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Abstract. We introduce a class of notions of forcing which we call Σ-
Prikry, and show that many of the known Prikry-type notions of forcing
that centers around singular cardinals of countable cofinality are Σ-
Prikry. We show that given a Σ-Prikry poset P and a name for a non-
reflecting stationary set 𝑇 , there exists a corresponding Σ-Prikry poset
that projects to P and kills the stationarity of 𝑇 . Then, in a sequel to
this paper, we develop an iteration scheme for Σ-Prikry posets. Putting
the two works together, we obtain a proof of the following.

Theorem. If 𝜅 is the limit of a countable increasing sequence of
supercompact cardinals, then there exists a cofinality-preserving forcing
extension in which 𝜅 remains a strong limit, every finite collection of
stationary subsets of 𝜅+ reflects simultaneously, and 2𝜅 = 𝜅++.
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1. Introduction

In [1, 2], Cohen invented the method of forcing as a mean to prove the
independence of mathematical propositions from ZFC (the Zermelo-Fraenkel
axioms for set theory). With this method, one starts with an arbitrary
(transitive) model M of ZFC, define there a partial order P, and then pass
to a forcing extension M[𝐺] in which a new P-generic set 𝐺 is adjoined.
The outcome M[𝐺] is the smallest model of ZFC to contain all the elements
of M, as well as the object 𝐺. For instance, in Cohen’s celebrated work on
the Continuum Hypothesis (CH, asserting that 2ℵ0 = ℵ1), he takes M to be
Gödel’s model [14] of ZFC + CH, and defines P in a way that ensures that
any P-generic set 𝐺 will consist of ℵ2 many distinct real numbers. Finally,
to verify that “2ℵ0 ≥ ℵ2” indeed holds in M[𝐺], Cohen proves that ℵ2, the
second uncountable cardinal of M, remains the second uncountable cardinal
of M[𝐺]. In fact, Cohen proves that P satisfies the countable chain condition
(𝑐𝑐𝑐) and shows that this condition ensures that the cardinals structure of
M[𝐺] is identical to that of M.

Now, let us consider a proposition 𝜙 slightly more involved than CH, say,
𝜙 is of the form “every uncountable group having property 𝑝, has property
𝑞, as well”. Suppose that M is a model in which there is an uncountable
group 𝐴 that forms a counterexample to 𝜙. Then we could try to cook up a
poset P𝐴 such that for any P𝐴-generic set 𝐺, either 𝐺 witness in M[𝐺] that
𝐴 has property 𝑞, or 𝐺 witnesses in M[𝐺] that 𝐴 ceased to have property
𝑝. This will solve our problem 𝜙 for 𝐴, but it is very likely that in our new
model M[𝐺] there are other (possibly new) counterexamples to 𝜙, meaning
that we need to fix yet another counterexample 𝐴′ and pass to a forcing
extension M[𝐺][𝐻] solving the problem for 𝐴′, and basically “keep going”.
But will we ever catch our tail?

It is clear that to have a chance to catch our tail, there is a need for
a transfinite forcing iteration. However, unless various conditions are met,
such a forcing iteration will ruin the cardinals structure, leading to a mean-
ingless solution of the problem 𝜙, in the sense that all uncountable groups
from the intermediate models will become countable at the final model.

The first successful transfinite iteration scheme was devised by Solovay
and Tennenbaum in [31], who solved a problem concerning a particular type
of linear orders of size ℵ1 known as Souslin lines. They found a natural 𝑐𝑐𝑐
poset P𝐿 to “kill” a given Souslin line 𝐿, proved that a (finite-support) iter-
ation of 𝑐𝑐𝑐 posets is again 𝑐𝑐𝑐, and proved that in an iteration of length ℵ2,
any Souslin line in the final model must show up in one of the intermediate
models, meaning that they can ensure that, in their final model, there are
no Souslin lines.
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The Solovay-Tennenbaum technique is very useful (see [9]), but it admits
no generalizations that allow to tackle problems concerning objects of size
> ℵ1. One crucial reason for the lack of generalizations has to do with the
poor behavior of the higher analogues of 𝑐𝑐𝑐 at the level of cardinals > ℵ1

(see [19, 16, 21] for a discussion and counterexamples).
Still, various iteration schemes for posets having strong forms of the 𝜅+-

chain-condition for 𝜅 regular were devised in [26, 29, 22, 8, 23, 24, 20]. In
contrast, there is a dearth of works involving iterations at the level of the
successor of singular cardinals.

A few ad-hoc treatments of iterations that are centered around a singular
cardinal may be found in [27, S2], [5, S10] and [12, S1], and a more general
framework is offered by [30, S3]. In [7], the authors took another approach
in which they first pursue a forcing iteration along a successor of a regular
cardinal 𝜅, and at the very end they singularize 𝜅 by appealing to Prikry
forcing. This was then generalized to Radin forcing in [4].

In this project, we propose yet another approach, allowing to put the
Prikry-type forcing at 𝜅 as our very first step of the iteration, and then con-
tinue up to length 𝜅++ without collapsing cardinals. We do so by identifying
a class of Prikry-type posets that are iterable in a sense to be made precise.
The class is called Σ-Prikry, where Σ = ⟨𝜅𝑛 | 𝑛 < 𝜔⟩ is a non-decreasing
sequence of regular uncountable cardinals, converging to our cardinal 𝜅. A
member of the Σ-Prikry class is a triple (P, ℓ, 𝑐) satisfying, among other
things, the following:

∙ P = (𝑃,≤) is a notion of forcing;
∙ 1lP decides the value of 𝜅+ to be some cardinal 𝜇;
∙ ℓ : 𝑃 → 𝜔 is a monotone grading function;
∙ 𝑐 : 𝑃 → 𝜇 is a function witnessing that P is 𝜇+-2-linked;
∙ (P, ℓ) has the Complete Prikry Property.

Here, 𝜇+-2-linked is a well-known strong form of the 𝜇+-chain-condition;
as explained earlier, the latter would be too weak for any viable iteration
scheme. In contrast, the Complete Prikry Property is a new concept that
we introduce here in order to simultaneously capture two characteristic fea-
tures of Prikry-type forcing: the decision by pure extension property and
the strong Prikry property. The exact definition of Σ-Prikry may be found
in Section 2 and a list of examples is given in Section 3.

Now, let us describe the first application of our framework. In his dis-
sertation [25], Sharon claimed that if 𝜅 is the limit of a strictly increasing
sequence ⟨𝜅𝑛 | 𝑛 < 𝜔⟩ of supercompact cardinals, then, in some cardinals-
preserving forcing extension, 𝜅 remains a strong limit, 2𝜅 = 𝜅++, and every
stationary subset of 𝜅+ reflects. Sharon’s model is obtained by first blowing
up the power of 𝜅 using the forcing of [11, S3], and then carrying out an
iteration of length 𝜅++ to kill all non-reflecting stationary subsets of 𝜅+.
However, a close inspection of Sharon’s proof reveals a gap in the verifica-
tion of the 𝜅++-chain-condition of the defined iteration, and, of course, such
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a chain condition is crucial for the existence of a bookkeeping function that
would ensure the killing of each and every non-reflecting stationary subset
of 𝜅+. In a very recent preprint [17], Ben-Neria, Hayut and Unger give an
alternative proof of Sharon’s result; their proof does not involve iterated
forcing to kill the non-reflecting stationary sets and instead uses iterated
ultrapowers to avoid the generation of non-reflecting stationary sets.

In this work, we show that Sharon’s original approach is repairable and,
in fact, falls into our framework. As a first step, we show that his notion of
forcing for killing a single non-reflecting stationary set fits into the Σ-Prikry
class:

Theorem 1.1. Suppose (P1, ℓ1, 𝑐1) is Σ-Prikry and �̇� is a P1-name for a
non-reflecting stationary subset of 𝐸𝜇

𝜔. Then there exists a corresponding
triple (P2, ℓ2, 𝑐2) such that:

∙ P2 is a notion of forcing that projects to P1; furthermore:
∙ (P2, ℓ2, 𝑐2) is Σ-Prikry admitting a forking projection to (P1, ℓ1, 𝑐1);

∙ 1lP2 forces that �̇� is nonstationary.

The exact definition of forking projection may be found in Section 4,
but, roughly speaking, this is a kind of projection that ensures a much
better correspondence between the two Σ-Prikry triples, which later allows
to iterate this procedure. In a sequel to this paper [18], we present our
iteration scheme for Σ-Prikry notions of forcing, from which we obtain a
correct proof of (a strong form of) Sharon’s result:

Theorem 1.2. Suppose that ⟨𝜅𝑛 | 𝑛 < 𝜔⟩ is a strictly increasing sequence of
Laver-indestructible supercompact cardinals. Denote 𝜅 := sup𝑛<𝜔 𝜅𝑛. Then
there exists a cofinality-preserving forcing extension in which 𝜅 remains a
strong limit, 2𝜅 = 𝜅++, and every finite collection of stationary subsets of
𝜅+ reflects simultaneously.

Remark 1.3. The preceding is optimal as, by Corollary 5.4 below, if 𝜅 is
an uncountable strong limit cardinal of countable cofinality, admitting a
stationary set 𝑆 ⊆ 𝜅+ with the property that every countable collection of
stationary subsets of 𝑆 reflects simultaneously, then 2𝜅 = 𝜅+.

1.1. Organization of this paper. In Section 2, we define the class of Σ-
Prikry forcing, define the 𝑝-tree and uncover some of its features. The proof
that the Complete Prikry Property implies the Prikry Property and the
Strong Prikry Property may be found there.

In Section 3, we present a few examples of notions of forcing that fit into
the Σ-Prikry class. We also prove that this class is closed under lottery sum,
but is not closed under products.

In Section 4, we define the notion of forking projection and establish that
a graded poset admitting a forking projection to a Σ-Prikry poset is not far
from being Σ-Prikry on its own.

In Section 5, we analyze the validity of simultaneous stationary reflec-
tion in generic extensions by Σ-Prikry forcing. As a corollary, the problem
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of getting a model with simultaneous stationary reflection reduces to forc-
ing to get reflection of stationary sets concentrating on points of countable
cofinality.

In Section 6, we prove Theorem 1.1. That is, we present a functor A(·, ·)
that, for any Σ-Prikry poset P and any P-name for a nonreflecting stationary
set �̇� , produces a Σ-Prikry poset A(P, �̇� ) that admits a forking projection

to P and kills the stationarity of �̇� .

1.2. Notation and conventions. Our forcing convention is that 𝑝 ≤ 𝑞
means that 𝑝 extends 𝑞. We write P ↓ 𝑞 for {𝑝 ∈ P | 𝑝 ≤ 𝑞}. Denote
𝐸𝜇

𝜃 := {𝛼 < 𝜇 | cf(𝛼) = 𝜃}. The sets 𝐸𝜇
<𝜃 and 𝐸𝜇

>𝜃 are defined in a similar
fashion. For a stationary subset 𝑆 of a regular uncountable cardinal 𝜇,
we write Tr(𝑆) := {𝛿 ∈ 𝐸𝜇

>𝜔 | 𝑆 ∩ 𝛿 is stationary in 𝛿}. 𝐻𝜈 denotes the
collection of all sets of hereditary cardinality less than 𝜈. For every set
of ordinals 𝑥, we denote cl(𝑥) := {sup(𝑥 ∩ 𝛾) | 𝛾 ∈ Ord, 𝑥 ∩ 𝛾 ̸= ∅} and
acc+(𝑥) := {𝛼 < sup(𝑥) | sup(𝑥∩𝛼) = 𝛼 > 0}. For two sets of ordinals 𝑥, 𝑦,
we write 𝑥 ⊑ 𝑦 iff there exists an ordinal 𝛼 such that 𝑥 = 𝑦 ∩ 𝛼.

2. An abstract approach to Prikry-type forcing

Definition 2.1. We say that (P, ℓ) is a graded poset iff P = (𝑃,≤) is a
poset, ℓ : 𝑃 → 𝜔 is a surjection, and, for all 𝑝 ∈ 𝑃 :

∙ For every 𝑞 ≤ 𝑝, ℓ(𝑞) ≥ ℓ(𝑝);
∙ There exists 𝑞 ≤ 𝑝 with ℓ(𝑞) = ℓ(𝑝) + 1.

Convention 2.2. For a graded poset as above, we denote 𝑃𝑛 := {𝑝 ∈ 𝑃 |
ℓ(𝑝) = 𝑛}, 𝑃 𝑝

𝑛 := {𝑞 ∈ 𝑃 | 𝑞 ≤ 𝑝, ℓ(𝑞) = ℓ(𝑝)+𝑛}, and sometime write 𝑞 ≤𝑛 𝑝
(and say the 𝑞 is an 𝑛-step extension of 𝑝) rather than writing 𝑞 ∈ 𝑃 𝑝

𝑛 .

Definition 2.3. Suppose that P = (𝑃,≤) is a notion of forcing with a
greatest element 1l, and that Σ = ⟨𝜅𝑛 | 𝑛 < 𝜔⟩ is a non-decreasing sequence
of regular uncountable cardinals, converging to some cardinal 𝜅. Suppose
that 𝜇 is a cardinal such that 1l P �̌� = �̌�+.1 For functions ℓ : 𝑃 → 𝜔 and
𝑐 : 𝑃 → 𝜇, we say that (P, ℓ, 𝑐) is Σ-Prikry iff all of the following hold:

(1) (P, ℓ) is a graded poset;
(2) For all 𝑛 < 𝜔, P𝑛 := (𝑃𝑛 ∪ {1l},≤) is 𝜅𝑛-directed-closed;2

(3) For all 𝑝, 𝑞 ∈ 𝑃 , if 𝑐(𝑝) = 𝑐(𝑞), then 𝑃 𝑝
0 ∩ 𝑃 𝑞

0 is non-empty;
(4) For all 𝑝 ∈ 𝑃 , 𝑛,𝑚 < 𝜔 and 𝑞 ≤𝑛+𝑚 𝑝, the set {𝑟 ≤𝑛 𝑝 | 𝑞 ≤𝑚 𝑟}

contains a greatest element which we denote by 𝑚(𝑝, 𝑞).3 In the
special case 𝑚 = 0, we shall write 𝑤(𝑝, 𝑞) rather than 0(𝑝, 𝑞);4

(5) For all 𝑝 ∈ 𝑃 , the set 𝑊 (𝑝) := {𝑤(𝑝, 𝑞) | 𝑞 ≤ 𝑝} has size <𝜇;

1More explicitly, 1l P �̌� = (�̌�)+.
2That is, for every 𝐷 ∈ [𝑃𝑛 ∪ {1l}]<𝜅𝑛 with the property that for all 𝑝, 𝑝′ ∈ 𝐷, there is

𝑞 ∈ 𝐷 with 𝑞 ≤ 𝑝, 𝑝′, there exists 𝑟 ∈ 𝑃𝑛 such that 𝑟 ≤ 𝑝 for all 𝑝 ∈ 𝐷.
3By convention, a greatest element, if exists, is unique.
4Note that 𝑤(𝑝, 𝑞) is the weakest extension of 𝑝 above 𝑞.
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(6) For all 𝑝′ ≤ 𝑝 in 𝑃 , 𝑞 ↦→ 𝑤(𝑝, 𝑞) forms an order-preserving map from
𝑊 (𝑝′) to 𝑊 (𝑝);

(7) Suppose that 𝑈 ⊆ 𝑃 is a 0-open set, i.e., 𝑟 ∈ 𝑈 iff 𝑃 𝑟
0 ⊆ 𝑈 . Then,

for all 𝑝 ∈ 𝑃 and 𝑛 < 𝜔, there is 𝑞 ≤0 𝑝, such that, either 𝑃 𝑞
𝑛 ∩𝑈 = ∅

or 𝑃 𝑞
𝑛 ⊆ 𝑈 .

Let us elaborate on the above definition.

∙ Here, 𝑞 is a “direct extension” of 𝑝 in the usual Prikry sense iff
𝑞 ≤0 𝑝. Note that 𝑞 ≤0 𝑤(𝑝, 𝑞) ≤ 𝑝. Also, it is clear that if 𝑝 ≤𝑛 𝑞
and 𝑞 ≤𝑚 𝑟, then 𝑝 ≤𝑛+𝑚 𝑟.

∙ The sets 𝑃 𝑝
𝑛 consist of exactly the 𝑛-step extensions of 𝑝, and 𝑃𝑛 is

the set of all conditions of “length” 𝑛, i.e., the 𝑛-step extensions of
1l. Note that, typically, P𝑛 is not a complete suborder of P, and that,
for all 𝑝, 𝑞 ∈ 𝑃𝑛, 𝑝 ≤ 𝑞 iff 𝑝 ≤0 𝑞. Thereby, P𝑛 is not necessarily
separative.

Convention. Whenever we talk about forcing with one of the
P𝑛’s, we actually mean that we force with its separative quotient.

∙ Clause (3) is a very strong form of a chain condition, stronger than
that of being 𝜇+-Knaster, and even stronger than the notion of being
𝜇+-2-linked. Indeed, a poset (𝑃,≤) is 𝜇+-2-linked iff there exists a
function 𝑐 : 𝑃 → 𝜇 with the property that 𝑐(𝑝) = 𝑐(𝑞) entails that 𝑝
and 𝑞 are compatible, whereas, here, we moreover require that such
a compatibility will be witnessed by a 0-step extension of 𝑝 and 𝑞.

Convention. To avoid encodings, we shall often times define the
function 𝑐 as a map from 𝑃 to some natural set M of size ≤ 𝜇,
instead of a map to the cardinal 𝜇 itself. In the special case that
𝜇<𝜇 = 𝜇, we may as well take M to be 𝐻𝜇.

∙ For every 𝑝 ∈ 𝑃 , the set 𝑊 (𝑝) is called the 𝑝-tree. For every 𝑛 < 𝜔,
write 𝑊𝑛(𝑝) := {𝑤(𝑝, 𝑞) | 𝑞 ∈ 𝑃 𝑝

𝑛}, and 𝑊≥𝑛(𝑝) :=
⋃︀∞

𝑚=𝑛𝑊𝑚(𝑝).

By Lemma 2.8 below, (𝑊 (𝑝),≥) is a tree of height 𝜔 whose 𝑛𝑡ℎ level
is a maximal antichain in P ↓ 𝑝 for every 𝑛 < 𝜔.

∙ Clause (7) is what we call the Complete Prikry Property (CPP),
an analogue of the notion of a completely Ramsey subset of [𝜔]𝜔.
We shall soon show (Corollary 2.7 below) that it is a simultaneous
generalization of the usual Prikry Property (PP) and the Strong
Prikry Property (SPP).

Definition 2.4. Let 𝑑 : 𝑃 → 𝜃 be some coloring, with 𝜃 a nonzero cardinal.

(1) 𝑑 is said to be 0-open iff 𝑑(𝑝) ∈ {0, 𝑑(𝑞)} for every pair 𝑞 ≤0 𝑝 of
elements of 𝑃 ;

(2) We say that 𝐻 ⊆ 𝑃 is a set of indiscernibles for 𝑑 iff, for all 𝑝, 𝑞 ∈ 𝐻,
(ℓ(𝑝) = ℓ(𝑞)) =⇒ (𝑑(𝑝) = 𝑑(𝑞)).

Remark 2.5. The characteristic function 𝑑 : 𝑃 → 2 of a subset 𝐷 ⊆ 𝑃 is
0-open iff 𝐷 is a 0-open.
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Lemma 2.6. For every 𝑝 ∈ 𝑃 , every cardinal 𝜃 with log(𝜃) < 𝜅ℓ(𝑝) and

every 0-open coloring 𝑑 : 𝑃 → 𝜃,5 there exists 𝑞 ≤0 𝑝 such that P ↓ 𝑞 is a set
of indiscernibles for 𝑑.

Proof. Let 𝑝 ∈ 𝑃 and 𝑑 : 𝑃 → 𝜃 as above. Fix an infinite cardinal 𝜒 < 𝜅ℓ(𝑝)

such that 2𝜒 ≥ 𝜃. Fix an injective sequence 𝑓 = ⟨𝑓𝛼 | 𝛼 < 𝜃⟩ consisting
of functions from 𝜒 to 2 such that, in addition, 𝑓0 is the constant function
from 𝜒 to {0}.

Claim 2.6.1. Let 𝑖 < 𝜒. The set 𝑈𝑖 := {𝑟 ∈ 𝑃 | 𝑓𝑑(𝑟)(𝑖) ̸= 0} is 0-open.

Proof. Let 𝑟 ∈ 𝑈𝑖 and 𝑟′ ≤0 𝑟. As 𝑟 ∈ 𝑈𝑖, 𝑓𝑑(𝑟) is not the constant function
from 𝜒 to {0}, so that 𝑑(𝑟) ̸= 0. Since 𝑑 is a 0-open coloring, it follows that
𝑑(𝑟′) = 𝑑(𝑟). Consequently, 𝑟′ ∈ 𝑈𝑖, as well. �

Fix a bijection 𝑒 : 𝜒 ↔ 𝜒× 𝜔. We construct a ≤0-decreasing sequence of
conditions ⟨𝑝𝛽 | 𝛽 ≤ 𝜒⟩ by recursion, as follows.
I Let 𝑝0 := 𝑝.
I Suppose that 𝛽 < 𝜒 and that ⟨𝑝𝛾 | 𝛾 ≤ 𝛽⟩ has already been defined.

Denote (𝑖, 𝑛) := 𝑒(𝛽). Now, appeal to Definition 2.3(7) with 𝑈𝑖, 𝑝𝛽 and 𝑛

to obtain 𝑝𝛽+1 ≤0 𝑝𝛽 such that, either 𝑃
𝑝𝛽+1
𝑛 ∩ 𝑈𝑖 = ∅ or 𝑃

𝑝𝛽+1
𝑛 ⊆ 𝑈𝑖.

I For every limit nonzero 𝛽 ≤ 𝜒 such that ⟨𝑝𝛾 | 𝛾 < 𝛽⟩ has already
been defined, appeal to Definition 2.3(2) to find a lower bound 𝑝𝛽 for the
sequence.

At the end of the above recursion, let us put 𝑞 := 𝑝𝜒, so that 𝑞 ≤0 𝑝. We
claim that P ↓ 𝑞 is a set of indiscernibles for 𝑑.

Suppose not, and pick two extensions 𝑟, 𝑟′ of 𝑞 such that ℓ(𝑟) = ℓ(𝑟′) but

𝑑(𝑟) ̸= 𝑑(𝑟′). As 𝑑(𝑟) ̸= 𝑑(𝑟′) and 𝑓 is injective, let us fix 𝑖 < 𝜒 such that
𝑓𝑑(𝑟)(𝑖) ̸= 𝑓𝑑(𝑟′)(𝑖). Consequently, |{𝑟, 𝑟′}∩𝑈𝑖| = 1. Now, put 𝑛 := ℓ(𝑟)−ℓ(𝑝),

so that 𝑟, 𝑟′ ∈ 𝑃 𝑞
𝑛 . Set 𝛽 := 𝑒−1(𝑖, 𝑛). By the choice of 𝑝𝛽+1, then, either

𝑃
𝑝𝛽+1
𝑛 ∩ 𝑈𝑖 = ∅ or 𝑃

𝑝𝛽+1
𝑛 ⊆ 𝑈𝑖. As 𝑞 ≤0 𝑝𝛽+1, we have {𝑟, 𝑟′} ⊆ 𝑃

𝑝𝛽+1
𝑛 ,

contradicting the fact that |{𝑟, 𝑟′} ∩ 𝑈𝑖| = 1. �

It follows that the Complete Prikry Property (CPP) implies the Prikry
property (PP) as well as the Strong Prikry property (SPP).

Corollary 2.7. Let 𝑝 ∈ 𝑃 .

(1) Suppose 𝜙 is a sentence in the forcing language. Then there is 𝑞 ≤0 𝑝
that decides 𝜙;

(2) Suppose 𝐷 ⊆ 𝑃 is a 0-open set which is dense below 𝑝. Then there
are 𝑞 ≤0 𝑝 and 𝑛 < 𝜔 such that 𝑃 𝑞

𝑛 ⊆ 𝐷.6

5Here, log(𝜃) stands for the least cardinal 𝜈 to satisfy 2𝜈 ≥ 𝜃.
6Note that if 𝐷 is open, then, moreover, 𝑃 𝑞

𝑚 ⊆ 𝐷 for all 𝑚 ≥ 𝑛.
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Proof. (1) Define a 0-open coloring 𝑑 : 𝑃 → 3, by letting, for all 𝑟 ∈ 𝑃 ,

𝑑(𝑟) :=

⎧⎪⎨⎪⎩
2, if 𝑟  ¬𝜙;

1, if 𝑟  𝜙;

0, otherwise.

Appeal to Lemma 2.6 with 𝑑 to get a corresponding 𝑞 ≤0 𝑝. Towards a
contradiction, suppose that 𝑞 does not decide 𝜙. In other words, there exist
𝑞1 ≤ 𝑞 and 𝑞2 ≤ 𝑞 such that 𝑑(𝑞1) = 1 and 𝑑(𝑞2) = 2. By possibly iterating
Clause (1) of Definition 2.3 finitely many times, we may find 𝑟1 ≤ 𝑞1 and
𝑟2 ≤ 𝑞2 such that ℓ(𝑟1) = ℓ(𝑟2). By definition of 𝑑, we have 𝑑(𝑟1) = 1 and
𝑑(𝑟2) = 2. Finally, as 𝑟1 and 𝑟2 are two extensions 𝑞 of the same “length”,
1 = 𝑑(𝑟1) = 𝑑(𝑟2) = 2. This is a contradiction.

(2) Define a coloring 𝑑 : 𝑃 → 2 via 𝑑(𝑟) := 1 iff 𝑟 ∈ 𝐷. By Remark 2.5,
we may appeal to Lemma 2.6 with 𝑑 to get a corresponding 𝑞 ≤0 𝑝. As 𝐷
is dense, let us fix 𝑟 ∈ 𝐷 extending 𝑞. Let 𝑛 := ℓ(𝑟) − ℓ(𝑝), so that 𝑑 � 𝑃 𝑞

𝑛 is
constant with value 𝑑(𝑟). Recalling that 𝑟 ∈ 𝐷 and the definition of 𝑑, we
infer that 𝑃 𝑞

𝑛 ⊆ 𝐷. �

Lemma 2.8 (The 𝑝-tree). Let 𝑝 ∈ 𝑃 .

(1) For every 𝑛 < 𝜔, 𝑊𝑛(𝑝) is a maximal antichain in P ↓ 𝑝;
(2) Every two compatible elements of 𝑊 (𝑝) are comparable;
(3) For any pair 𝑞′ ≤ 𝑞 in 𝑊 (𝑝), 𝑞′ ∈ 𝑊 (𝑞);
(4) 𝑐 �𝑊 (𝑝) is injective.

Proof. (1) Clearly, 𝑊0(𝑝) = {𝑝} is a maximal antichain below 𝑝. Thus,
hereafter, assume that 𝑛 > 0.
I To see that 𝑊𝑛(𝑝) = {𝑤(𝑝, 𝑞) | 𝑞 ∈ 𝑃 𝑝

𝑛} is an antichain, suppose that
𝑞1, 𝑞2 ∈ 𝑃 𝑝

𝑛 are such that 𝑤(𝑝, 𝑞1) and 𝑤(𝑝, 𝑞2) are compatible, as witnessed
by some 𝑞. By Definition 2.3(1), 𝑞 ∈ 𝑃 𝑝

𝑛+𝑚 for some 𝑚 < 𝜔. By Defini-
tion 2.3(4), then, {𝑟 ∈ 𝑃 𝑝

𝑛 | 𝑞 ≤ 𝑟} contains a greatest element, say, 𝑟*. Let
𝑖 < 2 be arbitrary. As 𝑞 ≤ 𝑤(𝑝, 𝑞𝑖), it is not hard to see that 𝑤(𝑝, 𝑞𝑖) is
the greatest element in {𝑟 ∈ 𝑃 𝑝

𝑛 | 𝑞 ≤ 𝑟}, so that 𝑤(𝑝, 𝑞𝑖) = 𝑟*. Altogether,
𝑤(𝑝, 𝑞1) = 𝑟* = 𝑤(𝑝, 𝑞2).
I To verify maximality of the antichain 𝑊𝑛(𝑝), let 𝑝′ ≤ 𝑝 be arbitrary.

By Definition 2.3(1), let us pick some 𝑞 ∈ 𝑃 𝑝′
𝑛 , so that 𝑞 ∈ 𝑃 𝑝

𝑛+𝑚 for some
𝑚 < 𝜔. Then, by Definition 2.3(4), {𝑟 ∈ 𝑃 𝑝

𝑛 | 𝑞 ≤ 𝑟} contains a greatest
element, say, 𝑟*. As 𝑤(𝑝, 𝑟*) = 𝑟*, we have 𝑟* ∈ 𝑊𝑛(𝑝). In addition, 𝑟* and
𝑝′ are compatible, as witnessed by 𝑞.

(2) Suppose that 𝑞0, 𝑞1 ∈ 𝑊 (𝑝) are two compatible elements. Fix integers
𝑛0, 𝑛1 such that 𝑞0 ∈ 𝑊𝑛0(𝑝) and 𝑞1 ∈ 𝑊𝑛1(𝑝).

If 𝑛0 = 𝑛1, then by Clause (1), 𝑞0 = 𝑞1. Thus, without loss of generality,
assume that 𝑛0 < 𝑛1. Let 𝑟* be the greatest element of {𝑟 ∈ 𝑃 𝑝

𝑛0 | 𝑞1 ≤ 𝑟}.
Then 𝑟* = 𝑤(𝑝, 𝑟*) ∈ 𝑊𝑛0(𝑝) and 𝑞1 witnesses that 𝑟* is compatible with 𝑞0.
So 𝑟* and 𝑞0 are compatible elements of 𝑊𝑛0(𝑝), and hence 𝑞1 ≤ 𝑟* = 𝑞0.
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(3) Given 𝑞′ ≤ 𝑞 as above, let 𝑟′ ∈ 𝑃 𝑝 be such that 𝑞′ = 𝑤(𝑝, 𝑟′). Now, to
prove that 𝑤(𝑝, 𝑟′) ∈ 𝑊 (𝑞), it suffices to show that 𝑤(𝑝, 𝑟′) = 𝑤(𝑞, 𝑟′). Here
goes:
I As 𝑟′ ≤ 𝑤(𝑞, 𝑟′) ≤ 𝑞 ≤ 𝑝, we infer that 𝑤(𝑞, 𝑟′) ∈ {𝑠 | 𝑟′ ≤ 𝑠 ≤ 𝑝}, so

that 𝑤(𝑞, 𝑟′) ≤ 𝑤(𝑝, 𝑟′).
I As 𝑟′ ≤ 𝑤(𝑝, 𝑟′) = 𝑞′ ≤ 𝑞, we infer that 𝑤(𝑝, 𝑟′) ∈ {𝑠 | 𝑟′ ≤ 𝑠 ≤ 𝑞}, so

that 𝑤(𝑝, 𝑟′) ≤ 𝑤(𝑞, 𝑟′).
(4) By Definition 2.3(3), for all 𝑞, 𝑞′ ∈ 𝑊 (𝑝), if 𝑐(𝑞) = 𝑐(𝑞′), then 𝑞 and

𝑞′ are compatible, and they have the same ℓ-value. It now follows from
Clause (1) that 𝑐 �𝑊 (𝑝) is injective. �

Lemma 2.9. Suppose that 𝑝 ≤ 𝑝′ ≤ 𝑝 and 𝑞 ∈ 𝑊 (𝑝). Then 𝑤(𝑝, 𝑞) =
𝑤(𝑝, 𝑤(𝑝′, 𝑞)).7

Proof. As ℓ(𝑤(𝑝, 𝑞)) = ℓ(𝑞) = ℓ(𝑤(𝑝′, 𝑞)) = ℓ(𝑤(𝑝, 𝑤(𝑝′, 𝑞)), we infer the ex-
istence of some 𝑛 < 𝜔 such that both 𝑤(𝑝, 𝑞) and 𝑤(𝑝, 𝑤(𝑝′, 𝑞)) belong to
𝑊𝑛(𝑝). By Lemma 2.8(1), then, it suffices to verify that the two are compat-
ible. And indeed, we have 𝑞 ≤ 𝑤(𝑝, 𝑞) and 𝑞 ≤ 𝑤(𝑝′, 𝑞) ≤ 𝑤(𝑝, 𝑤(𝑝′, 𝑞)). �

Lemma 2.10. (1) P does not add bounded subsets of 𝜅;
(2) For every regular cardinal 𝜈 ≥ 𝜅, if there exists 𝑝 ∈ 𝑃 for which

𝑝 P cf(𝜈) < �̌�, then there exists 𝑝′ ≤ 𝑝 with |𝑊 (𝑝′)| ≥ 𝜈;8

(3) Suppose 1l P “�̌� is singular”. Then 𝜇 = 𝜅+ iff, for all 𝑝 ∈ 𝑃 ,
|𝑊 (𝑝)| ≤ 𝜅.

Proof. (1) Suppose that 𝑝 forces that 𝜎 is a name for a subset of some 𝜃 < 𝜅.
By possibly iterating Clause (1) of Definition 2.3 finitely many times, we may
find 𝑝′ ≤ 𝑝 with 𝜅ℓ(𝑝′) > 𝜃. Denote 𝑛 := ℓ(𝑝′). Then by Corollary 2.7(1) and
Definition 2.3(2), we may find a ≤0-decreasing sequence of conditions, ⟨𝑝𝛼 |
𝛼 ≤ 𝜃⟩, with 𝑝0 ≤0 𝑝′, such that, for each 𝛼 < 𝜃, 𝑝𝛼 P-decides whether 𝛼
belongs to 𝜎. Then 𝑝𝜃 forces that 𝜎 is a ground model set.

(2) Suppose 𝜃, 𝜈 are regular cardinals with 𝜃 < 𝜅 ≤ 𝜈, 𝑓 is a P-name for
a function from 𝜃 to 𝜈, and 𝑝 ∈ 𝑃 is a condition forcing that the image of 𝑓
is cofinal in 𝜈. Denote 𝑛 := ℓ(𝑝). By Definition 2.3(1), we may assume that
𝜅𝑛 > 𝜃. For all 𝛼 < 𝜃, let 𝐷𝛼 denote the open set of conditions below 𝑝 that
P-decides a value for 𝑓(𝛼). As 𝐷𝛼 is dense below 𝑝, by Corollary 2.7(2) and
Definition 2.3(2), we may find a ≤0-decreasing sequence of conditions ⟨𝑝𝛼 |
𝛼 < 𝜃⟩, with 𝑝0 ≤0 𝑝, and a sequence ⟨𝑛𝛼 | 𝛼 < 𝜃⟩ of elements of 𝜔, such
that, for all 𝛼 < 𝜃, 𝑃 𝑝𝛼

𝑛𝛼 ⊆ 𝐷𝛼.
By Definition 2.3(2), let 𝑝′ be a lower bound for {𝑝𝛼 | 𝛼 < 𝜃}. Evidently,

𝑃 𝑝′
𝑛𝛼 ⊆ 𝐷𝛼 for every 𝛼 < 𝜃. Now, let

𝐴𝛼 := {𝛽 < 𝜈 | ∃𝑝 ∈ 𝑃 𝑝′
𝑛𝛼

[𝑝 P 𝑓(�̌�) = 𝛽]}.

7For future reference, we point out that this fact relies only on clauses (1) and (4) of
Definition 2.3.

8For future reference, we point out that this fact relies only on clauses (1),(2),(4) and
(7) of Definition 2.3. Furthermore, we do not need to know that 1l decides a value for 𝜅+.
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By Lemma 2.8(1), we have 𝐴𝛼 = {𝛽 < 𝜈 | ∃𝑝 ∈ 𝑊𝑛𝛼(𝑝′)[𝑝 P 𝑓(�̌�) = 𝛽]}.
Let 𝐴 :=

⋃︀
𝛼<𝜃 𝐴𝛼. As |𝐴| ≤

∑︀
𝛼<𝜃 |𝑊𝑛𝛼(𝑝′)| ≤ 𝜃 · |𝑊 (𝑝′)|, it follows that if

|𝑊 (𝑝′)| < 𝜈, then sup(𝐴) < 𝜈, and 𝑝′ forces that the range of 𝑓 is bounded
below 𝜈, which would form a contradiction. So |𝑊 (𝑝′)| ≥ 𝜈.

(3) The forward implication follows from Definition 2.3(5).
Next, suppose that, for all 𝑝 ∈ 𝑃 , |𝑊 (𝑝)| ≤ 𝜅. Towards a contradiction,

suppose that there exist 𝑝 ∈ 𝑃 forcing that 𝜅+ is collapsed. Denote 𝜈 := 𝜅+.
As 1l P “�̌� is singular”, this means that 𝑝 P cf(𝜈) < �̌�, contradicting
Clause (2). �

3. Examples

3.1. Vanilla Prikry. Throughout this subsection assume that 𝜅 is a measu-
rable cardinal and that 𝒰 is a normal measure over it. We shall show that
the classical Prikry forcing P to singularize 𝜅 to cofinality 𝜔 fits into the Σ-
Prikry framework. Recall that P := (𝑃,≤), where conditions in 𝑃 are pairs
of the form 𝑝 = (𝑠,𝐴), with 𝑠 being a finite increasing sequence in 𝜅 and
𝐴 ∈ 𝒰 with sup(𝑠) < min(𝐴). The ordering ≤ is defined by (𝑠,𝐴) ≤ (𝑡, 𝐵)
iff 𝑡 ⊑ 𝑠, 𝐴 ⊆ 𝐵 and 𝑠 ∖ 𝑡 ⊆ 𝐵.

Let 𝑋 ∈ [<𝜔𝜅]𝜅. The diagonal intersection of a family {𝐴𝑠 | 𝑠 ∈ 𝑋} ⊆ 𝒰
is given by

i
{𝐴𝑠 | 𝑠 ∈ 𝑋} := {𝛼 < 𝜅 | ∀𝑠 ∈ 𝑋(max(𝑠) < 𝛼 → 𝛼 ∈ 𝐴𝑠)}.

Since 𝒰 is normal,
a
{𝐴𝑠 | 𝑠 ∈ 𝑋} ∈ 𝒰 .

Let Σ be the 𝜔-sequence with constant value 𝜅 and 𝜇 := 𝜅+. The notion
of length associated to P, ℓ : 𝑃 → 𝜔, is given by ℓ(𝑠,𝐴) := |𝑠|. Finally,
define 𝑐 : 𝑃 → <𝜔𝜅 via 𝑐(𝑠,𝐴) := 𝑠. In the next proposition we verify that
(P, ℓ, 𝑐) is Σ-Prikry.

Proposition 3.1. (P, ℓ, 𝑐) is Σ-Prikry.

Proof. We go over the clauses of Definition 2.3.

(1) For 𝑝 = (𝑠,𝐴) ∈ 𝑃 , (𝑠a⟨𝜈⟩, 𝐴 ∖ 𝜈 + 1) ∈ 𝑃 𝑝
1 , for all 𝜈 ∈ 𝐴. Moreover,

by definition of ≤, if 𝑞 ≤ 𝑝 then ℓ(𝑞) ≥ ℓ(𝑝).
(2) Follows from the 𝜅-completeness of 𝒰 .
(3) Let 𝑝, 𝑞 ∈ 𝑃 and assume that 𝑐(𝑝) = 𝑐(𝑞) = 𝑠. Set 𝑝 := (𝑠,𝐴) and

𝑞 := (𝑠,𝐵). Clearly (𝑠,𝐴 ∩𝐵) is in 𝑃 𝑝
0 ∩ 𝑃 𝑞

0 .
(4) Let 𝑝 := (𝑠,𝐴) ∈ 𝑃 , 𝑛,𝑚 < 𝜔 and 𝑞 := (𝑡, 𝐵) ∈ 𝑃 𝑝

𝑛+𝑚. Set 𝑢 := 𝑡 �
(|𝑠| + 𝑛). Then 𝑟* := (𝑢,𝐴 ∖ max(𝑢) + 1) is the greatest element in
{𝑟 ∈ 𝑃 𝑝

𝑛 | 𝑞 ≤ 𝑟}.
(5) Let 𝑝 ∈ 𝑃 and 𝑛 < 𝜔. Denoting 𝑝 := (𝑠,𝐴), we have that 𝑊𝑛(𝑝) =

{(𝑠a𝑡, 𝐴∖max(𝑡) + 1) | 𝑡 ∈ [𝐴]𝑛, 𝑡 is increasing }. Clearly, |𝑊𝑛(𝑝)| =
𝜅 < 𝜇.

(6) Let 𝑝′ ≤ 𝑝 and 𝑞, 𝑞′ ∈ 𝑊 (𝑝′) and assume 𝑞′ ≤ 𝑞. Set 𝑝 := (𝑠,𝐴),
𝑞 := (𝑡, 𝐵) and 𝑞′ := (𝑢,𝐶). By the previous items, 𝑤(𝑝, 𝑞) =
(𝑡, 𝐴 ∖ max(𝑡) + 1) and 𝑤(𝑝, 𝑞′) = (𝑢,𝐴 ∖ max(𝑢) + 1) and, since
𝑞′ ≤ 𝑞, is clear that 𝑤(𝑝, 𝑞′) ≤ 𝑤(𝑝, 𝑞), as desired.



SIGMA-PRIKRY FORCING I 11

(7) This follows in a similar fashion to the classical proof of the SPP in
[10, Lemma 1.13]. �

As a corollary, we infer that the Σ-Prikry class is not closed under prod-
ucts. Indeed, let 𝒰 and 𝒱 be normal measures over the same measurable
cardinal 𝜅 and let P and Q be the corresponding Vanilla Prikry notions
of forcing. We claim that P × Q adds a bounded subset of 𝜅, so that, by
Lemma 2.10(1), it does not fit into the Σ-Prikry class.

Let �⃗� = ⟨𝑠𝑛 | 𝑛 < 𝜔⟩ and �⃗� = ⟨𝑡𝑛 | 𝑛 < 𝜔⟩ be pairwise generic Prikry-
sequences with respect to P and Q, i.e., �⃗� (resp. �⃗�) generates a generic filter
for P (resp. Q) and furthermore �⃗� /∈ 𝑉 [⃗𝑡] and �⃗� /∈ 𝑉 [�⃗�]. By mutual genericity,
𝑋 := {𝑛 ∈ 𝜔 | 𝑠𝑛 < 𝑡𝑛} is infinite and it is also not hard to check that 𝑋 /∈ 𝑉 .
In particular, P×Q adds a real.

3.2. Supercompact Prikry forcing. Let 𝜅 < 𝜆 be two cardinals and
assume that is 𝒰 a 𝜆-supercompact measure on 𝒫𝜅(𝜆), namely, 𝒰 is a 𝜅-
complete, normal and fine ultrafilter over 𝒫𝜅(𝜆) (cf. [15, p. 301]). In this
section we prove that P, the Supercompact Prikry forcing with respect to 𝒰
for singularizing 𝜅 to cofinality 𝜔 and collapse the interval [𝜅, 𝜆<𝜅], falls also
into the Σ-Prikry framework. Recall that for 𝑥, 𝑦 ∈ 𝒫𝜅(𝜆), 𝑥 ≺ 𝑦 iff 𝑥 ⊆ 𝑦
and otp(𝑥) < otp(𝑦 ∩ 𝜅).

Recall that conditions are of the form (�⃗�, 𝐴), where �⃗� is a finite ≺-
increasing sequence in 𝒫𝜅(𝜆), called the stem of the condition, and 𝐴 ∈ 𝒰 .
(�⃗�, 𝐴) ≤ (�⃗�, 𝐵) iff �⃗� ⊑ �⃗�, �⃗� ∖ �⃗� ⊆ 𝐵 and 𝐴 ⊆ 𝐵.

Given a set of stems 𝑋 the diagonal intersection of a family {𝐴𝑠 | 𝑠 ∈
𝑋} ⊆ 𝒰 is given by

i
{𝐴𝑠 | 𝑠 ∈ 𝑋} := {𝑦 ∈ 𝒫𝜅(𝜆) | ∀𝑠 ∈ 𝑋(𝑠 ≺ 𝑦 → 𝑦 ∈ 𝐴𝑠)}.

Again, normality of 𝒰 implies that
a
{𝐴𝑠 | 𝑠 ∈ 𝑋} ∈ 𝒰 . Also, one can prove

a version of the classical Röwbottom Lemma for 𝜆-supercompact measures.
Let Σ be the 𝜔-sequence with constant value 𝜅 and 𝜇 := (𝜆<𝜅)+. The

notion of length associated to P, ℓ : 𝑃 → 𝜔, is given by ℓ(�⃗�, 𝐴) := |�⃗�|.
Finally, define 𝑐 : 𝑃 → <𝜔(𝜆<𝜅) via 𝑐(�⃗�, 𝐴) := �⃗�. Mimicking the proof of

Proposition 3.1 one can prove the next proposition:

Proposition 3.2. (P, ℓ, 𝑐) is Σ-Prikry. �

3.3. Diagonal Supercompact Prikry Forcing. Here we show that the
Diagonal Supercompact Prikry Forcing, due to Gitik and Sharon [13], can
be regarded as a Σ-Prikry forcing. For economy of the discourse henceforth
we shall refer to the Diagonal Supercompact Prikry Forcing simply as GS
forcing, where the abbreviation GS stands for Gitik-Sharon.

Let ⟨𝜅𝑛 | 𝑛 < 𝜔⟩ be an increasing sequence of regular uncountable car-
dinals, and denote 𝜅 := 𝜅0. Let Σ be the 𝜔-sequence with constant value
𝜅 and 𝜇 := (sup𝑛<𝜔 𝜅𝑛)+. Suppose that 𝒰 is a supercompact measure on
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𝒫𝜅(𝜇+), and let 𝑈𝑛 be its projection projection onto 𝒫𝜅(𝜅𝑛).9 It is routine to
check that, for each 𝑛 < 𝜔, 𝑈𝑛 is a 𝜅𝑛-supercompact measure over 𝒫𝜅(𝜅𝑛).

We begin defining the universe 𝑃 of the GS poset P:

Definition 3.3. Define 𝑃 as the set of sequences 𝑝 = ⟨𝑥𝑝0, . . . , 𝑥
𝑝
𝑛−1, 𝐴

𝑝
𝑛,

𝐴𝑝
𝑛+1, . . . ⟩ such that each 𝑥𝑖 ∈ 𝒫𝜅(𝜅𝑖), 𝑥𝑖 ≺ 𝑥𝑖+1, and 𝐴𝑘 ∈ 𝑈𝑘. Denote

ℓ(𝑝) := 𝑛 and call the sequence ⟨𝑥0, . . . , 𝑥𝑛−1⟩ the stem of 𝑝. Typically we
will denote this sequence by stem(𝑝). The order is the usual: we extend the
stems by picking elements from the measure one sets, and then shrink the
measure one sets.

Definition 3.4. Let 𝑝 = ⟨𝑥𝑝0, . . . , 𝑥
𝑝
𝑛−1, 𝐴

𝑝
𝑛, 𝐴

𝑝
𝑛+1, . . . , ⟩ in 𝑃 . For 𝑥 ∈ 𝐴𝑝

ℓ(𝑝),

𝑝y⟨𝑥⟩ stands for the unique condition

𝑞 := ⟨𝑥𝑝0, . . . , 𝑥
𝑝
ℓ(𝑝)−1, 𝑥,𝐵

𝑝
ℓ(𝑝)+1, 𝐵

𝑝
ℓ(𝑝)+2, . . . ⟩,

where, for each 𝑖 ≥ ℓ(𝑝), 𝐵𝑝
𝑖 := {𝑦 ∈ 𝐴𝑝

𝑖 | 𝑥 ≺ 𝑦}. Similarly, for all 𝑛 ≥ ℓ(𝑝),

and any ≺-increasing �⃗� := ⟨𝑥ℓ(𝑝), . . . , 𝑥𝑛+1⟩ ∈
∏︀𝑛+1

𝑖=ℓ(𝑝)𝐴
𝑝
𝑖 , we define 𝑝y�⃗� to

be the weakest extension of 𝑝 with stem equal to stem(𝑝)a�⃗�.

Note that whenever 𝑞 ≤ 𝑝, for some �⃗�, we have that 𝑞 ≤0 𝑝y�⃗� ≤ 𝑝. I.e.
this is exactly the needed notion to verify clauses (4), (5), (6) of Defini-
tion 2.3. In particular, for 𝑞, 𝑝 as above, 𝑤(𝑝, 𝑞) = 𝑝y�⃗�.

Finally, define 𝑐 : 𝑃 → <𝜔(𝑃𝜅(𝜅+𝜔)) via

𝑐(⟨𝑥𝑝0, . . . , 𝑥
𝑝
ℓ(𝑝)−1, 𝐴

𝑝
ℓ(𝑝), 𝐴

𝑝
ℓ(𝑝)+1, . . . ⟩) := ⟨𝑥𝑝0, . . . , 𝑥

𝑝
ℓ(𝑝)−1⟩.

Proposition 3.5. (P, ℓ, 𝑐) is Σ-Prikry.

Proof. We go over the clauses of Definition 2.3.
Clause (2) follows from the completeness of the normal measures. Clauses

(1) and (3) are clear. Clauses (4), (5) follow from the above discussion. In

particular for any 𝑝, 𝑊𝑛(𝑝) = {𝑝y�⃗� | �⃗� ∈
∏︀𝑛−1

𝑖=ℓ(𝑝)𝐴
𝑝
𝑖 ,≺ -increasing}, which

has cardinality 𝜅𝑛. Clause (6) follows from the definition of the ordering.
And Clause (7) follows in a similar fashion to the proof of the SPP for the
GS poset. �

3.4. AIM forcing. We now consider the notion of forcing from [6]. Suppose
𝜇 is a strongly inaccessible cardinal, and Σ = ⟨𝜅𝑛 | 𝑛 < 𝜔⟩ is a strictly
increasing sequence of 𝜇-supercompact cardinals. Denote 𝜅 := sup𝑛<𝜔 𝜅𝑛.
For each 𝑛 < 𝜔, let 𝑈𝑛 be some 𝜅𝑛-complete fine normal ultrafilter on
𝑃𝜅𝑛(𝜇), and for 𝜅 ≤ 𝛼 < 𝜇 let 𝑈𝑛,𝛼 be the projection of 𝑈𝑛 to 𝑃𝜅𝑛(𝛼) via
the map 𝑥 ↦→ 𝑥 ∩ 𝛼.

Definition 3.6. We define (P, ℓ, 𝑐) with P = (𝑃,≤), as follows. 𝑃 consists
of all sequences 𝑝 = ⟨𝑝𝑛 | 𝑛 < 𝜔⟩ such that for some ℓ(𝑝) < 𝜔, we have:

9Namely, for each 𝑋 ⊆ 𝒫𝜅(𝜅𝑛), 𝑋 ∈ 𝑈𝑛 iff 𝜋−1
𝑛 [𝑋] ∈ 𝒰 , where 𝜋𝑛 is the standard

projection between 𝒫𝜅(𝜇+) and 𝒫𝜅(𝜅𝑛).
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(1) For each 𝑛 < ℓ(𝑝), 𝑝𝑛 is a function 𝑓𝑝
𝑛 with dom(𝑓𝑝

𝑛) ⊆ [𝜅, 𝜇),
|dom(𝑓𝑝

𝑛)| < 𝜇, and for all 𝜂 ∈ dom(𝑓𝑝
𝑛), 𝑓𝑝

𝑛(𝜂) ∈ 𝑃𝜅𝑛(𝜂);
(2) For each 𝑛 ≥ ℓ(𝑝), 𝑝𝑛 is a triple (𝑎𝑝𝑛, 𝐴

𝑝
𝑛, 𝑓

𝑝
𝑛), where:

a) 𝑎𝑝𝑛 is a subset of [𝜅, 𝜇) with |𝑎𝑝𝑛| < 𝜇 that moreover admits a
maximal element 𝛼𝑝

𝑛;
b) 𝐴𝑝

𝑛 ∈ 𝑈𝑛,𝛼𝑝
𝑛
;

c) 𝑓𝑝
𝑛 is a function with dom(𝑓𝑝

𝑛) ⊆ [𝜅, 𝜇)∖𝑎𝑝𝑛, |dom(𝑓𝑝
𝑛)| < 𝜇 such

that, for all 𝜂 ∈ dom(𝑓𝑝
𝑛), 𝑓𝑝

𝑛(𝜂) ∈ 𝑃𝜅𝑛(𝜂).
(3) ⟨𝑎𝑝𝑛 | ℓ(𝑝) ≤ 𝑛 < 𝜔⟩ is ⊆-increasing.

We let 𝑝 ≤ 𝑞 if and only if:

(1) ℓ(𝑝) ≥ ℓ(𝑞).
(2) For all 𝑛, 𝑓𝑝

𝑛 ⊇ 𝑓 𝑞
𝑛;

(3) For 𝑛 with ℓ(𝑞) ≤ 𝑛 < ℓ(𝑝), 𝑎𝑞𝑛 ⊆ dom(𝑓𝑝
𝑛), 𝑓𝑝

𝑛(𝛼𝑞
𝑛) ∈ 𝐴𝑞

𝑛, and
𝑓𝑝
𝑛(𝜂) = 𝑓𝑝

𝑛(𝛼𝑞
𝑛) ∩ 𝜂 for all 𝜂 ∈ 𝑎𝑞𝑛.10

(4) (𝑓𝑝
𝑛(𝛼𝑞

𝑛))ℓ(𝑞)≤𝑛<ℓ(𝑝) is ⊆-increasing.

(5) For 𝑛 ≥ ℓ(𝑝), we have 𝑎𝑞𝑛 ⊆ 𝑎𝑝𝑛, and 𝑥 ∩ 𝛼𝑞
𝑛 ∈ 𝐴𝑞

𝑛 for all 𝑥 ∈ 𝐴𝑝
𝑛.

(6) For 𝑛 ≥ ℓ(𝑝), if ℓ(𝑞) < ℓ(𝑝), then 𝑓𝑝
ℓ(𝑝)−1(𝛼

𝑞
ℓ(𝑝)−1) ⊆ 𝑥 for all 𝑥 ∈ 𝐴𝑝

𝑛.

Finally, by cardinality considerations, we find 𝑐 : 𝑃 → 𝜇 which is an
injection.

By virtue of Lemma 4 and Corollary 1 of [6], P collapses all cardinals 𝜃
with 𝜅 < 𝜃 < 𝜇 and makes 𝜇 the successor of 𝜅. Next, we briefly go over
the clauses of Definition 2.3 to explain why (P, ℓ, 𝑐) is Σ-Prikry.

By the completeness of the measures, we get that for each 𝑛, P𝑛 is
𝜅𝑛-directed-closed giving Clause (2). Clauses (1) and (3) are clear. For
Clauses (4), (5), (6) we need to recall some definitions and facts from [6].

Definition 3.7. For conditions 𝑟 ≤ 𝑞, we let stem(𝑟, 𝑞) denote the finite
sequence (𝑓 𝑟

𝑖 (𝛼𝑞
𝑖 ))ℓ(𝑞)≤𝑖<ℓ(𝑟).

Definition 3.8. Let 𝑞 be a condition. Let 𝑙 ∈ (ℓ(𝑞), 𝜔) and 𝑠 ∈
∏︀

ℓ(𝑞)≤𝑖<𝑙 𝐴
𝑞
𝑖

be a ⊆-increasing sequence. Define 𝑞 + 𝑠 as the 𝜔-sequence (𝑟𝑘)𝑘<𝜔 such
that:

∙ For 𝑘 < ℓ(𝑞), 𝑟𝑘 = 𝑓 𝑞
𝑘 .

∙ For ℓ(𝑞) ≤ 𝑘 < 𝑙, 𝑟𝑘 is the function with domain dom(𝑓 𝑞
𝑘 ) ∪ 𝑎𝑞𝑘 such

that 𝑟𝑘(𝜂) = 𝑓 𝑞
𝑘 (𝜂) for 𝜂 ∈ dom(𝑓 𝑞

𝑘 ) and 𝑟𝑘(𝜂) = 𝑠𝑘 ∩ 𝜂 for 𝜂 ∈ 𝑎𝑞𝑘.

∙ For 𝑘 ≥ 𝑙, 𝑟𝑘 = (𝑓 𝑞
𝑘 , 𝑎

𝑞
𝑘, 𝐵𝑘) where 𝐵𝑘 = {𝑥 ∈ 𝐴𝑞

𝑘 : 𝑠𝑙−1 ⊆ 𝑥}.11

By convention we also define 𝑞 + ⟨⟩ = 𝑞.

In [6, Lemma 8], it is shown that for 𝑞 and 𝑠 as in Definition 3.8, 𝑞 + 𝑠 is
a condition in 𝑃 extending 𝑞. Moreover, for each 𝑟 ≤ 𝑞, 𝑟 ≤0 𝑞 + stem(𝑟, 𝑞)
and also is not hard to check that 𝑞 + stem(𝑟, 𝑞) is the weakest extension of

10This is the corresponding analogous of condition (2d) in [10, Definition 2.10] for the
Extender-based Prikry forcing. See also Subsection 3.5 below.

11Notice that 𝑓𝑞
𝑙−1(𝛼𝑞

𝑙−1) = 𝑠𝑙−1, as 𝑠𝑙−1 ⊆ 𝛼𝑞
𝑙−1.
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𝑞 above 𝑟; i.e., in our notation, 𝑞+stem(𝑟, 𝑞) = 𝑤(𝑞, 𝑟). Thereby, for each 𝑛,
𝑊𝑛(𝑞) is the set of all conditions of the form 𝑞 + 𝑠, where 𝑠 ∈

∏︀
ℓ(𝑞)≤𝑖<𝑛𝐴

𝑞
𝑖 .

It thus follows that 𝑊𝑛(𝑞) has cardinality less than 𝜇, hence yielding clauses
(4) and (5).

For Clause (6), let 𝑞′ ≤ 𝑞 and 𝑟0, 𝑟1 ∈ 𝑊 (𝑞′) with 𝑟0 ≤ 𝑟1. By the previous
discussion, for each 𝑖 ∈ 2, there is 𝑠𝑖 such that 𝑟𝑖 = 𝑞 + 𝑠𝑖 and 𝑤(𝑞, 𝑞 + 𝑠𝑖) =
𝑞 + 𝑠𝑖. Altogether, we have shown that 𝑤(𝑞, 𝑞 + 𝑠0) ≤ 𝑤(𝑞, 𝑞 + 𝑠1), hence
yielding Clause (6).

Finally, Clause (7) of Definition 2.3 follows in a similar fashion to the
Prikry property arguments in [6, Lemma 10 and 11]. The main point is
that given a 0-open set 𝑈 and a condition 𝑝, for every possible 𝑠 as in the
above definitions, we check if there is 𝑞 ≤ 𝑝 + 𝑠 in 𝑈 . If there is, call it 𝑝𝑠;
otherwise, let 𝑝𝑠 := 𝑝 + 𝑠. Doing this via a careful induction one constructs
𝑞 ≤0 𝑝, such that, for all 𝑠, 𝑞 + 𝑠 ≤0 𝑝𝑠. Then we shrink the measure one
sets to ensure that either each 𝑞 + 𝑠 is in 𝑈 or none is.

To sum up, we have the following:

Proposition 3.9. (P, ℓ, 𝑐) is Σ-Prikry. �

3.5. Extender-based Prikry Forcing. Suppose that ⟨𝜅𝑛 | 𝑛 < 𝜔⟩ is an
increasing sequence of regular cardinals, let 𝜅 := sup𝑛<𝜔 𝜅𝑛, 𝜇 := 𝜅+ and
let 𝜆 > 𝜇 be such that 𝜆<𝜆 = 𝜆. Suppose further that each 𝜅𝑛 carries a
(𝜅𝑛, 𝜆 + 1)-extender 𝐸𝑛 := ⟨𝐸𝑛,𝛼 | 𝛼 < 𝜆⟩. Then extender-based Prikry
forcing with respect to these extenders, denoted by P𝑒𝑏𝑝𝑓 , adds sequences
⟨𝑓𝑛 | 𝑛 < 𝜔⟩, where each 𝑓𝑛 : 𝜆 → 𝜅𝑛 is generic for the Cohen forcing
Add(𝜇, 𝜆), and an unbounded set 𝐹 ⊂ 𝜆 with the following properties:

∙ setting 𝑡𝛼 ∈
∏︀

𝑛<𝜔 𝜅𝑛 by 𝑡𝛼(𝑛) := 𝑓𝑛(𝛼), we have that 𝑡𝛼 /∈ 𝑉 iff
𝛼 ∈ 𝐹 ;

∙ for all 𝛼 < 𝛽 both in 𝐹 , for all large 𝑛, 𝑡𝛼(𝑛) < 𝑡𝛽(𝑛);
∙ for all 𝛼 ∈ 𝐹 , 𝑡𝛼 is a Prikry generic sequence with respect to the

measures ⟨𝐸𝑛,𝛼 | 𝑛 < 𝜔⟩ (i.e. for all measure one sets from these
ultrafilters, the sequence meets them on a tail end)

In particular, forcing with P𝑒𝑏𝑝𝑓 makes 2𝜅 = 𝜆. This forcing plays an impor-
tant role in the proof of Theorem 1.2. In a sequel to this paper [18], we will
describe this forcing in detail and prove that it is Σ-Prikry, where Σ := ⟨𝜅𝑛 |
𝑛 < 𝜔⟩.

3.6. Lottery sum. Suppose that Σ = ⟨𝜅𝑛 | 𝑛 < 𝜔⟩ is non-decreasing se-
quence of regular uncountable cardinals, converging to some cardinal 𝜅, 𝜇
is a cardinal, and ⟨(Q𝑖, ℓ𝑖, 𝑐𝑖) | 𝑖 < 𝜈⟩ is a sequence of Σ-Prikry notions of
forcing such that 𝜈 < 𝜇 and, for all 𝑖 < 𝜈, 1lQ𝑖 Q𝑖 �̌� = �̌�+.

Define 𝑃 := {(𝑖, 𝑝) | 𝑖 < 𝜈, 𝑝 ∈ 𝑄𝑖} ∪ {∅} and an ordering ≤, letting
(𝑖, 𝑝) ≤ (𝑗, 𝑞) iff 𝑖 = 𝑗 and 𝑝 ≤Q𝑖 𝑞, as well as setting 𝑥 ≤ ∅ for any
𝑥 ∈ 𝑃 . Set P := (𝑃,≤) and note that 1lP = ∅ and 1lP Q𝑖 �̌� = �̌�+. Now,
define ℓ : 𝑃 → 𝜔 by letting ℓ(∅) := 0 and ℓ(𝑖, 𝑝) := ℓ𝑖(𝑝). Finally, define
𝑐 : 𝑃 → 𝜇× 𝜇 by letting 𝑐(∅) := (0, 0) and 𝑐(𝑖, 𝑝) := (𝑖, 𝑐𝑖(𝑝)).
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Proposition 3.10. (P, ℓ, 𝑐) is Σ-Prikry.

Proof. We go over the clauses of Definition 2.3.

(1) As (𝑖, 𝑞) ≤ (𝑗, 𝑝) entails 𝑖 = 𝑗 and 𝑞 ≤Q𝑖 𝑝, we infer from the fact
that (Q𝑖, ℓ𝑖, 𝑐𝑖) is Σ-Prikry, that ℓ(𝑖, 𝑝) = ℓ(𝑝) ≤ ℓ(𝑞) = ℓ(𝑖, 𝑞).

(2) Let 𝐷 ∈ [𝑃𝑛 ∪ {∅}]<𝜅𝑛 be directed. Find 𝑖 < 𝜈 such that 𝐷 ∖ {∅} ⊆
{𝑖} × (𝑄𝑖)𝑛. Now, as (Q𝑖, ℓ𝑖, 𝑐𝑖) is Σ-Prikry, there exists a lower
bound 𝑝 for {𝑞 ∈ (𝑄𝑖)𝑛 | (𝑖, 𝑞) ∈ 𝐷}. Evidently, (𝑖, 𝑝) is a lower
bound for 𝐷.

(3) Follows from the fact that, for all 𝑖 < 𝜈, (Q𝑖, ℓ𝑖, 𝑐𝑖) is Σ-Prikry.
(4)-(5) Let 𝑥 ∈ 𝑃 and (𝑖, 𝑞) ≤ 𝑥. If 𝑥 = ∅ it is not hard to check that

𝑤(∅, ∅) = ∅ and that, more generally, 𝑚(∅, (𝑖, 𝑞)) = (𝑖,𝑚(1lQ𝑖 , 𝑞)).
Hence, 𝑊 (∅) ⊆ {∅} ∪

⋃︀
𝑖<𝜈 𝑊 (1lQ𝑖). Analogously if 𝑥 ̸= ∅, say

𝑥 = (𝑖, 𝑝), then 𝑚((𝑖, 𝑝), (𝑖, 𝑞)) = (𝑖,𝑚(𝑝, 𝑞)) and thus, in particular,
𝑊𝑛(𝑖, 𝑝) = {𝑖}×𝑊𝑛(𝑝). Since 𝜈 < 𝜇, this yields clauses (4) and (5).

(6) This is obvious.
(7) Let 𝑈 ⊆ 𝑃 be a 0-open set and fix 𝑥 ∈ 𝑃 and 𝑛 < 𝜔. If 𝑥 ̸= ∅, denote

(𝑖, 𝑝) := 𝑥. Otherwise, let (𝑖, 𝑝) := (0, 1lP0). In both cases, (𝑖, 𝑝) ≤0 𝑥.
Now, it is not hard to check that 𝑈𝑖 := {𝑞 ∈ 𝑄𝑖 | (𝑖, 𝑞) ∈ 𝑈} is also
0-open. Since (Q𝑖, ℓ𝑖, 𝑐𝑖) is Σ-Prikry we may find 𝑞 ∈ (𝑄𝑖)

𝑝
0 such that

either (𝑄𝑖)
𝑞
𝑛 ⊆ 𝑈𝑖 or (𝑄𝑖)

𝑞
𝑛 ∩ 𝑈𝑖 = ∅. Set 𝑦 := (𝑖, 𝑞). Clearly 𝑦 ≤0 𝑥.

If 𝑃 𝑞
𝑛 ∩ 𝑈 ̸= ∅ then clearly (𝑄𝑖)

𝑞
𝑛 ∩ 𝑈𝑖 ̸= ∅, hence (𝑄𝑖)

𝑞
𝑛 ⊆ 𝑈𝑖, and

thus 𝑃 𝑞
𝑛 ⊆ 𝑈 . �

4. Forking projections

In this section, we introduce the notion of forking projection which will
play a key role in Section 6.

Definition 4.1. Suppose that (P, ℓP, 𝑐P) is a Σ-Prikry triple, A = (𝐴,E) is a
notion of forcing, and ℓA and 𝑐A are functions with dom(ℓA) = dom(𝑐A) = 𝐴.

A pair of functions (t, 𝜋) is said to be a forking projection from (A, ℓA)
to (P, ℓP) iff all of the following hold:

(1) 𝜋 is a projection from A onto P, and ℓA = ℓP ∘ 𝜋;
(2) for all 𝑎 ∈ 𝐴, t(𝑎) is an order-preserving function from (P ↓ 𝜋(𝑎),≤)

to (A ↓ 𝑎,E);
(3) for all 𝑝 ∈ 𝑃 , {𝑎 ∈ 𝐴 | 𝜋(𝑎) = 𝑝} admits a greatest element, which

we denote by ⌈𝑝⌉A;
(4) for all 𝑛,𝑚 < 𝜔 and 𝑏E𝑛+𝑚 𝑎, 𝑚(𝑎, 𝑏) exists and satisfies:

𝑚(𝑎, 𝑏) = t(𝑎)(𝑚(𝜋(𝑎), 𝜋(𝑏)));

(5) for all 𝑎 ∈ 𝐴 and 𝑟 ≤ 𝜋(𝑎), 𝜋(t(𝑎)(𝑟)) = 𝑟;

(6) for all 𝑎 ∈ 𝐴 and 𝑟 ≤ 𝜋(𝑎), 𝑎 = ⌈𝜋(𝑎)⌉A iff t(𝑎)(𝑟) = ⌈𝑟⌉A;
(7) for all 𝑎 ∈ 𝐴, 𝑎′ E0 𝑎 and 𝑟 ≤0 𝜋(𝑎′), t(𝑎′)(𝑟)E t(𝑎)(𝑟).

The pair (t, 𝜋) is said to be a forking projection from (A, ℓA, 𝑐A) to
(P, ℓP, 𝑐P) iff, in addition to all of the above, the following holds:
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(8) for all 𝑎, 𝑎′ ∈ 𝐴, if 𝑐A(𝑎) = 𝑐A(𝑎′), then 𝑐P(𝜋(𝑎)) = 𝑐P(𝜋(𝑎′)) and, for

all 𝑟 ∈ 𝑃
𝜋(𝑎)
0 ∩ 𝑃

𝜋(𝑎′)
0 , t(𝑎)(𝑟) = t(𝑎′)(𝑟).

Example 4.2. Suppose that (P, ℓP, 𝑐P) is any Σ-Prikry triple and that Q is any
notion of forcing with a greatest element 1lQ. Let A = (𝐴,E) be the product
forcing P × Q. Define 𝜋 : 𝐴 → 𝑃 via 𝜋(𝑝, 𝑞) := 𝑝, and, for each 𝑎 = (𝑝, 𝑞)
in 𝐴, define t(𝑎) : P ↓ 𝑝 → A ↓ 𝑎 via t(𝑎)(𝑟) := (𝑟, 𝑞). Set ℓA := ℓP ∘ 𝜋.

Define 𝑐A : 𝐴 → Im(𝑐P) ×𝑄 via 𝑐A(𝑝, 𝑞) := (𝑐P(𝑝), 𝑞). Then ⌈𝑝⌉A = (𝑝, 1lQ),
𝑤((𝑝, 𝑞), (𝑝′, 𝑞′)) = (𝑤(𝑝, 𝑝′), 𝑞), and the pair (t, 𝜋) is a forking projection
from (A, ℓA, 𝑐A) to (P, ℓP, 𝑐P).

Lemma 4.3. Suppose that (t, 𝜋) is a forking projection from (A, ℓA) to
(P, ℓP). Let 𝑎 ∈ 𝐴.

(1) t(𝑎) �𝑊 (𝜋(𝑎)) forms a bijection from 𝑊 (𝜋(𝑎)) to 𝑊 (𝑎);
(2) for all 𝑛 < 𝜔 and 𝑟 ≤𝑛 𝜋(𝑎), t(𝑎)(𝑟) ∈ 𝐴𝑎

𝑛.

Proof. (1) By Clauses (4) and (5) of Definition 4.1.
(2) By Clauses (1), (2) and (5) of Definition 4.1. �

Lemma 4.4. Suppose that (t, 𝜋) is a forking projection from (A, ℓA) to
(P, ℓP). Let 𝑈 ⊆ 𝐴 and 𝑎 ∈ 𝐴. Denote 𝑈𝑎 := 𝑈 ∩ (A ↓ 𝑎).

(1) If 𝑈𝑎 is 0-open, then so is 𝜋[𝑈𝑎];
(2) If 𝑈𝑎 is dense below 𝑎, then 𝜋[𝑈𝑎] is dense below 𝜋(𝑎).

Proof. (1) Suppose 𝑈𝑎 is 0-open. To see that 𝜋[𝑈𝑎] is 0-open, let 𝑝 ∈ 𝜋[𝑈𝑎]
and 𝑝′ ≤0 𝑝 be arbitrary. Find 𝑏 ∈ 𝑈𝑎 such that 𝜋(𝑏) = 𝑝 and set 𝑏′ :=
t(𝑏)(𝑝′). Clearly, 𝑏′ is well-defined and by Definition 4.1(5), 𝑏′ E0 𝑏, so
that, by 0-openness of 𝑈𝑎, 𝑏′ ∈ 𝑈𝑎. Again, Definition 4.1(5) yields 𝜋(𝑏′) =
𝜋(t(𝑏)(𝑝′)) = 𝑝′, thus 𝑝′ ∈ 𝜋[𝑈𝑎], as desired.

(2) Suppose that 𝑈𝑎 is dense below 𝑎. To see that 𝜋[𝑈𝑎] is dense below
𝜋(𝑎), let 𝑝 ≤ 𝜋(𝑎) be arbitrary. Since, by Definition 4.1(1), 𝜋 is a projection
from A to P, we may find 𝑎* E 𝑎 such that 𝜋(𝑎*) ≤ 𝑝. As 𝑈𝑎 is dense below
𝑎, we may then find 𝑎⋆ E 𝑎* in 𝑈𝑎. Clearly, 𝜋(𝑎⋆) ≤ 𝑝. �

Throughout the rest of this section, suppose that:

∙ P = (𝑃,≤) is a notion of forcing with a greatest element 1lP;
∙ A = (𝐴,E) is a notion of forcing with a greatest element 1lA;
∙ Σ = ⟨𝜅𝑛 | 𝑛 < 𝜔⟩ is a non-decreasing sequence of regular uncountable

cardinals, converging to some cardinal 𝜅, and 𝜇 is a cardinal such
that 1lP P �̌� = �̌�+;

∙ ℓP and 𝑐P are functions witnessing that (P, ℓP, 𝑐P) is a Σ-Prikry;
∙ ℓA and 𝑐A are functions with dom(ℓA) = dom(𝑐A) = 𝐴;
∙ (t, 𝜋) is a forking projection from (A, ℓA, 𝑐A) to (P, ℓP, 𝑐P).

We shall now go over each of the clauses of Definition 2.3 and collect
sufficient conditions for the triple (A, ℓA, 𝑐A) to be Σ-Prikry, as well.

Lemma 4.5. (A, ℓA) is a graded poset.
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Proof. For all 𝑎, 𝑏 ∈ 𝐴, 𝑏 E 𝑎 =⇒ 𝜋(𝑏) ≤ 𝜋(𝑎) =⇒ ℓA(𝑏) = ℓP(𝜋(𝑏)) ≥
ℓP(𝜋(𝑎)) = ℓA(𝑎). In addition, as (P, ℓP) is a graded poset, for any given

𝑎 ∈ 𝐴, we may pick 𝑟 ∈ 𝑃
𝜋(𝑎)
1 . By Lemma 4.3(2), then, t(𝑎)(𝑟) witnesses

that 𝐴𝑎
1 is non-empty. �

Lemma 4.6. Let 𝑛 < 𝜔. Suppose that for every directed family 𝐷 of con-
ditions in A𝑛 with |𝐷| < 𝜅𝑛, if the map 𝑑 ↦→ 𝜋(𝑑) is constant over 𝐷, then
𝐷 admits a lower bound in A𝑛.

Then A𝑛 is 𝜅𝑛-directed-closed.

Proof. Suppose that 𝐸 is a given directed family in A𝑛 of size less than 𝜅𝑛.
In particular, {𝜋(𝑒) | 𝑒 ∈ 𝐸} is a directed family in P𝑛 of size less than 𝜅𝑛;
hence, by Definition 2.3(2), we may find a lower bound for it (in P𝑛), say, 𝑟.
Put 𝐷 := {t(𝑒)(𝑟) | 𝑒 ∈ 𝐸}. By Lemma 4.3(2), 𝐷 is a family of conditions
in A𝑛 with |𝐷| < 𝜅𝑛. By Definition 4.1(5), the map 𝑑 ↦→ 𝜋(𝑑) is constant
(indeed, with value 𝑟) over 𝐷.

Claim 4.6.1. 𝐷 is directed.

Proof. Given 𝑑0, 𝑑1 ∈ 𝐷, fix 𝑒0, 𝑒1 ∈ 𝐸 such that 𝑑𝑖 = t(𝑒𝑖)(𝑟) for all 𝑖 < 2.
As 𝐸 is directed, let us pick 𝑒* ∈ 𝐸 such that 𝑒*E𝑒0, 𝑒1. Put 𝑑* := t(𝑒*)(𝑟),
so that 𝑑* ∈ 𝐷. Then, by Definition 4.1(7), 𝑑* E 𝑑0, 𝑑1. �

Now, by the hypothesis of the lemma, we may pick a lower bound for 𝐷
(in A𝑛), say, 𝑏. By Definition 4.1(2), for all 𝑎 ∈ 𝐸, 𝑏 E t(𝑎)(𝑟) E 𝑎, and
hence 𝑏 is a a lower bound for 𝐸. �

Lemma 4.7. For all 𝑎, 𝑎′ ∈ 𝐴, if 𝑐A(𝑎) = 𝑐A(𝑎′), then 𝐴𝑎
0∩𝐴𝑎′

0 is non-empty.
In particular, if | Im(𝑐A)| ≤ 𝜇, then A is 𝜇+-2-linked.

Proof. By Definition 4.1(8), 𝑐(𝜋(𝑎)) = 𝑐(𝜋(𝑎′)). Since (P, ℓP, 𝑐P) is Σ-Prikry,

Definition 2.3(3) guarantees the existence of some 𝑟 ∈ 𝑃
𝜋(𝑎)
0 ∩ 𝑃

𝜋(𝑎′)
0 and

thus, again by Definition 4.1(8), t(𝑎)(𝑟) = t(𝑎′)(𝑟). Finally, Lemma 4.3(2)

yields that this common value is in 𝐴𝑎
0 ∩𝐴𝑎′

0 , as desired. �

Lemma 4.8. For all 𝑎 ∈ 𝐴, 𝑛,𝑚 < 𝜔 and 𝑏E𝑛+𝑚 𝑎, 𝑚(𝑎, 𝑏) exists.

Proof. This is covered by Definition 4.1(4). �

Lemma 4.9. For all 𝑎 ∈ 𝐴, |𝑊 (𝑎)| < 𝜇.

Proof. This follows from Lemma 4.3(1) and Definition 2.3(5) for (P, ℓP, 𝑐P).
�

Lemma 4.10. For all 𝑎′ ≤ 𝑎 in 𝐴, 𝑏 ↦→ 𝑤(𝑎, 𝑏) forms an order-preserving
map from 𝑊 (𝑎′) to 𝑊 (𝑎).

Proof. Fix an arbitrary pair 𝑏′ E 𝑏 in 𝑊 (𝑎′), and let us show that 𝑤(𝑎, 𝑏′)E
𝑤(𝑎, 𝑏). By Definition 4.1(4) with 𝑚 = 0, 𝑤(𝑎, 𝑏′) = t(𝑎)(𝑤(𝜋(𝑎), 𝜋(𝑏′)))
and 𝑤(𝑎, 𝑏) = t(𝑎)(𝑤(𝜋(𝑎), 𝜋(𝑏))). On the other hand, 𝜋 is a projection,
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in particular order-preserving, hence 𝜋(𝑏′) ≤ 𝜋(𝑏), and also both such con-
ditions extend 𝜋(𝑎). By Definition 2.3(6) for (P, ℓP, 𝑐P), 𝑤(𝜋(𝑎), 𝜋(𝑏′)) ≤
𝑤(𝜋(𝑎), 𝜋(𝑏)), and thus, appealing to Definition 4.1(7), it follows that

t(𝑎)(𝑤(𝜋(𝑎), 𝜋(𝑏′)))E t(𝑎)(𝑤(𝜋(𝑎), 𝜋(𝑏))),

which yields the desired result. �

Definition 4.11. The forking projection (t, 𝜋) is said to have the mixing
property iff for all 𝑎 ∈ 𝐴, 𝑛 < 𝜔, 𝑞 ≤0 𝜋(𝑎), and a function 𝑔 : 𝑊𝑛(𝑞) → A ↓ 𝑎
such that 𝜋 ∘ 𝑔 is the identity map,12 there exists 𝑏E0 𝑎 with 𝜋(𝑏) = 𝑞 such
that t(𝑏)(𝑟)E0 𝑔(𝑟) for every 𝑟 ∈ 𝑊𝑛(𝑞).

Lemma 4.12. Suppose that (t, 𝜋) has the mixing property. Let 𝑈 ⊆ 𝐴 be a
0-open set. Then, for all 𝑎 ∈ 𝐴 and 𝑛 < 𝜔, there is 𝑏E0 𝑎 such that, either
𝐴𝑏

𝑛 ∩ 𝑈 = ∅ or 𝐴𝑏
𝑛 ⊆ 𝑈 .

Proof. Let 𝑎 ∈ 𝐴 and 𝑛 < 𝜔. Set 𝑈𝑎 := 𝑈 ∩ (A ↓ 𝑎), �̄� := 𝜋[𝑈𝑎], and
𝑝 := 𝜋(𝑎). By Lemma 4.4(1), �̄� is 0-open. Since (P, ℓP, 𝑐P) is Σ-Prikry, we
now appeal to Definition 2.3(7) and find 𝑞 ≤0 𝑝 such that, either 𝑃 𝑞

𝑛 ∩ �̄� = ∅
or 𝑃 𝑞

𝑛 ⊆ �̄� .

Claim 4.12.1. If 𝑃 𝑞
𝑛 ∩ �̄� = ∅, then there exists 𝑏 E0 𝑎 with 𝜋(𝑏) = 𝑞 such

that 𝐴𝑏
𝑛 ∩ 𝑈 = ∅.

Proof. Suppose that 𝑃 𝑞
𝑛 ∩ �̄� = ∅. Set 𝑏 := t(𝑎)(𝑞), so that 𝑏 E 𝑎 and

𝜋(𝑏) = 𝑞. As ℓA(𝑏) = ℓP(𝑞) = ℓA(𝑎), we moreover have 𝑏E0 𝑎. Finally, since
𝑑 ∈ 𝐴𝑏

𝑛 ∩ 𝑈 =⇒ 𝜋(𝑑) ∈ 𝑃 𝑞
𝑛 ∩ �̄� , we infer that 𝐴𝑏

𝑛 ∩ 𝑈 = ∅. �

Claim 4.12.2. If 𝑃 𝑞
𝑛 ⊆ �̄� , then there exists 𝑏E0 𝑎 with 𝜋(𝑏) = 𝑞 such that

𝐴𝑏
𝑛 ⊆ 𝑈 .

Proof. Suppose that 𝑃 𝑞
𝑛 ⊆ �̄� . So, for every 𝑟 ∈ 𝑃 𝑞

𝑛 , we may pick 𝑎𝑟 ∈ 𝑈𝑎 such
that 𝜋(𝑎𝑟) = 𝑟. Define a function 𝑔 : 𝑊𝑛(𝑞) → 𝑈𝑎 via 𝑔(𝑟) := 𝑎𝑟. By the
mixing property, we now obtain a condition 𝑏E0 𝑎 such that t(𝑏)(𝑟)E0 𝑔(𝑟)
for every 𝑟 ∈ 𝑊𝑛(𝑞). As 𝑈 is 0-open, it follows that t(𝑏)“𝑊𝑛(𝑞) ⊆ 𝑈 . By
Lemma 4.3(1), 𝑊𝑛(𝑏) = t(𝑏)“𝑊𝑛(𝑞) ⊆ 𝑈 ; hence, again by 0-openess of 𝑈 ,
𝐴𝑏

𝑛 ⊆ 𝑈 , as desired. �

This completes the proof. �

Corollary 4.13. Suppose that Clauses (2) and (7) of Definition 2.3 are
valid for (A, ℓA). If 1lP P “�̌� is singular”, then 1lA A �̌� = �̌�+.

Proof. Suppose that 1lA ̸A �̌� = �̌�+. As 1lP P �̌� = �̌�+ and A projects to
P, this means that there exists 𝑎 ∈ 𝐴 such that 𝑎 A |�̌�| ≤ |�̌�|. Towards
a contradiction, suppose that 1lP P “�̌� is singular”. As A projects to P,
it altogether follows that 𝑎 A cf(�̌�) < �̌�. By Lemma 2.10(2), then, there
exists 𝑎′ E 𝑎 with |𝑊 (𝑎′)| ≥ 𝜇, contradicting Lemma 4.8(2). �

12Equivalently, a function 𝑔 : 𝑊𝑛(𝑞) → 𝐴 such that 𝑔(𝑟)E 𝑎 and 𝜋(𝑔(𝑟)) = 𝑟 for every
𝑟 ∈ 𝑊𝑛(𝑞).
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5. Simultaneous stationary reflection

Definition 5.1. For cardinals 𝜃 < 𝜇 = cf(𝜇), and stationary subsets 𝑆, 𝑇 of
𝜇, the principle Refl(<𝜃, 𝑆, 𝑇 ) asserts that for every collection 𝒮 of stationary
subsets of 𝑆, with |𝒮| < 𝜃 and sup({cf(𝛼) | 𝛼 ∈

⋃︀
𝒮}) < sup(𝑆), the set

𝑇 ∩
⋂︀

𝑆∈𝒮 ∩Tr(𝑆) is non-empty.

We write Refl(<𝜃, 𝑆) for Refl(<𝜃, 𝑆, 𝜇) and Refl(𝜃, 𝑆) for Refl(<𝜃+, 𝑆).13

Definition 5.2 (Shelah, [28, Definition 5.1, p. 85]). For infinite cardinals
𝜇 ≥ 𝜈 ≥ 𝜃, define

cov(𝜇, 𝜈, 𝜃, 2) := min{|𝒜| | 𝒜 ⊆ [𝜇]<𝜈 ∀𝑋 ∈ [𝜇]<𝜃 ∃𝐴 ∈ 𝒜(𝑋 ⊆ 𝐴)}.
The following proposition is implicit in the work of Solovay on the Singular

Cardinal Hypothesis (SCH).

Proposition 5.3. Suppose Refl(<𝜃, 𝑆,𝐸𝜇
<𝜈) holds for a stationary 𝑆 ⊆ 𝜇

and some cardinal 𝜈 ∈ 𝜇. Then cov(𝜇, 𝜈, 𝜃, 2) = 𝜇.

Proof. Let ⟨𝑆𝑖 | 𝑖 < 𝜇⟩ be a partition of 𝑆 into mutually disjoint stationary
sets. Put 𝑇 := {𝛼 < 𝜇 | 𝜔 < cf(𝛼) < 𝜈}. Set 𝒜 := {𝐴𝛼 | 𝛼 ∈ 𝑇}, where for
each 𝛼 ∈ 𝑇 , 𝐴𝛼 := {𝑖 < 𝜇 | 𝑆𝑖 ∩𝛼 is stationary}. Since each 𝛼 ∈ 𝑇 admits a
club 𝐶𝛼 of order-type <𝜈, and 𝐶𝛼 ∩ 𝑆𝑖 ̸= ∅ for all 𝑖 ∈ 𝐴𝛼, while 𝑆𝑖 ∩ 𝑆𝑗 = ∅
for all 𝑖 < 𝑗 < 𝜇, we get that 𝒜 ⊆ [𝜇]<𝜈 .

By Refl(<𝜃, 𝑆,𝐸𝜇
<𝜈), for every 𝑋 ∈ [𝜇]<𝜃, there must exist some 𝐴 ∈ 𝒜

such that 𝑋 ⊆ 𝐴. Altogether, 𝒜 witnesses that cov(𝜇, 𝜈, 𝜃, 2) = 𝜇. �

Note that for every singular strong limit 𝜅, cov(𝜅+, 𝜅, (cf(𝜅))+, 2) = 2𝜅.
In particular:

Corollary 5.4. If 𝜅 is a singular strong limit cardinal admitting a stationary
subset 𝑆 ⊆ 𝜅+ for which Refl(cf(𝜅), 𝑆) holds, then 2𝜅 = 𝜅+. �

Throughout the rest of this section, suppose that (P, ℓ, 𝑐) is a given Σ-
Prikry notion of forcing. Denote P = (𝑃,≤) and Σ = ⟨𝜅𝑛 | 𝑛 < 𝜔⟩. Also,
define 𝜅 and 𝜇 as in Definition 2.3. Our universe of sets is denoted by 𝑉 ,
and we write Γ := {𝛼 < 𝜇 | 𝜔 < cf𝑉 (𝛼) < 𝜅}.14

Lemma 5.5. Suppose that 𝑟* ∈ 𝑃 and that 𝜏 is a P-name. For all 𝑛 < 𝜔,
write �̇�𝑛 := {(�̌�, 𝑝) | (𝛼, 𝑝) ∈ 𝜇 × 𝑃𝑛 & 𝑝 P �̌� ∈ 𝜏}. Then one of the
following holds:

(1) 𝐷 := {𝑝 ∈ 𝑃 | (∀𝑞 ≤ 𝑝) 𝑞 Pℓ(𝑞)
“�̇�ℓ(𝑞) is stationary”} is open and

dense below 𝑟*;15

(2) There exist 𝑟⋆ ≤ 𝑟* and 𝐼 ∈ [𝜔]𝜔 such that, for all 𝑞 ≤ 𝑟⋆ with
ℓ(𝑞) ∈ 𝐼,

𝑞 Pℓ(𝑞)
“�̇�ℓ(𝑞) is nonstationary”.

13Where, for 𝜃 finite, 𝜃+ stands for 𝜃 + 1.
14All findings of the analysis in this section goes through if we replace 𝜇 by a regular

cardinal 𝜈 ≥ 𝜇 and replace Γ by {𝛼 < 𝜈 | 𝜔 < cf𝑉 (𝛼) < 𝜅}.
15Recall that we identify each of the P𝑛’s with its separative quotient.
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Proof. 𝐷 is clearly open. Suppose that 𝐷 is not dense below 𝑟*. Then, we
may pick some condition 𝑝* ≤ 𝑟* such that, for all 𝑝 ≤ 𝑝*, there is 𝑞 ≤ 𝑝,
such that 𝑞 ̸Pℓ(𝑞)

“�̇�ℓ(𝑞) is stationary”, i.e., there exists 𝑞′ ≤ 𝑞 in Pℓ(𝑞) such

that 𝑞′ Pℓ(𝑞)
“𝑇ℓ(𝑞) is nonstationary”. Hence, for all 𝑝 ≤ 𝑝*, there is 𝑞′ ≤ 𝑝,

such that 𝑞′ Pℓ(𝑞)
“�̇�ℓ(𝑞) is nonstationary”. In other words, the 0-open set

𝐸 := {𝑞 ∈ P | 𝑞 Pℓ(𝑞)
“�̇�ℓ(𝑞) is nonstationary”} is dense below 𝑝*.

Now, define a 0-open coloring 𝑑 : 𝑃 → 2 via 𝑑(𝑞) := 1 iff 𝑞 ∈ 𝐸. By virtue
of Lemma 2.6, find 𝑟⋆ ≤0 𝑝* such that P ↓ 𝑟⋆ is a set of indiscernibles for 𝑑.
Note that as 𝐸 is dense below 𝑟⋆, Clause (1) of Definition 2.3 entails that
the set 𝐼 := {ℓ(𝑞′) | 𝑞′ ≤ 𝑟⋆ & 𝑞′ ∈ 𝐸} must be infinite. Finally, as P ↓ 𝑟⋆

is a set of indiscernibles for 𝑑, for all 𝑞 ≤ 𝑟⋆ with ℓ(𝑞) ∈ 𝐼, we indeed have
𝑞 ∈ 𝐸. �

Lemma 5.6. Suppose that 𝑟⋆ ∈ 𝑃 , 𝐼 ∈ [𝜔]𝜔, and ⟨�̇�𝑛 | 𝑛 ∈ 𝐼⟩ is a sequence
such that, for all 𝑞 ≤ 𝑟⋆ with ℓ(𝑞) ∈ 𝐼, we have:

𝑞 Pℓ(𝑞)
“�̇�ℓ(𝑞) is a club in �̌�”.

Consider the P-name �̇� := {(�̌�, 𝑞) | (𝛼, 𝑞) ∈ 𝑅}, where

𝑅 := {(𝛼, 𝑞) ∈ 𝜇× 𝑃 | 𝑞 ≤ 𝑟⋆ & ∀𝑟 ≤ 𝑞[ℓ(𝑟) ∈ 𝐼 → 𝑟 Pℓ(𝑟)
�̌� ∈ �̇�ℓ(𝑟)]}.

Suppose 𝐺 is P-generic over 𝑉 , with 𝑟⋆ ∈ 𝐺. Let 𝑌 be the interpretation
of �̇� in 𝑉 [𝐺]. Then:

(1) 𝑉 [𝐺] |= 𝑌 is unbounded in 𝜇;
(2) 𝑉 [𝐺] |= acc+(𝑌 ) ∩ Γ ⊆ 𝑌 .

Proof. We commence with a claim.

Claim 5.6.1. For every 𝑝 ≤ 𝑟⋆ and 𝛾 < 𝜇, there exist 𝑝 ≤0 𝑝 and 𝛾 ∈ (𝛾, 𝜇)

such that, for every 𝑞 ≤ 𝑝 with ℓ(𝑞) ∈ 𝐼, 𝑞 Pℓ(𝑞)
“�̇�ℓ(𝑞)∩(𝛾, 𝛾) is non-empty”.

Proof. Given 𝑝 and 𝛾 as above, write:

𝐷𝑝,𝛾 := {𝑞 ∈ P | 𝑞 ≤ 𝑝 & ℓ(𝑞) ∈ 𝐼 & ∃𝛾′ > 𝛾(𝑞 Pℓ(𝑞)
𝛾′ ∈ �̇�ℓ(𝑞))}.

Note that 𝐼𝑝,𝛾 := {ℓ(𝑞) | 𝑞 ∈ 𝐷𝑝,𝛾} is equal to 𝐼 ∖ ℓ(𝑝).16 Let 𝑑 : 𝑃 → 2 be
defined via 𝑑(𝑟) := 1 iff 𝑟 ∈ 𝐷𝑝,𝛾 . As 𝐷𝑝,𝛾 is 0-open we get from Lemma 2.6
a condition 𝑝 ≤0 𝑝 such that P ↓ 𝑝 is a set of indiscernibles for 𝑑. Thereby,
for all 𝑛 < 𝜔, if 𝑃 𝑝

𝑛 ∩𝐷𝑝,𝛾 ̸= ∅, then 𝑃 𝑝
𝑛 ⊆ 𝐷𝑝,𝛾 . As 𝑝 ≤ 𝑝, 𝐼𝑝,𝛾 = 𝐼 ∖ ℓ(𝑝),

and 𝑊𝑛(𝑝) ⊆ 𝑃 𝑝
𝑛 for all 𝑛 < 𝜔, we get in particular that 𝐴𝑛 := 𝑊𝑛−ℓ(𝑝)(𝑝)

is a subset of 𝐷𝑝,𝛾 for all 𝑛 ∈ 𝐼 ∖ ℓ(𝑝).
For all 𝑛 ∈ 𝐼 ∖ ℓ(𝑝) and 𝑟 ∈ 𝐴𝑛, fix 𝛾𝑟 ∈ (𝛾, 𝜇) such that

𝑟 Pℓ(𝑟)
𝛾𝑟 ∈ �̇�ℓ(𝑟).

16By standard facts about forcing, if Q is a notion of forcing, and 𝑞 is a condition in Q
forcing that �̇� is some cofinal subset of a cardinal 𝜇, then for every ordinal 𝛾 < 𝜇, there
exists an extension 𝑞′ of 𝑞 and some ordinal 𝛾′ above 𝛾 such that 𝑞′ Q 𝛾′ ∈ �̇�.
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By Definition 2.3(5), |
⋃︀

𝑛∈𝐼∖ℓ(𝑝)𝐴𝑛| < 𝜇, so that 𝛾 := sup{𝛾𝑟 | 𝑟 ∈⋃︀
𝑛∈𝐼∖ℓ(𝑝)𝐴𝑛} + 1 is <𝜇.

Now, let 𝑞 ≤ 𝑝 with length in 𝐼 be arbitrary. As 𝐼𝑝,𝛾 = 𝐼 ∖ ℓ(𝑝), we

have ℓ(𝑞) ∈ 𝐼𝑝,𝛾 . In particular, 𝑃 𝑝
ℓ(𝑞)−ℓ(𝑝) ∩𝐷𝑝,𝛾 ̸= ∅, and thus 𝐴ℓ(𝑞) ⊆ 𝐷𝑝,𝛾 .

Pick 𝑟 ∈ 𝐴ℓ(𝑞) with 𝑞 ≤ 𝑟. Then 𝑟 Pℓ(𝑟)
𝛾𝑟 ∈ �̇�ℓ(𝑟). In particular, 𝑞 ℓ(𝑞)

“�̇�ℓ(𝑞) ∩ (𝛾, 𝛾) is non-empty”. �

Now, let 𝐺 be a P-generic with 𝑟⋆ ∈ 𝐺. Of course, the interpretation of
�̇� in 𝑉 [𝐺] is

𝑌 := {𝛼 < 𝜇 | (∃𝑞 ∈ 𝐺)(∀𝑟 ≤ 𝑞)[ℓ(𝑟) ∈ 𝐼 → 𝑟 Pℓ(𝑟)
�̌� ∈ �̇�ℓ(𝑟)]}.

Claim 5.6.2. (1) 𝑌 is unbounded in 𝑉 [𝐺];
(2) acc+(𝑌 ) ∩ Γ ⊆ 𝑌 .

Proof. (1) We run a density argument in 𝑉 . Let 𝑝 ≤ 𝑟⋆ and 𝛾 < 𝜇 be
arbitrary. By an iterative application of Claim 5.6.1, we find a ≤0-decreasing
sequence of conditions in P, ⟨𝑝𝑛 | 𝑛 < 𝜔⟩, and an increasing sequence of
ordinals below 𝜇, ⟨𝛾𝑛 | 𝑛 < 𝜔⟩, such that 𝑝0 ≤0 𝑝, 𝛾0 = 𝛾, and such that
for every 𝑛 < 𝜔 and every 𝑞 ≤ 𝑝𝑛 with ℓ(𝑞) ∈ 𝐼, we have that 𝑞 Pℓ(𝑞)

“�̇�ℓ(𝑞) ∩ (𝛾𝑛, 𝛾𝑛+1) is non-empty”.
By Definition 2.3(2), Pℓ(𝑝) is 𝜎-closed, so let 𝑞* be a lower bound for ⟨𝑞𝑛 |

𝑛 < 𝜔⟩. Put 𝛾* := sup𝑛<𝜔 𝛾𝑛. Then for every 𝑟 ≤ 𝑞* with length in 𝐼, we

have 𝑟 Pℓ(𝑟)
𝛾* ∈ �̇�ℓ(𝑟). That is, 𝑞* witnesses that 𝛾* ∈ 𝑌 ∖ 𝛾.

(2) Suppose that 𝛼 ∈ acc+(𝑌 ) ∩ Γ. Set 𝜂 := cf𝑉 (𝛼), and pick a large
enough 𝑘 < 𝜔 such that 𝜂 < 𝜅𝑘. Fix 𝑝 ∈ 𝐺 such that 𝑝 ≤ 𝑟⋆, 𝑝  �̌� ∈
acc+(�̇� ), and ℓ(𝑝) ≥ 𝑘.

Work in 𝑉 . Let ⟨𝛼𝑗 | 𝑗 < 𝜂⟩ be an increasing cofinal sequence in 𝛼. For

each 𝑗 < 𝜂, consider the set 𝐷𝑗 := {𝑞 ∈ 𝑃 | ∃𝛾 ∈ (𝛼𝑗 , 𝛼) 𝑞 P 𝛾 ∈ �̇� }.
Clearly, 𝐷𝑗 is open and dense below 𝑝. We claim that the intersection⋂︀

𝑗<𝜂 𝐷𝑗 is dense below 𝑝, as well. To this end, let 𝑝′ ≤ 𝑝 be arbitrary. For

each 𝑗 < 𝜂, 𝐷𝑗 is 0-open and dense below 𝑝′, so since 𝜂 < 𝜅𝑘 ≤ 𝜅ℓ(𝑝′), we
obtain from Corollary 2.7(2) and Definition 2.3(2), a ≤0-decreasing sequence
⟨𝑞𝑗 | 𝑗 ≤ 𝜂⟩ along with a sequence of natural numbers ⟨𝑛𝑗 | 𝑗 < 𝜂⟩ such that

𝑞0 ≤0 𝑝′ and 𝑃
𝑞𝑗
𝑛𝑗 ⊆ 𝐷𝑗 for all 𝑗 < 𝜂. Let 𝑝′′ := 𝑞𝜂. As 𝜂 = cf𝑉 (𝛼) > 𝜔,

we may pick a cofinal 𝐽 ⊆ 𝜂 for which {𝑛𝑗 | 𝑗 ∈ 𝐽} is a singleton, say, {𝑛}.

Then 𝑃 𝑝′′
𝑛 ⊆

⋂︀
𝑗∈𝐽 𝑃

𝑞𝑗
𝑛𝑗 ⊆

⋂︀
𝑗∈𝐽 𝐷𝑗 =

⋂︀
𝑗<𝜂 𝐷𝑗 . Thus, the latter contains an

element extending 𝑝′′, which extends 𝑝′.
Fix 𝑞 ∈ 𝐺∩

⋂︀
𝑗<𝜂 𝐷𝑗 extending 𝑝 and let us show that 𝑞 witnesses that 𝛼

is in 𝑌 . That is, we shall verify that, for all 𝑟 ≤ 𝑞 with ℓ(𝑟) ∈ 𝐼, 𝑟 Pℓ(𝑟)
�̌� ∈

�̇�ℓ(𝑟). First, notice that for all 𝑗 < 𝜂, there exists some 𝛾𝑗 ∈ (𝛼𝑗 , 𝛼) such

that 𝑞 P 𝛾𝑗 ∈ �̇� . Now let 𝑟 ≤ 𝑞 with ℓ(𝑟) ∈ 𝐼 be arbitrary and notice that

𝑟 Pℓ(𝑟)
𝛾𝑗 ∈ �̇�ℓ(𝑟) for all 𝑗 < 𝜂, hence 𝑟 Pℓ(𝑟)

�̌� ∈ �̇�ℓ(𝑟). �

This completes the proof of Lemma 5.6. �
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Lemma 5.7. Suppose that 𝑟* ∈ 𝑃 forces that 𝜏 is a P-name for a stationary
subset 𝑇 of Γ. For all 𝑛 < 𝜔, write �̇�𝑛 := {(�̌�, 𝑝) | (𝛼, 𝑝) ∈ 𝜇 × 𝑃𝑛 & 𝑝 P
�̌� ∈ 𝜏}. Then 𝐷 := {𝑝 ∈ 𝑃 | (∀𝑞 ≤ 𝑝) 𝑞 Pℓ(𝑞)

“�̇�ℓ(𝑞) is stationary”} is open
and dense below 𝑟*.

Proof. Suppose not. Then, by Lemma 5.5, let us pick 𝑟⋆ ≤ 𝑟* and 𝐼 ∈ [𝜔]𝜔

such that, for all 𝑞 ≤ 𝑟⋆ with ℓ(𝑞) ∈ 𝐼,

𝑞 Pℓ(𝑞)
“�̇�ℓ(𝑞) is nonstationary”.

Now, for each 𝑛 ∈ 𝐼, we appeal to the maximal principle (also known as the

mixing lemma) to find a P𝑛-name �̇�𝑛 for a club subset of 𝜇, such that, for

all 𝑞 ≤ 𝑟⋆ with ℓ(𝑞) ∈ 𝐼, we have 𝑞 Pℓ(𝑞)
�̇�ℓ(𝑞) ∩ �̇�ℓ(𝑞) = ∅. Consider the

P-name:

�̇� := {(�̌�, 𝑞) ∈ 𝜇× 𝑃 | 𝑞 ≤ 𝑟⋆ & ∀𝑟 ≤ 𝑞[ℓ(𝑟) ∈ 𝐼 → 𝑟 Pℓ(𝑟)
�̌� ∈ �̇�ℓ(𝑟)]}.

Let 𝐺 be P-generic over 𝑉 , with 𝑟⋆ ∈ 𝐺, and 𝑌 be the interpretation of �̇�
in 𝑉 [𝐺]. By Lemma 5.6:

(1) 𝑉 [𝐺] |= 𝑌 is unbounded in 𝜇;
(2) 𝑉 [𝐺] |= acc+(𝑌 ) ∩ Γ ⊆ 𝑌 .

As 𝑟⋆ ≤ 𝑟*, our hypothesis entails:

(3) 𝑉 [𝐺] |= 𝑇 is a stationary subset of Γ.

So 𝑉 [𝐺] |= 𝑌 ∩ 𝑇 ̸= ∅. Pick 𝛼 < 𝜇 and 𝑟 ∈ 𝐺 such that 𝑟 P �̌� ∈ �̇� ∩ 𝜏 .
Of course, we may find such 𝑟 that in addition satisfies 𝑟 ≤ 𝑟⋆ and ℓ(𝑟) ∈ 𝐼.

By definition of �̇�ℓ(𝑟), the ordered-pair (�̌�, 𝑟) is an element of the name �̇�ℓ(𝑟).

In particular, 𝑟 Pℓ(𝑟)
�̌� ∈ �̇�ℓ(𝑟).

From 𝑟 ≤ 𝑟⋆, ℓ(𝑟) ∈ 𝐼, and 𝑟 P �̌� ∈ �̇� , we have 𝑟 Pℓ(𝑟)
�̌� ∈ �̇�ℓ(𝑟).

Altogether 𝑟 Pℓ(𝑟)
�̇�ℓ(𝑟) ∩ �̇�ℓ(𝑟) ̸= ∅, contradicting the choice of �̇�ℓ(𝑟). �

Recall that a supercompact cardinal 𝜒 is said to be Laver-indestructible iff
for every 𝜒-directed-closed notion of forcing Q, 1lQ Q “𝜒 is supercompact”.
Also recall that for every supercompact cardinal 𝜒 and every regular cardinal
𝜈 ≥ 𝜒, Refl(<𝜒,𝐸𝜈

<𝜒, 𝐸
𝜈
<𝜒) holds. We refer the reader to [3] for further

details. For our purpose, we would just need the following:

Lemma 5.8. For all 𝑛 < 𝜔, if 𝜅𝑛 is a Laver-indestructible supercompact
cardinal, then 𝑉 P𝑛 |= Refl(<𝜔,𝐸𝜇

<𝜅𝑛
, 𝐸𝜇

<𝜅𝑛
).17

Proof. By Definition 2.3(2), P𝑛 is 𝜅𝑛-directed-closed, and hence 𝑉 P𝑛 |=
“𝜅𝑛 is supercompact”. In particular, 𝑉 P𝑛 |= Refl(<𝜔,𝐸𝜇

<𝜅𝑛
, 𝐸𝜇

<𝜅𝑛
). �

Lemma 5.9. Suppose:

∙ For all 𝑛 < 𝜔, 𝑉 P𝑛 |= Refl(<𝜔,𝐸𝜇
<𝜅𝑛

, 𝐸𝜇
<𝜅𝑛

);

∙ 𝑟* ∈ 𝑃 forces that ⟨𝜏 𝑖 | 𝑖 < 𝑘⟩ is a finite sequence of P-names for
stationary subsets of (𝐸𝜇

<𝜅)𝑉 ;

17Note that, as P𝑛 is 𝜅𝑛-closed, (𝐸𝜇
<𝜅𝑛

)𝑉
P𝑛

= (𝐸𝜇
<𝜅𝑛

)𝑉 .
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Write �̇� 𝑖
𝑛 := {(�̌�, 𝑝) | (𝛼, 𝑝) ∈ 𝜇 × 𝑃𝑛 & 𝑝 P �̌� ∈ 𝜏 𝑖} for all 𝑖 < 𝑘 and

𝑛 < 𝜔.
Suppose 𝐷𝑖 := {𝑝 ∈ 𝑃 | (∀𝑞 ≤ 𝑝)𝑞 Pℓ(𝑞)

“�̇� 𝑖
ℓ(𝑞) is stationary”} is open

and dense below 𝑟* for each 𝑖 < 𝑘. Then for every P-generic 𝐺 over 𝑉 with
𝑟* ∈ 𝐺, ⟨𝑇 𝑖 | 𝑖 < 𝑘⟩ reflects simultaneously in 𝑉 [𝐺].18

Proof. We run a density argument below the condition 𝑟*. Given an arbi-
trary 𝑝0 ≤ 𝑟*, pick 𝑝 ∈

⋂︀
𝑖<𝑘 𝐷

𝑖 below 𝑝0 and a large enough 𝑚 < 𝜔 such that

𝑝 P “∀𝑖 < 𝑘(𝜏 𝑖 ∩𝐸𝜇
<𝜅𝑚

) is stationary”. By possibly extending 𝑝 using Def-
inition 2.3(1), we may assume that 𝑛 := ℓ(𝑝) is ≥ 𝑚. Let 𝐺𝑛 be P𝑛-generic
with 𝑝 ∈ 𝐺𝑛. As 𝑉 [𝐺𝑛] |= Refl(<𝜔,𝐸𝜇

<𝜅𝑛
, 𝐸𝜇

<𝜅𝑛
), let us fix some 𝑞 ≤0 𝑝 in

𝐺𝑛, and some 𝛿 ∈ 𝐸𝜇
<𝜅𝑛

such that 𝑞 P𝑛 “∀𝑖 < 𝑘(�̇� 𝑖
𝑛 ∩ 𝛿 is stationary)”.

In 𝑉 , pick a club 𝐶 ⊆ 𝛿 of order type cf(𝛿). Note that |𝐶| < 𝜅𝑛. Then

for each 𝑖 < 𝑘, 𝑞 P𝑛 “�̇� 𝑖
𝑛 ∩ 𝐶 is stationary in 𝛿”. Working for a moment

in 𝑉 [𝐺𝑛], write 𝐴𝑖 := 𝐶 ∩ (�̇� 𝑖
𝑛)𝐺𝑛 . Since P𝑛 is 𝜅𝑛-closed, we may find

𝑟 ∈ 𝑃𝑛 extending 𝑞 that, for all 𝑖 < 𝑘, decides 𝐴𝑖 to be some ground model
stationary subset 𝐵𝑖 of 𝛿. Then, for every 𝑖 < 𝑘,

𝑟 P𝑛 “�̇� 𝑖
𝑛 ∩ 𝛿 contains the stationary set �̌�𝑖”.

By definition of the name �̇� 𝑖
𝑛, we have that 𝑟 P �̌�𝑖 ⊆ 𝜏 𝑖 ∩ 𝛿. Finally,

since otp(𝐵𝑖) ≤ 𝛿 < 𝜅, Lemma 2.10(1), 𝐵𝑖 remains stationary in 𝑉 P for
each 𝑖. So, 𝑟 ≤ 𝑝0, and 𝑟 P “𝜏 𝑖 ∩ 𝛿 is stationary for each 𝑖 < 𝑘”. �

Corollary 5.10. Suppose 𝑉 P𝑛 |= Refl(<𝜔,𝐸𝜇
<𝜅𝑛

, 𝐸𝜇
<𝜅𝑛

) for all 𝑛 < 𝜔. Then

𝑉 P |= Refl(<𝜔,Γ).

Proof. Let 𝑟* be a condition in 𝐺 forcing that ⟨𝜏 𝑖 | 𝑖 < 𝑘⟩ is a finite sequence
of P-names for stationary subsets ⟨𝑇 𝑖 | 𝑖 < 𝑘⟩ of Γ. For each 𝑖 < 𝑘 and each

𝑛 < 𝜔, write �̇� 𝑖
𝑛 := {(�̌�, 𝑝) | (𝛼, 𝑝) ∈ (𝜇×𝑃𝑛) & 𝑝 P �̌� ∈ 𝜏 𝑖}. By Lemma 5.7,

for each 𝑖 < 𝑘, 𝐷𝑖 := {𝑝 ∈ 𝑃 | (∀𝑞 ≤ 𝑝)𝑞 Pℓ(𝑞)
“�̇� 𝑖

ℓ(𝑞) is stationary”} is open

and dense below 𝑟*. Finally, by virtue of Lemma 5.9, ⟨𝑇 𝑖 | 𝑖 < 𝑘⟩ reflects
simultaneously in 𝑉 [𝐺]. �

Putting Lemma 5.8 together with Corollary 5.10, we arrive at the follow-
ing conclusion.

Corollary 5.11. Suppose that each cardinal in Σ is a Laver-indestructible
supercompact cardinal. Then 1l P Refl(<𝜔,Γ). �

Towards a model 𝑉 [𝐺] satisfying Refl(<𝜔, 𝜅+), we would need to address
the reflection of stationary subsets of 𝜇 ∖ Γ. In the special case that 𝜅 is
singular and 𝜇 = 𝜅+, the set 𝜇 ∖ Γ will be nothing but (𝐸𝜇

𝜔)𝑉 . It is not
hard to verify that in this scenario, 𝑉 [𝐺] will satisfy Refl(<𝜔, 𝜅+) iff it will
satisfy Refl(<𝜔,Γ) + Refl(1, (𝐸𝜇

𝜔)𝑉 ,Γ).19 For this, in the next section we
shall devise a notion of forcing for killing a given single counterexample to
Refl(1, 𝐸𝜇

𝜔 ,Γ). Then, in [18], we find a mean to iterate it.

18⟨𝑇 𝑖 | 𝑖 < 𝑘⟩ stands for the 𝐺-interpretation of the sequence of P-names ⟨𝜏 𝑖 | 𝑖 < 𝑘⟩.
19The easy proof may be found in [18].
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6. Killing one non-reflecting stationary set

Throughout this section, suppose that (P, ℓ, 𝑐) is a given Σ-Prikry notion
of forcing. Denote P = (𝑃,≤) and Σ = ⟨𝜅𝑛 | 𝑛 < 𝜔⟩. Also, define 𝜅 and 𝜇 as
in Definition 2.3, and assume that 1lP P “�̌� is singular” and that 𝜇<𝜇 = 𝜇.
Our universe of sets is denoted by 𝑉 , and we assume that, for all 𝑛 < 𝜔,
𝑉 P𝑛 |= Refl(1, 𝐸𝜇

𝜔 , 𝐸
𝜇
<𝜅𝑛

).20 Write Γ := {𝛼 < 𝜇 | 𝜔 < cf𝑉 (𝛼) < 𝜅}.

Lemma 6.1. Suppose 𝑟⋆ ∈ 𝑃 forces that �̇� is a P-name for a stationary
subset 𝑇 of (𝐸𝜇

𝜔)𝑉 that does not reflect in Γ. For each 𝑛 < 𝜔, write �̇�𝑛 :=

{(�̌�, 𝑝) | (𝛼, 𝑝) ∈ 𝐸𝜇
𝜔 × 𝑃𝑛 & 𝑝 P �̌� ∈ �̇�}. Then, for every 𝑞 ≤ 𝑟⋆, we have

𝑞 Pℓ(𝑞)
“�̇�ℓ(𝑞) is nonstationary”.

Proof. Towards a contradiction, suppose that there exists 𝑞 ≤ 𝑟⋆ such that
𝑞 ̸Pℓ(𝑞)

“�̇�ℓ(𝑞) is nonstationary”. Consequently, we may pick 𝑝 ≤0 𝑞 such

that 𝑝 P𝑛 “�̇�𝑛 is stationary”, for 𝑛 := ℓ(𝑞). Let 𝐺𝑛 be P𝑛-generic with
𝑝 ∈ 𝐺𝑛. As 𝑉 [𝐺𝑛] |= Refl(1, 𝐸𝜇

𝜔 , 𝐸
𝜇
<𝜅𝑛

), let us fix 𝑝′ ≤0 𝑝 in 𝐺𝑛, and some

𝛿 ∈ 𝐸𝜇
<𝜅𝑛

of uncountable cofinality such that 𝑝′ P𝑛 “�̇�𝑛 ∩ 𝛿 is stationary”.
As P𝑛 is 𝜅𝑛-closed, 𝛿 ∈ Γ. In 𝑉 , pick a club 𝐶 ⊆ 𝛿 of order type cf(𝛿).

Note that |𝐶| < 𝜅𝑛. Then, 𝑝′ P𝑛 “�̇�𝑛 ∩ 𝐶 is stationary in 𝛿”. Working for

a moment in 𝑉 [𝐺𝑛], write 𝐴 := 𝐶 ∩ (�̇�𝑛)𝐺𝑛 . Since P𝑛 is 𝜅𝑛-closed, we may
find 𝑟 ∈ 𝑃𝑛 extending 𝑝′ that decides 𝐴 to be some ground model stationary
subset 𝐵 of 𝛿. Namely,

𝑟 P𝑛 “�̇�𝑛 ∩ 𝛿 contains the stationary set �̌�”.

By definition of the name �̇�𝑛, we have that 𝑟 P �̌� ⊆ �̇� ∩ 𝛿. Finally,
as otp(𝐵) < 𝜅, we infer from Lemma 2.10(1) that 𝐵 remains stationary

in any forcing extension by P. So, 𝑟 ≤ 𝑝′ ≤ 𝑝 ≤ 𝑞 ≤ 𝑟⋆, and 𝑟 P “�̇� ∩
𝛿 is stationary”, contradicting the fact that 𝑟⋆ forces �̇� to not reflect in
Γ. �

Suppose 𝑟⋆ ∈ 𝑃 forces that �̇� is a P-name for a stationary subset 𝑇 of
(𝐸𝜇

𝜔)𝑉 that does not reflect in Γ. We shall devise a Σ-Prikry notion of forcing

(A, ℓA, 𝑐A) such that A = A(P, �̇� ) projects to P and kills the stationarity of
𝑇 . Moreover, (A, ℓA, 𝑐A) will admit a forking projection to (P, ℓ, 𝑐) with the
mixing property.

Here goes. For all 𝑛 < 𝜔, write �̇�𝑛 := {(�̌�, 𝑝) | (𝛼, 𝑝) ∈ 𝐸𝜇
𝜔 × 𝑃𝑛 & 𝑝 P

�̌� ∈ �̇�}. Let 𝐼 := 𝜔 ∖ ℓ(𝑟⋆). By Lemma 6.1, for all 𝑞 ≤ 𝑟⋆ with ℓ(𝑞) ∈ 𝐼,

𝑞 Pℓ(𝑞)
“�̇�ℓ(𝑞) is nonstationary”. Thus, for each 𝑛 ∈ 𝐼, we may pick a

P𝑛-name �̇�𝑛 for a club subset of 𝜇 such that, for all 𝑞 ≤ 𝑟⋆ with ℓ(𝑞) = 𝑛,

𝑞 P𝑛 �̇�𝑛 ∩ �̇�𝑛 = ∅.
Consider the binary relation 𝑅 as defined in Lemma 5.6 (page 20) with

respect to ⟨�̇�𝑛 | 𝑛 ∈ 𝐼⟩. A moment reflection makes it clear that, for all

(𝛼, 𝑞) ∈ 𝑅, 𝑞 P �̌� /∈ �̇� .

20In particular, 𝜅𝑛 > ℵ1 in 𝑉 P𝑛 .
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Definition 6.2. Suppose 𝑝 ∈ 𝑃 . A labeled 𝑝-tree is a function 𝑆 : 𝑊 (𝑝) →
[𝜇]<𝜇 such that for all 𝑞 ∈ 𝑊 (𝑝):

(1) 𝑆(𝑞) is a closed bounded subset of 𝜇;
(2) 𝑆(𝑞′) ⊇ 𝑆(𝑞) whenever 𝑞′ ≤ 𝑞;

(3) 𝑞 P 𝑆(𝑞) ∩ �̇� = ∅;
(4) for all 𝑞′ ≤ 𝑞 in 𝑊 (𝑝), either 𝑆(𝑞′) = ∅ or (max(𝑆(𝑞′)), 𝑞) ∈ 𝑅.

Definition 6.3. For 𝑝 ∈ 𝑃 , we say that �⃗� = ⟨𝑆𝑖 | 𝑖 ≤ 𝛼⟩ is a 𝑝-strategy iff
all of the following hold:

(1) 𝛼 < 𝜇;
(2) 𝑆𝑖 is a labeled 𝑝-tree for all 𝑖 ≤ 𝛼;
(3) for every 𝑖 < 𝛼 and 𝑞 ∈ 𝑊 (𝑝), 𝑆𝑖(𝑞) ⊑ 𝑆𝑖+1(𝑞);
(4) for every 𝑖 < 𝛼 and a pair 𝑞′ ≤ 𝑞 in 𝑊 (𝑝), (𝑆𝑖+1(𝑞) ∖ 𝑆𝑖(𝑞)) ⊑

(𝑆𝑖+1(𝑞
′) ∖ 𝑆𝑖(𝑞

′));
(5) for every limit 𝑖 ≤ 𝛼 and 𝑞 ∈ 𝑊 (𝑝), 𝑆𝑖(𝑞) is the ordinal closure of⋃︀

𝑗<𝑖 𝑆𝑗(𝑞). In particular, 𝑆0(𝑞) = ∅ for all 𝑞 ∈ 𝑊 (𝑝).

This section centers around the following notion of forcing.

Definition 6.4. Let A(P, �̇� ) be the notion of forcing A := (𝐴,E), where:

(1) (𝑝, �⃗�) ∈ 𝐴 iff 𝑝 ∈ 𝑃 , and �⃗� is either the empty sequence, or a 𝑝-
strategy;

(2) (𝑝′, 𝑆′)E (𝑝, �⃗�) iff:
(a) 𝑝′ ≤ 𝑝;

(b) dom(𝑆′) ≥ dom(�⃗�);

(c) 𝑆′
𝑖(𝑞) = 𝑆𝑖(𝑤(𝑝, 𝑞)) for all 𝑖 ∈ dom(�⃗�) and 𝑞 ∈ 𝑊 (𝑝′).

For all 𝑝 ∈ 𝑃 , denote ⌈𝑝⌉A := (𝑝, ∅).

Remark 6.5. The relation E is well-defined as 𝑤(𝑝, 𝑞) ∈ 𝑊 (𝑝), the domain
of the 𝑝-labeled trees 𝑆𝑖.

It is easy to see that 1lA = ⌈1lP⌉A.

Lemma 6.6. For every 𝜈 ≥ 𝜇, if P is a subset of 𝐻𝜈 , then so is A.

Proof. Suppose P ⊆ 𝐻𝜈 for a given 𝜈 ≥ 𝜇. To prove that A ⊆ 𝐻𝜈 , it

suffices to show that 𝐴 ⊆ 𝐻𝜈 . Now, each element of 𝐴 is a pair (𝑝, �⃗�), with

𝑝 ∈ 𝑃 ⊆ 𝐻𝜈 and �⃗� ∈ <𝜇(𝑊 (𝑝)[𝜇]<𝜇), so, as 𝜈 ≥ 𝜇, it suffices to show that
𝑊 (𝑝)[𝜇]<𝜇 ⊆ 𝐻𝜈 . Any element of 𝑊 (𝑝)[𝜇]<𝜇 is a subset of 𝑊 (𝑝) × [𝜇]<𝜇 of
size |𝑊 (𝑝)| and, in particular, a subset of 𝐻𝜈 × 𝐻𝜇 of size <𝜇 because of
Definition 2.3(5), so that it is indeed an element of 𝐻𝜈 . �

Lemma 6.7. Suppose (𝑝, �⃗�) ∈ 𝐴, where 𝑝 is compatible with 𝑟⋆. For every

𝜖 < 𝜇, there exist 𝛼 > 𝜖 and (𝑞, 𝑇 ) E (𝑝, �⃗�) such that, for all 𝑟 ∈ 𝑊 (𝑞),

dom(𝑇 ) = 𝛼 + 1 and max(𝑇𝛼(𝑟)) = 𝛼.

Proof. Fix 𝑝′ ≤ 𝑝, 𝑟⋆. Define a 𝑝′-strategy �⃗�′ with dom(�⃗�) = dom(�⃗�′) using

Clause (2c) of Definition 6.4, (𝑝′, �⃗�′) E (𝑝, �⃗�). Next, let 𝜖 < 𝜇 be arbitrary.
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Since (P, ℓ, 𝑐) is Σ-Prikry, we infer from Definition 2.3(5) that |𝑊 (𝑝′)| < 𝜇.
Thus, by possibly extending 𝜖, we may assume that 𝑆′

𝑖(𝑞) ⊆ 𝜖, for all 𝑞 ∈
𝑊 (𝑝′) and 𝑖 ∈ dom(�⃗�′).

Assume for a moment that �⃗�′ ̸= ∅ and write 𝛿 + 1 := dom(�⃗�′). As
𝑝′ ≤ 𝑟⋆, by the very same proof of Claim 5.6.2(1), we may fix (𝛼, 𝑞) ∈ 𝑅

with 𝛼 > 𝛿 + 𝜖 and 𝑞 ≤ 𝑝′. Define 𝑇 = ⟨𝑇𝑖 : 𝑊 (𝑞) → [𝜇]<𝜇 | 𝑖 ≤ 𝛼⟩ by

letting for all 𝑟 ∈ 𝑊 (𝑞) and 𝑖 ∈ dom(𝑇 ):

𝑇𝑖(𝑟) :=

{︃
𝑆′
𝑖(𝑤(𝑝′, 𝑟)), if 𝑖 ≤ 𝛿;

𝑆′
𝛿(𝑤(𝑝′, 𝑟)) ∪ {𝛼}, otherwise.

It is easy to see that 𝑇𝑖 is a labeled 𝑞-tree for each 𝑖 ≤ 𝛼. By Definitions 6.3

and 6.4, we also have that (𝑞, 𝑇 ) is a condition in A and (𝑞, 𝑇 ) E (𝑝′, �⃗�′) E
(𝑝, �⃗�). Altogether, 𝛼 and (𝑞, 𝑇 ) are as desired.

In case �⃗� = ∅, arguing as before we may find (𝛼, 𝑞) ∈ 𝑅 with 𝛼 > 𝜖 and

𝑞 ≤ 𝑝′. Define 𝑇 = ⟨𝑇𝑖 : 𝑊 (𝑞) → [𝜇]<𝜇 | 𝑖 ≤ 𝛼⟩ by letting for all 𝑟 ∈ 𝑊 (𝑞)

and 𝑖 ∈ dom(𝑇 ):

𝑇𝑖(𝑟) :=

{︃
∅, if 𝑖 = 0;

{𝛼}, otherwise.

It is clear that 𝑇 is a 𝑞-strategy and that (𝑞, 𝑇 ) is as desired. �

Theorem 6.8. (𝑟⋆, ∅) A “�̇� is nonstationary”.

Proof. Let 𝐺 be A-generic over 𝑉 , with (𝑟⋆, ∅) ∈ 𝐺. Work in 𝑉 [𝐺]. Let �̄�
be the induced generic for P via 𝜋, so that 𝑟⋆ ∈ �̄�.

For all 𝑎 = (𝑝, �⃗�) in 𝐺 and 𝑖 ∈ dom(�⃗�), write 𝑑𝑖𝑎 :=
⋃︀
{𝑆𝑖(𝑞) | 𝑞 ∈

�̄� ∩𝑊 (𝑝)}. Then, let

𝑑𝑎 :=

{︃
𝑑
max(dom(�⃗�))
𝑎 , if �⃗� ̸= ∅;

∅, otherwise.

Claim 6.8.1. Suppose that 𝑎 = (𝑝, �⃗�) is an element of 𝐺.

In 𝑉 [�̄�], for all 𝑖 ∈ dom(�⃗�), the ordinal closure cl(𝑑𝑖𝑎) of 𝑑𝑖𝑎 is disjoint
from 𝑇 .

Proof. Work in 𝑉 [�̄�]. By Lemma 2.8(1), for all 𝑛 < 𝜔, there exists a unique
element in �̄� ∩ 𝑊𝑛(𝑝), which we shall denote by 𝑝𝑛. By Lemma 2.8(2), it
follows that ⟨𝑝𝑛 | 𝑛 < 𝜔⟩ is ≤-decreasing and then, by Definition 6.2, for

each 𝑖 ∈ dom(�⃗�), ⟨𝑆𝑖(𝑝𝑛) | 𝑛 < 𝜔⟩ is a weakly ⊆-increasing (though, not
⊑-increasing) sequence of closed sets that converges to 𝑑𝑖𝑎.

We now argue by induction on 𝑖 ∈ dom(�⃗�). The base case is trivial, since
𝑑0𝑎 = ∅.

Next, suppose that the claim holds for a given 𝑖 < max(dom(�⃗�)), and let
us prove it for 𝑖+ 1. Let 𝛿 ∈ cl(𝑑𝑖+1

𝑎 ) ∖ cl(𝑑𝑖𝑎) be arbitrary. We have to verify
that 𝛿 /∈ 𝑇 . By Clauses (3) and (4) of Definition 6.2, we may assume that
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𝛿 ∈ cl(𝑑𝑖+1
𝑎 ) ∖ 𝑑𝑖+1

𝑎 . In particular, as 𝑑𝑖+1
𝑎 is the countable union of closed

sets, we have cf(𝛿) = 𝜔.

Subclaim 6.8.1.1. There exists a sequence ⟨𝛿𝑛 | 𝑛 ∈ 𝑁⟩ of ordinals in 𝛿
such that:

∙ 𝑁 ∈ [𝜔]𝜔;
∙ sup𝑛∈𝑁 𝛿𝑛 = 𝛿;
∙ for every 𝑛 ∈ 𝑁 , 𝑛 = min{�̄� < 𝜔 | 𝛿𝑛 ∈ 𝑆𝑖+1(𝑝�̄�) ∖ 𝑆𝑖(𝑝�̄�)}.

Proof. Since 𝛿 ∈ cl(𝑑𝑖+1
𝑎 ) ∖ (cl(𝑑𝑖𝑎) ∪ 𝑑𝑖+1

𝑎 ) and cf(𝛿) = 𝜔, we may find a
strictly increasing sequence ⟨𝛿𝑚 | 𝑚 < 𝜔⟩ of ordinals in 𝑑𝑖+1

𝑎 ∖ 𝑑𝑖𝑎 such that
sup𝑚<𝜔 𝛿𝑚 = 𝛿. For each 𝑚 < 𝜔, let 𝑛𝑚 < 𝜔 be the least such that
𝛿𝑚 ∈ 𝑆𝑖+1(𝑝𝑛𝑚) ∖ 𝑆𝑖(𝑝𝑛𝑚). Since 𝑆𝑖+1(𝑝𝑛) is closed for every 𝑛 < 𝜔, we get
that 𝑚 ↦→ 𝑛𝑚 is finite-to-one, so that 𝑁 := {𝑛𝑚 | 𝑚 < 𝜔} is infinite. For

each 𝑛 ∈ 𝑁 , set 𝑚(𝑛) := min{𝑚 < 𝜔 | 𝑛 = 𝑛𝑚} and 𝛿𝑛 := 𝛿𝑚(𝑛). Evidently,

min{�̄� < 𝜔 | 𝛿𝑛 ∈ 𝑆𝑖+1(𝑝�̄�) ∖ 𝑆𝑖(𝑝�̄�)} =

min{�̄� < 𝜔 | 𝛿𝑚(𝑛) ∈ 𝑆𝑖+1(𝑝�̄�) ∖ 𝑆𝑖(𝑝�̄�)} =

𝑛𝑚(𝑛) = 𝑛.

In particular, ⟨𝑚(𝑛) | 𝑛 ∈ 𝑁⟩ is injective, and sup𝑛∈𝑁 𝛿𝑛 = 𝛿. �

Let ⟨𝛿𝑛 | 𝑛 ∈ 𝑁⟩ be given by the subclaim. By Definition 6.3(3), for all
𝑛 < 𝑚 < 𝜔, we have (𝑆𝑖+1(𝑝𝑛) ∖ 𝑆𝑖(𝑝𝑛)) ⊑ (𝑆𝑖+1(𝑝𝑚) ∖ 𝑆𝑖(𝑝𝑚)), and hence
𝛿 = sup𝑛∈𝑁 sup(𝑆𝑖+1(𝑝𝑛) ∖ 𝑆𝑖(𝑝𝑛)). Recalling that 𝑆𝑖(𝑝𝑛) ⊑ 𝑆𝑖+1(𝑝𝑛) for all
𝑛 < 𝜔, we conclude that

𝛿 = sup
𝑛∈𝑁

max(𝑆𝑖+1(𝑝𝑛)).

By Definition 6.2(4), we have (max(𝑆𝑖+1(𝑝𝑚)), 𝑝𝑛) ∈ 𝑅 for all 𝑛 ∈ 𝑁 and

𝑚 ≥ 𝑛. So, since, for each 𝑚 ∈ 𝐼, �̇�𝑚 is a P𝑚-name for a club, we infer that
(𝛿, 𝑝𝑛) ∈ 𝑅 for all 𝑛 ∈ 𝑁 . Recalling the definition of 𝑅 and the fact that
𝐼 = 𝜔 ∖ ℓ(𝑟⋆), we infer that, for every 𝑛 ≥ min(𝑁), 𝑝𝑛 ≤ 𝑟⋆, and

𝑝𝑛 P𝑛 𝛿 ∈ �̇�𝑛.

Now, for every 𝑛 ≥ min(𝑁), by the very choice of �̇�𝑛 and since 𝑝𝑛 ≤ 𝑟⋆,

𝑝𝑛 P𝑛 �̇�𝑛 ∩ �̇�𝑛 = ∅. Altogether, for a tail of 𝑛 < 𝜔,

𝑝𝑛 P𝑛 𝛿 /∈ �̇�𝑛.

It thus follows from the definition of ⟨𝑇𝑛 | 𝑛 < 𝜔⟩ and the fact that {𝑝𝑛 |
𝑛 < 𝜔} ⊆ �̄�, that 𝛿 /∈ 𝑇 .

Finally, suppose 𝑖 ∈ acc+(dom(�⃗�)), and that the claim holds below 𝑖. Let
𝛿 ∈ cl(𝑑𝑖𝑎) ∖ 𝑑𝑖𝑎 be arbitrary. By the previous analysis, it is clear that we
may pick 𝑁 ∈ [𝜔]𝜔 and an increasing sequence of ordinals ⟨𝛿𝑛 | 𝑛 ∈ 𝑁⟩ that
converges to 𝛿, such that 𝛿𝑛 ∈ 𝑆𝑖(𝑝𝑛) for all 𝑛 ∈ 𝑁 . By the last clause of
Definition 6.3, for each 𝑛 ∈ 𝑁 , we may let 𝑗𝑛 < 𝑖 be the least for which
there exists 𝛿′𝑛 ∈ 𝑆𝑗𝑛+1(𝑝𝑛) with 𝛿𝑛 ≥ 𝛿′𝑛 > sup{𝛿𝑚 | 𝑚 ∈ 𝑁 ∩ 𝑛}.
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If sup𝑛∈𝑁 𝑗𝑛 < 𝑖, then by the induction hypothesis, 𝛿 /∈ 𝑇 , and we are
done. Suppose that sup𝑛∈𝑁 𝑗𝑛 = 𝑖. By thinning 𝑁 out, we may assume
that 𝑛 ↦→ 𝑗𝑛 is strictly increasing over 𝑁 . In particular, for all 𝑚 < 𝑛 both
from 𝑁 , we have 𝛿′𝑚 ∈ 𝑆𝑗𝑚+1(𝑝𝑚) ⊆ 𝑆𝑗𝑛(𝑝𝑚) ⊆ 𝑆𝑗𝑛(𝑝𝑛) ⊑ 𝑆𝑗𝑛+1(𝑝𝑛), so
that 𝛿′𝑚 ≤ max(𝑆𝑗𝑛(𝑝𝑛)) ≤ 𝛿′𝑛. Altogether, 𝛿 = sup𝑛∈𝑁 max(𝑆𝑗𝑛(𝑝𝑛)). By
Definition 6.2(4), we have (max(𝑆𝑗𝑛(𝑝𝑚)), 𝑝𝑛) ∈ 𝑅 whenever 𝑛 ∈ 𝑁 and
𝑚 ∈ 𝜔 ∖𝑛. Thus, as in the successor case, we have (𝛿, 𝑝𝑛) ∈ 𝑅 for all 𝑛 ∈ 𝑁 ,
and hence 𝛿 /∈ 𝑇 . �

By appealing to Lemma 6.7, we now fix a sequence ⟨𝑎𝛼 | 𝛼 < 𝜇⟩ of

conditions in 𝐺 such that, for all 𝛼 < 𝜇, letting (𝑝, �⃗�) := 𝑎𝛼, we have

dom(�⃗�) = 𝛼 + 1. Denote 𝐷𝛼 := cl(𝑑𝑎𝛼). By the preceding claim and
regularity of 𝜇 we infer:21

Claim 6.8.2. For every 𝛼 < 𝜇, 𝐷𝛼 is a closed bounded subset of 𝜇, disjoint
from 𝑇 . �

Claim 6.8.3. For every 𝛼 < 𝜇 and 𝑎′ = (𝑝′, 𝑆′) in 𝐺 with dom(𝑆′) = 𝛼+ 1,
𝑑𝑎′ = 𝑑𝑎𝛼.

Proof. Denote 𝑎𝛼 = (𝑝, �⃗�). As 𝑎𝛼 and 𝑎′ are in 𝐺, we may pick (𝑟, 𝑇 ) that
extends both. In particular, 𝑟 ≤ 𝑝, 𝑝′, and, for all 𝑞 ∈ 𝑊 (𝑟), 𝑆𝛼(𝑤(𝑝, 𝑞)) =
𝑇𝛼(𝑞) = 𝑆′

𝛼(𝑤(𝑝′, 𝑞)). Let 𝑚 := ℓ(𝑟) − ℓ(𝑝). Then, for all 𝑘 < 𝜔, 𝑞 ∈
𝑊𝑘(𝑟) ∩ 𝐺 iff 𝑤(𝑝, 𝑞) ∈ 𝑊𝑚+𝑘(𝑝) ∩ 𝐺. Note that these sets are singletons.
Then

𝑑𝑎𝛼 =
⋃︁

{𝑆𝛼(𝑞) | 𝑞 ∈ �̄� ∩𝑊≥𝑚(𝑝)} =
⋃︁

{𝑇𝛼(𝑞) | 𝑞 ∈ �̄� ∩𝑊 (𝑟)}.

Similarly, we have that 𝑑𝑎′ =
⋃︀
{𝑇𝛼(𝑞) | 𝑞 ∈ �̄�∩𝑊 (𝑟)}, and so 𝑑𝑎𝛼 = 𝑑𝑎′ . �

Claim 6.8.4. For every 𝛼 < 𝛽 < 𝜇, 𝐷𝛼 ⊑ 𝐷𝛽.

Proof. Let 𝛼 < 𝛽 < 𝜇. It suffices to show that 𝑑𝑎𝛼 ⊑ 𝑑𝑎𝛽 . Let (𝑝, �⃗�) := 𝑎𝛽

and set 𝑎 := (𝑝, �⃗� � (𝛼 + 1)). As 𝑎𝛽 E 𝑎, we infer that 𝑎 ∈ 𝐺. Thus, the
preceding claim yields 𝑑𝑎 = 𝑑𝑎𝛼 . Let ⟨𝑝𝑛 | 𝑛 < 𝜔⟩ be the decreasing sequence
of conditions such that 𝑝𝑛 is unique element of �̄� ∩𝑊𝑛(𝑝). Then:

∙ 𝑑𝑎𝛼 =
⋃︀
{𝑆𝛼(𝑝𝑛) | 𝑛 < 𝜔}, and

∙ 𝑑𝑎𝛽 =
⋃︀
{𝑆𝛽(𝑝𝑛) | 𝑛 < 𝜔}.

Note that by Clauses (3) and (5) of Definition 6.3, for all 𝑛 < 𝜔, 𝑆𝛼(𝑝𝑛) ⊑
𝑆𝛽(𝑝𝑛). Now, let 𝛾 < 𝜇 be arbitrary. We consider two cases:
I If 𝛾 ∈ 𝑑𝑎𝛼 , then we may find 𝑛 < 𝜔 such that 𝛾 ∈ 𝑆𝛼(𝑝𝑛), and as

𝑆𝛼(𝑝𝑛) ⊑ 𝑆𝛽(𝑝𝑛), we infer that 𝛾 ∈ 𝑑𝑎𝛽 .
I If 𝛾 ∈ 𝑑𝑎𝛽 ∖ 𝑑𝑎𝛼 , then we first find 𝑛 < 𝜔 such that 𝛾 ∈ 𝑆𝛽(𝑝𝑛). In

particular, 𝛾 ∈ 𝑆𝛽(𝑝𝑛)∖𝑆𝛼(𝑝𝑛), and as 𝑆𝛼(𝑝𝑛) ⊑ 𝑆𝛽(𝑝𝑛), this means that 𝛾 ≥
sup(𝑆𝛼(𝑝𝑛)). By Definition 6.2(2), for all 𝑚 ≥ 𝑛, 𝑆𝛽(𝑝𝑛) ⊆ 𝑆𝛽(𝑝𝑚), and so it
likewise follows that, for all 𝑚 ≥ 𝑛, 𝛾 ≥ sup(𝑆𝛼(𝑝𝑚)). By Definition 6.2(2),

21See Corollary 4.13.
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for all 𝑚 < 𝑛, 𝑆𝛼(𝑝𝑚) ⊆ 𝑆𝛼(𝑝𝑛), and so 𝛾 ≥ sup(𝑆𝛼(𝑝𝑛)) ≥ sup(𝑆𝛼(𝑝𝑚)).
Altogether, 𝛾 ≥ sup(𝑑𝑎𝛼). �

Claim 6.8.5. For every 𝜖 < 𝜇, there exists 𝛼 < 𝜇 such that max(𝐷𝛼) > 𝜖.

Proof. By Lemma 6.7, we may find (𝑞, 𝑇 ) in 𝐺 and 𝛼 > 𝜖 such that, for all

𝑟 ∈ 𝑊 (𝑞), dom(𝑇 ) = 𝛼 + 1 and max(𝑇𝛼(𝑟)) = 𝛼. By Claim 6.8.3, then,
max(𝐷𝛼) = 𝛼 > 𝜖. �

Put 𝐷 :=
⋃︀
{𝐷𝛼 | 𝛼 < 𝜇}. By Claims 6.8.2 and 6.8.4, 𝐷 is closed subset of

𝜇, disjoint from 𝑇 . By Claim 6.8.5, 𝐷 is unbounded. So 𝑇 is nonstationary
in 𝑉 [𝐺]. �

Definition 6.9. Let ℓA := ℓ ∘ 𝜋. Denote 𝐴𝑛 := {𝑎 ∈ 𝐴 | ℓA(𝑎) = 𝑛},
𝐴𝑎

𝑛 := {𝑎′ ∈ 𝐴 | 𝑎′ E 𝑎, ℓA(𝑎′) = ℓA(𝑎) + 𝑛}, and A𝑛 := (𝐴𝑛 ∪ {1lA},E).

Definition 6.10. Define 𝑐A : 𝐴 → 𝐻𝜇 by letting, for all (𝑝, �⃗�) ∈ 𝐴,

𝑐A(𝑝, �⃗�) := (𝑐(𝑝), {(𝑖, 𝑐(𝑞), 𝑆𝑖(𝑞)) | 𝑖 ∈ dom(�⃗�), 𝑞 ∈ 𝑊 (𝑝)}).

The rest of this section is devoted to verifying that (A, ℓA, 𝑐A) is a Σ-Prikry
forcing that admits a forking projection to (P, ℓ, 𝑐).
Definition 6.11 (Projection and forking).

∙ Define 𝜋 : 𝐴 → 𝑃 by stipulating 𝜋(𝑝, �⃗�) := 𝑝.

∙ Given 𝑎 = (𝑝, �⃗�) in 𝐴, define t(𝑎) : P ↓ 𝑝 → 𝐴 by letting for each

𝑝′ ≤ 𝑝, t(𝑎)(𝑝′) := (𝑝′, 𝑆′), where 𝑆′ is the sequence ⟨𝑆′
𝑖 : 𝑊 (𝑝′) →

[𝜇]<𝜇 | 𝑖 < dom(�⃗�)⟩ to satisfy:

(*) 𝑆′
𝑖(𝑞) := 𝑆𝑖(𝑤(𝑝, 𝑞)) for all 𝑖 ∈ dom(𝑆′) and 𝑞 ∈ 𝑊 (𝑝′).

Lemma 6.12. Let 𝑎 ∈ 𝐴 and 𝑝′ ≤ 𝜋(𝑎). Then t(𝑎)(𝑝′) ∈ 𝐴 and t(𝑎)(𝑝′)E
𝑎, so that t(𝑎) is a well-defined function from P ↓ 𝜋(𝑎) to A ↓ 𝑎.

Proof. Set 𝑎 := (𝑝, �⃗�). If �⃗� = ∅, then t(𝑎)(𝑝′) = ⌈𝑝′⌉A, and we are done.

Next, suppose that dom(�⃗�) = 𝛼 + 1. Let (𝑝′, 𝑆′) := t(𝑎)(𝑝′). Let 𝑖 ≤ 𝛼
and we shall verify that 𝑆′

𝑖 is a 𝑝′-labeled tree. To this end, let 𝑞′ ≤ 𝑞 be
arbitrary pair of elements of 𝑊 (𝑝′).

∙ By Definition 2.3(6), we have 𝑤(𝑝, 𝑞′) ≤ 𝑤(𝑝, 𝑞), so that 𝑆′
𝑖(𝑞

′) =
𝑆𝑖(𝑤(𝑝, 𝑞′)) ⊇ 𝑆𝑖(𝑤(𝑝, 𝑞)) = 𝑆′

𝑖(𝑞).

∙ As 𝑞 ≤ 𝑤(𝑝, 𝑞), 𝑤(𝑝, 𝑞) P 𝑆𝑖(𝑤(𝑝, 𝑞))∩ �̇� = ∅, so that, since 𝑆′
𝑖(𝑞) =

𝑆𝑖(𝑤(𝑝, 𝑞)), we clearly have 𝑞 P 𝑆′
𝑖(𝑞) ∩ �̇� = ∅.

∙ To avoid trivialities, suppose that 𝑆′
𝑖(𝑞

′) ̸= ∅. Write 𝛾 := max(𝑆𝑖(𝑤(𝑝, 𝑞)).
As (𝛾,𝑤(𝑝, 𝑞)) ∈ 𝑅 and 𝑞 ≤ 𝑤(𝑝, 𝑞), we clearly have (𝛾, 𝑞) ∈ 𝑅. Re-
calling that max(𝑆′

𝑖(𝑞)) = 𝛾, we are done.

To prove that (𝑝′, �⃗�′) is a condition in 𝐴 it remains to argue that �⃗�′ fulfills
the requirements described in Clauses (3) and (5) of Definition 6.3 but this

already follows from the definition of �⃗�′ and the fact that �⃗� is a 𝑝-strategy.

Finally t(𝑎)(𝑝′) = (𝑝′, �⃗�′) E (𝑝, �⃗�) = 𝑎 by the very choice of 𝑝′ and by
Definition 6.11. �
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Let us now check that the pair of functions (t, 𝜋) of Definition 6.11 is a
forking projection from (A, ℓA, 𝑐A) to (P, ℓ, 𝑐). We prove this by going over
the clauses of Definition 4.1.

Lemma 6.13. (1) 𝜋 is a projection from A onto P, and ℓA = ℓ ∘ 𝜋;
(2) for all 𝑎 ∈ 𝐴, t(𝑎) is an order-preserving function from (P ↓ 𝜋(𝑎),≤)

to (A ↓ 𝑎,E);
(3) for all 𝑝 ∈ 𝑃 , (𝑝, ∅) is the greatest element of {𝑎 ∈ 𝐴 | 𝜋(𝑎) = 𝑝};
(4) for all 𝑛,𝑚 < 𝜔 and 𝑏E𝑛+𝑚 𝑎, 𝑚(𝑎, 𝑏) exists and satisfies:

𝑚(𝑎, 𝑏) = t(𝑎)(𝑚(𝜋(𝑎), 𝜋(𝑏)));

(5) for all 𝑎 ∈ 𝐴 and 𝑝′ ≤ 𝜋(𝑎), 𝜋(t(𝑎)(𝑝′)) = 𝑝′;
(6) for all 𝑎 ∈ 𝐴 and 𝑝′ ≤ 𝜋(𝑎), 𝑎 = (𝜋(𝑎), ∅) iff t(𝑎)(𝑝′) = (𝑝′, ∅);
(7) for all 𝑎 ∈ 𝐴, 𝑎′ E 𝑎 and 𝑟 ≤ 𝜋(𝑎′), t(𝑎′)(𝑟)E t(𝑎)(𝑟);
(8) for all 𝑎, 𝑎′ ∈ 𝐴, if 𝑐A(𝑎) = 𝑐A(𝑎′), then 𝑐(𝜋(𝑎)) = 𝑐(𝜋(𝑎′)) and
t(𝑎)(𝑟) = t(𝑎′)(𝑟) for every 𝑟 ≤ 𝜋(𝑎), 𝜋(𝑎′).

Proof. (1) The equality between the lengths comes from Definition 6.9
so let us concentrate on proving that 𝜋 forms a projection. Clearly,
𝜋(1lA) = 1lP. By Definition 6.4, for all 𝑎′ E 𝑎 in 𝐴, we have 𝜋(𝑎′) ≤
𝜋(𝑎). Finally, suppose that 𝑎 ∈ 𝐴 and 𝑝′ ≤ 𝜋(𝑎), and let us find
𝑎′ E 𝑎 such that 𝜋(𝑎′) ≤ 𝑝′. Put 𝑎′ := t(𝑎)(𝑝′). Then it is not hard
to check that 𝑎′ E 𝑎 and 𝜋(t(𝑎)(𝑝′)) = 𝑝′, so we are done.

(2) Let 𝑎 = (𝑝, �⃗�) be an arbitrary element of 𝐴. By Lemma 6.12,
t(𝑎) is a function from P ↓ 𝜋(𝑎) to A ↓ 𝑎. To see that it is order-

preserving, fix 𝑟 ≤ 𝑞 below 𝜋(𝑎). By Definition 6.11, t(𝑎)(𝑟) = (𝑟, �⃗�)

and t(𝑎)(𝑞) = (𝑞, �⃗�), where �⃗� and �⃗� are as described in Defini-

tion 6.11(*). In particular, dom(�⃗�) = dom(�⃗�) = dom(�⃗�). So, to
establish that t(𝑎)(𝑟) E t(𝑎)(𝑞), it suffices to verify Clause (2c) of

Definition 6.4. Let 𝑖 ∈ dom(�⃗�) and 𝑟′ ∈ 𝑊 (𝑟) be arbitrary and
notice that (*) implies 𝑅𝑖(𝑟

′) = 𝑆𝑖(𝑤(𝑝, 𝑟′)). Since 𝑟 ≤ 𝑞, hence
𝑤(𝑞, 𝑟′) ∈ 𝑊 (𝑞), again by (*), 𝑄𝑖(𝑤(𝑞, 𝑟′)) = 𝑆𝑖(𝑤(𝑝, 𝑤(𝑞, 𝑟′))). Us-
ing Lemma 2.9, it is the case that 𝑄𝑖(𝑤(𝑞, 𝑟′)) = 𝑆𝑖(𝑤(𝑝, 𝑟′)), hence
𝑅𝑖(𝑟

′) = 𝑄𝑖(𝑤(𝑞, 𝑟′)).
(3) This is easy to see.

(4) Write 𝑎 = (𝑝, �⃗�) and 𝑏 = (𝑝, 𝑇 ). Appealing to Definition 2.3(4), set
𝑝′ := 𝑚(𝑝, 𝑝), so that 𝑝 ≤𝑚 𝑝′ ≤𝑛 𝑝. Now, let 𝑎′ := t(𝑎)(𝑝′). By Defi-

nition 6.11, 𝑎′ takes the form (𝑝′, 𝑆′), where dom(𝑆′) = dom(�⃗�), and

𝑆′
𝑖(𝑞) := 𝑆𝑖(𝑤(𝑝, 𝑞)), for all 𝑖 ∈ dom(𝑆′) and 𝑞 ∈ 𝑊 (𝑝′). Observe

that if we prove 𝑎′ = 𝑚(𝑎, 𝑏), i.e., that 𝑎′ is the greatest element of
{𝑐 ∈ 𝐴𝑎

𝑛 | 𝑐 ∈ 𝐴𝑏
𝑚}, we will be done with both assertions.

Claim 6.13.1. 𝑎′ belongs to {𝑐 ∈ 𝐴𝑎
𝑛 | 𝑐 ∈ 𝐴𝑏

𝑚}.

Proof. By Clauses (1) and (2) together with Clause (5) below, 𝑎′ is
an element of 𝐴𝑎

𝑛, so it suffices to show that 𝑏E 𝑎′.
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We already know that 𝑝 ≤𝑚 𝑝′ and dom(𝑇 ) ≥ dom(�⃗�) = dom(𝑆′),
thus, by virtue of Definition 6.4, we are left with verifying that

𝑇𝑖(𝑞) = 𝑆′
𝑖(𝑤(𝑝′, 𝑞)) for all 𝑖 ∈ dom(𝑆′) and 𝑞 ∈ 𝑊 (𝑝).

Let 𝑖 and 𝑞 be as above. As 𝑏E𝑎, we infer that 𝑇𝑖(𝑞) = 𝑆𝑖(𝑤(𝑝, 𝑞)).
By definition of 𝑆′

𝑖 and Lemma 2.9, 𝑆′
𝑖(𝑤(𝑝′, 𝑞)) = 𝑆𝑖(𝑤(𝑝, 𝑤(𝑝′, 𝑞)) =

𝑆𝑖(𝑤(𝑝, 𝑞)), so that, altogether, 𝑇𝑖(𝑞) = 𝑆′
𝑖(𝑤(𝑝′, 𝑞)), as desired. �

Claim 6.13.2. 𝑎′ is the greatest element of {𝑐 ∈ 𝐴𝑎
𝑛 | 𝑏 ∈ 𝐴𝑏

𝑚}.

Proof. Let 𝑐 = (𝑟, �⃗�) be a condition with (𝑝, 𝑇 )E𝑚 (𝑟, �⃗�)E𝑛 (𝑝, �⃗�).
In particular, 𝑝 ≤𝑚 𝑟 ≤𝑛 𝑝, so that, since 𝑝′ = 𝑚(𝑝, 𝑝), 𝑟 ≤0 𝑝′.

We already know that 𝑟 ≤ 𝑝′ and dom(�⃗�) ≥ dom(�⃗�) = dom(𝑆′).

Now, let 𝑖 ∈ dom(𝑆′) and 𝑞 ∈ 𝑊 (𝑟) be arbitrary. By definition of
𝑆′
𝑖 and Lemma 2.9, 𝑆′

𝑖(𝑤(𝑝′, 𝑞)) = 𝑆𝑖(𝑤(𝑝, 𝑤(𝑝′, 𝑞)) = 𝑆𝑖(𝑤(𝑝, 𝑞)). As
𝑐E 𝑎, the latter is equal to 𝑅𝑖(𝑞), hence 𝑐E 𝑎′, as desired. �

(5) This follows immediately from Definition 6.11.
(6) Suppose that 𝑎 ∈ 𝐴 with 𝑎 = (𝜋(𝑎), ∅). By Definition 6.11(*), for

all 𝑝′ ≤ 𝜋(𝑎), t(𝑎)(𝑝′) = (𝑝′, ∅). Conversely, let 𝑎 := (𝜋(𝑎), �⃗�) and

suppose that t(𝑎)(𝑞) = (𝑞, ∅). Again, by Definition 6.11, dom(�⃗�) =
∅, and thus 𝑎 = (𝜋(𝑎), ∅), as desired.

(7) Let 𝑎 ∈ 𝐴, 𝑎′ E 𝑎 and 𝑟 ≤ 𝜋(𝑎′) be arbitrary, say 𝑎′ = (𝑝′, 𝑆′) and

𝑎 = (𝑝, �⃗�). By Definition 6.4, the following three hold:
∙ 𝑝′ ≤ 𝑝;

∙ dom(�⃗�) ≤ dom(�⃗�′),

∙ 𝑆′
𝑖(𝑞) = 𝑆𝑖(𝑤(𝑝, 𝑞)), for all 𝑖 ∈ dom(�⃗�) and 𝑞 ∈ 𝑊 (𝑝′).

By Definition 6.11, t(𝑎)(𝑟) := (𝑟, �⃗�𝑎), where dom(�⃗�𝑎) = dom(�⃗�)

and, for all 𝑖 < dom(�⃗�) and 𝑞 ∈ 𝑊 (𝑟), 𝑆𝑎
𝑖 (𝑞) = 𝑆𝑖(𝑤(𝑝, 𝑞)). A similar

statement is valid for t(𝑎′)(𝑟) = (𝑟, �⃗�𝑎′). Notice that dom(�⃗�𝑎′) ≥
dom(�⃗�𝑎) and that, for all 𝑖 < dom(�⃗�𝑎) and 𝑞 ∈ 𝑊 (𝑟), Lemma 2.9
yields the following chain of equalities:

𝑆𝑎′
𝑖 (𝑞) = 𝑆′

𝑖(𝑤(𝑝′, 𝑞)) = 𝑆𝑖(𝑤(𝑝, 𝑤(𝑝′, 𝑞))) = 𝑆𝑖(𝑤(𝑝, 𝑞)) = 𝑆𝑎
𝑖 (𝑞).

Altogether, we have proved t(𝑎′)(𝑟)E t(𝑎)(𝑟).

(8) Let 𝑎 = (𝑝, �⃗�) and 𝑎′ = (𝑝′, �⃗�′) be elements of 𝐴 with 𝑐A(𝑎) =

𝑐A(𝑎′). By Definition 6.10, then, 𝑐(𝜋(𝑎)) = 𝑐(𝜋(𝑎′)) and dom(�⃗�) =

dom(�⃗�′). Now, let 𝑟 ≤ 𝜋(𝑎), 𝜋(𝑎′) be arbitrary; we shall show that

t(𝑎)(𝑟) = t(𝑎′)(𝑟). Recall that t(𝑎)(𝑟) = (𝑟, 𝑇 ) and t(𝑎′)(𝑟) =

(𝑟, 𝑇 ′), where 𝑇 and 𝑇 ′ are the 𝑟-strategy of length dom(�⃗�) given
by Definition 6.11(*) with respect to 𝑎 and 𝑎′, respectively. There-

fore, it suffices to show that, for all 𝑖 ∈ dom(�⃗�) and 𝑞 ∈ 𝑊 (𝑟),

𝑆𝑖(𝑤(𝑝, 𝑞)) = 𝑆′
𝑖(𝑤(𝑝′, 𝑞)). Let 𝑖 ∈ dom(�⃗�) and 𝑞 ∈ 𝑊 (𝑟) be ar-

bitrary. By Lemma 2.8(4), 𝑐 � 𝑊 (𝑝) is injective. Since 𝑐A(𝑎) =
𝑐A(𝑎′), Definition 6.10 yields 𝑐“𝑊 (𝑝) = 𝑐“𝑊 (𝑝′). Consequently,
𝑐(𝑤(𝑝, 𝑞)) = 𝑐(𝑡), where 𝑡 is the unique element of 𝑊 (𝑝′) that is
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compatible with 𝑤(𝑝, 𝑞) and has the same length. Thus, it is not
hard to check that 𝑡 = 𝑤(𝑝′, 𝑞), hence 𝑐(𝑤(𝑝, 𝑞)) = 𝑐(𝑤(𝑝′, 𝑞)). Fi-
nally, as 𝑐A(𝑎) = 𝑐A(𝑎′) and 𝑐(𝑤(𝑝, 𝑞)) = 𝑐(𝑤(𝑝′, 𝑞)), it is the case
that 𝑆𝑖(𝑤(𝑝, 𝑞)) = 𝑆′

𝑖(𝑤(𝑝′, 𝑞)). �

Remark 6.14. Note that the above proof only uses the fact that the triple
(P, ℓ, 𝑐) is Σ-Prikry together with the defining properties of (A, ℓA, 𝑐A) (that
is, Definitions 6.4, 6.9, 6.10 and 6.11). In particular, we have not relied on
any clause of Definition 2.3 for (A, ℓA, 𝑐A), which have not yet been verified.

Lemma 6.15. Let 𝑛 < 𝜔. Suppose that 𝐷 is a directed family of conditions
in A𝑛, |𝐷| < 𝜇, and for some 𝑝, we have 𝜋(𝑎) = 𝑝 for all 𝑎 ∈ 𝐷. Then 𝐷
admits a lower bound in A𝑛.

Proof. Since 𝐷 is directed, given any 𝑎, 𝑎′ ∈ 𝐷, we may pick 𝑏 ∈ 𝐷 extending

𝑎 and 𝑎′; now, as 𝜋[𝐷] = {𝑝}, find �⃗�, �⃗�′, 𝑇 such that 𝑎 = (𝑝, �⃗�), 𝑎′ = (𝑝, �⃗�′)

and 𝑏 = (𝑝, 𝑇 ), and note that, by Definition 6.4, for all 𝑞 ∈ 𝑊 (𝑝) and

𝑖 ∈ dom(�⃗�) ∩ dom(𝑆′), 𝑆𝑖(𝑞) = 𝑇𝑖(𝑞) = 𝑆′
𝑖(𝑞). It thus follows that 𝐷 is

linearly ordered by E, and, for all (𝑝, �⃗�), (𝑝, �⃗�′) ∈ 𝐷, (𝑝, �⃗�) E (𝑝, �⃗�′) iff

dom(�⃗�) ≥ dom(�⃗�′). So (𝐷,E) is order-isomorphic to (𝜃,∋) for some ordinal
𝜃 < 𝜇. In particular, if 𝜃 is a successor ordinal, then 𝐷 admits a lower
bound. So let us assume that 𝜃 is a limit ordinal.

For every 𝜏 < 𝜃, let (𝑝, �⃗�𝜏 ) denote the 𝜏 𝑡ℎ-element of 𝐷. Set 𝛼 :=

sup𝜏<𝜃 dom(𝑆𝜏 ). We define a 𝑝-strategy �⃗� = ⟨𝑆𝑖 | 𝑖 ≤ 𝛼⟩ as follows. Fix
𝑞 ∈ 𝑊 (𝑝).
I For 𝑖 < 𝛼, 𝑆𝑖(𝑞) is defined as the unique element of {𝑆𝜏

𝑖 (𝑞) | 𝜏 < 𝜃, 𝑖 ∈
dom(𝑆𝜏 )}.
I For 𝑖 = 𝛼, we distinguish two cases:
II If 𝑆𝑖(𝑞) = ∅ for all 𝑖 < 𝛼, then we continue and let 𝑆𝛼(𝑞) := ∅;
II Otherwise, let 𝑆𝛼(𝑞) :=

⋃︀
𝑖<𝛼 𝑆𝑖(𝑞) ∪ {𝛽𝑞}, where

𝛽𝑞 := sup{max(𝑆𝑖(𝑞)) | 𝑖 < 𝛼, 𝑆𝑖(𝑞) ̸= ∅}.

Claim 6.15.1. (𝑝, �⃗�) ∈ 𝐴𝑛. In particular, (𝑝, �⃗�) is a lower bound for 𝐷.

Proof. Since, for each 𝜏 < 𝜃, �⃗�𝜏 is a 𝑝-strategy, a moment of reflection makes
it clear that we only need to verify that 𝑆𝛼 is a labeled 𝑝-tree. Let 𝑞 ∈ 𝑊 (𝑝)
be arbitrary. As ⟨𝑆𝑖(𝑞) | 𝑖 < 𝛼⟩ is weakly ⊑-increasing sequence of closed sets
we only need to verify Clauses (3) and (4) of Definition 6.2. First we show

that 𝑞 P 𝑆𝛼(𝑞) ∩ �̇� = ∅. For this aim observe that Definition 6.2(4) yields
(𝑞,max(𝑆𝑖(𝑞)) ∈ 𝑅, for each 𝑖 < 𝛼. Now, for each 𝑟 ≤ 𝑞 with ℓ(𝑟) ∈ 𝐼 and

𝑖 < 𝛼, 𝑟 Pℓ(𝑟)
max(𝑆𝑖(𝑞)) ∈ �̇�ℓ(𝑟), hence 𝑟 Pℓ(𝑟)

𝛽𝑞 ∈ �̇�ℓ(𝑟), and thus, again

by definition of 𝑅, (𝛽𝑞, 𝑞) ∈ 𝑅 (cf. Lemma 5.6). Combining Definition 6.2(3)

with (𝛽𝑞, 𝑞) ∈ 𝑅, it altogether follows that 𝑞 P 𝑆𝛼(𝑞) ∩ �̇� = ∅.
Finally let 𝑞′ ≤ 𝑞 and let us check that the last bullet holds. For all

𝑖 < 𝛼, since 𝑆𝑖 is a 𝑝-strategy, either 𝑆𝑖(𝑞
′) = ∅ or (max(𝑆𝑖(𝑞

′)), 𝑞) ∈ 𝑅. If



SIGMA-PRIKRY FORCING I 33

𝑆𝛼(𝑞′) ̸= ∅, then max(𝑆𝛼(𝑞′)) is the limit of ⟨max(𝑆𝑖(𝑞
′)) | 𝑖 < 𝛼, 𝑆𝑖(𝑞

′) ̸= ∅⟩,
so that, arguing as before, (max(𝑆𝛼(𝑞′)), 𝑞) ∈ 𝑅.

Thus we have shown that (𝑝, �⃗�) ∈ 𝐴𝑛 and clearly (𝑝, �⃗�) gives a lower
bound for 𝐷. �

This completes the proof. �

Lemma 6.16 (Mixing property). Let (𝑝, �⃗�) = 𝑎 ∈ 𝐴, 𝑝′ ≤0 𝑝, and 𝑚 < 𝜔.
Suppose that 𝑔 : 𝑊𝑚(𝑝′) → A ↓ 𝑎 is a function such that 𝜋 ∘ 𝑔 is the identity
map. Then there exists 𝑏 E0 𝑎 with 𝜋(𝑏) = 𝑝′ such that t(𝑏)(𝑟) E0 𝑔(𝑟) for
every 𝑟 ∈ 𝑊𝑚(𝑝′).

Proof. Using Definition 2.3(5), we may find some cardinal 𝜃 < 𝜇 and an

injective enumeration {𝑟𝜏 | 𝜏 < 𝜃} of 𝑊𝑚(𝑝′). For each 𝜏 < 𝜃, let �⃗�𝜏 be

such that 𝑔(𝑟𝜏 ) = (𝑟𝜏 , �⃗�𝜏 ). As we are seeking 𝑏E0 𝑎 such that, in particular,
for every 𝜏 < 𝜃, t(𝑏)(𝑟)E0 𝑔(𝑟𝜏 ), we may make our life harder and assume

that dom(�⃗�𝜏 ) is nonzero, say dom(�⃗�𝜏 ) = 𝛼𝜏 + 1.

Set 𝛼 := sup(dom(�⃗�)), so that, if dom(�⃗�) > 0, then dom(�⃗�) = 𝛼+ 1. Set
𝛼′ := sup𝜏<𝜃 𝛼𝜏 , and note that, by regularity of 𝜇, 𝛼 ≤ 𝛼′ < 𝜇. Our goal is

to define a sequence 𝑇 = ⟨𝑇𝑖 : 𝑊 (𝑝′) → [𝜇]<𝜇 | 𝑖 ≤ 𝛼′⟩ for which 𝑏 := (𝑝′, 𝑇 )
satisfies the conclusion of the lemma.

As {𝑟𝜏 | 𝜏 < 𝜃} is an enumeration of the 𝑚𝑡ℎ-level of the 𝑝-tree 𝑊 (𝑝′),
Lemma 2.8 entails that, for each 𝑞 ∈ 𝑊 (𝑝′), there is a unique ordinal 𝜏𝑞 < 𝜃,
such that 𝑞 is comparable with 𝑟𝜏𝑞 . It thus follows from Lemma 2.8(3) that,
for all 𝑞 ∈ 𝑊 (𝑝′), ℓ(𝑞) − ℓ(𝑝′) ≥ 𝑚 iff 𝑞 ∈ 𝑊 (𝑟𝜏𝑞).

Now, for all 𝑖 ≤ 𝛼′ and 𝑞 ∈ 𝑊 (𝑝′), let:

𝑇𝑖(𝑞) :=

⎧⎪⎨⎪⎩
𝑆
𝜏𝑞
min{𝑖,𝛼𝜏𝑞}

(𝑞), if 𝑞 ∈ 𝑊 (𝑟𝜏𝑞);

𝑆min{𝑖,𝛼}(𝑤(𝑝, 𝑞)), if 𝑞 /∈ 𝑊 (𝑟𝜏𝑞) and 𝛼 > 0;

∅, otherwise.

Claim 6.16.1. Let 𝑖 ≤ 𝛼′. Then 𝑇𝑖 is a labeled 𝑝′-tree.

Proof. Fix 𝑞 ∈ 𝑊 (𝑝′) and let us go over the Clauses of Definition 6.2.

(1) It is clear that in any of the three cases, 𝑇𝑖(𝑞) is a closed bounded
subset of 𝜇.

(2) Let 𝑞′ ≤ 𝑞. We focus on the non-trivial case in which ℓ(𝑞′) − ℓ(𝑝′) ≥
𝑚, while ℓ(𝑞) − ℓ(𝑝′) < 𝑚 and 𝛼 > 0.
I If 𝑖 ≤ 𝛼, then 𝑇𝑖(𝑞) = 𝑆𝑖(𝑤(𝑝, 𝑞)) and 𝑇𝑖(𝑞

′) = 𝑆
𝜏𝑞
𝑖 (𝑞′). In this

case, since 𝑤(𝑟𝜏𝑞 , 𝑞) ≤ 𝑤(𝑝, 𝑞) and �⃗� is a 𝑝-strategy, 𝑆𝑖(𝑤(𝑝, 𝑞)) ⊆
𝑆𝑖(𝑤(𝑟𝜏𝑞 , 𝑞)). In addition, since (𝑟𝜏𝑞 , �⃗�𝜏𝑞) E (𝑝, �⃗�), 𝑆𝑖(𝑤(𝑟𝜏𝑞 , 𝑞)) =
𝑆
𝜏𝑞
𝑖 (𝑞), so that 𝑇𝑖(𝑞) ⊆ 𝑆

𝜏𝑞
𝑖 (𝑞). But 𝑆

𝜏𝑞
𝑖 (𝑞) ⊆ 𝑆

𝜏𝑞
𝑖 (𝑞′), so that alto-

gether 𝑇𝑖(𝑞) ⊆ 𝑇𝑖(𝑞
′), as desired.

I If 𝑖 > 𝛼, then 𝑇𝑖(𝑞) = 𝑆𝛼(𝑤(𝑝, 𝑞)) and 𝑇𝑖(𝑞
′) = 𝑆

𝜏𝑞
𝑗 (𝑞′) for

𝑗 := min{𝑖, 𝛼𝜏𝑞}. In this case, as �⃗� is a 𝑝′-strategy and �⃗�𝜏𝑞 is an
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𝑟𝜏𝑞 -strategy, we infer from (𝑟𝜏𝑞 , �⃗�𝜏𝑞)E (𝑝, �⃗�) that:

𝑆𝛼(𝑤(𝑝, 𝑞)) ⊆ 𝑆𝛼(𝑤(𝑟𝜏𝑞 , 𝑞)) = 𝑆
𝜏𝑞
𝛼 (𝑞) ⊑ 𝑆

𝜏𝑞
𝑗 (𝑞) ⊆ 𝑆

𝜏𝑞
𝑗 (𝑞′).

Altogether, 𝑇𝑖(𝑞) ⊆ 𝑇𝑖(𝑞
′), as desired.

(3) If 𝑞 ∈ 𝑊 (𝑟𝜏𝑞), then this follows from the fact that 𝑆
𝜏𝑞
min{𝑖,𝛼𝜏𝑞}

is a

labeled 𝑟𝜏𝑞 -tree. If 𝑞 /∈ 𝑊 (𝑟𝜏𝑞) and 𝛼 > 0, then this follows from the
fact that 𝑆min{𝑖,𝛼} is a labeled 𝑝-tree and 𝑞 ≤ 𝑤(𝑝, 𝑞).

(4) Let 𝑞′ ≤ 𝑞 in 𝑊 (𝑝′) and assume that 𝑇𝑖(𝑞
′) ̸= ∅. We focus on

the case 𝑇𝑖(𝑞
′) = 𝑆𝑗(𝑤(𝑝, 𝑞′)), for 𝑗 := min{𝑖, 𝛼}. In particular,

𝛽 := max(𝑆𝑗(𝑤(𝑝, 𝑞′))) is well-defined. Clearly 𝑤(𝑝, 𝑞′) ≤ 𝑤(𝑝, 𝑞) so,
since 𝑆𝑗 is a labeled 𝑝-tree, (𝛽,𝑤(𝑝, 𝑞′)) ∈ 𝑅. But 𝑞′ ≤ 𝑤(𝑝, 𝑞′), so
by the nature of 𝑅, we have that (𝛽, 𝑞′) ∈ 𝑅, as well. �

Claim 6.16.2. The sequence 𝑇 = ⟨𝑇𝑖 : 𝑊 (𝑝′) → [𝜇]<𝜇 | 𝑖 ≤ 𝛼′⟩ is a
𝑝′-strategy.

Proof. We need to go over the clauses of Definition 6.3. However, Clause (1)
is trivial, Clause (2) is established in the preceding claim, and Clauses (3)

and (5) follow from the corresponding features of �⃗� and the �⃗�𝜏 ’s. Thus, we
are left with verifying Clause (4).

To this end, fix 𝑖 < 𝛼 and a pair 𝑞′ ≤ 𝑞 in 𝑊 (𝑝′). We have to show that
(𝑇𝑖+1(𝑞) ∖ 𝑇𝑖(𝑞)) ⊑ (𝑇𝑖+1(𝑞

′) ∖ 𝑇𝑖(𝑞
′)). As before, the only non-trivial case is

when ℓ(𝑞′) − ℓ(𝑝′) ≥ 𝑚, while ℓ(𝑞) − ℓ(𝑝′) < 𝑚 and 𝛼 > 0. To avoid arguing
about the empty set, we may also assume that 𝛼 > 𝑖. In particular, 𝛼𝜏 > 𝑖.
So

∙ 𝑇𝑖+1(𝑞) ∖ 𝑇𝑖(𝑞) = 𝑆𝑖+1(𝑤(𝑝, 𝑞)) ∖ 𝑆𝑖(𝑤(𝑝, 𝑞)), and
∙ 𝑇𝑖+1(𝑞

′) ∖ 𝑇𝑖(𝑞
′) = 𝑆

𝜏𝑞
𝑖+1(𝑞

′) ∖ 𝑆𝜏𝑞
𝑖 (𝑞′).

Now, as �⃗� is a 𝑝-strategy, we infer that 𝑆𝑖+1(𝑤(𝑝, 𝑞)) ∖ 𝑆𝑖(𝑤(𝑝, 𝑞)) ⊑
𝑆𝑖+1(𝑤(𝑝, 𝑞′)) ∖ 𝑆𝑖(𝑤(𝑝, 𝑞′)). But (𝑟𝜏𝑞′ , �⃗�𝜏𝑞′ ) E (𝑝, �⃗�), and hence, for each

𝑗 ∈ {𝑖, 𝑖 + 1}, 𝑆
𝜏𝑞′
𝑗 (𝑞′) = 𝑆𝑗(𝑤(𝑝, 𝑞′)). The desired equation now follows

immediately. �

Thus, we have established that 𝑏 := (𝑝′, 𝑇 ) is a legitimate condition.

Claim 6.16.3. 𝜋(𝑏) = 𝑝′ and 𝑏E0 𝑎.

Proof. The first assertion is trivial, and it also implies that 𝑏E0 𝑎 iff 𝑏E 𝑎,
hence, we focus on establishing the latter. As 𝑝′ ≤ 𝑝 and 𝛼′ ≥ 𝛼, we are left
with verifying Clause (2c) of Definition 6.4. To avoid trivialities, suppose
also that 𝛼 > 0. Now, let 𝑖 ≤ 𝛼 and 𝑞 ∈ 𝑊 (𝑝′) be arbitrary.
I If ℓ(𝑞) < ℓ(𝑝′) +𝑚, then we have 𝑇𝑖(𝑞) = 𝑆𝑖(𝑤(𝑝, 𝑞)), and we are done.

I If ℓ(𝑞) ≥ ℓ(𝑝′) + 𝑚, then 𝑇𝑖(𝑞) = 𝑆
𝜏𝑞
𝑖 (𝑞) and, since (𝑟𝜏𝑞 , �⃗�𝜏𝑞) E (𝑝, �⃗�),

𝑇𝑖(𝑞) = 𝑆𝑖(𝑤(𝑝, 𝑞)), as desired. �

Claim 6.16.4. Let 𝜏 < 𝜃. For each 𝑞 ∈ 𝑊 (𝑟𝜏 ), 𝑤(𝑝′, 𝑞) = 𝑤(𝑟𝜏 , 𝑞).
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Proof. As 𝑟𝜏 ≤ 𝑝′, we have {𝑠 | 𝑞 ≤ 𝑠 ≤ 𝑟𝜏} ⊆ {𝑠 | 𝑞 ≤ 𝑠 ≤ 𝑝′}, so that
𝑤(𝑟𝜏 , 𝑞) ≤ 𝑤(𝑝′, 𝑞). In addition, as 𝑤(𝑝′, 𝑞) and 𝑟𝜏 are compatible elements
of 𝑊 (𝑝′) (as witnessed by 𝑞), we infer from Lemma 2.8(2), ℓ(𝑤(𝑝′, 𝑞)) =
ℓ(𝑞) ≥ ℓ(𝑟𝜏 ) and Definition 2.3(1), that 𝑤(𝑝′, 𝑞) ≤ 𝑟𝜏 , so that 𝑤(𝑝′, 𝑞) ∈ {𝑠 |
𝑞 ≤ 𝑠 ≤ 𝑟𝜏}, and hence 𝑤(𝑝′, 𝑞) ≤ 𝑤(𝑟𝜏 , 𝑞). �

Recalling Claim 6.16.3, to complete our proof, we fix an arbitrary 𝜏 < 𝜃,
and turn to show that t(𝑏)(𝑟𝜏 )E0 𝑔(𝑟𝜏 ). By Lemma 6.13(5), 𝜋(t(𝑏)(𝑟𝜏 )) =
𝑟𝜏 = 𝜋(𝑔(𝑟𝜏 )), so that we may focus on verifying that t(𝑏)(𝑟𝜏 )E 𝑔(𝑟𝜏 ).

To this end, let 𝑇 𝜏 denote the 𝑟𝜏 -strategy such that t(𝑏)(𝑟𝜏 ) = (𝑟𝜏 , 𝑇 𝜏 ).

By Definition 6.11(*), dom(𝑇 𝜏 ) = dom(𝑇 ) = 𝛼′ + 1, hence dom(�⃗�𝜏 ) =

𝛼𝜏 + 1 ≤ 𝛼′ + 1 ≤ dom(𝑇 𝜏 ). Now, let 𝑖 ≤ 𝛼𝜏 and 𝑞 ∈ 𝑊 (𝑟𝜏 ). By Def-
inition 6.11(*), 𝑇 𝜏

𝑖 (𝑞) = 𝑇𝑖(𝑤(𝑝′, 𝑞)). By the preceding claim 𝑤(𝑝′, 𝑞) =
𝑤(𝑟𝜏 , 𝑞), so that 𝑞′ := 𝑤(𝑝′, 𝑞) is in 𝑊 (𝑟𝜏 ) and 𝜏𝑞′ = 𝜏 . In effect, by defi-
nition of 𝑇𝑖(𝑞

′) (just before Claim 6.16.1, we get that 𝑇𝑖(𝑞
′) = 𝑆𝜏

𝑖 (𝑞′). Al-
together, 𝑇 𝜏

𝑖 (𝑞) = 𝑆𝜏
𝑖 (𝑞′) = 𝑆𝜏

𝑖 (𝑤(𝑟𝜏 , 𝑞′)), as required by Clause (2c) of
Definition 6.4. �

Corollary 6.17. (A, ℓA, 𝑐A) is a Σ-Prikry triple, and 1lA A �̌� = �̌�+.

Proof. We first go over the clauses of Definition 2.3:

(1) By Lemma 4.5.
(2) By Lemma 4.6 together with Lemma 6.15.
(3) By Lemma 4.7 and the fact that |𝐻𝜇| = 𝜇.
(4) By Lemma 4.8.
(5) By Lemma 4.9.
(6) By Lemma 4.10.
(7) By Lemma 4.12 together with Lemma 6.16.

Finally, by Corollary 4.13 and the fact that 1lP P “�̌� is singular”, 1lA A
�̌� = �̌�+. �

For the record, we make explicit one more feature of the forking projection
constructed in this section.

Lemma 6.18 (Transitivity). Let 𝑎 ∈ 𝐴. For all 𝑞 ≤ 𝜋(𝑎) and 𝑟 ∈ 𝑊 (𝑞),

t(𝑎)(𝑟) = t(t(𝑎)(𝑞))(𝑟).

Proof. Set (𝑝, �⃗�) := 𝑎. Fix an arbitrary 𝑞 ≤ 𝜋(𝑎), and let 𝑏 = t(𝑎)(𝑞). Fix

an arbitrary 𝑟 ∈ 𝑊 (𝑞), and set (𝑡, 𝑇 ) := t(𝑎)(𝑟) and (𝑢, �⃗�) := t(𝑏)(𝑟). By

Definition 6.11, it follows that 𝑡 = 𝑟 = 𝑢 and dom(𝑇 ) = dom(�⃗�) = dom(�⃗�).

Once again Definition 6.11 yields, for each 𝑖 ∈ dom(�⃗�) and 𝑠 ∈ 𝑊 (𝑡),

𝑇𝑖(𝑠) = 𝑆𝑖(𝑤(𝑝, 𝑠)). Analogously, for each 𝑖 ∈ dom(�⃗�) and 𝑠 ∈ 𝑊 (𝑢),

𝑄𝑖(𝑠) = 𝑆𝑖(𝑤(𝑝, 𝑠)). Altogether, 𝑊 (𝑡) = 𝑊 (𝑢), and for each 𝑖 ∈ dom(�⃗�)
and 𝑠 ∈ 𝑊 (𝑢), 𝑇𝑖(𝑠) = 𝑄𝑖(𝑠), as desired. �
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7. Conclusion

By putting everything together, we arrive at the following corollary:

Corollary 7.1. Suppose Σ = ⟨𝜅𝑛 | 𝑛 < 𝜔⟩ is a non-decreasing sequence of
Laver-indestructible supercompact cardinals, and let 𝜅 := sup(Σ). Suppose:

(i) (P, ℓ, 𝑐) is a Σ-Prikry notion of forcing, and 1lP P “�̌� is singular”;
(ii) 1lP P �̌� = �̌�+, for some cardinal 𝜇 = 𝜇<𝜇;
(iii) P ⊆ 𝐻𝜇+;

(iv) 𝑟⋆ ∈ 𝑃 forces that 𝑧 is a P-name for a stationary subset of (𝐸𝜇
𝜔)𝑉

that does not reflect in {𝛼 < 𝜇 | 𝜔 < cf𝑉 (𝛼) < 𝜅}.
Then, there exists a Σ-Prikry triple (A, ℓA, 𝑐A) such that:

(1) (A, ℓA, 𝑐A) admits a forking projection to (P, ℓ, 𝑐) that has the mixing
property;

(2) 1lA A �̌� = �̌�+;
(3) A ⊆ 𝐻𝜇+;

(4) ⌈𝑟⋆⌉A forces that 𝑧 is nonstationary.

Proof. By Lemma 5.8, for all 𝑛 < 𝜔, 𝑉 P𝑛 |= Refl(<𝜔,𝐸𝜇
<𝜅𝑛

, 𝐸𝜇
<𝜅𝑛

). So,
all the blanket assumptions of Section 6 are satisfied, and we obtain a no-
tion of forcing A := A(P, 𝑧) together with maps ℓA and 𝑐A such that, by
Corollary 6.17, (A, ℓA, 𝑐A) is Σ-Prikry.

Now, Clauses (1) and (2) follow from Lemma 6.13 and Corollary 6.17,
Clause (3) follows from Lemma 6.6, and Clause (4) follows from Theorem 6.8.

�
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