) in 𝛼;
I Otherwise, let 𝐶𝛼 := 𝐵𝛼.

Note that, for every 𝛼 ∈ acc(𝜅), acc(𝐶𝛼) ⊆ acc(𝐵𝛼), so that otp(𝐶𝛼) = cf(𝛼)
and acc(𝐶𝛼) ∩ 𝑆 = ∅.

Next, recalling Convention 4.4, we define a sequence 𝒞 = ⟨𝒞𝛼 | 𝛼 < 𝜅⟩, as follows.
For 𝛼 ∈ 𝑆, we let 𝒞𝛼 := {𝐶𝛼}, and for 𝛼 ∈ acc(𝜅) ∖𝑆, we let 𝒞𝛼 consist of all closed
and cofinal subsets 𝐶 of 𝛼 such that acc(𝐶) ∩ 𝑆 = ∅.

Evidently, �⃗� is an element of
∏︀
𝛼∈acc(𝜅) 𝒞𝛼. In particular, and as 𝜅 is strongly

inaccessible, it follows that 𝒞 is a P−(𝜅, 𝜅,Ω⊑, . . .)-sequence for Ω := 𝑆 ∖ {𝜔}.

Claim 4.26.1. For every cofinal 𝐵 ⊆ 𝜅 and Λ′ < 𝜅, the following sets are station-
ary in 𝜅:

(i) {𝛼 ∈ Ω | min(𝐶𝛼) = min(𝐵), otp(𝐶𝛼) = cf(𝛼),nacc(𝐶𝛼) ⊆ 𝐵}, and
(ii) {𝛼 ∈ 𝜅 ∖ Ω | ∃𝐶 ∈ 𝒞𝛼[min(𝐶) = min(𝐵),Λ′ ≤ otp(𝐶),nacc(𝐶) ⊆ 𝐵]}.

Proof. Let 𝐵 be an arbitrary cofinal set.

(i) Consider the club 𝐷 := acc+(𝐵 ∖ 𝜔). By the choice of �⃗�, 𝑆′ := {𝛼 ∈ 𝑆 ∩𝐷 |
𝐵 ∩ 𝛼 = 𝐴𝛼} is a stationary subset of Ω. For every 𝛼 ∈ 𝑆′, the definition of 𝐶𝛼
implies that otp(𝐶𝛼) = cf(𝛼), nacc(𝐶𝛼) ⊆ 𝐴𝛼 ⊆ 𝐵 and min(𝐶𝛼) = min(𝐴𝛼) =
min(𝐵).

(ii) Let Λ′ < 𝜅 be arbitrary. Let 𝐷 be an arbitrary club. By shrinking 𝐷, we
may assume that 𝐷 ⊆ acc+(𝐵). Set 𝜃 := max{Λ′,ℵ0}. As 𝜅 is a limit cardinal,
we may fix 𝛿 ∈ acc(𝐷) with cf(𝛿) = 𝜃++. Pick 𝛼 ∈ acc(𝐶𝛿) ∩𝐷 with cf(𝛼) = 𝜃+.

As �⃗� is a P−(𝜅, 𝜅,Ω⊑, . . .)-sequence, 𝛼 /∈ Ω. Finally, since 𝛼 ∈ 𝐷 ⊆ acc+(𝐵), we
infer that 𝐵 ∩ 𝛼 is cofinal in 𝛼. Let 𝐴′ be a cofinal subset of 𝐴 := 𝐵 ∩ 𝛼 that
is 𝐵𝛼-separated. Let 𝐶 be the closure of (𝐴′ ∪ {min(𝐴)}) in 𝛼. Then 𝐶 ∈ 𝒞𝛼,
min(𝐶) = min(𝐴) = min(𝐵), Λ′ < 𝜃+ = otp(𝐶) and nacc(𝐶) ⊆ 𝐴 ⊆ 𝐵. �

By Clause (i) of the preceding claim, 𝒞 witnesses P−(𝜅, 𝜅,Ω⊑, 1, {Ω}, 2, 𝜅). As
𝑆 △ Ω is finite, it follows that P−(𝜅, 𝜅, 𝑆⊑, 1, {𝑆}, 2, 𝜅) holds, as well.

Next, by appealing to Fact 4.25 with 𝒞 and �⃗�, we obtain a P−(𝜅, 𝜅,Ω⊑, . . .)-
sequence �⃗� = ⟨𝒟𝛼 | 𝛼 < 𝜅⟩, and an element �⃗� = ⟨𝐷𝛼 | 𝛼 ∈ acc(𝜅)⟩ of

∏︀
𝛼∈acc(𝜅) 𝒟𝛼,

satisfying the following properties:

(1) |𝒟𝛼| ≤ |𝒞𝛼| for all 𝛼 < 𝜅;
(2) For every cofinal 𝐺 ⊆ 𝜅, the following set is stationary:

{𝛼 ∈ Ω | otp(𝐷𝛼) = 𝛼,nacc(𝐷𝛼) ⊆ 𝐺}.
It thus follows from [BR19a, Lemma 3.7] and [BR19c, Lemma 3.14] that P−(𝜅, 𝜅,Ω⊑,
𝜅, {Ω}, 2, <∞) holds. As 𝑆△Ω is finite, it follows that P−(𝜅, 𝜅, 𝑆⊑, 𝜅, {𝑆}, 2, <∞)
holds, as well. �

Corollary 4.27. Suppose that 𝐸 is a nonreflecting stationary subset of a strongly
inaccessible cardinal 𝜅 and ♢(𝐸) holds. Then, for every nonreflecting stationary
𝑆 ⊆ 𝜅, P−(𝜅, 𝜅,⊑*, 1, {𝑆}, 2) holds.

Proof. Let 𝑆 ⊆ 𝜅 be stationary and nonreflecting. Then 𝐸 ∪ 𝑆 is also station-
ary and nonreflecting and ♢(𝐸 ∪ 𝑆) holds, so that by Theorem 4.26(1), P−(𝜅, 𝜅,
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𝐸∪𝑆⊑, 1, {𝐸 ∪ 𝑆}, 2, 𝜅) holds. In particular, we may fix a sequence 𝒞 = ⟨𝒞𝛼 |
𝛼 < 𝜅⟩ witnessing P−(𝜅, 𝜅, 𝑆⊑, 1, {𝜅}, 2, 1). By 𝑆⊑-coherence of 𝒞, we may assume
that |𝒞𝛼| = 1 for every 𝛼 ∈ 𝑆. So, by [BR19c, Lemma 3.8] with (𝜇, 𝜈) := (𝜅, 2),
P−(𝜅, 𝜅,⊑*, 1, {𝑆}, 2, 1) holds. Then, by Theorem 4.16(1), P−(𝜅, 𝜅,⊑*, 1, {𝑆}, 2)
holds, as well. �

Our next result about strongly inaccessible cardinals forms the core of Theo-
rem B:

Theorem 4.28. Suppose that 𝜅 is a strongly inaccessible cardinal, and there exists
a sequence ⟨𝐴𝛼 | 𝛼 ∈ 𝑆⟩ such that:

∙ 𝑆 is a nonreflecting stationary subset of 𝐸𝜅>𝜔;
∙ For every 𝛼 ∈ 𝑆, 𝐴𝛼 is a cofinal subset of 𝛼;
∙ For every cofinal 𝐵 ⊆ 𝜅, there exists 𝛼 ∈ 𝑆 for which

{𝛿 < 𝛼 | min(𝐴𝛼 ∖ (𝛿 + 1)) ∈ 𝐵}

is stationary in 𝛼.

Then P−(𝜅, 𝜅, 𝑆⊑, 1, {𝑆}, 2) holds.

Proof. As 𝑆 is nonreflecting, for every 𝛼 ∈ 𝑆, we may pick a club subset 𝐵𝛼 of 𝛼
with acc(𝐵𝛼)∩𝑆 = ∅. Now, for every 𝛼 ∈ 𝑆, let 𝒞𝛼 := {𝐶𝛼}, where 𝐶𝛼 denotes the
closure in 𝛼 of {min(𝐴𝛼 ∖ (𝛿+1)) | 𝛿 ∈ 𝐵𝛼}. For every 𝛼 ∈ acc(𝜅)∖𝑆, let 𝒞𝛼 consist
of all clubs 𝐶 in 𝛼 such that acc(𝐶) ∩ 𝑆 = ∅. As 𝑆 is nonreflecting, 𝜅 is strongly

inaccessible, and acc(𝐶𝛼) ⊆ acc(𝐵𝛼) for every 𝛼 ∈ 𝑆, it follows that 𝒞 := ⟨𝒞𝛼 |
𝛼 < 𝜅⟩ is a P−(𝜅, 𝜅, 𝑆⊑, . . . )-sequence. To see that 𝒞 witnesses Clause (iv) of
Theorem 4.15 with (𝜉, 𝜇,ℛ, 𝜃,𝒮, 𝜈) := (𝜅, 𝜅, 𝑆⊑, 1, {𝑆}, 2), consider any given club
𝐷 ⊆ 𝜅 and cofinal 𝐵 ⊆ 𝜅. By Lemma 3.3, fix a cofinal subset 𝐵′ of 𝐵 that is 𝐷-
separated. By the hypothesis, fix 𝛼 ∈ 𝑆 such that {𝛿 < 𝛼 | min(𝐴𝛼 ∖ (𝛿+ 1)) ∈ 𝐵′}
is stationary in 𝛼. In particular, sup(𝐵′∩𝛼) = 𝛼, so that also sup(𝐷∩𝛼) = 𝛼, and
it follows that 𝐷 ∩ 𝛼 is a club in 𝛼, and so is 𝐷 ∩𝐵𝛼. Thus, the set {𝛿 ∈ 𝐷 ∩𝐵𝛼 |
min(𝐴𝛼 ∖ (𝛿 + 1)) ∈ 𝐵′} is stationary in 𝛼. As 𝛼 ∈ 𝑆, we infer that 𝒞𝛼 = {𝐶𝛼} (in
particular, |𝒞𝛼| = 1), and for every 𝛿 ∈ 𝐵𝛼, min(𝐶𝛼 ∖ (𝛿 + 1)) = min(𝐴𝛼 ∖ (𝛿 + 1)),
yielding, in particular, sup{𝛿 ∈ 𝐷 ∩ 𝛼 | min(𝐶𝛼 ∖ (𝛿 + 1)) ∈ 𝐵} = 𝛼. Thus, by
Theorem 4.15(i), we obtain P−(𝜅, 𝜅, 𝑆⊑, 1, {𝑆}, 2, <𝜔), as sought. �

The proof of Lemma 4.20 makes clear that the ♢(𝜅) hypothesis in [BR19c,
Lemma 3.8] may be reduced to ♣(𝜅) together with 𝜅ℵ1 = 𝜅, or together with
𝜅ℵ0 = 𝜅 provided that 𝑆 concentrates on points of uncountable cofinality. In ad-
dition, the proof of Theorem 4.16(1) goes through also for 𝜇 = 𝜅+. Therefore, we
arrive at the following conclusion.

Lemma 4.29. Suppose that:

∙ 𝜇 ≤ 𝜅+ and 𝜈 < 𝜅 are cardinals;

∙ 𝒞 = ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ witnesses P−(𝜅, 𝜇,⊑*, 1, {𝜅}, 𝜇, 1);
∙ 𝑆 is some stationary subset of {𝛼 ∈ 𝐸𝜅>𝜔 | |𝒞𝛼| < 𝜈};
∙ 𝜅ℵ0 = 𝜅 and ♣(𝜅) holds.

Then P−(𝜅, 𝜇,⊑*, 1, {𝑆}, 𝜈) holds. �

Corollary 4.30. Suppose 𝜅ℵ0 = 𝜅, and ♣(𝐸) holds for a nonreflecting stationary
𝐸 ⊆ 𝜅.

(1) For every 𝜇 ≤ 𝜅+ and every stationary 𝑆 ⊆ 𝐸𝜅>𝜔 such that there is a

P−(𝜅, 𝜇,𝐸∪𝑆⊑*, . . .)-sequence, P−(𝜅, 𝜇,⊑*, 1, {𝑆}, 2) holds;
(2) For every nonreflecting stationary 𝑆 ⊆ 𝐸𝜅>𝜔, P−(𝜅, 𝜅+,⊑*, 1, {𝑆}, 2) holds.
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Proof. We shall only prove Clause (1), as Clause (2) easily follows from it.
Suppose that 𝑆 ⊆ 𝐸𝜅>𝜔 is stationary, and there exists a P−(𝜅, 𝜇,𝐸∪𝑆⊑*, . . .)-

sequence, ⟨𝒞0
𝛼 | 𝛼 < 𝜅⟩. Clearly, we may assume that |𝒞0

𝛼| = 1 for all 𝛼 ∈ 𝐸 ∪ 𝑆.
By the same proof of Corollary 4.22, there exists a stationary Ω ⊆ 𝐸 and a

P−(𝜅, 𝜇,Ω⊑*, 1, {Ω}, 2, 1)-sequence 𝒞 = ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ with |𝒞𝛼| ≤ |𝒞0
𝛼| for all 𝛼 < 𝜅.

In particular, 𝒞 is a P−(𝜅, 𝜇,⊑*, 1, {𝜅}, 𝜇, 1)-sequence with 𝑆 ⊆ {𝛼 ∈ 𝐸𝜅>𝜔 | |𝒞𝛼| <
2}. Then, by Lemma 4.29, P−(𝜅, 𝜇,⊑*, 1, {𝑆′}, 2) holds. �

We conclude this subsection, pointing out a few additional connections between
instances of P−(𝜅, . . .) and the existence of nonreflecting stationary subsets of 𝜅.

Proposition 4.31. Assume 𝜒 ∈ Reg(𝜅), min{𝜃, 𝜎} > 0 and ℛ as in Example 4.5.

(1) Let 𝜉 < 𝜅. For any 𝑆 ⊆ 𝐸𝜅≥𝜒, P−
𝜉 (𝜅, 𝜅, 𝜒⊑, 1, {𝑆}, 2, 1) entails the existence

of a nonreflecting stationary subset of 𝑆. In addition, for any 𝑆 ⊆ 𝜅,
P−
𝜉 (𝜅, 𝜅,⊑𝜒, 1, {𝑆}, 2, 1) entails the existence of stationary subset Ω ⊆ 𝑆

such that, for every 𝛼 ∈ 𝐸𝜅≥max{𝜒,𝜔1}, Ω ∩ 𝛼 is nonstationary in 𝛼.

(2) For any 𝜎 ∈ Reg(𝜅), P−(𝜅, 2, 𝜎⊑, 1, {𝐸𝜅≥𝜎}, 2, 𝜎) entails the existence of a
nonreflecting stationary subset of 𝐸𝜅𝜎 .

(3) P−
𝜉 (𝜅, 𝜇,Ωℛ, 𝜃, {Ω}, 𝜈, 𝜎) implies that Ω is a nonreflecting stationary subset

of 𝜅 and that P−
𝜉 (𝜅, 𝜇,Ωℛ, 𝜃, {Ω}, 𝜈′, 𝜎) holds with 𝜈′ = 2.

(4) If 𝜅 = 𝜆+ for a regular cardinal 𝜆, then P−
𝜆 (𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈, 𝜎) is equivalent

to P−(𝜅, 𝜇,𝐸
𝜅
𝜆ℛ, 𝜃,𝒮, 𝜈, 𝜎).

(5) If 𝜅 = 𝜆+ for a regular cardinal 𝜆, then, for every 𝒮 ⊆ 𝒫(𝐸𝜅𝜆), P−
𝜆 (𝜅, 𝜇,ℛ,

𝜃,𝒮, 𝜈, 𝜎) is equivalent to P−
𝜆 (𝜅, 𝜇,ℛ, 𝜃,𝒮, 2, 𝜎).

(6) If 𝜅 = 𝜆+ for an infinite cardinal 𝜆, then, for every 𝜃 ≥ 𝜆, P−
𝜆 (𝜅, 𝜇,ℛ, 𝜃, {𝜅},

𝜈, 𝜎) is equivalent to P−
𝜆 (𝜅, 𝜇,ℛ, 𝜃, {𝐸𝜅cf(𝜆)}, 2, 𝜎).

Proof. (1) The easy argument may be extracted from the proof of (2) =⇒ (1) of
[BR19c, Corollary 3.4].

(2) The proof is a straight-forward generalization of the proof of [Lam17a, The-
orem 4.1].

(3) From P−
𝜉 (𝜅, · · ·, 𝜃, {Ω}, ·, 𝜎) with min{𝜃, 𝜎} > 0, we infer that Ω is stationary.

Now, for every 𝛼 ∈ 𝐸𝜅>𝜔, we may pick a club 𝐶 ∈ 𝒞𝛼, and so by Ωℛ, we know that
the club acc(𝐶) is disjoint from Ω, so that Ω ∩ 𝛼 is nonstationary in 𝛼. In effect,
for every 𝛼 ∈ Ω, we may replace 𝒞𝛼 by some singleton subset of itself, and then see
that P−

𝜉 (𝜅, 𝜇,Ωℛ, 𝜃, {Ω}, 2, 𝜎) holds, as well.

(4) This is obvious.
(5) By Clauses (3) and (4).
(6) By Clause (3) and [BR19c, Remarks 3.22]. �

4.4. Hitting on a club. Let NS𝜅 denote the nonstationary ideal over 𝜅, so that
NS+

𝜅 forms the collection of all stationary subsets of 𝜅. For every stationary 𝑇 ⊆ 𝜅,
one denotes NS+

𝜅 � 𝑇 := NS+
𝜅 ∩ 𝒫(𝑇 ).

The following result shows that hitting on a club enables increasing the number
of sets being hit simultaneously to the maximal possible value. It is used in the
proof of [BR19b, Corollary 3.6], and in the justification of [BR19b, Remark ii.
following Definition 3.3] and [Lam17a, Theorem 1.10(2)].

Lemma 4.32. Suppose that 𝒮 = NS+
𝜅 � 𝑇 for some stationary 𝑇 ⊆ 𝜅. Then

P−
𝜉 (𝜅, 𝜇,ℛ, 1,𝒮, 𝜈, 𝜎) is equivalent to P−

𝜉 (𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈, 𝜎) with 𝜃 = 𝜅.

Proof. We focus on the forward implication. Fix a sequence 𝒞 = ⟨𝒞𝛼 | 𝛼 < 𝜅⟩
witnessing P−

𝜉 (𝜅, 𝜇,ℛ, 1,𝒮, 𝜈, 𝜎). In particular, for every cofinal 𝐵 ⊆ 𝜅, if we let
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𝐺(𝐵) denote the set of all 𝛼 < 𝜅 such that |𝒞𝛼| < 𝜈, and for all 𝐶 ∈ 𝒞𝛼,

sup{𝛾 ∈ 𝐶 | succ𝜎(𝐶 ∖ 𝛾) ⊆ 𝐵} = 𝛼,

then, for every 𝑆 ∈ 𝒮, 𝐺(𝐵) ∩ 𝑆 is stationary. Recalling that 𝒮 = {𝑆 ⊆ 𝑇 |
𝑇 is stationary}, this means that 𝑇 ∖𝐺(𝐵) is nonstationary.

Claim 4.32.1. 𝒞 witnesses P−
𝜉 (𝜅, 𝜇,ℛ, 𝜅,𝒮, 𝜈, 𝜎), as well.

Proof. Suppose that ⟨𝐵𝑖 | 𝑖 < 𝜅⟩ is a given sequence of cofinal subsets of 𝜅. For
every 𝑖 < 𝜅, let us fix a club 𝐷𝑖 ⊆ 𝜅 such that 𝐷𝑖 ∩ 𝑇 ⊆ 𝐺(𝐵𝑖). Consider the club
𝐷 := acc(𝜅) ∩ (

a
𝑖<𝜅𝐷𝑖). Let 𝛼 ∈ 𝐷 ∩ 𝑇 be arbitrary. By 𝛼 ∈ 𝐷0 ∩ 𝑇 , we infer

|𝒞𝛼| < 𝜈. Let 𝐶 ∈ 𝒞𝛼 be arbitrary. Given 𝑖 < 𝛼, we have 𝛼 ∈ 𝐷𝑖 ∩ 𝑇 , and hence

sup{𝛾 ∈ 𝐶 | succ𝜎(𝐶 ∖ 𝛾) ⊆ 𝐵𝑖} = 𝛼,

as required. �

This completes the proof. �

Remark 4.33. Recalling Conventions 4.6 and 4.14, the principle P*(𝑇, 𝜉) of [BR19b,
Definition 3.3] is nothing but P−

𝜉 (𝜅,∞,⊑, 1,NS+
𝜅 � 𝑇 , 2, <∞). In particular, P*(𝑇, 𝜅)

entails P−(𝜅, 𝜅,⊑, 𝜅, {𝜅}, 2, 1), which, by the results of Subsection 6.7, entails the
existence of a free 𝜅-Souslin tree. This justifies remark (ii) after Definition 3.3 of
[BR19b].

Consider a regular infinite cardinal 𝜆 and some stationary set 𝑆 ⊆ 𝐸𝜆
+

𝜆 . Sim-

ilar to the fact that ♢(𝑆) implies P−
𝜆 (𝜆+, 2, 𝜆⊑, 1, {𝑆}, 2, 𝜎) (cf. [BR17a, Theo-

rem 5.1(2)]), it is the case that ♢*(𝑆) implies P−
𝜆 (𝜆+, 2, 𝜆⊑, 1,NS+

𝜆+ � 𝑆, 2, 𝜎).21 To
prove this, let us first dispose of the following:

Proposition 4.34. Suppose 𝛼 is some limit ordinal, and 𝒜 is a collection of cf(𝛼)
many cofinal subsets of 𝛼. Then there exists a club 𝐶 in 𝛼 of order-type cf(𝛼)
satisfying the following. For all 𝐴 ∈ 𝒜 and 𝜎 < cf(𝛼):

sup{𝛾 ∈ 𝐶 | succ𝜎(𝐶 ∖ 𝛾) ⊆ 𝐴} = 𝛼.

Proof. Let 𝜆 := cf(𝛼). Let ⟨𝛼𝑖 | 𝑖 < 𝜆⟩ be the strictly increasing enumeration of a
club in 𝛼. Fix a surjection 𝑔 : 𝜆 → 𝒜 such that for all 𝜎 < 𝜆 and 𝐴 ∈ 𝒜, the set
{𝑘 < 𝜆 | 𝑔“(𝑘, 𝑘 + 𝜎) = {𝐴}} is cofinal in 𝜆. Now, recursively construct a strictly
increasing and continuous sequence ⟨𝛾𝑖 | 𝑖 < 𝜆⟩ such that, for all 𝑖 < 𝜆, 𝛾𝑖 > 𝛼𝑖 and
𝛾𝑖+1 ∈ 𝑔(𝑖). Evidently, 𝐶 := {𝛾𝑖 | 𝑖 < 𝜆} is as sought. �

Clause (2) of the next theorem is used in the proof of [BR19b, Proposition 3.10].

Theorem 4.35. Suppose 𝜆 is any regular infinite cardinal, and 𝑆 ⊆ 𝐸𝜆
+

𝜆 is a

stationary subset such that ♢*(𝑆) holds. Set Ω := 𝐸𝜆
+

𝜆 . Then:

(1) P−
𝜆 (𝜆+, 2,Ω𝜆⊑, 1,NS+

𝜆+ � 𝑆, 2, <∞) holds.

(2) If, in addition, 𝜆<𝜆 = 𝜆, then P−
𝜆 (𝜆+,∞,Ω⊑, 1,NS+

𝜆+ � 𝑆, 2, <∞) holds.

Proof. (1) Fix a sequence �⃗� = ⟨𝒜𝛼 | 𝛼 ∈ 𝑆⟩ witnessing ♢*(𝑆). Without loss of
generality, we may assume that, for all 𝛼 ∈ 𝑆, 𝒜′

𝛼 := {𝐴 ∈ 𝒜𝛼 | sup(𝐴) = 𝛼} is of
size 𝜆. We define a sequence ⟨𝐶𝛼 | 𝛼 < 𝜆+⟩, as follows:
I For each 𝛼 ∈ 𝜆+ ∖𝑆, pick a closed subset 𝐶𝛼 of 𝛼 with sup(𝐶𝛼) = sup(𝛼) and

otp(𝐶𝛼) = cf(𝛼).
I For each 𝛼 ∈ 𝑆, let 𝐶𝛼 be given by Proposition 4.34 when fed with 𝒜′

𝛼.

21For the definition of ♢*(𝑆), see [Rin11a, Definition 1.3].
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Now, set 𝒞 = ⟨𝒞𝛼 | 𝛼 < 𝜆+⟩ where 𝒞𝛼 := {𝐶𝛼} for all 𝛼 < 𝜆+. Then 𝒞 is a
P−
𝜆 (𝜆+, 2,Ω𝜆⊑, . . .)-sequence, since, for every 𝛼 ∈ acc(𝜆+), 𝐶𝛼 is a club subset of 𝛼

of order-type ≤ 𝜆, so that Ω
𝜆⊑-coherence is satisfied vacuously.

To see that 𝒞 witnesses P−
𝜆 (𝜆+, 2,Ω𝜆⊑, 1,NS+

𝜆+ � 𝑆, 2, <∞), consider any cofinal

set 𝐴 ⊆ 𝜆+. By our choice of �⃗�, we can fix a club 𝐷 ⊆ 𝜆+ such that, for every
𝛼 ∈ 𝐷 ∩ 𝑆, 𝐴 ∩ 𝛼 ∈ 𝒜𝛼. Consider the club 𝐸 := acc+(𝐴) ∩𝐷. For any 𝛼 ∈ 𝐸 ∩ 𝑆,
we obtain 𝐴 ∩ 𝛼 ∈ 𝒜′

𝛼, so that by our choice of 𝐶𝛼 it follows that, for all 𝜎 < 𝜆,

sup{𝛾 ∈ 𝐶 | succ𝜎(𝐶 ∖ 𝛾) ⊆ 𝐴} = 𝛼,

as sought.

(2) Let 𝒞 = ⟨𝒞𝛼 | 𝛼 < 𝜆+⟩ be given by Clause (1). Define �⃗� = ⟨𝒟𝛼 | 𝛼 < 𝜆+⟩ as
follows.
I For all 𝛼 ≤ 𝜆, let 𝒟𝛼 := {𝛼}.

I For all 𝛼 ∈ 𝐸𝜆
+

<𝜆 ∖ 𝜆, let 𝒟𝛼 be the collection of all clubs 𝑑 in 𝛼 such that
min(𝑑) ≥ 𝜆 and |𝑑| < 𝜆.

I For all 𝛼 ∈ 𝐸𝜆
+

𝜆 ∖ {𝜆}, let 𝒟𝛼 := {𝐶 ∖ 𝜆 | 𝐶 ∈ 𝒞𝛼}.

Then �⃗� witnesses P−
𝜆 (𝜆+,∞,Ω⊑, 1,NS+

𝜆+ � 𝑆, 2, <∞). �

4.5. Improving the coherence. In this subsection, we show that we can improve
the coherence of a sequence witnessing the proxy principle by inserting all necessary
initial segments of the clubs into the relevant collections, as long as we allow the
sequence to grow wide enough. The main result here is the following:

Corollary 4.36. P−
𝜉 (𝜅, 𝜅,⊑*, 𝜃,𝒮, 𝜅, 𝜎) is equivalent to P−

𝜉 (𝜅, 𝜅,⊑, 𝜃,𝒮, 𝜅, 𝜎).

Proof. By Theorem 4.39 below, using (Ω, 𝜒, 𝜈) := (∅, 0, 𝜅) and Remark 4.38 �

The following notion will allow us to state the main result of this subsection in
its most general form.

Definition 4.37. Let P−
𝜉 (𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈*) be the assertion obtained by replacing

Clause (1) of Definition 4.10 by the weaker property:

(1*) there exists 𝒞 ∈ [𝒞𝛼]<𝜈 such that, for all 𝐶 ∈ 𝒞𝛼, there is 𝐶 ′ ∈ 𝒞 with
sup(𝐶 △ 𝐶 ′) < 𝛼.

Remark 4.38. Clearly, for any vector of parameters · · · , we have:

P−
𝜉 (𝜅, 𝜇, · · · , 𝜈) =⇒ P−

𝜉 (𝜅, 𝜇, · · · , 𝜈*) =⇒ P−
𝜉 (𝜅, 𝜇, · · · , 𝜇).

Note that setting (Ω, 𝜃, 𝜈, 𝜎) := (∅, 1, 𝜅, 1) and 𝒮 a singleton in the following
Theorem provides the justification for [BR19b, Remark (i) following Definition 2.1].

Theorem 4.39. Suppose 𝜅 is (<𝜒)-closed and 𝒮 ⊆ 𝒫(𝐸𝜅≥𝜒).

Then P−
𝜉 (𝜅, 𝜅,Ω𝜒⊑*, 𝜃,𝒮, 𝜈, 𝜎) is equivalent to P−

𝜉 (𝜅, 𝜅,Ω⊑, 𝜃,𝒮, 𝜈*, 𝜎).

Proof. ( ⇐= ) Fix a sequence ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ witnessing P−
𝜉 (𝜅, 𝜅,Ω⊑, 𝜃,𝒮, 𝜈*, 𝜎). For

every 𝛼 ∈ acc(𝜅), pick a subset 𝒞∙
𝛼 ⊆ 𝒞𝛼 of minimal cardinality such that, for all

𝐶 ∈ 𝒞𝛼, there is 𝐶 ′ ∈ 𝒞∙
𝛼 with sup(𝐶 △ 𝐶 ′) < 𝛼.

Recalling Convention 4.4, the sequence ⟨𝒞∙
𝛼 | 𝛼 < 𝜅⟩ witnesses P−

𝜉 (𝜅, 𝜅,Ω⊑*, 𝜃,𝒮,
𝜈, 𝜎), as seen by noting the following:

∙ For any 𝛼 ∈ acc(𝜅), 𝐶 ∈ 𝒞∙
𝛼, and �̄� ∈ acc(𝐶), we may pick 𝐷 ∈ 𝒞�̄�

with 𝐷 Ω⊑ 𝐶, and then pick 𝐷′ ∈ 𝒞∙
�̄� with sup(𝐷 △ 𝐷′) < �̄�. Thus

sup((𝐶 ∩ �̄�) △𝐷′) < �̄�, so that 𝐷′ Ω⊑* 𝐶, as sought.
∙ By Definition 4.37, |𝒞∙

𝛼| < 𝜈 wherever the hitting takes place.
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( =⇒ ) Fix a sequence 𝒞 = ⟨𝒞𝛿 | 𝛿 < 𝜅⟩ witnessing P−
𝜉 (𝜅, 𝜅,Ω𝜒⊑*, 𝜃,𝒮, 𝜈, 𝜎).

Denote Σ :=
⋃︀
𝛿∈acc(𝜅) 𝒞𝛿, and for every 𝛼 < 𝜅, denote 𝒜𝛼 := {𝐶 ∩ 𝛼 | 𝐶 ∈ Σ} and

𝒢𝛼 := {𝑐 ∈ 𝒜𝛼 | sup(𝑐) = 𝛼}. Recalling Convention 4.4, let �⃗� := ⟨𝒟𝛼 | 𝛼 < 𝜅⟩ be
determined by setting 𝒟𝛼 := 𝒢𝛼 for every 𝛼 ∈ acc(𝜅) (cf. [BR19c, Notation 2.4]).

We shall show that �⃗� witnesses P−
𝜉 (𝜅, 𝜅,Ω⊑, 𝜃,𝒮, 𝜈*, 𝜎).

Claim 4.39.1. Suppose 𝛼 ∈ 𝐸𝜅≥𝜒. Then every element 𝑐 ∈ 𝒢𝛼 can be written as

𝑐 = (𝑐 ∩ 𝛽) ∪ (𝐷 ∖ 𝛽) for some 𝐷 ∈ 𝒞𝛼 and 𝛽 < 𝛼, where 𝑐 ∩ 𝛽 ∈ 𝒜𝛽.

Proof. Consider any given 𝑐 ∈ 𝒢𝛼. Fix 𝐶 ∈ Σ such that 𝑐 = 𝐶 ∩ 𝛼. As 𝑐 ∈ 𝒢𝛼,
we infer that sup(𝐶 ∩ 𝛼) = 𝛼, so that 𝛼 ∈ acc(𝐶) ∪ {sup(𝐶)}. If 𝛼 ∈ acc(𝐶), then
by 𝜒⊑*-coherence and the fact that cf(𝛼) ≥ 𝜒, we can fix some 𝐷 ∈ 𝒞𝛼 such that
𝐷 ⊑* 𝐶. Otherwise, 𝛼 = sup(𝐶), so that in fact 𝑐 = 𝐶 ∈ 𝒞𝛼; in this case we set
𝐷 := 𝐶. In either case, set 𝛽 := min{𝛽 | 𝐷 ∖ 𝛽 ⊑ 𝐶 ∖ 𝛽}. As 𝐷 ⊑* 𝐶, it is clear
that 𝛽 is an ordinal < 𝛼. Furthermore, as sup(𝐷) = sup(𝑐) = 𝛼 and 𝑐 = 𝐶 ∩ 𝛼, it
follows that 𝐷 ∖ 𝛽 = 𝑐 ∖ 𝛽. Finally, notice that 𝑐 ∩ 𝛽 = 𝐶 ∩ 𝛽 ∈ 𝒜𝛽 , and it is clear
that 𝑐 = (𝑐 ∩ 𝛽) ∪ (𝐷 ∖ 𝛽). �

Claim 4.39.2. �⃗� is a P−
𝜉 (𝜅, 𝜅,Ω⊑, . . . )-sequence satisfying 𝒞𝛼 ⊆ 𝒟𝛼 for every

𝛼 ∈ acc(𝜅), and 𝒟𝛼 = 𝒞𝛼 for every 𝛼 ∈ Ω ∩ acc(𝜅).

Proof. Consider any given 𝛼 ∈ acc(𝜅). It is clear that 𝒞𝛼 ⊆ 𝒟𝛼, so that, in
particular, 𝒟𝛼 ̸= ∅. Now, fix any given 𝑐 ∈ 𝒟𝛼. By definition of 𝒟𝛼, we can fix
some 𝐶 ∈ Σ such that 𝑐 = 𝐶 ∩ 𝛼 and sup(𝑐) = 𝛼. In particular, 𝑐 ∈ 𝒦(𝜅) and
𝛼𝑐 = 𝛼. Furthermore, otp(𝑐) ≤ otp(𝐶) ≤ 𝜉. If, in addition, 𝛼 ∈ Ω, then by Ω

𝜒⊑*-

coherence of 𝒞 we cannot have 𝛼 ∈ acc(𝐶), so the only way to have sup(𝐶 ∩𝛼) = 𝛼
is if in fact 𝛼 = sup(𝐶), meaning that 𝑐 = 𝐶 ∈ 𝒞𝛼.

Next, we verify Ω⊑-coherence: Consider arbitrary 𝛼 ∈ acc(𝜅), 𝑐 ∈ 𝒟𝛼, and
�̄� ∈ acc(𝑐). Pick 𝐶 ∈ Σ such that 𝑐 = 𝐶 ∩ 𝛼. Then �̄� ∈ acc(𝐶), so that by Ω

𝜒⊑*-

coherence of 𝒞 we obtain �̄� /∈ Ω. Clearly, 𝑐 ∩ �̄� = 𝐶 ∩ �̄� ∈ 𝒜�̄�. By �̄� ∈ acc(𝐶), we
moreover obtain 𝐶 ∩ �̄� ∈ 𝒟�̄�, and hence 𝑐 ∩ �̄� ∈ 𝒟�̄�.

It remains to show that |𝒟𝛼| < 𝜅 for every 𝛼 ∈ acc(𝜅). In fact, we shall prove,
by induction on 𝛼, the stronger result that |𝒜𝛼| < 𝜅 for every ordinal 𝛼 < 𝜅. Thus,
fix a given ordinal 𝛼 < 𝜅, and assume that |𝒜𝛾 | < 𝜅 for every ordinal 𝛾 < 𝛼; we
shall first show that |𝒢𝛼| < 𝜅, and then argue further that |𝒜𝛼| < 𝜅.

To see that |𝒢𝛼| < 𝜅, we consider several cases:

I If 𝛼 = 0, then 𝒢𝛼 = {∅} is a singleton.
I If 𝛼 is a successor ordinal, then 𝒢𝛼 is empty.

Thus we may assume that 𝛼 ∈ acc(𝜅).
I Suppose 𝛼 ∈ 𝐸𝜅<𝜒. Set 𝜂 := cf(𝛼), and fix an increasing sequence ⟨𝛾𝑖 |
𝑖 < 𝜂⟩ of ordinals converging to 𝛼. Define a function 𝜙 : 𝒢𝛼 →

∏︀
𝑖<𝜂 𝒜𝛾𝑖 by

setting 𝜙(𝑐) := ⟨𝑐 ∩ 𝛾𝑖 | 𝑖 < 𝜂⟩ for every 𝑐 ∈ 𝒢𝛼. For every 𝑖 < 𝜂, we have
|𝒜𝛾𝑖 | < 𝜅 by the induction hypothesis, since 𝛾𝑖 < 𝛼. Let 𝜆 := sup𝑖<𝜂 |𝒜𝛾𝑖 |.
We infer from the regularity of 𝜅 that 𝜆 < 𝜅, and then since 𝜂 < 𝜒, it follows
from (<𝜒)-closedness of 𝜅 that |Im(𝜙)| ≤ 𝜆𝜂 < 𝜅. As 𝑐 =

⋃︀
𝑖<𝜂(𝑐 ∩ 𝛾𝑖) for

every 𝑐 ∈ 𝒢𝛼, it is clear that 𝜙 is injective. Altogether, |𝒢𝛼| < 𝜅, as sought.
I Finally, suppose 𝛼 ∈ 𝐸𝜅≥𝜒. In this case, define a function

𝜙 : 𝒢𝛼 →
⋃︁
𝛽<𝛼

𝒜𝛽 × 𝛼× 𝒞𝛼

by setting 𝜙(𝑐) := (𝑐 ∩ 𝛽𝑐, 𝛽𝑐, 𝐷𝑐), where the representation 𝑐 = (𝑐 ∩ 𝛽𝑐) ∪
(𝐷𝑐∖𝛽𝑐) is given by Claim 4.39.1. As |𝒜𝛽 | < 𝜅 for every ordinal 𝛽 < 𝛼, and
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|𝒞𝛼| < 𝜅 by our choice of 𝒞, it follows from regularity of 𝜅 that |Im(𝜙)| < 𝜅.
Furthermore, it is clear that 𝜙 is injective. Altogether, |𝒢𝛼| < 𝜅, as sought.

In all cases we have shown that |𝒢𝛼| < 𝜅. Of course, 𝒢𝛽 ⊆ 𝒜𝛽 for every ordinal
𝛽 < 𝜅, so that our induction hypothesis implies that |𝒢𝛽 | < 𝜅 for every ordinal
𝛽 < 𝛼. We use these facts as we continue to show that |𝒜𝛼| < 𝜅.

Notice that every element 𝑐 ∈ 𝒜𝛼 can be written as 𝑐 = (𝑐 ∩ 𝛽𝑐) ∪ (𝑐 ∖ 𝛽𝑐),
where 𝛽𝑐 is some (possibly 0) limit ordinal ≤ 𝛼, 𝑐 ∩ 𝛽𝑐 ∈ 𝒢𝛽𝑐

, and 𝑐 ∖ 𝛽𝑐 is finite.
To see this, consider any given 𝑐 ∈ 𝒜𝛼. Define 𝛽𝑐 := min{𝛽 | |𝑐 ∖ 𝛽| < ℵ0}. As
𝑐 ⊆ 𝛼, it is clear that 𝛽𝑐 is an ordinal ≤ 𝛼. By minimality of 𝛽𝑐, it follows that
𝛽𝑐 is a limit ordinal (possibly 0) and sup(𝑐 ∩ 𝛽𝑐) = 𝛽𝑐. Fix 𝐶 ∈ Σ such that
𝑐 = 𝐶 ∩ 𝛼. Then 𝑐 ∩ 𝛽𝑐 = 𝐶 ∩ 𝛽𝑐, so that, in particular, 𝑐 ∩ 𝛽𝑐 ∈ 𝒢𝛽𝑐

. It is clear
that 𝑐 = (𝑐∩𝛽𝑐)∪ (𝑐 ∖𝛽𝑐), and by our definition of 𝛽𝑐 it is clear that 𝑐 ∖𝛽𝑐 is finite.

Thus, to show that |𝒜𝛼| < 𝜅, define a function

𝜋 : 𝒜𝛼 →
⋃︁{︀

𝒢𝛽 × [𝛼]<ℵ0
⃒⃒
𝛽 ∈ acc(𝛼+ 1) ∪ {0}

}︀
by setting 𝜋(𝑐) := (𝑐 ∩ 𝛽𝑐, 𝑐 ∖ 𝛽𝑐), where the representation 𝑐 = (𝑐 ∩ 𝛽𝑐) ∪ (𝑐 ∖ 𝛽𝑐)
is the one given above. Since |𝛼| < 𝜅 and 𝜅 is infinite, we infer that |[𝛼]<ℵ0 | < 𝜅.
Then, by regularity of 𝜅 and the fact that |𝒢𝛽 | < 𝜅 for every ordinal 𝛽 ≤ 𝛼, it
follows that |Im(𝜋)| < 𝜅. As 𝑐 = (𝑐∩ 𝛽𝑐)∪ (𝑐 ∖ 𝛽𝑐) for every 𝑐 ∈ 𝒜𝛼, it is clear that
𝜋 is injective. Altogether, |𝒜𝛼| < 𝜅, as sought. �

Claim 4.39.3. Suppose ⟨𝐵𝑖 | 𝑖 < 𝜃⟩ is a sequence of cofinal subsets of 𝜅, and
𝑆 ∈ 𝒮. Then there exist stationarily many 𝛼 ∈ 𝑆 such that:

(1) there exists 𝒞 ∈ [𝒟𝛼]<𝜈 such that, for all 𝐷 ∈ 𝒟𝛼, there is 𝐶 ∈ 𝒞 with
sup(𝐷△ 𝐶) < 𝛼;

(2) for all 𝐷 ∈ 𝒟𝛼 and 𝑖 < min{𝛼, 𝜃}, sup{𝛾 ∈ 𝐷 | succ𝜎(𝐷 ∖ 𝛾) ⊆ 𝐵𝑖} = 𝛼.

Proof. Let 𝑆* denote the set of all 𝛼 ∈ 𝑆 ∩ acc(𝜅) such that |𝒞𝛼| < 𝜈 and, for all
𝐶 ∈ 𝒞𝛼 and 𝑖 < min{𝛼, 𝜃}, sup{𝛾 ∈ 𝐶 | succ𝜎(𝐶 ∖ 𝛾) ⊆ 𝐵𝑖} = 𝛼. By the choice

of 𝒞, 𝑆* is a stationary subset of 𝐸𝜅≥𝜒. Consider any given 𝛼 ∈ 𝑆*. Then, by

Claims 4.39.2 and 4.39.1, 𝒞 := 𝒞𝛼 witnesses Clause (1). Now, given 𝐷 ∈ 𝒟𝛼 and
𝑖 < min{𝛼, 𝜃}, we first pick 𝐶 ∈ 𝒞𝛼 such that sup(𝐷 △ 𝐶) < 𝛼. As 𝛼 ∈ 𝑆*, we
know that sup{𝛾 ∈ 𝐶 | succ𝜎(𝐶 ∖ 𝛾) ⊆ 𝐵𝑖} = 𝛼. As sup(𝐷△ 𝐶) < 𝛼, it is also the
case that sup{𝛾 ∈ 𝐷 | succ𝜎(𝐷 ∖ 𝛾) ⊆ 𝐵𝑖} = 𝛼. �

Thus, �⃗� witnesses P−
𝜉 (𝜅, 𝜅,Ω⊑, 𝜃,𝒮, 𝜈*, 𝜎). �

Corollary 4.40. P−
𝜉 (𝜅, 𝜅,Ω⊑*, 𝜃, {Ω}, 𝜅, 𝜎) is equivalent to P−

𝜉 (𝜅, 𝜅,Ω⊑, 𝜃, {Ω}, 2, 𝜎).

Proof. Apply Theorem 4.39 followed by Proposition 4.31(3). �

4.6. Indexed ladders. In this subsection, we consider indexed P−
𝜉 (𝜅, 𝜇+,⊑, . . . )-

sequences for infinite cardinals 𝜇 < 𝜅. Our proof of Theorem A will go through the
following concept.

Definition 4.41 ([Lam17b, Definition 6.3]). �ind(𝜅, 𝜇) asserts the existence of a
matrix ⟨𝐶𝛼,𝑖 | 𝛼 < 𝜅, 𝑖(𝛼) ≤ 𝑖 < 𝜇⟩ such that for all 𝛼 ∈ acc(𝜅):

∙ 𝑖(𝛼) < 𝜇, and, for all 𝑖 ∈ [𝑖(𝛼), 𝜇), 𝐶𝛼,𝑖 is a club in 𝛼;
∙ for all 𝑖 ∈ [𝑖(𝛼), 𝜇) and �̄� ∈ acc(𝐶𝛼,𝑖), 𝑖 ≥ 𝑖(�̄�) and 𝐶�̄�,𝑖 ⊑ 𝐶𝛼,𝑖;
∙ ⟨𝐶𝛼,𝑖 | 𝑖(𝛼) ≤ 𝑖 < 𝜇⟩ is ⊆-increasing with acc(𝛼) =

⋃︀
𝑖∈[𝑖(𝛼),𝜇) acc(𝐶𝛼,𝑖),

and such that, for every club 𝐷 in 𝜅, there exists 𝛼 ∈ acc(𝐷) such that 𝐷∩𝛼 ̸= 𝐶𝛼,𝑖
for all 𝑖 ∈ [𝑖(𝛼), 𝜇).

Motivated by the preceding definition, we introduce the following strengthening
of P−

𝜉 (𝜅, 𝜇+,⊑, . . .) (compare with Definition 4.2).
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Definition 4.42. We say that ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ is a P−
𝜉 (𝜅, 𝜇ind,⊑, . . .)-sequence iff there

exists a sequence ⟨𝑖(𝛼) | 𝛼 < 𝜅⟩ of ordinals in 𝜇, such that, for every 𝛼 ∈ acc(𝜅),
all of the following hold:

∙ 𝒞𝛼 ⊆ {𝐶 ∈ 𝒦(𝜅) | otp(𝐶) ≤ 𝜉 & 𝛼𝐶 = 𝛼};
∙ there exists a canonical enumeration ⟨𝐶𝛼,𝑖 | 𝑖(𝛼) ≤ 𝑖 < 𝜇⟩ of 𝒞𝛼 (possibly

with repetition);
∙ for all 𝑖 ∈ [𝑖(𝛼), 𝜇) and �̄� ∈ acc(𝐶𝛼,𝑖), 𝑖 ≥ 𝑖(�̄�) and 𝐶�̄�,𝑖 ⊑ 𝐶𝛼,𝑖;
∙ ⟨acc(𝐶𝛼,𝑖) | 𝑖(𝛼) ≤ 𝑖 < 𝜇⟩ is ⊆-increasing with acc(𝛼) =

⋃︀
𝑖∈[𝑖(𝛼),𝜇) acc(𝐶𝛼,𝑖).

We will need an adaptation of our wide-club-guessing lemma [BR19a, Lemma 2.5]
to the context of indexed sequences.

Lemma 4.43. Suppose that ℵ1 ≤ 𝜇+ < 𝜅, and ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ is a P−
𝜉 (𝜅, 𝜇ind,⊑, . . .)-

sequence satisfying that, for every club 𝐷 ⊆ 𝜅, there exists 𝛼 ∈ acc(𝐷) with 𝐷∩𝛼 /∈
𝒞𝛼. Suppose 𝑆 ⊆ 𝜅 is stationary.

Then there is a P−
𝜉 (𝜅, 𝜇ind,⊑, . . .)-sequence ⟨𝒞∙

𝛼 | 𝛼 < 𝜅⟩ with the additional
property that for every club 𝐸 ⊆ 𝜅, there exist stationarily many 𝛼 ∈ 𝑆 such that,
for all 𝐶 ∈ 𝒞∙

𝛼, sup(nacc(𝐶) ∩ 𝐸) = 𝛼.

Proof. Fix a sequence ⟨𝑖(𝛼) | 𝛼 < 𝜅⟩ of ordinals in 𝜇 as in Definition 4.42. For
every club 𝐷 ⊆ 𝜅, we define a map Φ𝐷 : 𝒦(𝜅) → 𝒦(𝜅) via

Φ𝐷(𝑥) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥 ∖ sup(𝐷 ∩ sup(𝑥)),

if sup(𝐷 ∩ sup(𝑥)) < sup(𝑥);

{sup(𝐷 ∩ 𝜂) | 𝜂 ∈ 𝑥 & 𝜂 > min(𝐷)},

if sup(𝐷 ∩ sup(𝑥)) = sup(𝑥).

By [BR19a, Lemma 2.2], Φ𝐷 is a postprocessing function. Furthermore, by [BR19a,
Claim 2.5.1], we may fix a club 𝐷 ⊆ 𝜅 such that, for every club 𝐸 ⊆ 𝜅, there exists
𝛼 ∈ 𝑆 with sup(nacc(Φ𝐷(𝐶)) ∩ 𝐸) = 𝛼 for all 𝐶 ∈ 𝒞𝛼. Let 𝜋 : 𝜅 ↔ 𝐷 denote the
order-preserving bijection. Now, for every 𝛼 ∈ acc(𝜅), let 𝑗(𝛼) := 𝑖(𝜋(𝛼)) and set

𝐶∙
𝛼,𝑖 := 𝜋−1[Φ𝐷(𝐶𝜋(𝛼),𝑖)]

for every 𝑖 ∈ [𝑗(𝛼), 𝜇). Put 𝒞∙
𝛼 := {𝐶∙

𝛼,𝑖 | 𝑗(𝛼) ≤ 𝑖 < 𝜇}.

Claim 4.43.1. Let 𝛼 ∈ acc(𝜅) and 𝑖 ∈ [𝑗(𝛼), 𝜇). Then:

(1) 𝐶∙
𝛼,𝑖 is a club in 𝛼 of order-type ≤ 𝜉;

(2) for all �̄� ∈ acc(𝐶∙
𝛼,𝑖), 𝑖 ≥ 𝑗(�̄�) and 𝐶∙

�̄�,𝑖 ⊑ 𝐶∙
𝛼,𝑖.

Proof. (1) As 𝛼 ∈ acc(𝜅), 𝜋(𝛼) ∈ acc(𝐷), and hence the definition of Φ𝐷 im-
plies that Φ𝐷(𝐶𝜋(𝛼),𝑖) is a club in 𝜋(𝛼) which is a subset of 𝐷. So 𝐶∙

𝛼,𝑖 =

𝜋−1[Φ𝐷(𝐶𝜋(𝛼),𝑖)] is a club in 𝛼 of order-type otp(𝐶𝜋(𝛼),𝑖) ≤ 𝜉.

(2) Suppose �̄� ∈ acc(𝐶∙
𝛼,𝑖). Then �̄� ∈ acc(𝜋−1[Φ𝐷(𝐶𝜋(𝛼),𝑖)]), so that 𝜋(�̄�) ∈

acc(Φ𝐷(𝐶𝜋(𝛼),𝑖)) = acc(𝐶𝜋(𝛼),𝑖) ∩ acc(𝐷). In particular, 𝑖 ≥ 𝑖(𝜋(�̄�)) = 𝑗(�̄�) and
𝐶𝜋(�̄�),𝑖 ⊑ 𝐶𝜋(𝛼),𝑖. As Φ𝐷 is a postprocessing function, Φ𝐷(𝐶𝜋(�̄�),𝑖) ⊑ Φ𝐷(𝐶𝜋(𝛼),𝑖),
and hence 𝐶∙

�̄�,𝑖 ⊑ 𝐶∙
𝛼,𝑖. �

Claim 4.43.2. Let 𝛼 ∈ acc(𝜅). Then ⟨acc(𝐶∙
𝛼,𝑖) | 𝑗(𝛼) ≤ 𝑖 < 𝜇⟩ is ⊆-increasing

with acc(𝛼) =
⋃︀
𝑖∈[𝑗(𝛼),𝜇) acc(𝐶∙

𝛼,𝑖).

Proof. It is clear that for any two clubs 𝐶,𝐶 ′ in 𝜋(𝛼), 𝐶 ⊆ 𝐶 ′ =⇒ Φ𝐷(𝐶) ⊆
Φ𝐷(𝐶 ′). Consequently, ⟨acc(𝐶∙

𝛼,𝑖) | 𝑗(𝛼) ≤ 𝑖 < 𝜇⟩ is ⊆-increasing. Finally, for any
�̄� ∈ acc(𝛼), as 𝜋(�̄�) ∈ acc(𝜋(𝛼)), we may find a large enough 𝑖 ≥ 𝑖(𝜋(𝛼)) = 𝑗(𝛼)
such that 𝜋(�̄�) ∈ acc(𝐶𝜋(𝛼),𝑖). As 𝜋(�̄�) ∈ acc(𝐷), altogether, 𝜋(�̄�) ∈ acc(𝐶𝜋(𝛼),𝑖) ∩
acc(𝐷) = acc(Φ𝐷(𝐶𝜋(𝛼),𝑖)), where the last equality is due to the definition of Φ𝐷
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and fact that 𝜋(𝛼) ∈ acc(𝐷). Finally, as Φ𝐷(𝐶𝜋(𝛼),𝑖) ⊆ Im(𝜋), it follows that �̄� is

an accumulation point of 𝜋−1[Φ𝐷(𝐶𝜋(𝛼),𝑖)] = 𝐶∙
𝛼,𝑖. �

Claim 4.43.3. Let 𝐸 ⊆ 𝜅 be a club. Then there exist stationarily many 𝛼 ∈ 𝑆
such that, for all 𝐶 ∈ 𝒞∙

𝛼, sup(nacc(𝐶) ∩ 𝐸) = 𝛼.

Proof. Let 𝐵 be an arbitrary club. We need to find 𝛼 ∈ 𝐵 ∩ 𝑆 such that, for all
𝐶 ∈ 𝒞∙

𝛼, sup(nacc(𝐶) ∩ 𝐸) = 𝛼.
As 𝐸∙ := {𝛽 ∈ 𝐵 ∩ 𝐸 | 𝜋(𝛽) = 𝛽} is a club, by the choice of 𝐷, we may now fix

𝛼 ∈ 𝑆 with sup(nacc(Φ𝐷(𝐶))∩𝐸∙) = 𝛼 for all 𝐶 ∈ 𝒞𝛼. In particular, 𝛼 ∈ acc(𝐸∙),
so that 𝛼 ∈ 𝐵 ∩ 𝑆 and 𝜋(𝛼) = 𝛼. Consequently, 𝒞∙

𝛼 = {𝜋−1[Φ𝐷(𝐶)] | 𝐶 ∈ 𝒞𝛼}.
Let 𝐶 ∈ 𝒞𝛼 be arbitrary. Put 𝑐 := nacc(Φ𝐷(𝐶)) ∩ 𝐸∙. Then 𝑐 is a subset of
nacc(Φ𝐷(𝐶))∩𝐷∩𝐸, consisting of fixed-points of 𝜋. As sup(𝑐) = 𝛼, it follows that
𝜋−1[𝑐] = 𝑐 is a cofinal subset of nacc(𝜋−1[Φ𝐷(𝐶)]). So, 𝑐 ⊆ nacc(𝜋−1[Φ𝐷(𝐶)]) ∩ 𝐸
and hence the latter is cofinal in 𝛼, as sought. �

This completes the proof. �

If 𝒞 = ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ is a P−(𝜅, 𝜇ind,⊑, . . . )-sequence such that 𝑆 := {𝛼 <
𝜅 | |𝒞𝛼| < ℵ0} is stationary, then we may find some 𝑖 < 𝜇 for which 𝐴 :=
{𝛼 ∈ 𝑆 ∩ acc(𝜅) | 𝐶𝛼,𝑖 = max(𝒞𝛼,⊆)} is stationary. For every 𝛼 ∈ 𝐴, 𝐴 ∩
𝛼 ⊆ acc(𝛼) ⊆ acc(𝐶𝛼,𝑖), and hence ⟨𝐶𝛼,𝑖 | 𝛼 ∈ 𝐴⟩ is an ⊑-chain converging to

some club 𝐷 that forms a thread through 𝒞 (cf. Remark 2.17(3)). In particular,
P−(𝜅, 𝜇ind,⊑, 1, {𝜅}, 𝜈) is inconsistent for 𝜈 ≤ ℵ0. By contrast, we have the follow-
ing indexed variant of [Rin19, Theorem 3.5]:22

Theorem 4.44. Suppose �ind(𝜅, 𝜇) holds for an infinite cardinal 𝜇 < 𝜅.
If 𝜅 = 𝜆+ = 2𝜆, then for any regular cardinal 𝜒 ≥ 𝜇 such that 𝜆𝜒 = 𝜆,

P−(𝜅, 𝜇ind,⊑, 1, {𝐸𝜅𝜒}, 𝜇+) holds.

Proof. Suppose 𝜅 = 𝜆+ and 𝜒 ≥ 𝜇 is a regular cardinal such that 𝜆𝜒 = 𝜆. In
particular, 𝜒 < 𝜆, so that 𝜇+ ≤ 𝜒+ < 𝜅. Now, as �ind(𝜅, 𝜇) holds, the hy-
potheses of Lemma 4.43 are satisfied with 𝑆 := 𝐸𝜅𝜒. Consequently, we may fix

a P−(𝜅, 𝜇ind,⊑, . . .)-sequence 𝒞 = ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ with the additional property
that, for every club 𝐷 ⊆ 𝜅, there exist stationarily many 𝛼 ∈ 𝐸𝜅𝜒 such that
sup(nacc(𝐶) ∩𝐷) = 𝛼 for all 𝐶 ∈ 𝒞𝛼.

Since 𝜆𝜒 = 𝜆, the Engelking–Kar lowicz Theorem provides a sequence ⟨𝑓𝑗 | 𝑗 < 𝜆⟩
of functions from 𝜆+ to 𝜆 with the property that, for every 𝑧 ∈ [𝜆+]𝜒 and every
function 𝑓 : 𝑧 → 𝜆, there exists 𝑗 < 𝜆 with 𝑓 ⊆ 𝑓𝑗 . Consequently, we may fix a
sequence ⟨𝑓𝑗 | 𝑗 < 𝜆⟩ of functions from 𝜆+ to 𝜆+ with the property that, for every
𝑧 ∈ [𝜆+]𝜒 and every regressive function 𝑓 : 𝑧 → 𝜆+, there exists 𝑗 < 𝜆 with 𝑓 ⊆ 𝑓𝑗 .

Suppose that 2𝜆 = 𝜆+ and fix a bijection 𝜋 : 𝜆+ ↔ 𝜆𝜆+. For every 𝑗 < 𝜆, define
a triangular array x𝑗 = ⟨𝑥𝑗𝛾,𝛽 | 𝛾 < 𝛽 < 𝜅⟩ via:

𝑥𝑗𝛾,𝛽 :=

{︃
{𝜋(𝑓𝑗(𝛽))(𝑗), 𝛽} ∩ (𝛾, 𝛽], if 𝛽 ∈ acc(𝜅);

{𝛽}, otherwise.

and then consider the corresponding acc-preserving postprocessing function Φx𝑗

given by Lemma 4.9. Denote 𝒞𝑗𝛼 := {Φx𝑗 (𝐶) | 𝐶 ∈ 𝒞𝛼}, so that, for every 𝑗 < 𝜆,

𝒞𝑗 := ⟨𝒞𝑗𝛼 | 𝛼 < 𝜅⟩ is yet again a P−(𝜅, 𝜇ind,⊑, . . .)-sequence.

Claim 4.44.1. There is 𝑗 < 𝜆 such that 𝒞𝑗 witnesses P−(𝜅, 𝜇ind,⊑, 1, {𝐸𝜅𝜒}, 𝜇+, 1).

22The proofs are different, since here there is no guarantee that ♢*(𝐸𝜆+

<𝜆) holds.
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Proof. Suppose not. Then, for every 𝑗 < 𝜆, there exists a cofinal subset 𝐵𝑗 ⊆ 𝜅
such that, for all 𝛼 ∈ 𝐸𝜅𝜒, there exists 𝐶 ∈ 𝒞𝑗𝛼 for which sup(nacc(𝐶) ∩ 𝐵𝑗) < 𝛼.
Now, let 𝑔 : 𝜅→ 𝜅 denote the unique function satisfying, for every 𝛾 < 𝜅:

𝑔(𝛾) = 𝛿 ⇐⇒
⋀︁
𝑗<𝜆

(︀
𝜋(𝛿)(𝑗) = min(𝐵𝑗 ∖ (𝛾 + 1))

)︀
.

Fix a club 𝐸 ⊆ acc(𝜅) such that, for all 𝛽 ∈ 𝐸 and 𝛾 < 𝛽,

sup{𝑔(𝛾),min(𝐵𝑗 ∖ (𝛾 + 1)) | 𝑗 < 𝜆} < 𝛽.

By the choice of 𝒞, let us now fix 𝛼 ∈ 𝐸𝜅𝜒 such that sup(nacc(𝐶) ∩ 𝐸) = 𝛼 for
all 𝐶 ∈ 𝒞𝛼. As |𝒞𝛼| ≤ 𝜒 = cf(𝛼), we may find a sequence ⟨𝑧𝐶 | 𝐶 ∈ 𝒞𝛼⟩ of pairwise
disjoint sets such that, for all 𝐶 ∈ 𝒞𝛼, 𝑧𝐶 is a cofinal subset of nacc(𝐶)∩𝐸∖{min(𝐶)}
with order-type 𝜒. Now, let 𝑧 :=

⨄︀
𝐶∈𝒞𝛼

𝑧𝐶 . Define a function 𝑓 : 𝑧 → 𝜆+ as follows.

For all 𝛽 ∈ 𝑧, find the unique 𝐶 ∈ 𝒞𝛼 such that 𝛽 ∈ 𝑧𝐶 and then let 𝑓(𝛽) := 𝑔(𝛾),
for 𝛾 := sup(𝐶 ∩ 𝛽). Note that as 𝛽 ∈ 𝑧 ⊆ nacc(𝐶) ∩ 𝐸 ∖ {min(𝐶)}, 𝛾 < 𝛽 and
hence also 𝑓(𝛽) < 𝛽. That is, 𝑓 is regressive.

Pick 𝑗 < 𝜆 such that 𝑓 ⊆ 𝑓𝑗 . By the choice of 𝐵𝑗 , let us now pick 𝐶* ∈ 𝒞𝑗𝛼
such that 𝜖 := sup(nacc(𝐶*) ∩ 𝐵𝑗) is smaller than 𝛼. Find 𝐶 ∈ 𝒞𝛼 such that
𝐶* = Φx𝑗 (𝐶). Pick a large enough 𝛽 ∈ 𝑧𝐶 for which 𝛾 := sup(𝐶 ∩ 𝛽) is greater
than 𝜖. Let 𝜂 := 𝜋(𝑓𝑗(𝛽))(𝑗). As 𝛾 ∈ 𝛽 ∈ 𝐸, we infer that

𝜂 = 𝜋(𝑓𝑗(𝛽))(𝑗) = 𝜋(𝑔(𝛾))(𝑗) = min(𝐵𝑗 ∖ (𝛾 + 1)) < 𝛽,

and hence 𝑥𝑗𝛾,𝛽 = {𝜂, 𝛽}. Recalling the definition of Φx𝑗 from Lemma 4.9, we see

that 𝜂 ∈ nacc(𝐶*), contradicting the fact that 𝜂 ∈ 𝐵𝑗 ∖ (𝜖+ 1). �

As 2𝜆 = 𝜆+ and 𝜆ℵ0 = 𝜆, [Gre76, Lemma 2.1] entails ♢(𝜆+). So, by Fact 3.6,
♣(𝜅) holds. Then, by the proof of Theorem 4.16(1), P−(𝜅, 𝜇ind,⊑, 1, {𝐸𝜅𝜒}, 𝜇+)
holds, as well. �

Fact 4.45 ([LL18, Theorem 3.4]). If �(𝜅) holds, then so does �ind(𝜅, 𝜇) for every
𝜇 ∈ Reg(𝜅).

Corollary 4.46. Suppose that 𝜅 = 𝜆+ = 2𝜆 and �(𝜅) holds. For every pair 𝜇 ≤ 𝜒
of infinite regular cardinals with 𝜆𝜒 = 𝜆, P−(𝜅, 𝜇ind,⊑, 1, {𝐸𝜅𝜒}, 𝜇+) holds. �

5. Departing from ♢

As seen in Section 2, instances of P−(𝜅, . . .) together with ♢(𝜅) suffice for the
construction of a 𝜅-Souslin tree. For this, in [BR17a, Definition 1.6], we defined the
principle P(𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈, 𝜎) to assert both P−(𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈, 𝜎) and ♢(𝜅), and
then, in that paper as well as other papers in this project, we presented a gallery of
constructions of 𝜅-Souslin trees having various additional features as applications
of the principle P(𝜅, . . .).

The goal of this section is to present a principle P∙(𝜅, . . .) which is strong enough
to still allow all of the said constructions, and weak enough to not rely on ♢. Note,
however, that assuming 𝜅<𝜅 = 𝜅, P−(𝜅,∞,⊑*

𝜒, 1, {𝜅}, 𝜅, 𝜎) with 𝜎 ≥ 𝜔 implies
♢(𝜅) (see Proposition 5.17 below); hence, here one should really only focus on the
case 𝜎 = <𝜔.23 For this, we shall adopt Convention 4.18 at the outset, and will
always omit the mention of 𝜎. We shall establish the following, which is the special
case ℛ := ⊑ of Corollary 5.14:

Corollary 5.1. For 𝜃 > 0, P∙
𝜉(𝜅, 𝜇,⊑, 𝜃,𝒮, 𝜈) is equivalent to P−

𝜉 (𝜅, 𝜇,⊑, 𝜃,𝒮, 𝜈)∧
(𝜅<𝜅 = 𝜅). �

23For constructions of 𝜅-Souslin trees that rely on instances with 𝜎 = 𝜔, see [BR17b].



MICROSCOPIC APPROACH, PART II 37

Definition 5.2. Let ℱ(𝜅) :=
⋃︀
𝑥∈𝒦(𝜅)

𝑥𝐻𝜅 denote the collection of all functions

from an element of 𝒦(𝜅) to 𝐻𝜅.

For each 𝐶 ∈ ℱ(𝜅), denote 𝐶 := dom(𝐶) and 𝛼𝐶 := sup(𝐶).

Example 5.3. For any 𝐶 ∈ ℱ(𝜅), 𝐶 is an element of 𝒦(𝜅). Going in the other
direction, for every sequence ⟨𝐴𝛽 | 𝛽 < 𝜅⟩ of elements of 𝐻𝜅, for any 𝑥 ∈ 𝒦(𝜅),
𝐶𝑥 := ⟨𝐴𝛽 | 𝛽 ∈ 𝑥⟩ is an element of ℱ(𝜅).

For a binary relation ℛ over ℱ(𝜅), and a nonempty collection 𝒮 of stationary
subsets of 𝜅, we shall define a principle P∙

𝜉(𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈) in two stages. In the
first stage, we focus on the first four parameters.

Definition 5.4. We say that ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ is a P∙
𝜉(𝜅, 𝜇,ℛ, . . .)-sequence iff, for

every 𝛼 ∈ acc(𝜅), all of the following hold:

∙ 𝒞𝛼 ⊆ {𝐶 ∈ ℱ(𝜅) | otp(𝐶) ≤ 𝜉 & 𝛼𝐶 = 𝛼};
∙ 0 < |𝒞𝛼| < 𝜇;

∙ for all 𝐶 ∈ 𝒞𝛼 and �̄� ∈ acc(𝐶), there exists 𝐷 ∈ 𝒞�̄� with 𝐷 ℛ 𝐶.

Convention 5.5. We shall always assume that 𝒞0 := {∅} and 𝒞𝛼+1 := {{(𝛼, ∅)}}
for all 𝛼 < 𝜅. Likewise, whenever we construct a P∙

𝜉(𝜅, 𝜇,ℛ, . . .)-sequence ⟨𝒟𝛼 |
𝛼 < 𝜅⟩, we shall never bother to define 𝒟0 and 𝒟𝛼+1 for 𝛼 < 𝜅. We also adopt
Conventions 4.3, 4.6, and 4.13.

Example 5.6. The binary relations over ℱ(𝜅) that fit as the parameter ℛ should be
understood as coherence relations. The basic example is the end-extension relation,
⊑, where, for 𝐶,𝐷 ∈ ℱ(𝜅), we define 𝐶 ⊑ 𝐷 iff 𝐶 = 𝐷 � 𝛼𝐶 . More nuanced binary
relations over ℱ(𝜅) are obtained by modifying the ⊑ relation as follows:

∙ We define 𝐶 ⊑* 𝐷 iff there exists 𝛾 < 𝛼𝐶 such that 𝐶 � (𝐶 ∖ 𝛾) ⊑ 𝐷 � (𝐷 ∖ 𝛾);
∙ For ℛ ∈ {⊑,⊑*}, we define 𝐶 𝜒ℛ 𝐷 iff ((𝐶 ℛ 𝐷) or (cf(𝛼𝐶) < 𝜒));

∙ For ℛ ∈ {⊑,⊑*}, we define 𝐶 ℛ𝜒 𝐷 iff ((𝐶 ℛ 𝐷) or (otp(𝐷) < 𝜒 and

nacc(𝐷) consists only of successor ordinals));
∙ For any binary relation ℛ over ℱ(𝜅) and any class Ω ⊆ ORD, we define
𝐶 Ωℛ 𝐷 iff ((𝐶 ℛ 𝐷) and (𝛼𝐶 /∈ Ω)).

The principle P−(𝜅, . . .) of the previous section (Definition 4.10) dealt with hit-
ting of arbitrary cofinal subsets of 𝜅. The new principle P∙(𝜅, . . .) focuses on hitting
sets of the sort arising by Proposition 2.12 and by the following strengthening of
Fact 2.13.

Fact 5.7 ([BR17a, Lemma 2.2]). ♢(𝜅) is equivalent to the existence of a sequence
⟨𝐴𝛽 | 𝛽 < 𝜅⟩ of elements of 𝐻𝜅 and a partition ⟨𝐵𝜄 | 𝜄 < 𝜅⟩ of 𝜅, such that, for
every subset Ω ⊆ 𝐻𝜅, every parameter 𝑝 ∈ 𝐻𝜅+ , and every 𝜄 < 𝜅, the following set
is cofinal in 𝜅:

𝐵𝜄(Ω, 𝑝) := {𝛽 ∈ 𝐵𝜄 | ∃ℳ ≺ 𝐻𝜅+(ℳ∩ Ω = 𝐴𝛽 & 𝑝 ∈ ℳ & ℳ∩ 𝜅 = 𝛽)}.

As the reader by now probably expects, the cofinal sets considered by P∙(𝜅, . . .)
take the following form.

Definition 5.8. Given 𝐵 ⊆ 𝜅, Ω ⊆ 𝐻𝜅, 𝑝 ∈ 𝐻𝜅+ and 𝐶 ∈ ℱ(𝜅), we let 𝐵(Ω, 𝑝, 𝐶)

denote the set of all 𝛽 ∈ 𝐵 ∩ 𝐶 such that there exists an elementary submodel
ℳ ≺ 𝐻𝜅+ satisfying:

∙ 𝑝 ∈ ℳ;
∙ ℳ∩ 𝜅 = 𝛽;
∙ ℳ∩ Ω = 𝐶(𝛽).

We now arrive at the second stage of the definition of this principle.
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Definition 5.9. P∙
𝜉(𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈) asserts the existence of a P∙

𝜉(𝜅, 𝜇,ℛ, . . .)-sequence
⟨𝒞𝛼 | 𝛼 < 𝜅⟩ and a partition ⟨𝐵𝜄 | 𝜄 < 𝜅⟩ of 𝜅, satisfying the following.

For every sequence ⟨(Ω𝑖, 𝑝𝑖, 𝜄𝑖) | 𝑖 < 𝜃⟩ of elements of 𝒫(𝐻𝜅) × 𝐻𝜅+ × 𝜅, every
𝑆 ∈ 𝒮, and every 𝑛 < 𝜔, there exist stationarily many 𝛼 ∈ 𝑆 such that:

(1) |𝒞𝛼| < 𝜈; and
(2) for all 𝐶 ∈ 𝒞𝛼 and 𝑖 < min{𝛼, 𝜃},

(⋆⋆) sup{𝛾 ∈ 𝐶 | succ𝑛(𝐶 ∖ 𝛾) ⊆ 𝐵𝜄𝑖(Ω𝑖, 𝑝𝑖, 𝐶)} = 𝛼.

Before we prove the main result of this section, let us point out that P∙(𝜅, . . .)
is indeed a consequence of P(𝜅, . . .).

Proposition 5.10. Suppose that P−
𝜉 (𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈) + ♢(𝜅) holds, with ℛ from

Example 5.6. Then so does P∙
𝜉(𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈).

Proof. Recalling Convention 4.18, fix a sequence ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ witnessing P−
𝜉 (𝜅, 𝜇,ℛ,

𝜃,𝒮, 𝜈,<𝜔). As ♢(𝜅) holds, let ⟨𝐴𝛽 | 𝛽 < 𝜅⟩ and ⟨𝐵𝜄 | 𝜄 < 𝜅⟩ be given by Fact 5.7.
For every 𝑥 ∈ 𝒦(𝜅), let 𝐷𝑥 := ⟨𝐴𝛽 | 𝛽 ∈ 𝑥⟩. Then, for every 𝛼 ∈ acc(𝜅), let

𝒟𝛼 := {𝐷𝑥 | 𝑥 ∈ 𝒞𝛼}. Evidently, ⟨𝒟𝛼 | 𝛼 < 𝜅⟩ and ⟨𝐵𝜄 | 𝜄 < 𝜅⟩ together witness
P∙
𝜉(𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈). �

Proposition 5.11. If P∙
𝜉(𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈) holds with 𝜃 > 0, then 𝜅<𝜅 = 𝜅.

Proof. Let 𝒞 = ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ be a sequence that, together with some partition ⟨𝐵𝜄 |
𝜄 < 𝜅⟩ of 𝜅, witnesses P∙

𝜉(𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈) with 𝜃 > 0.

Claim 5.11.1. 𝐻𝜅 =
⋃︀
𝛼∈acc(𝜅)

⋃︀
𝐶∈𝒞𝛼

Im(𝐶).

Proof. We focus on the nontrivial inclusion. Let 𝐴 ∈ 𝐻𝜅. Set Ω0 := 𝑝0 := 𝐴,

𝜄0 := 0, and 𝑛 := 1. Then by the hypothesis on the sequence 𝒞, we can choose
some 𝛼 ∈ acc(𝜅) such that for all 𝐶 ∈ 𝒞𝛼, Equation (⋆⋆) holds with 𝑖 := 0. Choose

some 𝐶 ∈ 𝒞𝛼 and some 𝛽 ∈ nacc(𝐶)∩𝐵0(𝐴,𝐴,𝐶). Then we can fix an elementary
submodel ℳ ≺ 𝐻𝜅+ such that 𝐴 ∈ ℳ, ℳ ∩ 𝜅 = 𝛽, and ℳ ∩ 𝐴 = 𝐶(𝛽). But
|𝐴| < 𝜅 and |𝐴| ∈ ℳ by elementarity, so that |𝐴| ∈ ℳ ∩ 𝜅 = 𝛽, and we infer that
𝐴 ⊆ ℳ. Thus, 𝐴 = 𝐴 ∩ℳ = 𝐶(𝛽) ∈ Im(𝐶). �

In particular, |𝐻𝜅| = 𝜅. �

Lemma 5.12. Suppose ℛ is taken from Example 5.6. Then P∙
𝜉(𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈)

implies P−
𝜉 (𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈).

Proof. For every 𝐶 ∈ ℱ(𝜅), let 𝑥𝐶 := Im(𝑔𝐶), where the function 𝑔𝐶 : 𝐶 → 𝛼𝐶 is
defined by setting

𝑔𝐶(𝛽) :=

{︃
min

(︁(︀
𝐶(𝛽) ∪ {𝛽}

)︀
∩
(︀
sup(𝐶 ∩ 𝛽), 𝛽

]︀)︁
, if 𝛽 ∈ nacc(𝐶) ∩ acc(𝜅);

𝛽, if 𝛽 ∈ acc(𝐶) ∪ nacc(𝜅).

Claim 5.12.1. For all 𝐶,𝐶 ′ ∈ ℱ(𝜅):

(1) 𝑥𝐶 is a club in 𝛼𝐶 with acc(𝑥𝐶) = acc(𝐶).
(2) If 𝐶 ℛ 𝐶 ′ then 𝑥𝐶 ℛ 𝑥𝐶′ .

Proof. Left to the reader (cf. Lemma 4.9). �

Fix a sequence 𝒞 = ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ and a partition �⃗� = ⟨𝐵𝜄 | 𝜄 < 𝜅⟩ of 𝜅 together
witnessing P∙

𝜉(𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈). Then, for every 𝛼 ∈ acc(𝜅), let 𝒟𝛼 := {𝑥𝐶 | 𝐶 ∈ 𝒞𝛼}.

It follows from Claim 5.12.1 that �⃗� := ⟨𝒟𝛼 | 𝛼 < 𝜅⟩ is a P−
𝜉 (𝜅, 𝜇,ℛ, . . . )-sequence.

To show that �⃗� witnesses P−
𝜉 (𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈), we shall now verify that it satisfies

the hitting feature of Definition 4.10, recalling Convention 4.18.



MICROSCOPIC APPROACH, PART II 39

Claim 5.12.2. Suppose 𝑆 ∈ 𝒮, ⟨𝐴𝑖 | 𝑖 < 𝜃⟩ is a sequence of cofinal subsets of 𝜅,
and 𝑛 < 𝜔. Then there exist stationarily many 𝛼 ∈ 𝑆 such that |𝒟𝛼| < 𝜈 and, for
all 𝑥 ∈ 𝒟𝛼 and all 𝑖 < min{𝛼, 𝜃}, sup{𝛿 ∈ 𝑥 | succ𝑛(𝑥 ∖ 𝛿) ⊆ 𝐴𝑖} = 𝛼.

Proof. For every 𝑖 < 𝜃, let Ω𝑖 := 𝑝𝑖 := 𝐴𝑖 and 𝜄𝑖 := 0. By the choice of 𝒞 and

�⃗�, there are stationarily many 𝛼 ∈ 𝑆 ∩ acc(𝜅) such that |𝒞𝛼| < 𝜈 and, for all

𝐶 ∈ 𝒞𝛼 and all 𝑖 < min{𝛼, 𝜃}, sup{𝛾 ∈ 𝐶 | succ𝑛+1(𝐶 ∖ 𝛾) ⊆ 𝐵0(𝐴𝑖, 𝐴𝑖, 𝐶)} = 𝛼.
Consider any such 𝛼. Clearly, |𝒟𝛼| ≤ |𝒞𝛼| < 𝜈. Now, consider any given 𝑥 ∈ 𝒟𝛼,
𝑖 < min{𝛼, 𝜃}, and 𝜀 < 𝛼. By definition of 𝒟𝛼, we can fix some 𝐶 ∈ 𝒞𝛼 such

that 𝑥 = 𝑥𝐶 . By our choice of 𝛼, we can fix 𝛾 ∈ 𝐶 with 𝜀 < 𝛾 < 𝛼 such that
succ𝑛+1(𝐶 ∖ 𝛾) ⊆ 𝐵0(𝐴𝑖, 𝐴𝑖, 𝐶).

Consider each 𝑗 < 𝑛 + 1. Set 𝛽𝑗 := (𝐶 ∖ 𝛾)(𝑗 + 1). Then 𝛽𝑗 ∈ 𝐵0(𝐴𝑖, 𝐴𝑖, 𝐶),
meaning that we can fix an elementary submodel ℳ𝑗 ≺ 𝐻𝜅+ satisfying 𝐴𝑖 ∈ ℳ𝑗 ,
ℳ𝑗 ∩ 𝜅 = 𝛽𝑗 , and ℳ𝑗 ∩ 𝐴𝑖 = 𝐶(𝛽𝑗). As 𝐴𝑖 is a cofinal subset of 𝜅, it follows
by elementarity that ℳ𝑗 |= “𝐴𝑖 is a cofinal subset of 𝜅”, so that in fact 𝐶(𝛽𝑗) is a

cofinal subset of 𝛽𝑗 . Of course, 𝛽𝑗 ∈ acc(𝜅). Thus, as 𝛽𝑗 ∈ nacc(𝐶), we infer from
the definition of 𝑔𝐶 that 𝑔𝐶(𝛽𝑗) ∈ 𝐶(𝛽𝑗) ⊆ 𝐴𝑖.

It is clear that 𝛾, 𝛽0, 𝛽1, . . . , 𝛽𝑛 are n+2 consecutive points of 𝐶. Altogether, we
infer from the definition of 𝑥𝐶 that 𝑔𝐶(𝛽0), 𝑔𝐶(𝛽1), . . . , 𝑔𝐶(𝛽𝑛) are n+1 consecutive
points of 𝑥𝐶 , all above 𝛾. Letting 𝛿 := 𝑔𝐶(𝛽0), we obtain 𝜀 < 𝛾 < 𝛿, 𝛿 ∈ 𝑥, and
succ𝑛(𝑥 ∖ 𝛿) ⊆ 𝐴𝑖, as sought. �

It follows that �⃗� is as sought. �

We now improve Proposition 5.10 in two ways. First, we reduce ♢(𝜅) down to
𝜅<𝜅 = 𝜅. Second, and more surprisingly, we let our reader choose the partition
of 𝜅.

Theorem 5.13. Suppose that 𝜅<𝜅 = 𝜅 and P−
𝜉 (𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈) holds with ℛ from

Example 5.6. Let �⃗� = ⟨𝐵𝜄 | 𝜄 < 𝜅⟩ be a given partition of 𝜅 into stationary

sets. Then there exists a sequence ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ that, together with �⃗�, witnesses
P∙
𝜉(𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈).

Proof. Using 𝜅<𝜅 = 𝜅, let � be some well-ordering of 𝐻𝜅 of order-type 𝜅. Also, fix

a sequence �⃗� = ⟨𝐴𝛾 | 𝛾 < 𝜅⟩ of elements of 𝐻𝜅 such that:

∙ for each 𝛾 ∈ nacc(𝜅), 𝐴𝛾 = ∅, and
∙ for all 𝜄 < 𝜅 and 𝐴 ∈ 𝐻𝜅, {𝛾 ∈ 𝐵𝜄 | 𝐴𝛾 = 𝐴} is stationary in 𝜅.

For every 𝛾 < 𝜅, let 𝛽𝛾 := otp(𝐴𝛾 ,�).

Claim 5.13.1. Let 𝜄 < 𝜅, Ω ∈ [𝐻𝜅]𝜅 and 𝑝 ∈ 𝐻𝜅+ . There exists 𝐺 ⊆ 𝜅 such
that {𝛽𝛾 | 𝛾 ∈ 𝐺} is cofinal in 𝜅, and, for every 𝛾 ∈ 𝐺, there exists an elementary
submodel ℳ ≺ 𝐻𝜅+ such that:

𝑝 ∈ ℳ, ℳ∩ 𝜅 = 𝛽𝛾 , ℳ∩ Ω = 𝐴𝛾 , and 𝛽𝛾 ∈ 𝐵𝜄 ∩ 𝛾.
Proof. Let 𝜖 < 𝜅 be arbitrary; we shall exhibit the existence of an ordinal 𝛾 < 𝜅
with 𝛽𝛾 > 𝜖 satisfying all of the four requirements.

As 𝐵𝜄 is stationary, we may pick ℳ ≺ 𝐻𝜅+ with 𝑝,�,Ω ∈ ℳ such that ℳ∩𝜅 ∈
𝐵𝜄 ∖ (𝜖+ 1). Denote 𝛽 := ℳ∩ 𝜅. As � ∈ ℳ, we infer that |ℳ∩𝐻𝜅| = |𝛽| < 𝜅, so

that ℳ∩Ω ∈ 𝐻𝜅. Thus, by the choice of �⃗�, let us fix 𝛾 > 𝛽 such that ℳ∩Ω = 𝐴𝛾 .
Finally, as 𝐻𝜅+ |= otp(Ω,�) = 𝜅, we infer that 𝛽𝛾 = otp(𝐴𝛾 ,�) = otp(ℳ∩Ω,�) =
𝜅ℳ = 𝛽. �

Define 𝑐 : [𝜅]2 → 𝜅 by letting, for all 𝛿 < 𝛾 < 𝜅,

𝑐(𝛿, 𝛾) :=

{︃
𝛽𝛾 , if 𝛽𝛾 ∈ (𝛿, 𝛾];

𝛾, otherwise.
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Let 𝑥 ∈ 𝒦(𝜅) be arbitrary. We define an element 𝐶𝑥 of ℱ(𝜅), as follows:

∙ dom(𝐶𝑥) := acc(𝑥) ∪ {𝑐(sup(𝑥 ∩ 𝛾), 𝛾) | 𝛾 ∈ nacc(𝑥) & 𝛾 ̸= min(𝑥)};
∙ for all 𝛽 ∈ dom(𝐶𝑥), we let 𝐶𝑥(𝛽) := 𝐴min(𝑥∖𝛽).

Claim 5.13.2. For all 𝑥, 𝑦 ∈ 𝒦(𝜅):

(1) dom(𝐶𝑥) is a club in sup(𝑥) with acc(dom(𝐶𝑥)) = acc(𝑥);
(2) if 𝑥 ℛ 𝑦, then 𝐶𝑥 ℛ 𝐶𝑦.

Proof. Left to the reader. �

Recalling Convention 4.18, fix a sequence �⃗� = ⟨𝒟𝛼 | 𝛼 < 𝜅⟩ witnessing P−
𝜉 (𝜅, 𝜇,

ℛ, 𝜃,𝒮, 𝜈,<𝜔). Then, for every 𝛼 ∈ acc(𝜅), let 𝒞𝛼 := {𝐶𝑥 | 𝑥 ∈ 𝒟𝛼}.

Claim 5.13.3. Suppose that 𝑆 ∈ 𝒮 and ⟨(Ω𝑖, 𝑝𝑖, 𝜄𝑖) | 𝑖 < 𝜃⟩ is a sequence of ele-
ments of 𝒫(𝐻𝜅)×𝐻𝜅+ ×𝜅, and 𝑛 is a positive integer. Then there exist stationarily
many 𝛼 ∈ 𝑆 such that |𝒞𝛼| < 𝜈, and, for every 𝐶 ∈ 𝒞𝛼 and 𝑖 < min{𝛼, 𝜃},

sup{𝛽 ∈ 𝐶 | succ𝑛(𝐶 ∖ 𝛽) ⊆ 𝐵𝜄𝑖(Ω𝑖, 𝑝𝑖, 𝐶)} = 𝛼.

Proof. Let 𝑖 < 𝜃 be arbitrary.
I If |Ω𝑖| = 𝜅, then, by Claim 5.13.1, we may fix a cofinal subset 𝐺𝑖 ⊆ 𝜅 such

that, for every 𝛾 ∈ 𝐺𝑖, there exists an elementary submodel ℳ ≺ 𝐻𝜅+ , such that:

𝑝𝑖 ∈ ℳ, ℳ∩ 𝜅 = 𝛽𝛾 , ℳ∩ Ω𝑖 = 𝐴𝛾 , 𝛽𝛾 ∈ 𝐵𝜄𝑖 ∩ 𝛾, and 𝐺𝑖 ∩ 𝛾 = 𝐺𝑖 ∩ 𝛽𝛾 .
I If |Ω𝑖| < 𝜅, then as {𝛾 ∈ 𝐵𝜄𝑖 | 𝐴𝛾 = Ω𝑖} is stationary, we may fix a cofinal

subset 𝐺𝑖 ⊆ 𝜅 such that, for every 𝛾 ∈ 𝐺𝑖, there exists an elementary submodel
ℳ ≺ 𝐻𝜅+ , such that:

𝑝𝑖,�,Ω𝑖 ∈ ℳ, ℳ∩ 𝜅 = 𝛾, Ω𝑖 = 𝐴𝛾 , and 𝛾 ∈ 𝐵𝜄𝑖 .

Next, fix a club 𝐸 ⊆ 𝜅 with the property that, for every 𝛼 ∈ 𝐸 and 𝑖 < min{𝛼, 𝜃},

if |Ω𝑖| < 𝜅, then otp(Ω𝑖,�) < 𝛼. By the choice of �⃗�, we may find a stationary
𝑆′ ⊆ 𝑆 ∩ 𝐸 such that, for every 𝛼 ∈ 𝑆′, |𝒟𝛼| < 𝜈, and, for all 𝑥 ∈ 𝒟𝛼 and
𝑖 < min{𝛼, 𝜃}:

sup{𝛾 ∈ 𝑥 | succ𝑛+1(𝑥 ∖ 𝛾) ⊆ 𝐺𝑖} = 𝛼.

Let 𝛼 ∈ 𝑆′ be arbitrary. Clearly, |𝒞𝛼| ≤ |𝒟𝛼| < 𝜈. Fix 𝑥 ∈ 𝒟𝛼 and 𝑖 < min{𝛼, 𝜃};

we need to prove that for every 𝜖 < 𝛼, there exists 𝛽 ∈ 𝐶𝑥 ∖ 𝜖 with

succ𝑛(𝐶𝑥 ∖ 𝛽) ⊆ 𝐵𝜄𝑖(Ω𝑖, 𝑝𝑖, 𝐶𝑥).

As 𝛼 ∈ 𝑆′, let us fix a large enough 𝛾 ∈ 𝑥 ∖ 𝜖 such that succ𝑛+1(𝑥 ∖ 𝛾) ⊆ 𝐺𝑖. If
|Ω𝑖| < 𝜅, then we also require that otp(Ω𝑖,�) ≤ 𝛾, which is possible since 𝛼 ∈ 𝐸.

Let {𝛾𝑗 | 𝑗 < 𝑛 + 1} denote the increasing enumeration of succ𝑛+1(𝑥 ∖ 𝛾). Set

𝛽 := 𝑐(𝛾, 𝛾0), so that 𝛽 ∈ 𝐶𝑥 ∖ 𝜖 and succ𝑛(𝐶𝑥 ∖ 𝛽) = {𝑐(𝛾𝑗 , 𝛾𝑗+1) | 𝑗 < 𝑛}.
Fix an arbitrary 𝑗 < 𝑛, and we shall show that 𝑐(𝛾𝑗 , 𝛾𝑗+1) ∈ 𝐵𝜄𝑖(Ω𝑖, 𝑝𝑖, 𝐶𝑥).
I If |Ω𝑖| = 𝜅, then as 𝛾𝑗+1 ∈ 𝐺𝑖, pick ℳ ≺ 𝐻𝜅+ such that:

∙ 𝑝𝑖 ∈ ℳ;
∙ ℳ∩ 𝜅 = 𝛽𝛾𝑗+1 ;
∙ ℳ∩ Ω𝑖 = 𝐴𝛾𝑗+1

;
∙ 𝛽𝛾𝑗+1

∈ 𝐵𝜄𝑖 ∩ 𝛾𝑗+1;
∙ 𝐺𝑖 ∩ 𝛾𝑗+1 = 𝐺𝑖 ∩ 𝛽𝛾𝑗+1

.

By the last two bullets, 𝛾𝑗 < 𝛽𝛾𝑗+1 < 𝛾𝑗+1, so that 𝑐(𝛾𝑗 , 𝛾𝑗+1) = 𝛽𝛾𝑗+1 . Fur-

thermore, 𝛽𝛾𝑗+1
is the unique element of the interval 𝐶𝑥 ∩ (𝛾𝑗 , 𝛾𝑗+1), so that

𝐶𝑥(𝛽𝛾𝑗+1
) = 𝐴min(𝑥∖𝛽𝛾𝑗+1

) = 𝐴𝛾𝑗+1
= ℳ ∩ Ω𝑖. Altogether, ℳ witnesses that

𝑐(𝛾𝑗 , 𝛾𝑗+1) ∈ 𝐵𝜄𝑖(Ω𝑖, 𝑝𝑖, 𝐶𝑥).
I If |Ω𝑖| < 𝜅, then as 𝛾𝑗+1 ∈ 𝐺𝑖, pick ℳ ≺ 𝐻𝜅+ such that:

∙ 𝑝𝑖,�,Ω𝑖 ∈ ℳ;
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∙ ℳ∩ 𝜅 = 𝛾𝑗+1;
∙ Ω𝑖 = 𝐴𝛾𝑗+1

;
∙ 𝛾𝑗+1 ∈ 𝐵𝜄𝑖 .

As 𝛽𝛾𝑗+1
= otp(𝐴𝛾𝑗+1

,�) = otp(Ω𝑖,�) ≤ 𝛾 < 𝛾𝑗 < 𝛾𝑗+1, we infer that ℳ∩Ω𝑖 =
Ω𝑖 = 𝐴𝛾𝑗+1

and 𝑐(𝛾𝑗 , 𝛾𝑗+1) = 𝛾𝑗+1. In particular, 𝐶𝑥(𝛾𝑗+1) = 𝐴min(𝑥∖𝛾𝑗+1) =
𝐴𝛾𝑗+1

= ℳ∩ Ω𝑖. Altogether, ℳ witnesses that 𝑐(𝛾𝑗 , 𝛾𝑗+1) ∈ 𝐵𝜄𝑖(Ω𝑖, 𝑝𝑖, 𝐶𝑥). �

It follows that ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ is as sought. �

Putting the last three results together, we obtain:

Corollary 5.14. For 𝜃 > 0, and ℛ from Example 5.6, the following are equivalent:

(1) P−
𝜉 (𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈) ∧ (𝜅<𝜅 = 𝜅);

(2) P∙
𝜉(𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈);

(3) For every partition �⃗� = ⟨𝐵𝜄 | 𝜄 < 𝜅⟩ of 𝜅 into stationary sets, there exists

a sequence 𝒞 that, together with �⃗�, witnesses P∙
𝜉(𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈). �

The following combines Definition 4.42 with Definition 5.9:

Definition 5.15. P∙
𝜉(𝜅, 𝜇

ind,⊑, 𝜃,𝒮, 𝜈) asserts the existence of sequences 𝒞 = ⟨𝒞𝛼 |
𝛼 < 𝜅⟩, �⃗� = ⟨𝐵𝜄 | 𝜄 < 𝜅⟩, and ⟨𝑖(𝛼) | 𝛼 < 𝜅⟩ such that 𝒞 and �⃗� together witness
P∙
𝜉(𝜅, 𝜇

+,⊑, 𝜃,𝒮, 𝜈), and for every 𝛼 ∈ acc(𝜅), all of the following hold:

∙ there exists a canonical enumeration ⟨𝐶𝛼,𝑖 | 𝑖(𝛼) ≤ 𝑖 < 𝜇⟩ of 𝒞𝛼;

∙ for all 𝑖 ∈ [𝑖(𝛼), 𝜇) and �̄� ∈ acc(𝐶𝛼,𝑖), 𝑖 ≥ 𝑖(�̄�) and 𝐶�̄�,𝑖 ⊑ 𝐶𝛼,𝑖;

∙ ⟨acc(𝐶𝛼,𝑖) | 𝑖(𝛼) ≤ 𝑖 < 𝜇⟩ is ⊆-increasing with acc(𝛼) =
⋃︀
𝑖∈[𝑖(𝛼),𝜇) acc(𝐶𝛼,𝑖).

The proofs in this section make clear that the following holds as well.

Corollary 5.16. Suppose that 𝜃 > 0 and 𝜇 < 𝜅. Then P∙
𝜉(𝜅, 𝜇

ind,⊑, 𝜃,𝒮, 𝜈) is

equivalent to P−
𝜉 (𝜅, 𝜇ind,⊑, 𝜃,𝒮, 𝜈) ∧ (𝜅<𝜅 = 𝜅). �

At the behest of the referee, we conclude this section by providing a proof of a
fact that was mentioned in its beginning.

Proposition 5.17. Suppose 𝜅<𝜅 = 𝜅. Then P−(𝜅,∞,⊑*
𝜒, 1, {𝜅}, 𝜅, 𝜔) implies

♢(𝜅).

Proof. As 𝜅<𝜅 = 𝜅, we may let ⟨𝑍𝛿 | 𝛿 ∈ acc(𝜅)⟩ be some injective enumeration of
[𝜅× 𝜅× 𝜅]<𝜅. For all (𝛽, 𝑖) ∈ 𝜅× 𝜅 and 𝐶 ∈ 𝒫(𝜅), let

𝐶𝛽,𝑖 := {𝜂 < sup(𝐶) | ∃𝛿 ∈ nacc(𝐶 ∖ 𝛽) ∩ acc(𝜅)[(𝛽, 𝑖, 𝜂) ∈ 𝑍𝛿]}.

Next, suppose that 𝒞 = ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ witnesses P−(𝜅,∞,⊑*
𝜒, 1, {𝜅}, 𝜅, 𝜔). For

each 𝛼 ∈ acc(𝜅), let {𝐶𝛼,𝑖 | 0 < 𝑖 < 𝛼} be some enumeration of 𝒞𝛼, and set
𝐶𝛼,0 := ∅.

Claim 5.17.1. There exists (𝛽, 𝑖) ∈ 𝜅 × 𝜅 such that ⟨𝐶𝛽,𝑖𝛼,𝑖 | 𝛼 ∈ acc(𝜅 ∖ 𝑖)⟩ is a

♢(acc(𝜅 ∖ 𝑖))-sequence.

Proof. Suppose not. By definition of ♢ (see [Rin11a, Definition 1.1]), this means
that, for every (𝛽, 𝑖) ∈ 𝜅×𝜅, we may fix a subset𝐴𝛽,𝑖 ⊆ 𝜅 and a club𝐷𝛽,𝑖 ⊆ acc(𝜅∖𝑖)
such that, for every 𝛼 ∈ 𝐷𝛽,𝑖, 𝐴𝛽,𝑖 ∩ 𝛼 ̸= 𝐶𝛽,𝑖𝛼,𝑖 . As 𝐶𝛽,𝑖𝛼,0 = ∅ for all (𝛽, 𝑖) ∈ 𝜅 × 𝜅

and 𝛼 ∈ acc(𝜅), it follows that, for all 𝛽 < 𝜅, 𝐴𝛽,0 ̸= ∅. Consequently, 𝑍 :=
{(𝛽, 𝑖, 𝜂) | 𝛽 < 𝜅, 𝑖 < 𝜅, 𝜂 ∈ 𝐴𝛽,𝑖} has size 𝜅, and thus so does ∆ := {𝛿 ∈ acc(𝜅) |
∃𝜖 < 𝜅[𝑍 ∩ 𝜖3 = 𝑍𝛿]}. For each 𝛿 ∈ ∆, let 𝜖𝛿 denote the least ordinal satisfying
𝑍𝛿 = 𝑍 ∩ (𝜖𝛿)

3; notice that the map 𝛿 ↦→ 𝜖𝛿 is injective. Now, fix a club 𝐵 ⊆ 𝜅 such
that, for every 𝛼 ∈ 𝐵:

∙ for every 𝛿 ∈ ∆, 𝛿 < 𝛼 iff 𝜖𝛿 < 𝛼;
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∙ for every (𝛽, 𝑖) ∈ 𝛼× 𝛼, 𝛼 ∈ 𝐷𝛽,𝑖.

By Lemma 3.3, fix a cofinal subset ∆′ ⊆ ∆ that is 𝐵-separated. Note that, for
every 𝛼 ∈ 𝐵 and every pair 𝛽 < 𝛿 of ordinals both in ∆′∩𝛼, there exists 𝛾 ∈ 𝐵 such
that 𝛽 < 𝛾 < 𝛿, so that 𝛼 > 𝜖𝛿 ≥ 𝛾 > 𝛽. It follows that, for every 𝛼 ∈ acc+(∆′)
and every cofinal 𝑑 ⊆ ∆′ ∩ 𝛼,

⋃︀
𝛿∈𝑑 𝑍𝛿 =

⋃︀
𝛿∈𝑑 𝑍 ∩ (𝜖𝛿)

3 = 𝑍 ∩ 𝛼3.

Now, by the choice of 𝒞, let us fix 𝛼 ∈ acc(𝜅), 𝐶 ∈ 𝒞𝛼 and 𝛾 < 𝛼 such that
succ𝜔(𝐶 ∖𝛾) ⊆ ∆′. Put �̄� := sup(succ𝜔(𝐶 ∖𝛾)), and note that �̄� ∈ (acc(𝐶)∪{�̄�})∩
acc+(∆′). Pick a nonzero 𝑖 < �̄� such that 𝐶�̄�,𝑖 ⊑*

𝜒 𝐶. Clearly, �̄� ∈ acc(𝜅 ∖ 𝑖).
As ∆′ ⊆ acc(𝜅), we infer that nacc(𝐶) ∩ acc(𝜅) ̸= ∅, so that in fact 𝐶�̄�,𝑖 ⊑* 𝐶,
and we may find some 𝛽 ∈ (𝛾, �̄�) such that 𝐶�̄�,𝑖 ∖ 𝛽 = 𝐶 ∩ [𝛽, �̄�). In particular,
nacc(𝐶�̄�,𝑖 ∖ 𝛽) is a cofinal subset of ∆′ ∩ �̄� and

⋃︀
𝛿∈nacc(𝐶�̄�,𝑖∖𝛽) 𝑍𝛿 = 𝑍 ∩ �̄�3. It

follows that 𝐶𝛽,𝑖�̄�,𝑖 = {𝜂 < �̄� | (𝛽, 𝑖, 𝜂) ∈ 𝑍 ∩ �̄�3} = 𝐴𝛽,𝑖 ∩ �̄�. But (𝛽, 𝑖) ∈ �̄�× �̄� and

�̄� ∈ 𝐵, so that �̄� ∈ 𝐷𝛽,𝑖, contradicting our choice of 𝐴𝛽,𝑖. �

In particular, ♢(𝜅) holds. �

6. Tree constructions

In this section, we present various constructions from instances of the proxy
principle P∙(𝜅, . . . ). The next table summarizes the kind of 𝜅-Souslin trees we
obtain from the instance P∙(𝜅, 𝜇,ℛ, 𝜃, {𝐸𝜅≥𝜕}, 𝜈). Of course, for the 𝜒-complete

trees, we must also assume that 𝜅 is (<𝜒)-closed, or we can simply assume that
𝜒 = ℵ0.

Theorem 𝜇 ℛ 𝜃 𝜕 𝜈 Type of 𝜅-Souslin tree

6.8 𝜅 𝜒⊑* 1 𝜒 𝜅 𝜒-complete
6.11 𝜇ind ⊑ 1 𝜒 𝜅 𝜒-complete with a 𝜇-ascent path

6.14 𝜅 𝜒⊑* 1 max{𝜒, 𝜆} 2
𝜒-complete,

with no ascending path of width < 𝜆

6.17 𝜅 𝜒⊑ 1 max{𝜒, 𝜆} 2
𝜒-complete, rigid,

with no ascending path of width < 𝜆

6.27 𝜅 𝜒⊑ 𝜅 𝜒 2 𝜒-complete, 𝜒-free
6.33 𝜅 𝜒⊑* 𝜅 𝜒 𝜅 𝜒-complete, uniformly homogeneous
6.35 2 ⊑ 𝜅 0 2 slim, uniformly coherent

Figure 1. Relationship between the vector of parameters and the
characteristics of trees obtained.

By [SZ99], every uniformly coherent 𝜔1-Souslin tree is the product of two free
𝜔1-Souslin trees. In addition, it is not hard to see that for any cardinal 𝜆, any
𝜆-free 𝜆+-Souslin tree is specializable. Finally, by a result of Baumgartner that we
mentioned in the introduction, there consistently exist 𝜔2-Souslin trees which are
not specializable. This suggests that uniformly coherent > free > specializable >
plain, and this claim is in fact supported by the results summarized in the above
table. Indeed, for a uniformly coherent 𝜅-Souslin tree, we assume 𝜇 = 𝜈 = 2 and
𝜃 = 𝜅; for a free 𝜅-Souslin tree, we (allow 𝜇 = 𝜅 but) assume 𝜈 = 2 and 𝜃 = 𝜅;
for a 𝜅-Souslin tree omitting a narrow ascending path (which is a generalization
of specializable), we assume 𝜈 = 2 and 𝜃 = 1, whereas, for a plain 𝜅-Souslin tree,
𝜈 = 𝜅 and 𝜃 = 1 will do.
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The next list demonstrates well the utility of the proxy principle as a device
that provides a disconnection between the tree constructions and the study of the
combinatorial hypotheses.24

Theorem 6.1. (1) Assuming 𝜆 = cf(𝜆) ≥ ℵ0, ♢(𝐸𝜆
+

𝜆 ) entails P∙
𝜆(𝜆+, 2, 𝜆⊑,

𝜆+, {𝐸𝜆+

𝜆 }, 2). In particular, ♢(𝜔1) entails P∙
𝜔(𝜔1, 2,⊑, 𝜔1, {𝜔1}, 2).

(2) Assuming 𝜆 = cf(𝜆) ≥ ℵ0, ♢*(𝐸𝜆
+

𝜆 ) entails P∙
𝜆(𝜆+, 2, 𝜆⊑, 𝜆+,NS+

𝜆+ � 𝐸𝜆
+

𝜆 , 2).

(3) Assuming 𝜆 ≥ ℵ1, ♢ 𝜆 entails P∙
𝜆(𝜆+, 2,⊑, 𝜆+, {𝐸𝜆+

cf(𝜆)}, 2).

(4) Assuming 𝜆 ≥ ℵ1, �𝜆 + CH𝜆 entails P∙
𝜆(𝜆+, 2,⊑, <𝜆, {𝐸𝜆+

𝜒 }, 2) for every

𝜒 ∈ Reg(𝜆), as well as P∙(𝜆+, 2,⊑*, 1, {𝐸𝜆+

𝜆 }, 2) for 𝜆 regular.
(5) Assuming 𝜆 ≥ i𝜔, �(𝜆+) + CH𝜆 entails P∙(𝜆+, 2,⊑, 1, {𝜆+}, 2), as well as

P∙(𝜆+, 2,⊑*, 1, {𝑆}, 2) for every stationary 𝑆 ⊆ 𝜆+.
(6) Assuming 𝜆 is singular, �(𝜆+) + GCH entails P∙(𝜆+, 2,⊑, 𝜆+, {𝜆+}, 2).

(7) Assuming 𝜆 ≥ ℵ1, �(𝜆+) + GCH entails P∙(𝜆+, 2,⊑, 1, {𝐸𝜆+

𝜒 }, 2) for every
𝜒 ∈ Reg(𝜆).

(8) Assuming 𝜆 ≥ ℵ1 and 1 ≤ 𝜇 < cf(𝜆), �(𝜆+, 𝜇)+GCH entails P∙(𝜆+, 𝜇+,⊑, 1,
{𝐸𝜆+

≥𝜒}, 𝜇+) for every 𝜒 ∈ Reg(cf(𝜆)),25 as well as P∙(𝜆+, 𝜇+,⊑*, 1, {𝑆}, 𝜇+)

for every stationary 𝑆 ⊆ 𝜆+.
(9) Assuming ℵ0 ≤ 𝜇 < cf(𝜆), �ind(𝜆+, 𝜇) + GCH entails P∙(𝜆+, 𝜇ind,⊑, 1,

{𝐸𝜆+

≥𝜒}, 𝜇+) for every 𝜒 ∈ Reg(cf(𝜆)).

(10) For 𝜅 ≥ ℵ2 and a stationary 𝐸 ⊂ 𝜅, �(𝐸)+♢(𝐸) entails P∙(𝜅, 2,⊑*, 1, {𝑆}, 2)
for every stationary 𝑆 ⊆ 𝜅.

(11) Assuming 𝜆<𝜆 = 𝜆 ≥ ℵ0 and CH𝜆, after forcing to add a single Cohen

subset of 𝜆, P∙
𝜆(𝜆+, 2,ℛ, 𝜆+,NS+

𝜆+ � 𝐸𝜆
+

𝜆 , 2) holds with ℛ = 𝜆⊑. If �𝜆
holds in the ground model, then the conclusion holds with ℛ = ⊑.

(12) Assuming 𝜆<𝜆 = 𝜆 ≥ ℵ0 and 𝜅 > 𝜆 strongly inaccessible, after forcing by a
(<𝜆)-distributive 𝜅-cc notion of forcing collapsing 𝜅 to 𝜆+, P∙

𝜆(𝜆+,∞,⊑, 𝜆+,
NS+

𝜅 � 𝐸
𝜆+

𝜆 , 2) holds.
(13) Assuming 𝜆<𝜆 = 𝜆 ≥ ℵ1 and CH𝜆, after forcing with a 𝜆+-cc notion

of forcing of size ≤ 𝜆+ that preserves the regularity of 𝜆 and is not 𝜆𝜆-

bounding, P∙
𝜆(𝜆+,∞,⊑, 𝜆+,NS+

𝜆+ � 𝐸𝜆
+

𝜆 , 2) holds.

(14) Assuming 𝜆<𝜆 = 𝜆 ≥ ℵ1 and CH𝜆, after forcing with a 𝜆+-cc notion
of forcing of size ≤ 𝜆+ that forces cf(𝜆) < |𝜆| (e.g., Prikry, Magidor,
and Radin forcing), P∙

𝜆(𝜅,∞,⊑, 𝜅,NS+
𝜅 � 𝑇 , 2) holds, where 𝜅 := 𝜆+ and

𝑇 := 𝐸𝜅𝜆 are defined in the ground model.
(15) For infinite regular cardinals 𝜃 < 𝜆 satisfying 𝜆<𝜃 = 𝜆 and CH𝜆, after

Lévy-collapsing 𝜆 to 𝜃, P∙
𝜃(𝜅,∞,⊑, 𝜅,NS+

𝜅 � 𝑇 , 2) holds, where 𝜅 := 𝜆+ and
𝑇 := 𝐸𝜅𝜆 are defined in the ground model.

(16) If 𝜆 = 𝜃+ for a regular cardinal 𝜃, and NS � 𝐸𝜆𝜃 is saturated, then CH𝜆

entails P∙(𝜆+, 2, 𝜆⊑*, 𝜃, {𝐸𝜆+

𝜆 }, 2).
(17) Assuming 𝜆<𝜆 = 𝜆 ≥ ℵ1 and CH𝜆, if there exists a nonreflecting sta-

tionary subset of 𝐸𝜆
+

̸=𝜆, then P∙
𝜆(𝜆+, 𝜆+,⊑, <𝜆, {𝜆+}, 2) holds, and so does

P∙(𝜆+, 𝜆+,⊑*, 1, {𝐸𝜆+

𝜆 }, 2).
(18) Assuming 𝜆 = 2<𝜆 is singular and �*

𝜆+CH𝜆, if there exists a nonreflecting

stationary subset of 𝐸𝜆
+

̸=cf(𝜆), then P∙
𝜆2(𝜆+, 𝜆+,⊑, 𝜆+, {𝜆+}, 2) holds.

(19) For 𝜅 strongly inaccessible, if there exists a sequence ⟨𝐴𝛼 | 𝛼 ∈ 𝐸⟩ satisfying
the hypothesis of Theorem B, then P∙(𝜅, 𝜅,𝐸⊑, 1, {𝐸}, 2) holds.

24Keep in mind the monotonicity properties of the proxy principle, as described in Remark 4.11.
25For a finite cardinal 𝜇, 𝜇+ stands for 𝜇+ 1.
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(20) For 𝜅 strongly inaccessible, if ♢(𝐸) holds over some nonreflecting stationary
𝐸 ⊆ 𝜅, then P∙(𝜅, 𝜅,𝐸⊑, 𝜅, {𝐸}, 2) holds, and so does P∙(𝜅, 𝜅,⊑*, 1, {𝑆}, 2)
for every nonreflecting stationary 𝑆 ⊆ 𝜅.

(21) If 𝑉 = 𝐿 and 𝜅 is not weakly compact, then P∙(𝜅, 2,⊑, 𝜅,𝒮, 2) holds for
𝒮 := {𝐸𝜅≥𝜒 | 𝜒 ∈ Reg(𝜅) and 𝜅 is (<𝜒)-closed}.

Proof. Each statement asserts that an instance of P∙(𝜅, . . . ) follows from hypotheses
that include 𝜅<𝜅 = 𝜅. Thus, by Theorem 5.13 (or Corollary 5.16), it suffices to prove
P−(𝜅, . . . ) in each case. Furthermore, for statements where the hypotheses include
♢(𝜅), we may appeal to Theorem 4.16, so that it suffices to prove P−(𝜅, . . . , 1).

(1) By [BR17a, Theorem 3.7] and [BR17a, Corollary 1.12]. (2) By Theorem 4.35(1)
followed by Lemma 4.32. (3) By [BR17a, Theorem 3.6]. (4) By [BR17a, Corol-
lary 3.9] and [Rin17, Corollary 4.13]. (5) By [Rin17, Corollaries 4.7 and 4.13].
(6) By [BR19a, Corollary 4.22] using 𝜒 := ℵ0, since under GCH every singular
cardinal is strong limit. (7) By [Rin17, Corollary 4.5]. (8) By the same proof
of Theorem 4.44, and then [BR19c, Lemma 3.8]. (9) By Theorem 4.44. (10)
This is Corollary 4.19(2). (11) By Theorem 5.7 or Theorem 4.2(2) of [BR17a].
Note that the cited theorems from [BR17a] require 𝜆 to be uncountable just to
be able to verify ♢(𝜆+), whereas, here, we settle for P−(𝜆+, . . .) ∧ CH𝜆. See the
proof of [Rin15, Theorem 2.3] for the exact details. (12) By [BR19b, Proposi-
tion 3.10] (which relies on Theorem 4.35(2) above) followed by Lemma 4.32. (13)
By [BR19b, Proposition B(1) and Theorem 3.4] followed by Lemma 4.32 above
(cf. Remark 4.33). (14) By [BR19b, Proposition B(2) and Theorem 3.4] followed
by Lemma 4.32 above (cf. Remark 4.33). (15) By [BR19b, Proposition 3.9] followed
by Lemma 4.32 above (cf. Remark 4.33). (16) By [BR17a, Theorem 6.4]. (17) By
[BR19c, Theorem A]. (18) By [BR19c, Theorem B]. (19) This is Theorem 4.28.
(20) By Theorem 4.26(2) and Corollary 4.27. (21) By [BR17a, Corollary 1.10(5)]
or [BR19a, Corollary 4.14]. �

6.1. Basic characteristics of trees. Examining our construction of the 𝜅-Souslin
tree in the proof of Proposition 2.18, we notice that all of the hard work took place
when constructing the nonzero limit levels of the tree. It was at those levels that
we balanced the normality requirement with the need to bound the size of 𝑇𝛼 and
to seal antichains.

In contrast, the only constraint we addressed at successor levels was the re-
quirement that the tree be ever-branching, in consideration of Lemma 2.1, and we
did that by assigning two immediate successors to every node from the previous
level.26 But here we have the flexibility to impose some additional features, without
affecting the most important global properties of the tree.

Definition 6.2. A streamlined 𝜅-tree 𝑇 is said to be:

∙ binary iff 𝑇 ⊆ <𝜅2;
∙ 𝜍-splitting (for an ordinal 𝜍 < 𝜅) iff every node in 𝑇 admits at least 𝜍 many

immediate successors;
∙ splitting iff it is 2-splitting;
∙ prolific iff, for all 𝛼 < 𝜅 and 𝑡 ∈ 𝑇𝛼, {𝑡y𝑖 | 𝑖 < max{𝜔, 𝛼}} ⊆ 𝑇𝛼+1.

While a 𝜍-splitting tree, for any value 𝜍 > 2, cannot be binary, we observe the
following implications between properties of a streamlined 𝜅-tree:

prolific =⇒ 𝜔-splitting =⇒ splitting =⇒ ever-branching.

26For two nodes 𝑥, 𝑦 in a streamlined tree 𝑇 , we say that 𝑦 is an immediate successor of 𝑥 iff
𝑥 ( 𝑦 and dom(𝑦) = dom(𝑥) + 1.
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Referring back to our construction in the proof of Proposition 2.18, we note
that the tree constructed there was binary. However, we can easily tweak the
construction of the successor levels in order to ensure that the resulting tree ends
up being (no longer binary, but rather) prolific and/or 𝜍-splitting for some value of
𝜍 < 𝜅, without affecting the validity of any other aspects of the proof. Precisely,
for an ordinal 𝜍 < 𝜅, to obtain a 𝜅-Souslin tree that is prolific and 𝜍-splitting, we
modify the successor level in the proof of Proposition 2.18, setting, for every 𝛼 < 𝜅,

𝑇𝛼+1 := {𝑡y𝑖 | 𝑡 ∈ 𝑇𝛼, 𝑖 < max{𝛼, 𝜍, 𝜔}}.
Of course, it is no longer true that each 𝑇𝛼 is a subset of 𝛼2 of size ≤ max{ℵ0, |𝛼|}
as claimed in the original proof, but that was simply a matter of preference. The
important constraint, to be maintained for all 𝛼 < 𝜅 throughout the recursive
construction, is that 𝑇𝛼 is a subset of 𝛼𝜅 of size < 𝜅; this follows at successor levels
from the fact that 𝜍 < 𝜅, and at limit levels from regularity of 𝜅 together with the
property (*)𝛼 of the construction. Furthermore, C must be chosen at the outset to
be a well-ordering of <𝜅𝜅 (or some larger set) instead of <𝜅2.

As we present the more involved Souslin-tree constructions throughout the rest
of this paper, the reader should have no trouble adapting them between binary
and prolific/𝜍-splitting, as desired. Note also that an abstract translation between
various kinds of trees is offered in the appendix of [BR17b].

But even at the limit levels, there is some degree of flexibility, as witnessed by
the two alternatives of the following definition.

Definition 6.3. A streamlined tree 𝑇 is said to be:

∙ slim if |𝑇𝛼| ≤ max{|𝛼| ,ℵ0} for every ordinal 𝛼.
∙ 𝜒-complete if, for any (-increasing sequence 𝜂, of length < 𝜒, of elements

of 𝑇 , the limit of the sequence,
⋃︀

Im(𝜂), is also in 𝑇 .

Notice that the 𝜅-Souslin tree constructed in the proof of Proposition 2.18 is
slim. This is a result of adhering to property (*)𝛼 in the definition of levels 𝑇𝛼 for
every 𝛼 ∈ acc(𝜅). Recalling the discussion in Subsection 2.4, there needs to be some
stationary Γ ⊆ 𝜅 on which, for every 𝛼 ∈ Γ, not every 𝛼-branch through 𝑇 � 𝛼 will
have its limit placed into 𝑇𝛼. In the proof of Proposition 2.18, we took the simplest
approach by setting Γ := acc(𝜅).27 A much more complicated approach is taken
in [BR17b, S5]. In the upcoming treatment, we shall focus on a relatively simple
form of a set Γ, namely, Γ := 𝐸𝜅≥𝜒 for some 𝜒 ∈ Reg(𝜅). Note that this means that
the resulting 𝜅-Souslin tree would be 𝜒-complete. Nevertheless, a minor tweaking
would facilitate obtaining slim 𝜅-Souslin trees; simply set 𝜒 := 𝜔 and make sure to
impose 𝜔1 as the value of the second parameter of the proxy principle.28

6.2. The underlying setup. Throughout the rest of this section, we fix a well-
ordering �𝜅 of 𝐻𝜅. All of the constructions in this section will use hypotheses of
the form P∙(𝜅, . . .) that imply 𝜅<𝜅 = 𝜅. Thus, we shall moreover assume that
otp(𝐻𝜅,�𝜅) = 𝜅.

Definition 6.4. For every 𝑇 ∈ 𝐻𝜅, denote 𝛽(𝑇 ) := 0 unless there is 𝛽 < 𝜅 such
that 𝑇 ⊆ ≤𝛽𝐻𝜅 and 𝑇 * <𝛽𝐻𝜅, in which case, we let 𝛽(𝑇 ) := 𝛽 for this unique 𝛽.
We also let 𝑇𝛽(𝑇 ) := {𝑥 ∈ 𝑇 | dom(𝑥) = 𝛽(𝑇 )}.29

27As a result of taking this simplest approach, the tree also satisfies the property of being

club-regressive (in addition to being slim), as explored in [BR17a, Proposition 2.3].
28The notion of slimness is more prevalent in the context of 𝜅-Kurepa trees as a property that

rules out some trivial examples. Our interest in slim 𝜅-Souslin trees comes from [BR17b], where
we constructed 𝜅-Souslin trees whose reduced powers are 𝜅-Kurepa.

29If 𝑇 is a streamlined tree, then this notation coheres with the fourth bullet of Lemma 2.4,
but, in general, 𝑇𝛽(𝑇 ) may well be empty.
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We collect here a gallery of actions which we will use throughout the construc-
tions of this section. The reader may skip this definition at the moment, and come
back to each of its clauses upon its use.

Definition 6.5. (1) The default extension function, extend : (𝐻𝜅)2 → 𝐻𝜅, is
defined as follows. Let extend(𝑥, 𝑇 ) := 𝑥, unless �̄� := {𝑧 ∈ 𝑇𝛽(𝑇 ) | 𝑥 ⊆ 𝑧}
is nonempty, in which case, we let extend(𝑥, 𝑇 ) := min(�̄�,�𝜅).

(2) The function for sealing antichains, anti : (𝐻𝜅)3 → 𝐻𝜅, is defined as follows.
Let anti(𝑥, 𝑇,0) := extend(𝑥, 𝑇 ), unless

𝑄 := {𝑧 ∈ 𝑇𝛽(𝑇 ) | ∃𝑦 ∈ 0(𝑥 ∪ 𝑦 ⊆ 𝑧)}
is nonempty, in which case, we let anti(𝑥, 𝑇,0) := min(𝑄,�𝜅).

(3) The function for sealing ascending paths, sealpath : (𝐻𝜅)3 → 𝐻𝜅, is defined
as follows. Given (𝑥, 𝑇,0) ∈ (𝐻𝜅)3, if the set

𝑄 := {𝑧 ∈ 𝑇𝛽(𝑇 ) | 𝑥 ⊆ 𝑧 & ∀𝑦 ∈ 0[dom(𝑦) = dom(𝑥) + 1 =⇒ 𝑦 * 𝑧]}
is nonempty, then let sealpath(𝑥, 𝑇,0) := min(𝑄,�𝜅). Otherwise, let
sealpath(𝑥, 𝑇,0) := extend(𝑥, 𝑇 ).

(4) The function for sealing automorphisms, auto : (𝐻𝜅)4 → 𝐻𝜅, is defined as
follows. Given (𝑥, 𝑇, 𝑏,0): If 𝑥 ∈ 𝑇 � (𝛽(𝑇 )), 𝑏 is a partial function from
𝑇 � (𝛽(𝑇 )) to 𝑇 � (𝛽(𝑇 )), 0 is an automorphism of 𝑇 � (𝛽(𝑇 )), and the set

𝑄 := {𝑥0 ∈ dom(𝑏) | 0(𝑥0) ̸= 𝑥0}
is nonempty, then let 𝑥0 := min(𝑄,�𝜅), �̃�0 := extend(𝑏(𝑥0), 𝑇 ), 𝑦0 :=⋃︀
𝛾<𝛽(𝑇 ) 0(�̃�0 � 𝛾), and auto(𝑥, 𝑇, 𝑏,0) := extend(𝑥, 𝑇 ∖ {𝑦0}). Otherwise,

let auto(𝑥, 𝑇, 𝑏,0) := extend(𝑥, 𝑇 ).
(5) The function for sealing antichains in derived trees, free : (𝐻𝜅)4 → 𝐻𝜅,

is defined as follows.30 Given (𝑥, 𝑇, �⃗�,0) ∈ (𝐻𝜅)4: If 𝑇 is a streamlined

tree, �⃗� ∈ <𝜅𝑇 and �⃗� ̸= ∅, then put 𝑧 := anti(∅, 𝑇 (⃗𝑏),0), and consider the
following options:

I If 𝑧 ∈ 𝛽(𝑇 )(dom(⃗𝑏)𝐻𝜅) and there exists some 𝜉 < dom(⃗𝑏) such that

𝑥 ∪ (𝑧)𝜉 is in 𝑇 , then let free(𝑥, 𝑇, �⃗�,0) := (𝑧)𝜉 for the least such 𝜉.

I Otherwise, let free(𝑥, 𝑇, �⃗�,0) := extend(𝑥, 𝑇 ).

The following is obvious.

Lemma 6.6 (Extension Lemma). Suppose 𝑥 ∈ 𝑇 ∈ 𝐻𝜅, 0, 𝑏, �⃗� ∈ 𝐻𝜅, and 𝑇 is a
normal subtree of ≤𝛽(𝑇 )𝜅. Then extend(𝑥, 𝑇 ), anti(𝑥, 𝑇,0), sealpath(𝑥, 𝑇,0), and

free(𝑥, 𝑇, �⃗�,0) are elements of 𝑇𝛽(𝑇 ) extending 𝑥. If 𝑇 � 𝛽(𝑇 ) is moreover ever-
branching, then auto(𝑥, 𝑇, 𝑏,0) is an element of 𝑇𝛽(𝑇 ) extending 𝑥, as well. �

6.3. The prototype construction. In this subsection, we present a construction
of a 𝜅-Souslin tree from the weakest useful instance of the proxy principle.

Corollary 6.7. If P∙(𝜅, 𝜅,⊑*, 1, {𝜅}, 𝜅) holds, then there exists a 𝜅-Souslin tree.

Proof. Appeal to Theorem 6.8 below with 𝜒 := ℵ0. �

All of the subsequent constructions in this section, with the exception of the
construction of a uniformly homogeneous tree in Subsection 6.8, will be modeled
after the following construction.

Theorem 6.8. Suppose that 𝜅 is (<𝜒)-closed for a given 𝜒 ∈ Reg(𝜅). Let 𝜍 < 𝜅.
If P∙(𝜅, 𝜅, 𝜒⊑*, 1, {𝐸𝜅≥𝜒}, 𝜅) holds, then there exists a normal, prolific, 𝜍-splitting,
𝜒-complete 𝜅-Souslin tree.

30The notation (𝑧)𝜉 and 𝑇 (⃗𝑏) will be introduced in Subsection 6.7 below.
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Proof. The proof is very similar in spirit to the one from Proposition 2.18; one just
needs to be a little bit more careful.

Suppose P∙(𝜅, 𝜅, 𝜒⊑*, 1, {𝐸𝜅≥𝜒}, 𝜅) holds, as witnessed by 𝒞 = ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ and

�⃗� = ⟨𝐵𝜄 | 𝜄 < 𝜅⟩. We shall recursively construct a sequence ⟨𝑇𝛼 | 𝛼 < 𝜅⟩ of levels
whose union will ultimately be the desired tree 𝑇 . In this construction, we shall
ensure that for each 𝛼 < 𝜅, the level 𝑇𝛼 will be a subset of 𝛼𝜅 of size < 𝜅.

Let 𝑇0 := {∅}, and for all 𝛼 < 𝜅, let 𝑇𝛼+1 := {𝑡y𝑖 | 𝑡 ∈ 𝑇𝛼, 𝑖 < max{𝛼, 𝜍, 𝜔}}.
Next, suppose that 𝛼 < 𝜅 is a nonzero limit ordinal, and that ⟨𝑇𝛽 | 𝛽 < 𝛼⟩ has

already been defined. Constructing the level 𝑇𝛼 involves deciding which 𝛼-branches
through 𝑇 � 𝛼 will have their limits placed into the tree. Denote Γ := 𝐸𝜅≥𝜒. The
construction splits into two cases, depending on whether 𝛼 ∈ Γ:
I Suppose 𝛼 /∈ Γ. Then we let 𝑇𝛼 consist of the limits of all 𝛼-branches through

𝑇 � 𝛼. This construction ensures that the tree will be 𝜒-complete, and as any 𝛼-
branch through 𝑇 �𝛼 is determined by a subset of 𝑇 �𝛼 of cardinality cf(𝛼) < 𝜒, the
(<𝜒)-closedness of 𝜅 together with |𝑇 �𝛼| < 𝜅 ensures that |𝑇𝛼| < 𝜅 at these levels.
Normality at level 𝑇𝛼 is verified by induction: Fixing a closed sequence of ordinals
of minimal order-type converging to 𝛼 enables us to find, for any given 𝑥 ∈ 𝑇 � 𝛼,
an 𝛼-branch through 𝑇 � 𝛼 containing 𝑥, and the limit of such an 𝛼-branch will
necessarily be in 𝑇𝛼.
I Now suppose 𝛼 ∈ Γ. The idea for ensuring normality at level 𝑇𝛼 is to attach

to each 𝐶 ∈ 𝒞𝛼 and 𝑥 ∈ 𝑇 � 𝐶 some node b𝐶𝑥 ∈ 𝛼𝜅 above 𝑥, and then let

(**)𝛼 𝑇𝛼 := {b𝐶𝑥 | 𝐶 ∈ 𝒞𝛼, 𝑥 ∈ 𝑇 � 𝐶}.

By the induction hypothesis, |𝑇𝛽 | < 𝜅 for all 𝛽 < 𝛼, and by the choice of 𝒞 we
have |𝒞𝛼| < 𝜅, so that by regularity of 𝜅 we are guaranteed to end up with |𝑇𝛼| < 𝜅.

As for every 𝐶 ∈ 𝒞𝛼 and 𝑥 ∈ 𝑇 � 𝐶, b𝐶𝑥 will be the limit of some 𝛼-branch
through 𝑇 � 𝛼 that contains 𝑥, we opt to describe b𝐶𝑥 as the limit

⋃︀
Im(𝑏𝐶𝑥 ) of a

sequence 𝑏𝐶𝑥 ∈
∏︀
𝛽∈𝐶∖dom(𝑥) 𝑇𝛽 such that:

∙ 𝑏𝐶𝑥 (dom(𝑥)) = 𝑥;

∙ 𝑏𝐶𝑥 (𝛽′) ( 𝑏𝐶𝑥 (𝛽) for any pair 𝛽′ < 𝛽 of ordinals from (𝐶 ∖ dom(𝑥));

∙ 𝑏𝐶𝑥 (𝛽) =
⋃︀

Im(𝑏𝐶𝑥 � 𝛽) for all 𝛽 ∈ acc(𝐶 ∖ dom(𝑥)).

Let 𝐶 ∈ 𝒞𝛼 be arbitrary. By recursion over 𝛽 ∈ 𝐶, we shall assign a value 𝑏𝐶𝑥 (𝛽)

in 𝑇𝛽 for all 𝑥 ∈ 𝑇 � (𝐶 ∩ (𝛽 + 1)).

Fix 𝛽 ∈ 𝐶, and assume that for every 𝑥 ∈ 𝑇 � (𝐶 ∩ 𝛽) we have already defined

𝑏𝐶𝑥 � 𝛽. We must define the value of 𝑏𝐶𝑥 (𝛽) for all 𝑥 ∈ 𝑇 � (𝐶 ∩ (𝛽 + 1)).

(1) For every 𝑥 ∈ 𝑇𝛽 , let 𝑏𝐶𝑥 (𝛽) := 𝑥. We take care of these nodes separately,
because for any such node 𝑥, the sequence 𝑏𝐶𝑥 is just starting here.

(2) Next, let 𝑥 ∈ 𝑇 � (𝐶∩𝛽) be arbitrary. In particular, assume that 𝐶∩𝛽 ̸= ∅.

(a) If 𝛽 ∈ nacc(𝐶), then let 𝛽− := sup(𝐶 ∩ 𝛽) denote the predecessor of 𝛽

in 𝐶, and then set

𝑏𝐶𝑥 (𝛽) :=

{︃
anti(𝑏𝐶𝑥 (𝛽−), 𝑇 � (𝛽 + 1), 𝐶(𝛽)), if 𝛽 ∈ 𝐵0;

extend(𝑏𝐶𝑥 (𝛽−), 𝑇 � (𝛽 + 1)), otherwise.

(b) If 𝛽 ∈ acc(𝐶), then we let 𝑏𝐶𝑥 (𝛽) :=
⋃︀

Im(𝑏𝐶𝑥 � 𝛽), as promised.

The following is obvious, and is aligned with the microscopic perspective de-
scribed in requirement (2) of Subsection 2.6.

Dependencies 6.8.1. For any two consecutive points 𝛽− < 𝛽 of dom(𝑏𝐶𝑥 ), the
value of 𝑏𝐶𝑥 (𝛽) is completely determined by 𝑏𝐶𝑥 (𝛽−), 𝑇 � (𝛽 + 1) and 𝐶(𝛽).
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In the case 𝛽 ∈ nacc(𝐶), since 𝑏𝐶𝑥 (𝛽−) belongs to the normal tree 𝑇 � (𝛽 + 1),
we infer from the Extension Lemma (Lemma 6.6) that 𝑏𝐶𝑥 (𝛽) is an element of 𝑇𝛽
extending 𝑏𝐶𝑥 (𝛽−). In the case 𝛽 ∈ acc(𝐶), the fact that 𝑏𝐶𝑥 (𝛽) belongs to 𝑇𝛽
requires an argument:

Claim 6.8.2. Let 𝛽 ∈ acc(𝐶). Then 𝑏𝐶𝑥 (𝛽) ∈ 𝑇𝛽.

Proof. If 𝛽 /∈ Γ, then 𝑇𝛽 was constructed to consist of the limits of all 𝛽-branches
through 𝑇 � 𝛽, including the limit of the 𝛽-branch determined by 𝑏𝐶𝑥 � 𝛽, which is
𝑏𝐶𝑥 (𝛽). Thus, we may assume that 𝛽 ∈ Γ.

Since 𝛽 ∈ acc(𝐶), let us fix 𝐷 ∈ 𝒞𝛽 such that 𝐷 𝜒⊑* 𝐶. As Γ = 𝐸𝜅≥𝜒, in fact,

𝐷 ⊑* 𝐶. Fix 𝛾 ∈ 𝐶 such that 𝐷 � (𝐷 ∖ 𝛾) ⊑ 𝐶 � (𝐶 ∖ 𝛾). Set 𝑑 := 𝐷 ∖ 𝛾 and
𝑦 := 𝑏𝐶𝑥 (𝛾). We now prove, by induction on 𝛿 ∈ 𝑑, that 𝑏𝐶𝑥 (𝛿) = 𝑏𝐶𝑦 (𝛿) = 𝑏𝐷𝑦 (𝛿).

∙ Clearly, 𝑏𝐶𝑥 (min(𝑑)) = 𝑦 = 𝑏𝐶𝑦 (min(𝑑)) = 𝑏𝐷𝑦 (min(𝑑)).

∙ Suppose 𝛿− < 𝛿 are successive points of 𝑑, and 𝑏𝐶𝑥 (𝛿−) = 𝑏𝐶𝑦 (𝛿−) = 𝑏𝐷𝑦 (𝛿−).

Then, by Dependencies 6.8.1, also 𝑏𝐶𝑥 (𝛿) = 𝑏𝐶𝑦 (𝛿) = 𝑏𝐷𝑦 (𝛿).
∙ For 𝛿 ∈ acc(𝑑): If the sequences are identical up to 𝛿, then their limits must

be identical.

It follows that 𝑏𝐶𝑥 (𝛽) =
⋃︀
𝛿∈𝑑 𝑏

𝐶
𝑥 (𝛿) =

⋃︀
𝛿∈𝑑 𝑏

𝐷
𝑦 (𝛿) = b𝐷𝑦 , and by the induction

hypothesis (**)𝛽 , the latter is in 𝑇𝛽 . So 𝑏𝐶𝑥 (𝛽) ∈ 𝑇𝛽 , as sought. �

This completes the definition of the sequence 𝑏𝐶𝑥 , and thus of its limit b𝐶𝑥 , for

each 𝐶 ∈ 𝒞𝛼 and each 𝑥 ∈ 𝑇 �𝐶. Consequently, the level 𝑇𝛼 is defined as promised
in (**)𝛼.

Claim 6.8.3. Let 𝛼 ∈ Γ and 𝑡 ∈ 𝑇𝛼. Then there exists 𝐶 ∈ 𝒞𝛼 such that {𝛿 ∈ 𝐶 |
𝑡 = b𝐶𝑡�𝛿} is a final segment of 𝐶.

Proof. By the same analysis from the proof of Claim 6.8.2. �

Having constructed all levels of the tree, we then let 𝑇 :=
⋃︀
𝛼<𝜅 𝑇𝛼. It is clear

from the construction that 𝑇 is a normal, prolific, 𝜍-splitting, 𝜒-complete stream-
lined 𝜅-tree. By Lemma 2.1, to prove that 𝑇 is 𝜅-Souslin, it suffices to show that
it has no 𝜅-sized antichains. By Lemma 2.9, it suffices to prove the following.

Claim 6.8.4. Let 𝐴 ⊆ 𝑇 be a maximal antichain. Then there exists 𝛼 < 𝜅 such
that every node of 𝑇𝛼 extends some element of 𝐴 ∩ (𝑇 � 𝛼).

Proof. Set Ω := 𝐴 and 𝑝 := {𝑇,𝐴}. By our choice of 𝒞 and �⃗�, and recalling
Definition 5.9, we now fix 𝛼 ∈ 𝐸𝜅≥𝜒 such that, for all 𝐶 ∈ 𝒞𝛼,

sup{𝛾 ∈ 𝐶 | succ1(𝐶 ∖ 𝛾) ⊆ 𝐵0(Ω, 𝑝, 𝐶)} = 𝛼.

Let 𝑡 ∈ 𝑇𝛼 be arbitrary. As 𝛼 ∈ 𝐸𝜅≥𝜒 = Γ, we appeal to Claim 6.8.3, to find

𝐶 ∈ 𝒞𝛼 and 𝑥 ∈ 𝑇 � 𝐶 such that 𝑡 = b𝐶𝑥 . By our choice of 𝛼, fix 𝛾 ∈ 𝐶 ∖ dom(𝑥)

with succ1(𝐶 ∖𝛾) ⊆ 𝐵0(Ω, 𝑝, 𝐶). Let 𝛽 := min(𝐶 ∖ (𝛾+1)), so that 𝛽 ∈ 𝐵0(Ω, 𝑝, 𝐶).
Recalling Definition 5.8 and Proposition 2.12(2), we infer that 𝐶(𝛽) = 𝐴 ∩ (𝑇 � 𝛽)
and the latter is a maximal antichain in 𝑇 � 𝛽.

As 𝛾 is the predecessor of 𝛽 in 𝐶, and as 𝛽 ∈ 𝐵0, we infer that

𝑏𝐶𝑥 (𝛽) := anti(𝑏𝐶𝑥 (𝛾), 𝑇 � (𝛽 + 1), 𝐶(𝛽)).

Write �̄� := 𝑏𝐶𝑥 (𝛾), 𝑇 := 𝑇 � (𝛽 + 1) and 0 := 𝐶(𝛽). Recalling Definition 6.5(2),
we consider the set:

𝑄 := {𝑧 ∈ 𝑇𝛽(𝑇 ) | ∃𝑦 ∈ 0(�̄� ∪ 𝑦 ⊆ 𝑧)}.
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By now, we know that

𝑄 = {𝑧 ∈ 𝑇𝛽 | ∃𝑦 ∈ 𝐴 ∩ (𝑇 � 𝛽)(𝑏𝐶𝑥 (𝛾) ∪ 𝑦 ⊆ 𝑧)}.
As 𝐴∩ (𝑇 � 𝛽) is a maximal antichain in 𝑇 � 𝛽, we infer from the normality of 𝑇

that 𝑄 is nonempty, meaning that 𝑏𝐶𝑥 (𝛽) extends some element of 𝐴 ∩ (𝑇 � 𝛽). In
particular, 𝑡 extends some element of 𝐴 ∩ (𝑇 � 𝛼). �

This completes the proof. �

6.4. A tree with an ascent path. In [BR17b], a gallery of constructions of 𝜅-
Souslin trees with ascent paths was presented. Each of those constructions assumed
an instance of the form P(𝜅, . . . , 𝜎) with 𝜎 = 𝜔, which, by Proposition 4.31(2),
requires the existence of a nonreflecting stationary subset of 𝐸𝜅𝜔. In this section,
we present a construction from a weaker instance of the proxy principle which is
compatible with reflection, thereby improving an old theorem of Baumgartner (see
[Dev83]). Note, however, that the objects we obtain here are not as complex and
flexible as the ones obtained from the stronger instances in [BR17b].

Definition 6.9. Suppose that 𝑇 ⊆ <𝜅𝐻𝜅 is a streamlined 𝜅-tree. We say that

𝑓 = ⟨𝑓𝛼 | 𝛼 < 𝜅⟩ is a 𝜇-ascent path through 𝑇 iff for every pair 𝛼 < 𝛽 < 𝜅:

(1) 𝑓𝛼 is a function from 𝜇 to 𝑇𝛼;
(2) {𝑖 < 𝜇 | 𝑓𝛼(𝑖) ( 𝑓𝛽(𝑖)} is co-bounded in 𝜇.

Remark 6.10. In the general language of [BR17b, Definition 1.2], the above is called
an ℱbd

𝜇 -ascent path.

Theorem 6.11. Suppose that 𝜅 is (<𝜒)-closed for a given 𝜒 ∈ Reg(𝜅), and ℵ0 ≤
𝜇 < 𝜅. Let 𝜍 < 𝜅. If P∙(𝜅, 𝜇ind,⊑, 1, {𝐸𝜅≥𝜒}, 𝜅) holds, then there exists a normal,
prolific, 𝜍-splitting, 𝜒-complete 𝜅-Souslin tree admitting a 𝜇-ascent path.

Proof. Recalling Definition 5.15, we fix sequences 𝒞 = ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ and �⃗� = ⟨𝐵𝜄 |
𝜄 < 𝜅⟩ together witnessing P∙(𝜅, 𝜇+,⊑, 1, {𝐸𝜅≥𝜒}, 𝜅), along with ⟨𝑖(𝛼) | 𝛼 < 𝜅⟩
satisfying for every 𝛼 ∈ acc(𝜅):

(1) there exists a canonical enumeration ⟨𝐶𝛼,𝑖 | 𝑖(𝛼) ≤ 𝑖 < 𝜇⟩ of 𝒞𝛼;

(2) for all 𝑖 ∈ [𝑖(𝛼), 𝜇) and �̄� ∈ acc(𝐶𝛼,𝑖), 𝑖 ≥ 𝑖(�̄�) and 𝐶�̄�,𝑖 ⊑ 𝐶𝛼,𝑖;

(3) ⟨acc(𝐶𝛼,𝑖) | 𝑖(𝛼) ≤ 𝑖 < 𝜇⟩ is ⊆-increasing with acc(𝛼) =
⋃︀
𝑖∈[𝑖(𝛼),𝜇) acc(𝐶𝛼,𝑖).

Without loss of generality, we may also assume that:

(4) 0 ∈ 𝐶 for every 𝐶 ∈
⋃︀
𝛼∈acc(𝜅) 𝒞𝛼.

Now, the construction of the tree 𝑇 is identical to that in Theorem 6.8, using 𝒞
and �⃗�. We are left with demonstrating that 𝑇 admits a 𝜇-ascent path.

Referring to the construction, recall that Γ := 𝐸𝜅≥𝜒 is stationary in 𝜅, and that

for every 𝛼′ ∈ Γ, 𝐶 ∈ 𝒞𝛼′ and 𝑥 ∈ 𝑇 � 𝐶, b𝐶𝑥 is an element of 𝑇𝛼′ extending 𝑥.
For every 𝛼 < 𝜅, let 𝛼′ := min(Γ ∖ 𝛼), and then define 𝑓𝛼 : 𝜇→ 𝑇𝛼 via

𝑓𝛼(𝑖) := b
𝐶𝛼′,max{𝑖,𝑖(𝛼′)}
∅ � 𝛼.

Claim 6.11.1. ⟨𝑓𝛼 | 𝛼 < 𝜅⟩ forms a 𝜇-ascent path through 𝑇 .

Proof. Fix an arbitrary pair 𝛼 < 𝛽 of ordinals in 𝜅. Write 𝛼′ := min(Γ ∖ 𝛼) and
𝛽′ := min(Γ ∖ 𝛽).
I If 𝛼′ = 𝛽′, then we trivially get that 𝑓𝛼(𝑖) ( 𝑓𝛽(𝑖) for all 𝑖 < 𝜇.
I If 𝛼′ < 𝛽′, then 𝛼′ ∈ Γ∩𝛽′ ⊆ acc(𝛽′). By Clause (3), find a large enough 𝑗 < 𝜇

such that 𝛼′ ∈ acc(𝐶𝛽′,𝑖) for all 𝑖 ∈ [𝑗, 𝜇). For any such 𝑖, we have 𝐶𝛼′,𝑖 ⊑ 𝐶𝛽′,𝑖, so

that, by Dependencies 6.8.1, b
𝐶𝛼′,𝑖
∅ = b

𝐶𝛽′,𝑖
∅ � 𝛼′. In particular, 𝑓𝛼(𝑖) ( 𝑓𝛽(𝑖) on a

tail of 𝑖’s. �
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This completes the proof. �

Theorem A is the case (𝜆, 𝜇) := (ℵ1,ℵ0) of the following:

Corollary 6.12. Suppose that 𝜆 is an uncountable cardinal, and �(𝜆+) + CH𝜆

holds. For every 𝜇 ∈ Reg(𝜆) satisfying 𝜆𝜇 = 𝜆, there exists a 𝜆+-Souslin tree
admitting a 𝜇-ascent path.

Proof. By Corollary 4.46, Corollary 5.16 and Theorem 6.11, setting 𝜒 := 𝜇. �

Corollary 6.13. In the Harrington–Shelah model [HS85, Theorem A] in which

every stationary subset of 𝐸ℵ2

ℵ0
reflects, there also exists an ℵ2-Souslin tree with an

𝜔-ascent path.

Proof. The Harrington–Shelah model is a forcing extension of 𝐿 in which GCH
holds, and the first Mahlo cardinal in 𝐿 becomes ℵ2. By standard results in inner
model theory, �(ℵ2) holds, and hence Corollary 6.12 applies. �

6.5. Omitting an ascending path. In [Lüc17, Definition 1.3], Lücke considered
a weakening of a 𝜇-ascent path which he calls an ascending path of width 𝜇. This
is obtained by replacing Clause (2) of Definition 6.9 by:

(2′) there are 𝑖, 𝑗 < 𝜇 such that 𝑓𝛼(𝑖) ( 𝑓𝛽(𝑗).

Lücke proved (see [Lüc17, Theorem 1.9 and subsequent comment]) that, assum-
ing 𝜆<𝜆 = 𝜆, for every 𝜆+-Aronszajn tree 𝑇 , the following are equivalent:

∙ for every Λ < 𝜆, there is no ascending path of width Λ through 𝑇 ;
∙ 𝑇 is specializable, that is, there exists a notion of forcing P that does not

change the cardinal structure up to and including 𝜆+, and such that, in
𝑉 P, 𝑇 is the union of 𝜆 many antichains.

We next show that by decreasing the value of 𝜈 in Theorem 6.8, we can get a
𝜅-Souslin tree satisfying the additional property of omitting an ascending path.

Theorem 6.14. Suppose that 𝜅 is (<𝜒)-closed for a given 𝜒 ∈ Reg(𝜅). Let 𝜍 < 𝜅.
Given an infinite cardinal 𝜆 < 𝜅, put 𝒮 := {𝐸𝜅≥𝜒 ∩ 𝐸𝜅>Λ | Λ < 𝜆}.

If P∙(𝜅, 𝜅, 𝜒⊑*, 1,𝒮, 2) holds, then there exists a normal, prolific, 𝜍-splitting,
𝜒-complete, 𝜅-Souslin tree 𝑇 such that, for all Λ < 𝜆, there is no ascending path of
width Λ through 𝑇 .

Proof. Suppose P∙(𝜅, 𝜅, 𝜒⊑*, 1,𝒮, 2) holds, as witnessed by 𝒞 = ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ and

�⃗� = ⟨𝐵𝜄 | 𝜄 < 𝜅⟩. We recursively construct a sequence ⟨𝑇𝛼 | 𝛼 < 𝜅⟩ of levels whose
union will ultimately be the desired tree 𝑇 , as in the proof of Theorem 6.8, using
Γ := 𝐸𝜅≥𝜒. In particular, for every 𝛼 ∈ Γ, we shall have:

𝑇𝛼 := {b𝐶𝑥 | 𝐶 ∈ 𝒞𝛼, 𝑥 ∈ 𝑇 � 𝐶}.
The only difference is in the definition of 𝑏𝐶𝑥 in the case 𝛼 ∈ Γ, where stage (2)(a)
is now done as follows.

𝑏𝐶𝑥 (𝛽) :=

⎧⎪⎨⎪⎩
anti(𝑏𝐶𝑥 (𝛽−), 𝑇 � (𝛽 + 1), 𝐶(𝛽)), if 𝛽 ∈ 𝐵0;

sealpath(𝑏𝐶𝑥 (𝛽−), 𝑇 � (𝛽 + 1), 𝐶(𝛽)), if 𝛽 ∈ 𝐵1;

extend(𝑏𝐶𝑥 (𝛽−), 𝑇 � (𝛽 + 1)), otherwise.

In all cases, since 𝑏𝐶𝑥 (𝛽−) belongs to the normal tree 𝑇 � (𝛽 + 1), we infer from the
Extension Lemma (Lemma 6.6) that 𝑏𝐶𝑥 (𝛽) is an element of 𝑇𝛽 extending 𝑏𝐶𝑥 (𝛽−).
Now, it is clear that Dependencies 6.8.1 and Claims 6.8.2, 6.8.3 and 6.8.4 are all
valid, so that 𝑇 :=

⋃︀
𝛼<𝜅 𝑇𝛼 is a normal, prolific, 𝜍-splitting, 𝜒-complete streamlined

𝜅-Souslin tree. Thus, we are left with verifying the following.

Claim 6.14.1. For every Λ < 𝜆, 𝑇 admits no ascending path of width Λ.
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Proof. Fix a nonzero Λ < 𝜆, and suppose toward a contradiction that 𝑓 = ⟨𝑓𝛼 :

Λ → 𝑇𝛼 | 𝛼 < 𝜅⟩ is an ascending path of width Λ through 𝑇 . Let 𝑝 := 𝑓 and

Ω := {𝑓𝛼(𝜉) | 𝜉 < Λ, 𝛼 < 𝜅}, so that 𝑝 ∈ 𝐻𝜅+ and Ω ⊆ 𝐻𝜅. By our choice of 𝒞 and

�⃗�, and recalling Definition 5.9, we now fix 𝛼 ∈ 𝐸𝜅≥𝜒 ∩𝐸𝜅>Λ above 𝜆 such that 𝒞𝛼 is

a singleton, say, 𝒞𝛼 = {𝐶𝛼}, and

sup{𝛾 ∈ 𝐶𝛼 | succ1(𝐶𝛼 ∖ 𝛾) ⊆ 𝐵1(Ω, 𝑝, 𝐶𝛼)} = 𝛼.

For every 𝜉 < Λ, since 𝑓𝛼(𝜉) ∈ 𝑇𝛼 and 𝛼 ∈ Γ, by the construction of the level

𝑇𝛼, we can fix 𝑥𝜉 ∈ 𝑇 � 𝐶𝛼 such that 𝑓𝛼(𝜉) = b𝐶𝛼
𝑥𝜉

. Now let

𝛿 := max{Λ+, sup{dom(𝑥𝜉) | 𝜉 < Λ}}.

Since dom(𝑥𝜉) < 𝛼 for every 𝜉 < Λ, and Λ+ ≤ 𝜆 < 𝛼, it follows from cf(𝛼) > Λ

that 𝛿 < 𝛼. Thus, we may find a large enough 𝛽 ∈ nacc(𝐶𝛼) ∩ 𝐵1(Ω, 𝑝, 𝐶𝛼) such

that 𝛽− := sup(𝐶𝛼 ∩ 𝛽) is greater than 𝛿. Denote 0 := 𝐶𝛼(𝛽). It follows that, for
all 𝜉 < Λ:

∙ 𝛽− ∈ 𝐶𝛼;
∙ 𝑥𝜉 ∈ 𝑇 � (𝐶𝛼 ∩ 𝛽−);
∙ 𝑓𝛼(𝜉) = b𝐶𝛼

𝑥𝜉
;

∙ 𝐶𝛼(𝛽) = 0.

Since 𝛽− +1 ≤ 𝛽 < 𝛼 and we have assumed that 𝑓 is an ascending path of width
Λ through 𝑇 , we can fix 𝜉 < Λ such that, for some 𝜉 < Λ, 𝑓𝛽−+1(𝜉) ( 𝑓𝛼(𝜉). As

dom(𝑥𝜉) ∈ 𝐶𝛼 ∩ 𝛽, we obtain 𝑏𝐶𝛼
𝑥𝜉

(𝛽) ( b𝐶𝛼
𝑥𝜉

= 𝑓𝛼(𝜉). Let us examine how 𝑏𝐶𝛼
𝑥𝜉

(𝛽)

was chosen.
As 𝛽 ∈ nacc(𝐶𝛼) ∩𝐵1 and 𝛽− = sup(𝐶𝛼 ∩ 𝛽), we have

𝑏𝐶𝛼
𝑥𝜉

(𝛽) = sealpath(𝑏𝐶𝛼
𝑥𝜉

(𝛽−), 𝑇 � (𝛽 + 1), 𝐶𝛼(𝛽)).

Returning to Definition 6.5(3), we consider the following set:

𝑄 := {𝑧 ∈ 𝑇𝛽 | 𝑏𝐶𝛼
𝑥𝜉

(𝛽−) ⊆ 𝑧 & ∀𝑦 ∈ 0[dom(𝑦) = 𝛽− + 1 =⇒ 𝑦 * 𝑧]}.

Recalling Definition 5.8, let us fix an elementary submodel ℳ ≺ 𝐻𝜅+ satisfying:

𝑝 ∈ ℳ, ℳ∩ 𝜅 = 𝛽, and ℳ∩ Ω = 0.

Clearly, 𝛽 is a limit ordinal, and 0 = {𝑓𝛾(𝜉) | 𝜉 < Λ, 𝛾 < 𝛽}. In particular,
{𝑦 ∈ 0 | dom(𝑦) = 𝛽− + 1} = {𝑓𝛽−+1(𝜉) | 𝜉 < Λ}. Since 𝑇 is a prolific tree

and 𝛽− > 𝛿 ≥ Λ+, the node 𝑏𝐶𝛼
𝑥𝜉

(𝛽−) must have at least Λ+ many immediate

successors in 𝑇𝛽−+1. Thus we can fix 𝑤 ∈ 𝑇𝛽−+1 extending 𝑏𝐶𝛼
𝑥𝜉

(𝛽−) that is distinct

from 𝑓𝛽−+1(𝜉) for every 𝜉 < Λ. By normality, we can extend 𝑤 to some element

𝑧 ∈ 𝑇𝛽 . It follows that 𝑄 is nonempty, so that 𝑏𝐶𝛼
𝑥𝜉

(𝛽) was chosen from 𝑄, and

in particular is incomparable with 𝑓𝛽−+1(𝜉) for every 𝜉 < Λ. It follows that 𝑓𝛼(𝜉)

is incomparable with 𝑓𝛽−+1(𝜉) for every 𝜉 < Λ, contradicting our choice of 𝜉 and
completing the proof. �

This completes the proof. �

6.6. Rigid. Compared to the previous subsection, here we strengthen ℛ from 𝜒⊑*

to 𝜒⊑, and gain rigidity as a result.

Definition 6.15 (cf. [DJ74, SV.1]). An automorphism of a streamlined tree 𝑇 is
a bijection Ω : 𝑇 ↔ 𝑇 satisfying (𝑥 ( 𝑦 ⇐⇒ Ω(𝑥) ( Ω(𝑦)). The identity map
is known as the trivial automorphism. A streamlined tree is said to be rigid iff its
only automorphism is the trivial one.
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Note that any automorphism Ω of a streamlined tree 𝑇 is level-preserving, that
is, Ω[𝑇𝛽 ] = 𝑇𝛽 for every ordinal 𝛽.

Corollary 6.16. If P∙(𝜅, 𝜅,⊑, 1, {𝐸𝜅≥𝜆}, 2) holds, then there exists a rigid 𝜅-Souslin
tree admitting no ascending path of width Λ for every Λ < 𝜆.

Proof. Appeal to the next theorem with 𝜒 := ℵ0. �

Theorem 6.17. Suppose that 𝜅 is (<𝜒)-closed for a given 𝜒 ∈ Reg(𝜅). Let 𝜍 < 𝜅.
Given an infinite cardinal 𝜆 < 𝜅, put 𝒮 := {𝐸𝜅≥𝜒 ∩ 𝐸𝜅>Λ | Λ < 𝜆}.

If P∙(𝜅, 𝜅, 𝜒⊑, 1,𝒮, 2) holds, then there exists a normal, prolific, 𝜍-splitting, 𝜒-
complete, rigid 𝜅-Souslin tree 𝑇 such that, for all Λ < 𝜆, there is no ascending path
of width Λ through 𝑇 .

Proof. Suppose P∙(𝜅, 𝜅, 𝜒⊑, 1,𝒮, 2) holds. Fix a partition of 𝜅 into stationary sets,

�⃗� = ⟨𝐵𝜄 | 𝜄 < 𝜅⟩, such that 𝐵2 ∩ nacc(𝜅) = ∅. By Corollary 5.14, then, fix 𝒞 =

⟨𝒞𝛼 | 𝛼 < 𝜅⟩ that, together with �⃗�, witnesses P∙(𝜅, 𝜅, 𝜒⊑, 1,𝒮, 2). We recursively
construct a sequence ⟨𝑇𝛼 | 𝛼 < 𝜅⟩ of levels whose union will ultimately be the
desired tree 𝑇 , as in the proof of Theorem 6.8, using Γ := 𝐸𝜅≥𝜒. In particular, for
every 𝛼 ∈ Γ, we shall have:

𝑇𝛼 := {b𝐶𝑥 | 𝐶 ∈ 𝒞𝛼, 𝑥 ∈ 𝑇 � 𝐶}.

The only difference is in the definition of 𝑏𝐶𝑥 in the case 𝛼 ∈ Γ, where stage (2)(a)
is now done as follows.

𝑏𝐶𝑥 (𝛽) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
anti(𝑏𝐶𝑥 (𝛽−), 𝑇 � (𝛽 + 1), 𝐶(𝛽)), if 𝛽 ∈ 𝐵0;

sealpath(𝑏𝐶𝑥 (𝛽−), 𝑇 � (𝛽 + 1), 𝐶(𝛽)), if 𝛽 ∈ 𝐵1;

auto(𝑏𝐶𝑥 (𝛽−), 𝑇 � (𝛽 + 1), ⟨𝑏𝐶𝑦 (𝛽−) | 𝑦 ∈ 𝑇 � (𝐶 ∩ 𝛽)⟩, 𝐶(𝛽)), if 𝛽 ∈ 𝐵2;

extend(𝑏𝐶𝑥 (𝛽−), 𝑇 � (𝛽 + 1)), otherwise.

In all cases, 𝑏𝐶𝑥 (𝛽−) belongs to the normal tree 𝑇 � (𝛽+1) and, in case 𝛽 ∈ acc(𝜅) ⊇
𝐵2, 𝑇 �𝛽 is ever-branching. Thus, we infer from the Extension Lemma (Lemma 6.6)
that 𝑏𝐶𝑥 (𝛽) is an element of 𝑇𝛽 extending 𝑏𝐶𝑥 (𝛽−).

The following is obvious.

Dependencies 6.17.1. For any two consecutive points 𝛽− < 𝛽 of dom(𝑏𝐶𝑥 ), the
value of 𝑏𝐶𝑥 (𝛽) is completely determined by 𝑏𝐶𝑥 (𝛽−), 𝑇 � (𝛽+ 1), 𝐶(𝛽), and the map

𝑦 ↦→ 𝑏𝐶𝑦 (𝛽−) over 𝑇 � (𝐶 ∩ 𝛽).

Note that, unlike Dependencies 6.8.1, which only involves the value of 𝐶 at
𝛽, here we have a dependency on 𝐶 � 𝛽 as well. The price we pay for this added
dependency is that, in order to carry out the proof of Claim 6.8.2 in this context, we

require 𝒞 to satisfy the stronger 𝜒⊑-coherence, rather than merely 𝜒⊑*-coherence.
Claims 6.8.2, 6.8.3 and 6.8.4 remain valid, so that 𝑇 :=

⋃︀
𝛼<𝜅 𝑇𝛼 is a normal,

prolific, 𝜍-splitting, 𝜒-complete streamlined 𝜅-Souslin tree. Also, Claim 6.14.1 re-
mains valid, so that for all Λ < 𝜆, there is no ascending path of width Λ through
𝑇 . Thus, we are left with proving the following.

Claim 6.17.2. 𝑇 is rigid.

Proof. Suppose Ω : 𝑇 → 𝑇 is a nontrivial automorphism, and we will derive a

contradiction. Let 𝑝 := {Ω, 𝑇}, so that 𝑝 ∈ 𝐻𝜅+ and Ω ⊆ 𝐻𝜅. By our choice of �⃗�

and 𝒞, and recalling Definition 5.9, we now fix 𝛼 ∈ 𝐸𝜅≥𝜒 such that 𝒞𝛼 is a singleton,

say, 𝒞𝛼 = {𝐶𝛼}, and

sup{𝛾 ∈ 𝐶𝛼 | succ1(𝐶𝛼 ∖ 𝛾) ⊆ 𝐵2(Ω, 𝑝, 𝐶𝛼)} = 𝛼.
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By Proposition 2.12(3), for any 𝛽 ∈ 𝐵2(Ω, 𝑝, 𝐶𝛼), 𝐶𝛼(𝛽) = Ω � (𝑇 � 𝛽) and the
latter is a nontrivial automorphism of 𝑇 �𝛽. In particular, Ω � (𝑇 �𝛼) is a nontrivial
automorphism of 𝑇 � 𝛼. Thus, by normality, we can let 𝑥0 be the �𝜅-least element
of 𝑇 � 𝐶𝛼 such that Ω(𝑥0) ̸= 𝑥0.

As 𝛼 ∈ Γ, by the nature of the construction of 𝑇𝛼, it makes sense to consider
the particular node b𝐶𝛼

𝑥0
. Since b𝐶𝛼

𝑥0
∈ 𝑇𝛼 and Ω is an automorphism of 𝑇 , we have

Ω(b𝐶𝛼
𝑥0

) ∈ 𝑇𝛼, so that we may choose some 𝑥 ∈ 𝑇 � 𝐶𝛼 such that Ω(b𝐶𝛼
𝑥0

) = b𝐶𝛼
𝑥 .31

Fix a large enough 𝛽 ∈ nacc(𝐶𝛼) ∩ 𝐵2(Ω, 𝑝, 𝐶𝛼) such that sup(𝐶𝛼 ∩ 𝛽) >
max{dom(𝑥0),dom(𝑥)}. Then 𝑏𝐶𝛼

𝑥0
(𝛽) = b𝐶𝛼

𝑥0
� 𝛽 and 𝑏𝐶𝛼

𝑥 (𝛽) = b𝐶𝛼
𝑥 � 𝛽. Since

Ω is an automorphism, it follows that

Ω(𝑏𝐶𝛼
𝑥0

(𝛽)) = Ω(b𝐶𝛼
𝑥0
� 𝛽) = Ω(b𝐶𝛼

𝑥0
) � 𝛽 = b𝐶𝛼

𝑥 � 𝛽 = 𝑏𝐶𝛼
𝑥 (𝛽).

Write 𝛽− := sup(𝐶𝛼 ∩ 𝛽), 𝑇 := 𝑇 � (𝛽 + 1), �̄� := ⟨𝑏𝐶𝛼
𝑦 (𝛽−) | 𝑦 ∈ 𝑇 � (𝐶𝛼 ∩ 𝛽)⟩

and 0 := 𝐶𝛼(𝛽). As 𝛽 ∈ nacc(𝐶𝛼) ∩𝐵2, we infer:

∙ 𝑏𝐶𝛼
𝑥0

(𝛽) = auto(𝑏𝐶𝛼
𝑥0

(𝛽−), 𝑇 , �̄�,0);

∙ 𝑏𝐶𝛼
𝑥 (𝛽) = auto(𝑏𝐶𝛼

𝑥 (𝛽−), 𝑇 , �̄�,0).

Consider an arbitrary 𝑧 ∈ {𝑏𝐶𝛼
𝑥0

(𝛽−), 𝑏𝐶𝛼
𝑥 (𝛽−)}. Recall Definition 6.5(4), and let

us analyze auto(𝑧, 𝑇 , �̄�,0). We have 𝑧 ∈ 𝑇 , and dom(𝑧) = 𝛽− < 𝛽 = 𝛽(𝑇 ). Since
𝛽 ∈ 𝐵2(Ω, 𝑝, 𝐶𝛼), 𝛽 is a limit ordinal and 0 is the automorphism Ω � (𝑇 � 𝛽) of
𝑇 �𝛽. Also, �̄� is a partial function from 𝑇 � (𝛽(𝑇 )) to 𝑇 � (𝛽(𝑇 )). Since 𝑥0 ∈ dom(�̄�)
and Ω(𝑥0) ̸= 𝑥0, the set 𝑄 := {𝑥0 ∈ dom(�̄�) | 0(𝑥0) ̸= 𝑥0} is nonempty. By
the very choice of 𝑥0, moreover, 𝑥0 = min(𝑄,�𝜅). Write �̃�0 := extend(�̄�(𝑥0), 𝑇 )
and 𝑦0 :=

⋃︀
𝛾<𝛽(𝑇 ) 0(�̃�0 � 𝛾). Since 𝛽(𝑇 ) = 𝛽 is a limit ordinal and 0 is the

automorphism Ω � (𝑇 � 𝛽), we obtain 𝑦0 = Ω(�̃�0). Altogether:

∙ 𝑏𝐶𝛼
𝑥0

(𝛽) = auto(𝑏𝐶𝛼
𝑥0

(𝛽−), 𝑇 , �̄�,0) = extend(𝑏𝐶𝛼
𝑥0

(𝛽−), 𝑇 ∖ {𝑦0}).

∙ 𝑏𝐶𝛼
𝑥 (𝛽) = auto(𝑏𝐶𝛼

𝑥 (𝛽−), 𝑇 , �̄�,0) = extend(𝑏𝐶𝛼
𝑥 (𝛽−), 𝑇 ∖ {𝑦0}).

Since 𝑥0 ( 𝑏𝐶𝛼
𝑥0

(𝛽−) = �̄�(𝑥0) ( extend(�̄�(𝑥0), 𝑇 ) = �̃�0, we have Ω(𝑥0) ( Ω(�̃�0) =
𝑦0. Thus, by the fact that Ω(𝑥0) and 𝑥0 are two distinct elements of the same level,
we infer that 𝑏𝐶𝛼

𝑥0
(𝛽−) is incomparable with 𝑦0. Consequently,

𝑏𝐶𝛼
𝑥0

(𝛽) = extend(𝑏𝐶𝛼
𝑥0

(𝛽−), 𝑇 ∖ {𝑦0})

= extend(𝑏𝐶𝛼
𝑥0

(𝛽−), 𝑇 ) = extend(�̄�(𝑥0), 𝑇 ) = �̃�0,

so that
Ω(𝑏𝐶𝛼

𝑥0
(𝛽)) = Ω(�̃�0) = 𝑦0.

As 𝑏𝐶𝛼
𝑥 (𝛽) = extend(𝑏𝐶𝛼

𝑥 (𝛽−), 𝑇 ∖ {𝑦0}), we obtain 𝑏𝐶𝛼
𝑥 (𝛽) ∈ 𝑇 ∖ {𝑦0}. So

Ω(𝑏𝐶𝛼
𝑥0

(𝛽)) ̸= 𝑏𝐶𝛼
𝑥 (𝛽).

This is a contradiction. �

This completes the proof. �

Theorem B is the case 𝜆 := ℵ1 of the following corollary.

Corollary 6.18. Suppose that 𝜅 is a strongly inaccessible cardinal, 𝜆 < 𝜅 is regular
and uncountable, and there exists a sequence ⟨𝐴𝛼 | 𝛼 ∈ 𝑆⟩ such that:

∙ 𝑆 is a nonreflecting stationary subset of 𝐸𝜅≥𝜆;
∙ For every 𝛼 ∈ 𝑆, 𝐴𝛼 is a cofinal subset of 𝛼;
∙ For every cofinal 𝐵 ⊆ 𝜅, there exists 𝛼 ∈ 𝑆 for which

{𝛿 < 𝛼 | min(𝐴𝛼 ∖ (𝛿 + 1)) ∈ 𝐵}
is stationary in 𝛼.

31Recall that 𝐶𝛼 is the sole element of 𝒞𝛼.
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Then there is a rigid 𝜅-Souslin tree admitting no ascending path of width < 𝜆.

Proof. By Theorem 4.28, in particular, P−(𝜅, 𝜅,⊑, 1, {𝐸𝜅≥𝜆}, 2) holds. As 𝜅 is

strongly inaccessible, it follows from Theorem 5.13 that P∙(𝜅, 𝜅,⊑, 1, {𝐸𝜅≥𝜆}, 2)
holds, as well. Now appeal to Theorem 6.17 with 𝜒 := ℵ0. �

6.7. Free. Recall that the square of a tree (𝑇,<𝑇 ) is the poset (𝑇 ,<𝑇 ), where

∙ 𝑇 := {(𝑡, 𝑡′) | 𝑡, 𝑡′ ∈ 𝑇, ht(𝑡) = ht(𝑡′)},
∙ (𝑠, 𝑠′) <𝑇 (𝑡, 𝑡′) iff 𝑠 <𝑇 𝑡 and 𝑠′ <𝑇 𝑡

′.

By a theorem of Kurepa (see [JW97, Lemma 14.14, Theorem 14.15]), the square
of an ever-branching tree of height 𝜅 has an antichain of size 𝜅. In particular:

Fact 6.19 (Kurepa, [Kur52]). The square of a 𝜅-Souslin tree is not 𝜅-Souslin.

In contrast, as we shall soon see, the product of two 𝜅-Souslin trees may still be
Souslin. In fact, this is also true for longer products:

Definition 6.20. For a sequence of trees ⟨𝒯 𝑖 | 𝑖 < 𝜏⟩ with 𝒯 𝑖 = (𝑇 𝑖, <𝑇 𝑖) for each

𝑖 < 𝜏 , the product
⨂︀

𝑖<𝜏 𝒯 𝑖 is defined to be the tree (𝑇 ,<𝑇 ), where:

∙ 𝑇 consists of all �⃗� ∈
∏︀
𝑖<𝜏 𝑇

𝑖 that are level sequences, that is, 𝑖 ↦→ ht𝒯 𝑖 (⃗𝑡(𝑖))
is constant over 𝜏 ;

∙ �⃗� <𝑇 �⃗� iff �⃗�(𝑖) <𝑇 𝑖 �⃗�(𝑖) for every 𝑖 < 𝜏 .

Now, consider a fixed tree 𝒯 = (𝑇,<𝑇 ). For a node 𝑠 ∈ 𝑇 , let us denote
𝑇 (𝑠) := {𝑥 ∈ 𝑇 | 𝑥 is comparable with 𝑠}. That is, 𝑇 (𝑠) = 𝑠↓ ∪ {𝑠} ∪ 𝑠↑. Then,
for any level sequence �⃗� = ⟨𝑠𝑖 | 𝑖 < 𝜏⟩ in

⨂︀
𝑖<𝜏 𝒯 , we can consider the derived tree⨂︀

𝑖<𝜏 (𝑇 (𝑠𝑖), <𝑇 ) and ask whether it is 𝜅-Souslin.
In order to bring the notion of derived trees within our framework of streamlined

trees, we work with a slightly different definition, as follows.

Notation 6.21 (𝑖th-component). For every function 𝑥 : 𝛼→ 𝜏𝐻𝜅 and every 𝑖 < 𝜏 ,
let (𝑥)𝑖 : 𝛼→ 𝐻𝜅 denote the sequence ⟨𝑥(𝜀)(𝑖) | 𝜀 < 𝛼⟩.

Definition 6.22 (Derived tree, [BR19c, Definition 4.4]). Suppose that 𝑇 ⊆ <𝜅𝐻𝜅

is a streamlined tree, and �⃗� = ⟨𝑠𝑖 | 𝑖 < 𝜏⟩ is a nonempty sequence of elements of 𝑇 .
We let 𝑇 (�⃗�) stand for the collection of all 𝑥 : 𝛼→ 𝜏𝐻𝜅 such that:

∙ 𝛼 is an ordinal; and
∙ for all 𝑖 < 𝜏 , (𝑥)𝑖 ∪ 𝑠𝑖 is in 𝑇 .

Note that for a given level sequence �⃗� = ⟨𝑠𝑖 | 𝑖 < 𝜏⟩ of elements of a streamlined
tree 𝑇 , the tree (𝑇 (�⃗�),() is order-isomorphic to

⨂︀
𝑖<𝜏 (𝑇 (𝑠𝑖),().32

Fact 6.23 (cf. [BR19c, Lemma 4.7]). Suppose that 𝑇 ⊆ <𝜅𝐻𝜅 is a streamlined tree.
For every 𝜒 < 𝜅 and every nonempty sequence �⃗� ∈ <𝜒𝑇 :

(1) 𝑇 (�⃗�) ⊆ <𝜅𝐻𝜅 is a streamlined tree;
(2) If 𝑇 is normal, then so is 𝑇 (�⃗�);
(3) If 𝑇 is a normal 𝜅-tree and 𝜅 is (<𝜒)-closed, then 𝑇 (�⃗�) is a 𝜅-tree;
(4) If 𝑇 is ever-branching, then so is 𝑇 (�⃗�);
(5) If �⃗� = ⟨∅⟩, then (𝑇 (�⃗�),() is order-isomorphic to (𝑇,() via the isomorphism

𝑥 ↦→ (𝑥)0. Likewise, if �⃗� = ⟨∅, ∅⟩, then (𝑇 (�⃗�),() is order-isomorphic to the
square of (𝑇,().

By Fact 6.19, if a level-sequence �⃗� is not injective, then the derived tree 𝑇 (�⃗�) will
not be Souslin. Altogether, this leads us to the following definition.

32Recall the last bullet of Lemma 2.4.



MICROSCOPIC APPROACH, PART II 55

Definition 6.24 ([BR19c, Definition 4.5]). A streamlined 𝜅-Souslin tree 𝑇 is said
to be 𝜒-free if for every 𝛿 < 𝜅 and every nonempty injection �⃗� ∈ <𝜒𝑇𝛿, the derived
tree 𝑇 (�⃗�) is again a 𝜅-Souslin tree.

Remarks 6.25. (1) By [BR17b, Lemma A.7(1)], if there exists a 𝜒-free 𝜅-Souslin
tree, then 𝜅 is (<𝜒)-closed.

(2) Instead of ℵ0-free, we simply say free.

Corollary 6.26. If P∙(𝜅, 𝜅,⊑, 𝜅, {𝜅}, 2) holds, then there is a free 𝜅-Souslin tree.

Proof. Appeal to the next theorem with 𝜒 := ℵ0. �

The main theorem of this subsection reads as follows.

Theorem 6.27. Suppose that 𝜅 is (<𝜒)-closed for a given 𝜒 ∈ Reg(𝜅). Let 𝜍 < 𝜅.
If P∙(𝜅, 𝜅, 𝜒⊑, 𝜅, {𝐸𝜅≥𝜒}, 2) holds, then there exists a normal, prolific, 𝜍-splitting,

𝜒-complete, 𝜒-free 𝜅-Souslin tree.

Proof. Suppose P∙(𝜅, 𝜅, 𝜒⊑, 𝜅, {𝐸𝜅≥𝜒}, 2) holds, as witnessed by ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ and

⟨𝐵𝜄 | 𝜄 < 𝜅⟩. Let 𝜋 : 𝜅 → 𝜅 be such that 𝛽 ∈ 𝐵𝜋(𝛽) for all 𝛽 < 𝜅. Let 𝜑 : 𝜅 ↔ 𝐻𝜅

witness the isomorphism (𝜅,∈) ∼= (𝐻𝜅,�𝜅). Put 𝜓 := 𝜑 ∘ 𝜋.
We recursively construct a sequence ⟨𝑇𝛼 | 𝛼 < 𝜅⟩ of levels whose union will

ultimately be the desired tree 𝑇 , as in the proof of Theorem 6.8, using Γ := 𝐸𝜅≥𝜒.
In particular, for every 𝛼 ∈ Γ, we shall have:

𝑇𝛼 := {b𝐶𝑥 | 𝐶 ∈ 𝒞𝛼, 𝑥 ∈ 𝑇 � 𝐶}.
The only difference is in the definition of 𝑏𝐶𝑥 in the case 𝛼 ∈ Γ, where stage (2)(a)
is now done as follows.

𝑏𝐶𝑥 (𝛽) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
free(𝑏𝐶𝑥 (𝛽−), 𝑇 � (𝛽 + 1), ⟨𝑏𝐶𝜓(𝛽)(𝜉)(𝛽

−) | 𝜉 ∈ dom(𝜓(𝛽))⟩, 𝐶(𝛽)),

if 𝜓(𝛽) ∈ <𝜒(𝑇 � (𝐶 ∩ 𝛽));

extend(𝑏𝐶𝑥 (𝛽−), 𝑇 � (𝛽 + 1)),

otherwise.

In all cases, since 𝑏𝐶𝑥 (𝛽−) belongs to the normal tree 𝑇 �(𝛽+1), we infer from the
Extension Lemma (Lemma 6.6) that 𝑏𝐶𝑥 (𝛽) is an element of 𝑇𝛽 extending 𝑏𝐶𝑥 (𝛽−).

The following is obvious.

Dependencies 6.27.1. For any two consecutive points 𝛽− < 𝛽 of dom(𝑏𝐶𝑥 ), the
value of 𝑏𝐶𝑥 (𝛽) is completely determined by 𝑏𝐶𝑥 (𝛽−), 𝑇 � (𝛽 + 1), 𝐶(𝛽), 𝜓(𝛽), and

the map 𝑦 ↦→ 𝑏𝐶𝑦 (𝛽−) over 𝑇 � (𝐶 ∩ 𝛽).

It follows that Claims 6.8.2 and 6.8.3 remain valid, where, as in the proof of

Theorem 6.17, we appeal to the stronger 𝜒⊑*-coherence of 𝒞 in order to prove
Claim 6.8.2 despite the increased dependency. It follows that 𝑇 :=

⋃︀
𝛼<𝜅 𝑇𝛼 is a

normal, prolific, 𝜍-splitting, 𝜒-complete streamlined 𝜅-tree. Thus, we are left with
verifying the following.

Claim 6.27.2. 𝑇 is a 𝜒-free 𝜅-Souslin tree.

Proof. We rely throughout on the various clauses of Fact 6.23. 𝑇 is 𝜅-Souslin iff
𝑇 (⟨∅⟩) is 𝜅-Souslin, and hence it suffices to prove 𝜒-freeness. Fix an arbitrary
nonzero ordinal 𝜏 < 𝜒, some 𝛿 < 𝜅, and an injection �⃗� = ⟨𝑤𝜉 | 𝜉 < 𝜏⟩ ∈ 𝜏𝑇𝛿. We

need to show that the derived tree 𝑇 := 𝑇 (�⃗�) is a 𝜅-Souslin tree. For this, fix an

arbitrary maximal antichain 𝐴 in 𝑇 . Let Ω := 𝐴 and 𝑝 := {𝐴, 𝑇}. Fix a transversal
⟨𝐶𝛼 | 𝛼 < 𝜅⟩ ∈

∏︀
𝛼<𝜅 𝒞𝛼. Recalling Definition 5.9, we now infer that the following

set is stationary:

𝑊 := {𝛼 ∈ 𝐸𝜅≥𝜒 | 𝒞𝛼 = {𝐶𝛼} and ∀𝑖 < 𝛼[sup(nacc(𝐶𝛼) ∩𝐵𝑖(Ω, 𝑝, 𝐶𝛼)) = 𝛼]}.
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Since {𝛼 ∈ 𝐸𝜅≥𝜒 | <𝜒(𝑇 �𝛼) ⊆ 𝜑[𝛼]} is a club relative to 𝐸𝜅≥𝜒, let us fix an ordinal

𝛼 ∈𝑊 ∖ (𝛿 + 1) such that <𝜒(𝑇 � 𝛼) ⊆ 𝜑[𝛼].

Let 𝑣 ∈ 𝑇𝛼 be arbitrary, and we shall show that it extends some element of
𝐴 ∩ (𝑇 � 𝛼).

Let 𝜉 < 𝜏 be arbitrary. As (𝑣)𝜉 ∈ 𝑇𝛼 and 𝛼 ∈ 𝑊 ⊆ Γ, by Claim 6.8.3, there

exists some 𝑥𝜉 ∈ 𝑇 � 𝐶𝛼 such that (𝑣)𝜉 = b𝐶𝛼
𝑥𝜉

. Furthermore, by 𝜏 < 𝜒 ≤ cf(𝛼)

and Claim 6.8.3, we may fix a large enough 𝛾 ∈ 𝐶𝛼 ∖ 𝛿 along with �⃗� := ⟨𝑥𝜉 |
𝜉 < 𝜏⟩ ∈ 𝜏𝑇𝛾 such that (𝑣)𝜉 = b𝐶𝛼

𝑥𝜉
for all 𝜉 < 𝜏 . Of course, �⃗� ∈ <𝜒(𝑇 � 𝛼) ⊆

𝜑[𝛼]. In particular, 𝑖 := 𝜑−1(�⃗�) is < 𝛼, so that our choice of 𝛼 guarantees that

sup(nacc(𝐶𝛼) ∩𝐵𝑖(Ω, 𝑝, 𝐶𝛼)) = 𝛼.

Fix a large enough 𝛽 ∈ nacc(𝐶𝛼) ∩𝐵𝑖(Ω, 𝑝, 𝐶𝛼) with 𝛾 ≤ sup(𝐶𝛼 ∩ 𝛽) < 𝛽 < 𝛼.

Write 𝑇 := 𝑇 � (𝛽 + 1), 𝛽− := sup(𝐶𝛼 ∩ 𝛽), and �⃗� := ⟨𝑏𝐶𝛼
𝑥𝜉

(𝛽−) | 𝜉 < 𝜏⟩. As 𝛽 ∈ 𝐵𝑖,
we infer

𝜓(𝛽) = 𝜑(𝜋(𝛽)) = 𝜑(𝑖) = �⃗� ∈ 𝜏 (𝑇𝛾) ⊆ <𝜒(𝑇 � (𝐶𝛼 ∩ 𝛽)),

so that, for all 𝑥 ∈ 𝑇 � (𝐶𝛼 ∩ 𝛽),

𝑏𝐶𝛼
𝑥 (𝛽) = free(𝑏𝐶𝛼

𝑥 (𝛽−), 𝑇 , �⃗�, 𝐶𝛼(𝛽)).

Recalling Definition 6.5(5), we must analyze 𝑧 := anti(∅, 𝑇 (⃗𝑏), 𝐶𝛼(𝛽)). Clearly,

𝛽(𝑇 (⃗𝑏)) = 𝛽(𝑇 ) = 𝛽 and 𝑇 (⃗𝑏) = 𝑇 (⃗𝑏) � (𝛽 + 1). Thus, consider the set

𝑄 := {𝑧 ∈ 𝑇 (⃗𝑏)𝛽 | ∃𝑦 ∈ 𝐶𝛼(𝛽) (𝑦 ⊆ 𝑧)}.

Let 𝑎 : 𝛽− → 𝜏𝐻𝜅 be the unique function satisfying (𝑎)𝜉 = �⃗�(𝜉) for all 𝜉 < 𝜏 . For

all 𝜉 < 𝜏 , we have 𝑥𝜉 ⊆ 𝑏𝐶𝛼
𝑥𝜉

(𝛽−) = (𝑎)𝜉 ( b𝐶𝛼
𝑥𝜉

= (𝑣)𝜉, so that 𝑎 = 𝑣 �𝛽− is in 𝑇 �𝛽.

Since 𝛽 ∈ 𝐵𝑖(𝐴, {𝐴, 𝑇}, 𝐶𝛼), Proposition 2.12(2) entails that 𝐶𝛼(𝛽) = 𝐴 ∩ (𝑇 � 𝛽)

is a maximal antichain in 𝑇 � 𝛽, and we may pick some 𝑦 ∈ 𝐶𝛼(𝛽) such that

𝑎 ∪ 𝑦 ∈ 𝑇 � 𝛽. Since 𝑇 is normal, 𝑇 is normal, and hence there exists some 𝑧′ ∈ 𝑇𝛽
such that 𝑎 ∪ 𝑦 ⊆ 𝑧′. As 𝑎 ⊆ 𝑧′, we obtain 𝑧′ ∈ 𝑇 (⃗𝑏). Therefore, 𝑄 is nonempty,
and 𝑧 = min(𝑄,�𝜅).

Notice that 𝛽 > 𝛾 ≥ 𝛿. Since {𝑤𝜉 | 𝜉 < 𝜏} is an antichain and 𝑤𝜉 ( (𝑧)𝜉 for
every 𝜉 < 𝜏 , it follows that {(𝑧)𝜉 | 𝜉 < 𝜏} is also an antichain. Thus, we infer that,
for all 𝜉 < 𝜏 ,

{𝜉′ < 𝜏 | 𝑏𝐶𝛼
𝑥𝜉

(𝛽−) ∪ (𝑧)𝜉′ ∈ 𝑇} = {𝜉}.

Consequently, for all 𝜉 < 𝜏 , 𝑏𝐶𝛼
𝑥𝜉

(𝛽) = free(𝑏𝐶𝛼
𝑥𝜉

(𝛽−), 𝑇 , �⃗�, 𝐶𝛼(𝛽)) = (𝑧)𝜉.

Let 𝑦 ∈ 𝐴 ∩ (𝑇 � 𝛽) be a witness to the choice of 𝑧. Then for all 𝜉 < 𝜏 we infer

(𝑦)𝜉 ( (𝑧)𝜉 = 𝑏𝐶𝛼
𝑥𝜉

(𝛽) ( b𝐶𝛼
𝑥𝜉

= (𝑣)𝜉. �

This completes the proof. �

Of course, there are cases in which one wants to construct free trees that are
slim (or, moreover, regressive) rather than complete. For this, note that the above
construction would be equally successful had we set Γ := acc(𝜅), abandoning the
goal of completeness, provided that we assume the stronger coherence relation ⊑
instead of 𝜒⊑. In addition, if we require |𝒞𝛼| < ℵ1 for every 𝛼 < 𝜅, then the tree
will satisfy |𝑇𝛼| ≤ |𝛼| for all infinite 𝛼 < 𝜅. Altogether, we have the following.33

Theorem 6.28. Suppose that 𝜅 is (<𝜒)-closed for a given 𝜒 ∈ Reg(𝜅).
If P∙(𝜅,ℵ1,⊑, 𝜅, {𝐸𝜅≥𝜒}, 2) holds, then there exists a normal, prolific, slim, 𝜒-free

𝜅-Souslin tree. �

33For more results in this direction, see [BR17b, S6].
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6.8. Uniformly homogeneous and uniformly coherent.

Definition 6.29. For two elements 𝑥, 𝑦 of 𝐻𝜅, we define 𝑥 * 𝑦 to be the empty set,
unless 𝑥, 𝑦 ∈ <𝜅𝐻𝜅 with dom(𝑥) < dom(𝑦), in which case 𝑥 * 𝑦 : dom(𝑦) → 𝐻𝜅 is
defined by stipulating:

(𝑥 * 𝑦)(𝜀) :=

{︃
𝑥(𝜀), if 𝜀 ∈ dom(𝑥);

𝑦(𝜀), otherwise.

Definition 6.30. A streamlined 𝜅-tree 𝑇 is said to be:

∙ coherent iff {𝜀 ∈ dom(𝑥) ∩ dom(𝑦) | 𝑥(𝜀) ̸= 𝑦(𝜀)} is finite for all 𝑥, 𝑦 ∈ 𝑇 ;
∙ uniformly homogeneous iff for all 𝑦 ∈ 𝑇 and 𝑥 ∈ 𝑇 � dom(𝑦), 𝑥 * 𝑦 is in 𝑇 ;
∙ uniformly coherent iff it is coherent and uniformly homogeneous.

Corollary 6.31. If P∙(𝜅, 𝜅,⊑, 𝜅, {𝜅}, 𝜅) holds, then there exists a uniformly ho-
mogeneous 𝜅-Souslin tree.

Proof. Appeal to the next theorem with 𝜒 := ℵ0. �

Theorem 6.32. Suppose that 𝜅 is (<𝜒)-closed for a given 𝜒 ∈ Reg(𝜅). Let 𝜍 < 𝜅.
If P∙(𝜅, 𝜅, 𝜒⊑, 𝜅, {𝐸𝜅≥𝜒}, 𝜅) holds, then there exists a normal, prolific, 𝜍-splitting,

𝜒-complete, uniformly homogeneous 𝜅-Souslin tree.

Proof. Suppose P∙(𝜅, 𝜅, 𝜒⊑, 𝜅, {𝐸𝜅≥𝜒}, 𝜅) holds, as witnessed by ⟨𝒞𝛼 | 𝛼 < 𝜅⟩ and

⟨𝐵𝜄 | 𝜄 < 𝜅⟩. We may assume that 0 ∈ 𝐶 for every 𝐶 ∈
⋃︀
𝛼∈acc(𝜅) 𝒞𝛼. Let 𝜋 : 𝜅→ 𝜅

be such that 𝛽 ∈ 𝐵𝜋(𝛽) for all 𝛽 < 𝜅. Let 𝜑 : 𝜅 ↔ 𝐻𝜅 witness the isomorphism
(𝜅,∈) ∼= (𝐻𝜅,�𝜅). Put 𝜓 := 𝜑 ∘ 𝜋.

We recursively construct a sequence ⟨𝑇𝛼 | 𝛼 < 𝜅⟩ of levels whose union will
ultimately be the desired tree 𝑇 . Denote Γ := 𝐸𝜅≥𝜒. For every 𝛼 ∈ Γ and 𝐶 ∈ 𝒞𝛼,

we shall define an 𝛼-branch b𝐶 through 𝑇 � 𝛼; then, we will ensure that, for every
𝛼 ∈ acc(𝜅):

(⊗)𝛼 𝑇𝛼 =

{︃
{𝑥 * b𝐶 | 𝐶 ∈ 𝒞𝛼, 𝑥 ∈ 𝑇 � 𝛼}, if 𝛼 ∈ Γ;

{𝑡 ∈ 𝛼𝐻𝜅 | ∀�̄� < 𝛼(𝑡 � �̄� ∈ 𝑇�̄�)}, otherwise.

Here we go. Let 𝑇0 := {∅}, and for all 𝛼 < 𝜅, let 𝑇𝛼+1 := {𝑡y𝑖 | 𝑡 ∈ 𝑇𝛼,
𝑖 < max{𝛼, 𝜍, 𝜔}}. Next, suppose that 𝛼 ∈ acc(𝜅) and that ⟨𝑇𝛽 | 𝛽 < 𝛼⟩ has
already been defined. The construction splits into two cases:
I If 𝛼 ∈ acc(𝜅) ∖ Γ, then cf(𝛼) < 𝜒, and we let 𝑇𝛼 consist of the limits of all

𝛼-branches through 𝑇 � 𝛼. This coheres with (⊗)𝛼 and ensures that the outcome
tree will be 𝜒-complete.
I Now suppose 𝛼 ∈ Γ. For every 𝐶 ∈ 𝒞𝛼, we shall define a node b𝐶 , and then

we would let:

𝑇𝛼 := {𝑥 * b𝐶 | 𝐶 ∈ 𝒞𝛼, 𝑥 ∈ 𝑇 � 𝛼}.
To obtain b𝐶 , we define a sequence 𝑏𝐶 ∈

∏︀
𝛽∈𝐶 𝑇𝛽 by recursion. Let 𝑏𝐶(0) := ∅.

Next, suppose 𝛽− < 𝛽 are successive points of 𝐶, and 𝑏𝐶(𝛽−) has already been
defined. Let

𝑏𝐶(𝛽) :=

{︃
𝑏𝐶(𝛽−) * anti(𝜓(𝛽) * 𝑏𝐶(𝛽−), 𝑇 � (𝛽 + 1), 𝐶(𝛽)), if 𝜓(𝛽) ∈ 𝑇 � 𝛽−;

extend(𝑏𝐶(𝛽−), 𝑇 � (𝛽 + 1)), otherwise.

If 𝜓(𝛽) ∈ 𝑇 �𝛽−, then, by the induction hypothesis (⊗)𝛽 , 𝜓(𝛽) * 𝑏𝐶(𝛽−) belongs
to the normal tree 𝑇 � (𝛽+ 1), so that the Extension Lemma (Lemma 6.6) together
with (⊗)𝛽 implies 𝑏𝐶(𝛽) is an element of 𝑇𝛽 extending 𝑏𝐶(𝛽−). If 𝜓(𝛽) /∈ 𝑇 � 𝛽−,
then again the Extension Lemma implies that 𝑏𝐶(𝛽) is in 𝑇𝛽 and extends 𝑏𝐶(𝛽−).

The following is obvious.
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Dependencies 6.32.1. For any two consecutive points 𝛽− < 𝛽 of dom(𝑏𝐶), the
value of 𝑏𝐶(𝛽) is completely determined by 𝑏𝐶(𝛽−), 𝜓(𝛽),𝑇 � (𝛽 + 1) and 𝐶(𝛽).

In the case 𝛽 ∈ acc(𝐶), we let 𝑏𝐶(𝛽) :=
⋃︀

(Im(𝑏𝐶 � 𝛽)). The fact that the latter
belongs to 𝑇𝛽 follows from Dependencies 6.32.1, (⊗)𝛽 and 𝜒⊑-coherence.

This completes the definition of the level 𝑇𝛼.
Having constructed all levels of the tree, we then let 𝑇 :=

⋃︀
𝛼<𝜅 𝑇𝛼. It is clear

that 𝑇 is a normal, prolific, 𝜍-splitting, 𝜒-complete and uniformly homogeneous
streamlined 𝜅-tree.

Claim 6.32.2. Let 𝐴 ⊆ 𝑇 be a maximal antichain. Then there exists 𝛼 < 𝜅 such
that every node of 𝑇𝛼 extends some element of 𝐴 ∩ (𝑇 � 𝛼).

Proof. Let Ω := 𝐴 and 𝑝 := {𝑇,𝐴}. Consider the club 𝐷 := {𝛼 ∈ acc(𝜅) |
𝑇 � 𝛼 ⊆ 𝜑[𝛼]}, and then pick 𝛼 ∈ 𝐷 ∩ Γ such that, for all 𝐶 ∈ 𝒞𝛼 and 𝑖 < 𝛼,

sup(nacc(𝐶) ∩𝐵𝑖(Ω, 𝑝, 𝐶)) = 𝛼.

Now, let 𝑣 ∈ 𝑇𝛼 be arbitrary, and we shall show that 𝑣 extends some element of
𝐴 ∩ (𝑇 � 𝛼). As 𝛼 ∈ Γ, let us fix 𝐶 ∈ 𝒞𝛼 and 𝑥 ∈ 𝑇 � 𝛼 such that 𝑣 = 𝑥 * b𝐶 . As
𝛼 ∈ 𝐷 and 𝑥 ∈ 𝑇 � 𝛼, we may also find 𝑖 < 𝛼 such that 𝜑(𝑖) = 𝑥.

Fix 𝛽 ∈ nacc(𝐶) ∩ 𝐵𝑖(Ω, 𝑝, 𝐶) large enough to ensure that 𝛽− > dom(𝑥) for

𝛽− := sup(𝐶 ∩ 𝛽). As 𝛽 ∈ 𝐵𝑖, we obtain 𝜓(𝛽) = 𝜑(𝜋(𝛽)) = 𝜑(𝑖) = 𝑥. Thus, by
writing �̄� := 𝑥 * 𝑏𝐶(𝛽−), 𝑇 := 𝑇 � (𝛽 + 1) and 0 := 𝐶(𝛽), we get that

𝑏𝐶(𝛽) := 𝑏𝐶(𝛽−) * anti(�̄�, 𝑇 ,0).

Recalling Definition 6.5(2), we consider the set:

𝑄 := {𝑧 ∈ 𝑇𝛽(𝑇 ) | ∃𝑦 ∈ 0(�̄� ∪ 𝑦 ⊆ 𝑧)}.

By now, we know that

𝑄 = {𝑧 ∈ 𝑇𝛽 | ∃𝑦 ∈ 𝐴 ∩ (𝑇 � 𝛽)((𝑥 * 𝑏𝐶(𝛽−)) ∪ 𝑦 ⊆ 𝑧)}.

Since 𝛽 ∈ 𝐵𝑖(𝐴, {𝑇,𝐴}, 𝐶), we infer from Proposition 2.12(2) that 𝐶(𝛽) = 𝐴∩(𝑇 �𝛽)
is a maximal antichain in 𝑇 � 𝛽. So 𝑄 is nonempty, and 𝑏𝐶(𝛽) = 𝑏𝐶(𝛽−) * 𝑧, for
𝑧 = min(𝑄,�𝜅). Pick 𝑦 ∈ 𝐴 ∩ (𝑇 � 𝛽) witnessing that 𝑧 ∈ 𝑄. Then:

𝑣 = 𝑥 * b𝐶 )= 𝑥 * 𝑏𝐶(𝛽) = 𝑥 * (𝑏𝐶(𝛽−) * 𝑧) = 𝑧 ) 𝑦,

as sought. �

This completes the proof. �

Theorem 6.33. If 𝜅 is (<𝜒)-closed, then P∙(𝜅, 𝜅, 𝜒⊑*, 𝜅, {𝐸𝜅≥𝜒}, 𝜅) implies the
existence of a normal, prolific, 𝜒-complete, uniformly homogeneous 𝜅-Souslin tree.

Proof. By Theorem 6.32, using Theorem 4.39 �

Definition 6.34. For a streamlined 𝜅-tree 𝑇 and a subset ∆ ⊆ 𝜅, we say that 𝑇
is ∆-similar iff, for all 𝛿 ∈ ∆ ∩ acc(𝜅) and 𝑥, 𝑦 ∈ 𝑇𝛿, sup{𝜀 < 𝛿 | 𝑥(𝜀) ̸= 𝑦(𝜀)} < 𝛿.

It is easy to see that a streamlined 𝜅-tree is coherent iff it is 𝜅-similar. It is
also easy to see that in the construction of Theorem 6.32, the outcome tree 𝑇 is
∆-similar for the set ∆ := {𝛿 ∈ Γ | |𝒞𝛿| = 1}. Therefore, we get:

Theorem 6.35. Suppose P∙(𝜅, 2,⊑, 𝜅, {𝜅}, 2) holds. Then there exists a normal,
slim, prolific, club-regressive, uniformly coherent 𝜅-Souslin tree. �

Remark 6.36. The definition of club-regressive trees may be found in [BR17a, S2].
For further analysis, see [BR17a, Proposition 2.5].
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7. Some open problems

It follows from Theorem 6.1(11) that after forcing to add a single Cohen real over
a model of CH + ¬♢(ℵ1), a very strong instance of P∙(ℵ1, . . .) holds, while ♢(ℵ1)
fails. On the other hand, for a successor cardinal 𝜅 > ℵ1, P∙(𝜅, 𝜅,ℛ, 1, {𝜅}, 𝜅)
implies ♢(𝜅) (by Proposition 5.11 and [BR17a, Fact 8.2]).

We conjecture that Radin forcing can be used to answer the following question
in the affirmative:

Question 7.1. Is a conjunction of the form P∙(𝜅, . . .) + ¬♢(𝜅) consistent for 𝜅
inaccessible?

Corollaries 4.19 and 4.36 leave the following question open:

Question 7.2. Assume �(𝜅) + ♢(𝜅).

(i) Does P−(𝜅, 2,⊑, 1, {𝜅}, 2) hold?
(ii) Does (the weaker instance) P−(𝜅, 𝜅,⊑, 1, {𝜅}, 𝜅) hold?

By Clauses (1) and (5) of Theorem 6.1, the answer to (i) is affirmative for 𝜅 = ℵ1

and 𝜅 = 𝜆+ such that 𝜆 ≥ i𝜔. By [Rin17, Theorem 4.3 and Corollary 2.5], the
answer to (i) is also affirmative for 𝜅 = 𝜆+ such that 𝜆ℵ0 = 𝜆. Thus, the remaining
cases are 𝜅 inaccessible or ℵ1 < 𝜅 < i𝜔. For 𝜅 strongly inaccessible, a sufficient
condition for (ii) is given by Theorem 4.28.

Our next question has to do with the parameter 𝜃 of the proxy principle.

Question 7.3. For ℛ ∈ {Ω𝜒⊑,Ω𝜒⊑*,Ω⊑𝜒,Ω⊑*
𝜒}:

(i) Does P−(𝜅, 𝜇,ℛ, 1, {𝜅}, 𝜈) entail P−(𝜅, 𝜇,ℛ, 𝜅, {𝜅}, 𝜈)?
(ii) Does P∙(𝜅, 𝜇,ℛ, 1, {𝜅}, 𝜈) entail P∙(𝜅, 𝜇,ℛ, 𝜅, {𝜅}, 𝜈)?

Some partial answers to (ii) include [BR19a, Lemma 3.7], [BR19c, Lemma 3.20]
and [LR19, Lemmas 3.8 and 3.9], but there are more findings which haven’t yet
been published. Motivated by [LR19, Lemma 2.13], we hope to prove that, for 𝜅
inaccessible, P∙(𝜅, 2,⊑, 1, {𝜅}, 2) entails the existence of graph of size and chromatic
number 𝜅 all of whose smaller subgraphs are countably chromatic.

Question 7.4. Assume GCH. For a regular uncountable cardinal 𝜆:

(i) Does �𝜆 entail the existence of a uniformly coherent 𝜆+-Souslin tree?

(ii) Does the existence of a nonreflecting stationary subset of 𝐸𝜆
+

<𝜆 entail the
existence of a 𝜆-free 𝜆+-Souslin tree?

By [BR19a, Theorem C] and [BR19c, Theorem B], the answer is affirmative
for the analogous questions concerning 𝜆 singular. Also, note that an affirmative
answer to Question 7.3(ii) would provide an affirmative answer to Question 7.4.

Question 7.5. (i) May ♣(𝜅) be waived from the hypothesis of Theorem 4.16?
(ii) May the hypothesis P−

𝜉 (𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈) of Theorem 5.13 be weakened to

P−
𝜉 (𝜅, 𝜇,ℛ, 𝜃,𝒮, 𝜈, 1)?34
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