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Abstract. We study the existence of transformations of the transfinite plane

that allow one to reduce Ramsey-theoretic statements concerning uncountable

Abelian groups into classical partition relations for uncountable cardinals.
To exemplify: we prove that for every inaccessible cardinal 𝜅, if 𝜅 admits a

stationary set that does not reflect at inaccessibles, then the classical negative

partition relation 𝜅 9 [𝜅]2𝜅 implies that for every Abelian group (𝐺,+) of size
𝜅, there exists a map 𝑓 : 𝐺 → 𝐺 such that, for every 𝑋 ⊆ 𝐺 of size 𝜅 and

every 𝑔 ∈ 𝐺, there exist 𝑥 ̸= 𝑦 in 𝑋 such that 𝑓(𝑥+ 𝑦) = 𝑔.

1. Introduction

Ramsey’s theorem [Ram30] asserts that every infinite graph contains an infinite
induced subgraph which is either a clique or an anti-clique. In other words, for every
function (or coloring, or partition, depending on one’s perspective) 𝑐 : [N]2 → 2,
there exists an infinite 𝑋 ⊆ N which is monochromatic in the sense that, for some
𝑖 ∈ 2, 𝑐(𝑥, 𝑦) = 𝑖 for every pair 𝑥 < 𝑦 of elements of 𝑋. A strengthening of
Ramsey’s theorem due to Hindman [Hin74] concerns the additive structure (N,+)
and asserts that for every partition 𝑐 : N → 2, there exists an infinite 𝑋 ⊆ N
which is monochromatic in the sense that, for some 𝑖 ∈ 2, for every finite increasing
sequence 𝑥0 < · · · < 𝑥𝑛 of elements of 𝑋, 𝑐(𝑥0 + · · · + 𝑥𝑛) = 𝑖.

A natural generalization of Ramsey’s and Hindman’s theorems would assert that
in any 2-partition of an uncountable structure, there must exist an uncountable
monochromatic subset. However, this is not case. Already in the early 1930’s,
Sierpiński found a coloring 𝑐 : [R]2 → 2 admitting no uncountable monochromatic
set [Sie33]. In contrast, a counterexample concerning the additive structure (R,+)
was discovered only a few years ago [HLS17], by Hindman, Leader and Strauss.

In this paper, we study the existence of transformations of the transfinite plane
that allow one, among other things, to reduce the additive problem into the con-
siderably simpler Ramsey-type problem.

Throughout the paper, 𝜅 denotes a regular uncountable cardinal, and 𝜃, 𝜒 denote
(possibly finite) cardinals ≤ 𝜅. The class of transformations of interest is captured
by the following definition.

Definition 1.1. Pℓ1(𝜅) asserts the existence of a transformation t : [𝜅]2 → [𝜅]2

satisfying the following:

∙ for every (𝛼, 𝛽) ∈ [𝜅]2, if t(𝛼, 𝛽) = (𝛼*, 𝛽*), then 𝛼* ≤ 𝛼 < 𝛽* ≤ 𝛽;
∙ for every family 𝒜 consisting of 𝜅 many pairwise disjoint finite subsets of 𝜅,

there exists a stationary 𝑆 ⊆ 𝜅 such that, for every pair 𝛼* < 𝛽* of elements
of 𝑆, there exists a pair 𝑎 < 𝑏 of elements of 𝒜 with t[𝑎× 𝑏] = {(𝛼*, 𝛽*)}.
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Theorem A. If Pℓ1(𝜅) holds, then the following are equivalent:

∙ There exists a coloring 𝑐 : [𝜅]2 → 𝜃 such that, for every 𝑋 ⊆ 𝜅 of size 𝜅,
and every 𝜏 < 𝜃, there exist 𝑥 ̸= 𝑦 in 𝑋 such that 𝑐(𝑥, 𝑦) = 𝜏 ;

∙ For every Abelian group (𝐺,+) of size 𝜅, there exists a coloring 𝑐 : 𝐺 → 𝜃
such that, for all 𝑋,𝑌 ⊆ 𝐺 of size 𝜅, and every 𝜏 < 𝜃, there exist 𝑥 ∈ 𝑋
and 𝑦 ∈ 𝑌 such that 𝑐(𝑥+ 𝑦) = 𝜏 .

As the proof of Theorem A will make clear, the theorem remains valid even after
relaxing Definition 1.1 to omit the first bullet and to weaken “stationary 𝑆 ⊆ 𝜅” into
“cofinal 𝑆 ⊆ 𝜅”. The reason we have added these extra requirements is to connect
this line of investigation with other well-known problems, such as the problem of
whether the product of any two 𝜅-cc posets must be 𝜅-cc (cf. [Rin14a]):

Theorem B. If Pℓ1(𝜅) holds, then for every positive integer 𝑛 there exists a poset
P such that P𝑛 satisfies the 𝜅-cc, but P𝑛+1 does not.

Now, to formulate the main results of this paper, let us consider a more infor-
mative variation of Pℓ1(𝜅).

Definition 1.2. Pℓ1(𝜅, 𝜃, 𝜒) asserts the existence of a function t : [𝜅]2 → [𝜅]3

satisfying the following:

∙ for all (𝛼, 𝛽) ∈ [𝜅]2, if t(𝛼, 𝛽) = (𝜏*, 𝛼*, 𝛽*), then 𝜏* ≤ 𝛼* ≤ 𝛼 < 𝛽* ≤ 𝛽;
∙ for all 𝜎 < 𝜒 and every family 𝒜 ⊆ [𝜅]𝜎 consisting of 𝜅 many pairwise

disjoint sets, there exists a stationary 𝑆 ⊆ 𝜅 such that, for all (𝛼*, 𝛽*) ∈ [𝑆]2

and 𝜏* < min{𝜃, 𝛼*}, there exist (𝑎, 𝑏) ∈ [𝒜]2 with t[𝑎×𝑏] = {(𝜏*, 𝛼*, 𝛽*)}.

Remark 1.3. Pℓ1(𝜅) of Definition 1.1 is Pℓ1(𝜅, 1,ℵ0).

In [Rin12], by building on the work of Eisworth in [Eis13a, Eis13b], the first
author proved that Pℓ1(𝜆+, cf(𝜆), cf(𝜆)) holds for every singular cardinal 𝜆.1 The
proof of that theorem was a combination of walks on ordinals, club-guessing consid-
erations, applications of elementary submodels, and oscillation of pcf scales. Here,
we replace the last ingredient by the oscillation oracle Pℓ6(. . .) from [Rin14b], and
there are a few additional differences which are too technical to state at this point.

The main result of this paper reads as follows:

Theorem C. For 𝜒 = cf(𝜒) ≥ 𝜔, Pℓ1(𝜅, 𝜃, 𝜒) holds in any of the following cases:

(1) 𝜒 < 𝜒+ < 𝜃 = 𝜅 and �(𝜅) holds;
(2) 𝜒 < 𝜒+ < 𝜃 = 𝜅 and 𝐸𝜅

≥𝜒 admits a stationary set that does not reflect;

(3) 𝜒 < 𝜒+ = 𝜃 < 𝜅, 𝜅 is inaccessible, and 𝐸𝜅
≥𝜒 admits a stationary set that

does not reflect at inaccessibles.

By the results of Subsection 2.3 below, the principle Pℓ1(𝜅, 𝜃, 𝜒) is strictly
stronger than Shelah’s principle Pr1(𝜅, 𝜅, 𝜃, 𝜒). Thus, Clause (1) improves the main
result of [Rin14a] and Clause (2) improves the main result of [Rin14b]. The result
of Clause (3) provides, in particular, an affirmative answer to a question posed by
Eisworth to the first author at the Set Theory meeting in Oberwolfach, January
2014.

We conclude the introduction, mentioning two findings in the other direction.

Theorem D. For a strongly inaccessible cardinal 𝜅:

1The first bullet of Definition 1.2 is not stated explicitly, but may be verified to hold in all the
relevant arguments of [Eis13a, Eis13b, Rin12].
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(1) the existence of a coherent 𝜅-Souslin tree does not imply Pℓ1(𝜅);
(2) for any 𝜒 ∈ Reg(𝜅), the existence of a nonreflecting stationary subset of

𝐸𝜅
𝜒 does not imply Pℓ1(𝜅, 1, 𝜒+).

(i) (ii)

(iii) (iv)

for every (𝛼, 𝛽) ∈ [𝜅]2, if t(𝛼, 𝛽) = (𝛼*, 𝛽*),

then 𝛼* ≤ 𝛼 < 𝛽* ≤ 𝛽;

for every family 𝒜 consisting of 𝜅 many

pairwise disjoint finite subsets of 𝜅,

𝒜

there exists a stationary 𝑆 ⊆ 𝜅 such that,

for every pair 𝛼* < 𝛽* of elements of 𝑆,

𝑆

there exists a pair 𝑎 < 𝑏 of elements of 𝒜
with t[𝑎× 𝑏] = {(𝛼*, 𝛽*)}.

Figure 1. Illustration of Definition 1.1.

1.1. Organization of this paper. In Section 2, we establish some facts about
walks on ordinals, and present a connection between Pℓ1(𝜅, . . .) and two other
concepts: the coloring principle Pr1(𝜅, . . .) and the 𝐶-sequence number, 𝜒(𝜅). The
proofs of Theorems A, B and 𝐷 will be found there.

In Section 3, we prove that a strong form of the oscillation oracle Pℓ6(𝜈+, 𝜈)
holds for any infinite regular cardinal 𝜈. This fact will play a role in the later
sections.

In Section 4, we provide a proof of Clause (2) of Theorem C. The proof is split
into two cases: 𝜅 > 𝜒++ and 𝜅 = 𝜒++.

In Section 5, we provide a proof of Clause (1) of Theorem C.
In Section 6, we provide a proof of Clause (3) of Theorem C.

1.2. Further results. In an upcoming paper [RZ21], we address the validity of
the strongest possible instances of Pℓ1(𝜅, 𝜃, 𝜒). Some of the main findings are:

∙ Pℓ1(𝜆+, 1, 𝜆) fails for 𝜆 singular, so that Theorem C is optimal whenever 𝜅
is a successor of a singular cardinal;

∙ Pℓ1(𝜆+, 1, 𝜆+) fails for 𝜆 regular;
∙ Pℓ1(𝜆+, 𝜆+, 𝜆) holds for 𝜆 regular satisfying 2𝜆 = 𝜆+;
∙ Pℓ1(ℵ1,ℵ1, 𝑛) holds for all positive integers 𝑛;
∙ Pℓ1(𝜅, 𝜅, 𝜅) holds for 𝜅 inaccessible such that �(𝜅) and ♢*(𝜅) both hold.
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1.3. Notation and conventions. Let 𝐸𝜅
𝜒 := {𝛼 < 𝜅 | cf(𝛼) = 𝜒}, and define

𝐸𝜅
≤𝜒, 𝐸𝜅

<𝜒, 𝐸𝜅
≥𝜒, 𝐸𝜅

>𝜒, 𝐸𝜅
̸=𝜒 analogously. For an ideal ℐ over 𝜅, we write ℐ+ :=

𝒫(𝜅)∖ℐ. The collection of all sets of hereditary cardinality less than 𝜅 is denoted by
ℋ𝜅. The set of all infinite (resp. infinite and regular) cardinals below 𝜅 is denoted by
Card(𝜅) (resp. Reg(𝜅)). The length of a finite sequence 𝜚 is denoted by ℓ(𝜚). For a
subset 𝑆 ⊆ 𝜅, we let Tr(𝑆) := {𝛼 ∈ 𝐸𝜅

>𝜔 | 𝑆∩𝛼 is stationary in 𝛼}; we say that 𝑆 is
nonreflecting (resp. nonreflecting at inaccessibles) iff Tr(𝑆) is empty (resp. contains
no inaccessible cardinals). For a set of ordinals 𝑎, we write ssup(𝑎) := sup{𝛼 + 1 |
𝛼 ∈ 𝑎}, acc+(𝑎) := {𝛼 < ssup(𝑎) | sup(𝑎 ∩ 𝛼) = 𝛼 > 0}, acc(𝑎) := 𝑎 ∩ acc+(𝑎),
nacc(𝑎) := 𝑎 ∖ acc(𝑎), and cl(𝑎) := 𝑎∪ acc+(𝑎). For sets of ordinals, 𝑎 and 𝑏, we let
𝑎 ~ 𝑏 := {(𝛼, 𝛽) ∈ 𝑎 × 𝑏 | 𝛼 < 𝛽}, and write 𝑎 < 𝑏 to express that 𝑎 × 𝑏 coincides
with 𝑎~ 𝑏.

For any set 𝒜, we write [𝒜]𝜒 := {ℬ ⊆ 𝒜 | |ℬ| = 𝜒} and [𝒜]<𝜒 := {ℬ ⊆ 𝒜 |
|ℬ| < 𝜒}. This convention admits two refined exceptions:

∙ For an ordinal 𝜎 and a set of ordinals 𝐴, we write [𝐴]𝜎 for {𝐵 ⊆ 𝐴 |
otp(𝐵) = 𝜎};

∙ For a set 𝒜 which is either an ordinal or a collection of sets of ordinals, we
interpret [𝒜]2 as the collection of ordered pairs {(𝑎, 𝑏) ∈ 𝒜×𝒜 | 𝑎 < 𝑏}.

In particular, [𝜅]2 = {(𝛼, 𝛽) | 𝛼 < 𝛽 < 𝜅}. Likewise, we let [𝜅]3 := {(𝛼, 𝛽, 𝛾) ∈
𝜅× 𝜅× 𝜅 | 𝛼 < 𝛽 < 𝛾 < 𝜅}.

2. Warming up

2.1. The foundations of walks on ordinals.

Definition 2.1 (folklore). 𝜅 9 [𝜅]2𝜃 (resp. 𝜅 9 [stat]2𝜃) asserts the existence of a
coloring 𝑐 : [𝜅]2 → 𝜃 such that, for every cofinal (resp. stationary) 𝑋 ⊆ 𝜅, and every
𝜏 ∈ 𝜃, there exist (𝑥, 𝑦) ∈ [𝑋]2 such that 𝑐(𝑥, 𝑦) = 𝜏 .

Likewise, 𝜅 9 [𝜅;𝜅]2𝜃 (resp. 𝜅 9 [stat; stat]2𝜃) asserts the existence of a coloring
𝑐 : [𝜅]2 → 𝜃 such that, for every two cofinal (resp. stationary) 𝑋,𝑌 ⊆ 𝜅, and every
𝜏 ∈ 𝜃, there exist (𝑥, 𝑦) ∈ 𝑋 ~ 𝑌 such that 𝑐(𝑥, 𝑦) = 𝜏 .

In an unpublished note from 1981, Todorcevic proved that 𝜔1 9 [stat; stat]2𝜔1

holds. A few years later, in [Tod87], the method of walks on ordinals was intro-
duced, with the following theorem serving as the primary application.

Fact 2.2 (Todorcevic, [Tod87]). 𝜔1 9 [𝜔1]2𝜔1
holds. Furthermore, for every regular

uncountable cardinal 𝜅 admitting a nonreflecting stationary set, 𝜅9 [𝜅]2𝜅 holds.

Later, by a series of results of Shelah concerning cardinals 𝜅 > ℵ1 together with
a result of Moore concerning 𝜅 = ℵ1, 𝜅 9 [𝜅;𝜅]2𝜅 holds for any cardinal 𝜅 which
is the successor of an infinite regular cardinal; see [RT13] for an historical account
and a uniform proof of the following:

Fact 2.3 (Shelah, Moore). 𝜈+ 9 [𝜈+; 𝜈+]2𝜈+ holds for any infinite regular cardinal
𝜈.

In this subsection, we present a few basic components of the theory of walks on
ordinals, which we will be using throughout the rest of the paper.

Definition 2.4. For a set of ordinals Γ, a 𝐶-sequence over Γ is a sequence of
sets ⟨𝐶𝛼 | 𝛼 ∈ Γ⟩ such that, for all 𝛼 ∈ Γ, 𝐶𝛼 is a closed subset of 𝛼 with
sup(𝐶𝛼) = sup(𝛼).
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For the rest of this subsection, let us fix a 𝐶-sequence �⃗� = ⟨𝐶𝛼 | 𝛼 < 𝜅⟩ over 𝜅.

Definition 2.5 (Todorcevic, [Tod87]). From �⃗�, we derive maps Tr : [𝜅]2 → 𝜔𝜅,
𝜌2 : [𝜅]2 → 𝜔, tr : [𝜅]2 → <𝜔𝜅 and 𝜆 : [𝜅]2 → 𝜅, as follows. Let (𝛼, 𝛽) ∈ [𝜅]2 be
arbitrary.

∙ Tr(𝛼, 𝛽) : 𝜔 → 𝜅 is defined by recursion on 𝑛 < 𝜔:

Tr(𝛼, 𝛽)(𝑛) :=

⎧⎪⎨⎪⎩
𝛽, 𝑛 = 0

min(𝐶Tr(𝛼,𝛽)(𝑛−1) ∖ 𝛼), 𝑛 > 0 & Tr(𝛼, 𝛽)(𝑛− 1) > 𝛼

𝛼, otherwise

∙ 𝜌2(𝛼, 𝛽) := min{𝑛 < 𝜔 | Tr(𝛼, 𝛽)(𝑛) = 𝛼};
∙ tr(𝛼, 𝛽) := Tr(𝛼, 𝛽) � 𝜌2(𝛼, 𝛽);
∙ 𝜆(𝛼, 𝛽) := max{sup(𝐶Tr(𝛼,𝛽)(𝑖) ∩ 𝛼) | 𝑖 < 𝜌2(𝛼, 𝛽)}.

The next two facts are quite elementary. They are reproduced with proofs as
Claims 3.1.1 and 3.1.2 of [Rin14b].

Fact 2.6. Whenever 0 < 𝛽 < 𝛾 < 𝜅, if 𝛽 /∈
⋃︀

𝛼<𝜅 acc(𝐶𝛼), then 𝜆(𝛽, 𝛾) < 𝛽.

Fact 2.7. Whenever 𝜆(𝛽, 𝛾) < 𝛼 < 𝛽 < 𝛾 < 𝜅, tr(𝛼, 𝛾) = tr(𝛽, 𝛾)a tr(𝛼, 𝛽).

Convention 2.8. For any coloring 𝑓 : [𝜅]2 → 𝜅 and 𝛿 < 𝜅, while (𝛿, 𝛿) /∈ [𝜅]2, we
extend the definition of 𝑓 , and agree to let 𝑓(𝛿, 𝛿) := 0.

Lemma 2.9. Let (𝛼, 𝛾) ∈ [𝜅]2. For every 𝛽 ∈ Im(tr(𝛼, 𝛾)),

𝜆(𝛼, 𝛾) = max{𝜆(𝛽, 𝛾), 𝜆(𝛼, 𝛽)}.

Proof. Let 𝛽 be as above, so that tr(𝛼, 𝛾) = tr(𝛽, 𝛾)a tr(𝛼, 𝛽). We have

𝜆(𝛼, 𝛾) = max{sup(𝐶𝜏 ∩ 𝛼) | 𝜏 ∈ Im(tr(𝛼, 𝛾))} =

max{sup(𝐶𝜏0 ∩ 𝛼), sup(𝐶𝜏1 ∩ 𝛼) | 𝜏0 ∈ Im(tr(𝛽, 𝛾)), 𝜏1 ∈ Im(tr(𝛼, 𝛽))} ≤
max{sup(𝐶𝜏0 ∩ 𝛽), sup(𝐶𝜏1 ∩ 𝛼) | 𝜏0 ∈ Im(tr(𝛽, 𝛾)), 𝜏1 ∈ Im(tr(𝛼, 𝛽))} =

max{𝜆(𝛽, 𝛾), 𝜆(𝛼, 𝛽)},
and

𝜆(𝛼, 𝛾) = max{sup(𝐶𝜏0 ∩ 𝛼), sup(𝐶𝜏1 ∩ 𝛼) | 𝜏0 ∈ Im(tr(𝛽, 𝛾)), 𝜏1 ∈ Im(tr(𝛼, 𝛽))} ≥
max{sup(𝐶𝜏1 ∩ 𝛼) | 𝜏1 ∈ Im(tr(𝛼, 𝛽))} = 𝜆(𝛼, 𝛽).

So, if 𝜆(𝛼, 𝛾) ̸= max{𝜆(𝛽, 𝛾), 𝜆(𝛼, 𝛽)}, then 𝜆(𝛼, 𝛾) < 𝜆(𝛽, 𝛾), and we may fix
the least 𝑖 < 𝜌2(𝛽, 𝛾) to satisfy sup(𝐶Tr(𝛽,𝛾)(𝑖) ∩ 𝛼) < sup(𝐶Tr(𝛽,𝛾)(𝑖) ∩ 𝛽); but then
Tr(𝛼, 𝛾)(𝑖 + 1) = min(𝐶Tr(𝛽,𝛾)(𝑖) ∖ 𝛼) < 𝛽 ≤ Tr(𝛽, 𝛾)(𝑖 + 1), contradicting the fact

that tr(𝛽, 𝛾)a⟨𝛽⟩ ⊑ tr(𝛼, 𝛾). �

Definition 2.10. For every (𝛼, 𝛽) ∈ [𝜅]2, we define an ordinal ð𝛼,𝛽 ∈ [𝛼, 𝛽] via:

ð𝛼,𝛽 :=

{︃
𝛼, if 𝜆(𝛼, 𝛽) < 𝛼;

min(Im(tr(𝛼, 𝛽)), otherwise.

Lemma 2.11. Let (𝛼, 𝛽) ∈ [𝜅]2 with 𝛼 > 0. Then

(1) 𝜆(ð𝛼,𝛽 , 𝛽) < 𝛼;2

(2) If ð𝛼,𝛽 ̸= 𝛼, then 𝛼 ∈ acc(𝐶ð𝛼,𝛽
);

2Recall Convention 2.8.
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(3) tr(ð𝛼,𝛽 , 𝛽) ⊑ tr(𝛼, 𝛽).

Proof. To avoid trivialities, assume that 𝜆(𝛼, 𝛽) = 𝛼. Let 𝛽0 > · · · > 𝛽𝑛 > 𝛽𝑛+1

denote the decreasing enumeration of the elements of Im(Tr(𝛼, 𝛽)), so that 𝛽0 = 𝛽,
𝛽𝑛 = ð𝛼,𝛽 , and 𝛽𝑛+1 = 𝛼. For each 𝑖 < 𝑛, 𝐶𝛽𝑖

∩ [𝛼, 𝛽𝑖+1) is empty, so that
min(𝐶𝛽𝑖

∖ 𝛽𝑛) = min(𝐶𝛽𝑖
∖ 𝛼) and sup(𝐶𝛽𝑖

∩ 𝛽𝑛) = sup(𝐶𝛽𝑖
∩ 𝛼) < 𝛼. Now, the

three clauses follow immediately. �

For the purpose of this paper, we also introduce the following ad-hoc notation.

Definition 2.12. For every ordinal 𝜂 < 𝜅 and a pair (𝛼, 𝛽) ∈ [𝜅]2, we let

𝜂𝛼,𝛽 := min{𝑛 < 𝜔 | 𝜂 ∈ 𝐶Tr(𝛼,𝛽)(𝑛) or 𝑛 = 𝜌2(𝛼, 𝛽)} + 1.

2.2. Relationship to the 𝐶-sequence number.

Definition 2.13 (The 𝐶-sequence number of 𝜅, [LHR21]). If 𝜅 is weakly compact,
then we define 𝜒(𝜅) := 0. Otherwise, we let 𝜒(𝜅) denote the least (finite or infinite)
cardinal 𝜒 ≤ 𝜅 such that, for every 𝐶-sequence ⟨𝐶𝛽 | 𝛽 < 𝜅⟩, there exist ∆ ∈ [𝜅]𝜅

and 𝑏 : 𝜅→ [𝜅]𝜒 with ∆ ∩ 𝛼 ⊆
⋃︀

𝛽∈𝑏(𝛼) 𝐶𝛽 for every 𝛼 < 𝜅.

Fact 2.14 (Todorcevic, [Tod07, Theorem 8.1.11]). If 𝜒(𝜅) > 1, then 𝜅9 [𝜅]2𝜔.

Fact 2.15 (Lambie-Hanson and Rinot, [LHR21]). If 𝜒(𝜅) ≤ 1, then 𝜅 is (in fact,
greatly) Mahlo and for every 𝐶-sequence ⟨𝐶𝛽 | 𝛽 ∈ Reg(𝜅)⟩ over Reg(𝜅), there exists
a club 𝐷 ⊆ 𝜅 satisfying the following. For every 𝛼 < 𝜅, there exists 𝛽 ∈ Reg(𝜅),
such that 𝐷 ∩ 𝛼 ⊆ 𝐶𝛽.

Lemma 2.16. If 𝜒(𝜅) ≤ 1, then Pℓ1(𝜅, 1, 2) fails.

Proof. Suppose that Pℓ1(𝜅, 1, 2) holds.

Claim 2.16.1. There exists a function 𝑠 : [𝜅]2 → 𝜅 satisfying the following:

(1) for all (𝛼, 𝛽) ∈ 𝜅~ acc(𝜅), 𝛼 < 𝑠(𝛼, 𝛽) < 𝛽;
(2) for every cofinal 𝐴 ⊆ 𝜅, 𝑠“[𝐴]2 is stationary.

Proof. Fix t : [𝜅]2 → [𝜅]3 witnessing Pℓ1(𝜅, 1, 2). Define 𝑠 : [𝜅]2 → 𝜅 by let-
ting 𝑠(𝛼, 𝛽) := 𝛽* whenever t(𝛼, 𝛽) = (𝜏*, 𝛼*, 𝛽*) with 𝛼 < 𝛽* < 𝛽, and letting
𝑠(𝛼, 𝛽) := 𝛼 + 1, otherwise. To verify Clause (2), let 𝐴 be an arbitrary cofinal
subset of 𝜅. Set 𝐶 := acc+(𝐴) and 𝐴′ := 𝐴 ∖ 𝐶, so that 𝐴′ is a discrete cofinal
subset of 𝐴. As {{𝛼} | 𝛼 ∈ 𝐴′} is a subset of [𝜅]1 consisting of 𝜅 many pairwise
disjoint sets, we may now fix a stationary 𝑆 ⊆ 𝜅 such that, for all (𝛼*, 𝛽*) ∈ [𝑆]2,
there exists (𝛼, 𝛽) ∈ [𝐴′]2 with t(𝛼, 𝛽) = (0, 𝛼*, 𝛽*). We claim that 𝑠“[𝐴]2 covers
the stationary set 𝑆* := (𝑆 ∩ 𝐶) ∖ {min(𝑆)}.

To see this, let 𝛽* ∈ 𝑆* be arbitrary. Put 𝛼* := min(𝑆). Fix (𝛼, 𝛽) ∈ [𝐴′]2 such
that t(𝛼, 𝛽) = (0, 𝛼*, 𝛽*). We know that 𝛼* ≤ 𝛼 < 𝛽* ≤ 𝛽 and that 𝛽* ∈ 𝐶 while
𝛽 ∈ 𝐴 ∖ 𝐶. So 𝛼 < 𝛽* < 𝛽, and hence 𝑠(𝛼, 𝛽) = 𝛽*, as sought. �

Suppose that 𝜒(𝜅) ≤ 1, and yet there exists a function 𝑠 : [𝜅]2 → 𝜅 as in the
preceding claim. Set 𝐶𝜔 := 𝜔. For any uncountable 𝛽 ∈ Reg(𝜅), let

𝐶𝛽 := {𝛾 < 𝛽 | ∀𝛼 < 𝛾[𝑠(𝛼, 𝛽) < 𝛾]}
be the club of closure points of the function 𝑠(·, 𝛽). Note that, for any 𝛼 < 𝛽,
𝑠(𝛼, 𝛽) /∈ 𝐶𝛽 , since 𝛼 < 𝑠(𝛼, 𝛽).

Now, by Fact 2.15, we may fix a club 𝐷 ⊆ 𝜅 with the property that, for every
𝛼 < 𝜅, there exists 𝛽 ∈ Reg(𝜅) with 𝐷 ∩ 𝛼 ⊆ 𝐶𝛽 .
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Recursively build a (discrete) subset 𝐴 ⊆ ({0} ∪ (Reg(𝜅) ∖ 𝜔1)) such that, for
any nonzero 𝛽 ∈ 𝐴, 𝛽− := sup(𝐴 ∩ 𝛽) is smaller than 𝛽, and 𝐷 ∩ (𝛽− + 1) ⊆ 𝐶𝛽 .
Then, let 𝐸 be the closure of

⋃︀
{𝐶𝛽 ∖ 𝛽− | 𝛽 ∈ 𝐴, 𝛽 ̸= 0} in 𝜅, and note that, for

every 𝛽 ∈ 𝐴, 𝐸 ∩ (𝛽−, 𝛽) = 𝐶𝛽 ∩ (𝛽−, 𝛽).
As 𝐴 is cofinal, 𝑆 := 𝑠“[𝐴]2 is stationary, so that we may pick 𝛽* ∈ 𝑆 ∩𝐷 ∩ 𝐸.

Fix a pair (𝛼, 𝛽) ∈ [𝐴]2 with 𝑠(𝛼, 𝛽) = 𝛽*.

Claim 2.16.2. 𝛽* ∈ 𝐶𝛽.

Proof. As (𝛼, 𝛽) ∈ [𝐴]2, we we know that 𝛽 is a regular uncountable cardinal. So,
by the hypothesis on 𝑠, 𝛼 < 𝛽* < 𝛽. Now, there are two cases to consider:
I If 𝛽* ≤ 𝛽−, then 𝛽* ∈ 𝐷 ∩ (𝛽− + 1) ⊆ 𝐶𝛽 .
I Otherwise, 𝛽− < 𝛽* < 𝛽, so that 𝛽* ∈ 𝐸 ∩ (𝛽−, 𝛽) = 𝐶𝛽 ∩ (𝛽−, 𝛽). �

However, we have observed earlier that 𝑠(𝛼, 𝛽) /∈ 𝐶𝛽 , meaning that 𝛽* /∈ 𝐶𝛽 .
This contradicts the preceding claim. �

2.3. Relationship to Shelah’s principle Pr1.

Definition 2.17 (Shelah, [She88]). Pr1(𝜅, 𝜅, 𝜃, 𝜒) asserts the existence of a coloring
𝑐 : [𝜅]2 → 𝜃 such that for every 𝜎 < 𝜒, every family 𝒜 ⊆ [𝜅]𝜎 consisting of 𝜅 many
pairwise disjoint sets, and every 𝑖 < 𝜃, there is (𝑎, 𝑏) ∈ [𝒜]2 such that 𝑐[𝑎×𝑏] = {𝑖}.

Note that Pr1(𝜅, 𝜅, 𝜃, 2) is equivalent to 𝜅9 [𝜅]2𝜃.

Lemma 2.18. Any of the following implies that Pr1(𝜅, 𝜅, 𝜃, 𝜒) holds:

(1) Pℓ1(𝜅, 𝜃, 𝜒);
(2) Pℓ1(𝜅, 1, 𝜒) and 𝜅9 [stat]2𝜃;
(3) Pℓ1(𝜅, cf(𝜃), 𝜒) and 𝜅9 [stat]2𝜂 for all 𝜂 < 𝜃;

(4) Pℓ1(𝜅, 𝜈, 𝜒) and there exists a 𝜈+-cc poset P such that P 𝜅9 [𝜅]2𝜃.

Proof. (1) Let t : [𝜅]2 → [𝜅]3 be a witness to Pℓ1(𝜅, 𝜃, 𝜒). Define 𝑐* : [𝜅]2 → 𝜃 via
𝑐*(𝛼, 𝛽) := 𝜏* whenever t(𝛼, 𝛽) = (𝜏*, 𝛼*, 𝛽*). Then 𝑐* witnesses Pr1(𝜅, 𝜅, 𝜃, 𝜒).

(2) Let t : [𝜅]2 → [𝜅]3 be a witness to Pℓ1(𝜅, 1, 𝜒), and let 𝑐 : [𝜅]2 → 𝜃 be a
witness to 𝜅 9 [stat]2𝜃. Define 𝑐* : [𝜅]2 → 𝜃 via 𝑐*(𝛼, 𝛽) := 𝑐(𝛼*, 𝛽*) whenever
t(𝛼, 𝛽) = (𝜏*, 𝛼*, 𝛽*). Then 𝑐* witnesses Pr1(𝜅, 𝜅, 𝜃, 𝜒).

(3) Let t : [𝜅]2 → [𝜅]3 be a witness to Pℓ1(𝜅, cf(𝜃), 𝜒). By Clause (1), we may
assume that 𝜃 is singular. Thus, let ⟨𝜂𝑖 | 𝑖 < cf(𝜃)⟩ be an increasing sequence of
cardinals, converging to 𝜃. For each 𝑖 < cf(𝜃), let 𝑐𝑖 : [𝜅]2 → 𝜂𝑖 be a witness to
𝜅 9 [stat]2𝜂𝑖

. Define 𝑐* : [𝜅]2 → 𝜃 via 𝑐*(𝛼, 𝛽) := 𝑐𝑖(𝛼
*, 𝛽*) whenever t(𝛼, 𝛽) =

(𝑖, 𝛼*, 𝛽*). Then 𝑐* witnesses Pr1(𝜅, 𝜅, 𝜃, 𝜒).
(4) By Clause (1), we may assume that 𝜈 < 𝜃. Let t : [𝜅]2 → [𝜅]3 be a witness

to Pℓ1(𝜅, 𝜈, 𝜒). Suppose that P is a 𝜈+-cc poset such that P 𝜅 9 [𝜅]2𝜃. Fix a
P-name �̇� for a coloring witnessing 𝜅 9 [𝜅]2𝜃 in the forcing extension by P. Define
𝑑 : [𝜅]2 → 𝒫(𝜃) via

𝑑(𝛼, 𝛽) := {𝜏 < 𝜃 | ∃𝑝(𝑝 P �̇�(�̌�, 𝛽) = 𝜏)}.
As P is 𝜈+-cc, |𝑑(𝛼, 𝛽)| ≤ 𝜈 for every (𝛼, 𝛽) ∈ [𝜅]2, so that, we may define a function
𝑒 : [𝜅]3 → 𝜃 such that, all (𝛼, 𝛽) ∈ [𝜅 ∖ 𝜈]2, 𝑑(𝛼, 𝛽) ⊆ {𝑒(𝑖, 𝛼, 𝛽) | 𝑖 < 𝜏}. It follows
that 𝑒 ∘ t witnesses Pr1(𝜅, 𝜅, 𝜃, 𝜒). �

We now establish Theorem D.

Proposition 2.19. Suppose that 𝜅 is weakly compact and 𝜒 ∈ Reg(𝜅).
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(1) There exists a cofinality-preserving forcing extension in which 𝜅 is strongly
inaccessible, there exists a coherent 𝜅-Souslin tree, Pr1(𝜅, 𝜅, 𝜅, 𝜔) holds, yet
Pℓ1(𝜅) fails.

(2) There exists a cofinality-preserving forcing extension in which 𝜅 is strongly
inaccessible, there exists a nonreflecting stationary subset of 𝐸𝜅

𝜒, yet Pℓ1(𝜅, 1,

𝜒+) fails.

Proof. (1) In [LHR21, S3], a cofinality-preserving forcing extension given by Kunen
is revisited, in which 𝜅 remains strongly inaccessible and there exists a coherent
𝜅-Souslin tree, so that Pr1(𝜅, 𝜅, 𝜅, 𝜔) holds. It is shown there that 𝜒(𝜅) = 1 holds
in this model, so that, by Lemma 2.16, Pℓ1(𝜅) fails.

(2) In [LHR21, S3], the authors give a cofinality-preserving forcing extension in
which there exists a nonreflecting stationary subset of 𝐸𝜅

𝜒, and Pr1(𝜅, 𝜅, 𝜅, 𝜒+) fails.

By Fact 2.2 and Lemma 2.18, Pℓ1(𝜅, 1, 𝜒+) must fail in this model. �

Next, we turn to derive Theorem A:

Corollary 2.20. Suppose that Pℓ1(𝜅) holds. For every cardinal 𝜃 ≤ 𝜅, the following
are equivalent:

(1) 𝜅9 [𝜅]2𝜃;
(2) 𝜅9 [𝜅;𝜅]2𝜃;
(3) Pr1(𝜅, 𝜅, 𝜃, 𝜔);
(4) For every Abelian group (𝐺,+) of size 𝜅, there exists a coloring 𝑑 : 𝐺→ 𝜃

such that, for all 𝑋,𝑌 ⊆ 𝐺 of size 𝜅, and every 𝜏 ∈ 𝜃, there exist 𝑥 ∈ 𝑋
and 𝑦 ∈ 𝑌 such that 𝑑(𝑥+ 𝑦) = 𝜏 .

Proof. (3) =⇒ (2) =⇒ (1): This is trivial.
(1) =⇒ (3): By Lemma 2.18(2).
(3) =⇒ (4): By Lemma 3.4 and [FR17, Theorem 4.2].
(4) =⇒ (1): As ([𝜅]<𝜔,△) is an Abelian group of size 𝜅, let us fix a coloring

𝑑 : [𝜅]<𝜔 → 𝜃 as in Clause (4). Now define a coloring 𝑐 : [𝜅]2 → 𝜃 by stipulating
𝑐(𝑥, 𝑦) := 𝑑({𝑥, 𝑦}). Clearly, 𝑐 witnesses that 𝜅9 [𝜅]2𝜃 holds. �

Remark 2.21. Compare the preceding with Conjecture 2 of [Rin14a].

Corollary 2.22. If Pℓ1(𝜅, 1, 𝜒) holds, then so does Pr1(𝜅, 𝜅, 𝜔, 𝜒).

Proof. To avoid trivialities, suppose that 𝜒 ≥ 2. Then, by Lemma 2.16, 𝜒(𝜅) > 1.
Finally, by Fact 2.14 and Theorem 2.18(2), Pr1(𝜅, 𝜅, 𝜔, 𝜒) holds. �

We are now ready to derive Theorem B:

Corollary 2.23. Suppose that Pℓ1(𝜅) holds and 𝑛 is some positive integer. Then
there exists a poset P such that P𝑛 satisfies the 𝜅-cc, but P𝑛+1 does not.

Proof. By Corollary 2.22, in particular, we may fix a coloring 𝑐 : [𝜅]2 → 𝑛 + 1
witnessing Pr1(𝜅, 𝜅, 𝑛+ 1, 𝜔). We define a poset P := (𝑃,≤) by letting

𝑃 := {(𝑖, 𝑥) | 𝑖 < 𝑛+ 1, 𝑥 ∈ [𝜅]<𝜔, 𝑖 /∈ 𝑐“[𝑥]2},
and letting (𝑖, 𝑥) ≤ (𝑗, 𝑦) iff 𝑖 = 𝑗 and 𝑥 ⊇ 𝑦. A moment’s reflection makes it clear
that {⟨(𝑖, {𝛼}) | 𝑖 < 𝑛+ 1⟩ | 𝛼 < 𝜅⟩ forms a 𝜅-sized antichain in P𝑛+1.

We are left with showing that P𝑛 does satisfy the 𝜅-cc. To this end, let 𝐴 be an
arbitrary 𝜅-sized subset of P𝑛. For every 𝑝 ∈ 𝐴, write 𝑝 as ⟨(𝑖𝑝𝑗 , 𝑥

𝑝
𝑗 ) | 𝑗 < 𝑛⟩. By the

pigeonhole principle, we may assume the existence of a sequence ⟨𝑖𝑗 | 𝑗 < 𝑛⟩ such
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that, for every 𝑝 ∈ 𝐴, ⟨𝑖𝑝𝑗 | 𝑗 < 𝑛⟩ = ⟨𝑖𝑗 | 𝑗 < 𝑛⟩. Find 𝑖* < 𝑛+ 1 such that 𝑖* ̸= 𝑖𝑗
for all 𝑗 < 𝑛. By the ∆-system lemma, we may also assume that, for every 𝑗 < 𝑛,
{𝑥𝑝𝑗 | 𝑝 ∈ 𝐴} forms a ∆-system with some room 𝑟𝑗 . Let 𝑟 :=

⋃︀
𝑗<𝑛 𝑟𝑗 . Note that

𝑟 is finite (possibly empty). By further thinning out we may assume that, for all
𝑝 ∈ 𝐴 and 𝑗 < 𝑛, min(𝑥𝑝𝑗 ∖ 𝑟𝑗) > sup(𝑟). By one last step of thinning out, we may

finally secure that {
⋃︀

𝑗<𝑛 𝑥
𝑝
𝑗 ∖ 𝑟 | 𝑝 ∈ 𝐴} form a family of 𝜅-many pairwise disjoint

finite sets. Now, the choice of 𝑐 entails that we may find 𝑝 ̸= 𝑞 in 𝐴 such that:

(1) max(
⋃︀

𝑗<𝑛 𝑥
𝑝
𝑗 ∖ 𝑟) < min(

⋃︀
𝑗<𝑛 𝑥

𝑞
𝑗 ∖ 𝑟), and

(2) 𝑐
[︁
(
⋃︀

𝑗<𝑛 𝑥
𝑝
𝑗 ∖ 𝑟) × (

⋃︀
𝑗<𝑛 𝑥

𝑞
𝑗 ∖ 𝑟)

]︁
= {𝑖*}.

To see that 𝑝 and 𝑞 are compatible, fix arbitrary 𝑗 < 𝑛 and (𝛼, 𝛽) ∈ [𝑥𝑝𝑗 ∪ 𝑥
𝑞
𝑗 ]2; we

need to verify that 𝑐(𝛼, 𝛽) ̸= 𝑖𝑗 . There are three possible options:
I If (𝛼, 𝛽) ∈ [𝑥𝑝𝑗 ]2 ∪ [𝑥𝑞𝑗 ]2, then since 𝑖𝑝𝑗 = 𝑖𝑗 = 𝑖𝑞𝑗 , 𝑐(𝛼, 𝛽) ̸= 𝑖𝑗 .

I If 𝛼 ∈ 𝑥𝑝𝑗 ∖ 𝑥𝑞𝑗 and 𝛽 ∈ 𝑥𝑞𝑗 ∖ 𝑥𝑝𝑗 , then 𝛼 ∈ 𝑥𝑝𝑗 ∖ 𝑟𝑗 and 𝛽 ∈ 𝑥𝑞𝑗 ∖ 𝑟𝑗 , so that

altogether 𝛼 ∈ 𝑥𝑝𝑗 ∖ 𝑟 and 𝛽 ∈ 𝑥𝑞𝑗 ∖ 𝑟. by Clause (2), then, 𝑐(𝛼, 𝛽) = 𝑖*. In

particular, 𝑐(𝛼, 𝛽) ̸= 𝑖𝑗 .
I If 𝛼 ∈ 𝑥𝑞𝑗 ∖ 𝑥

𝑝
𝑗 and 𝛽 ∈ 𝑥𝑝𝑗 ∖ 𝑥

𝑞
𝑗 , then 𝛼 ∈ 𝑥𝑞𝑗 ∖ 𝑟 and 𝛽 ∈ 𝑥𝑝𝑗 ∖ 𝑟, contradicting

Clause (1). So this case does not exist. �

3. Improved oscillation

In [Rin14b], the first author introduced the following oscillation principle:

Definition 3.1. Pℓ6(𝜇, 𝜈) asserts the existence of a map 𝑑 : <𝜔𝜇 → 𝜔 such that
for every sequence ⟨(𝑢𝛼, 𝑣𝛼, 𝜎𝛼) | 𝛼 < 𝜇⟩ and a function 𝜙 : 𝜇→ 𝜇 satisfying:

(1) 𝜙 is eventually regressive. That is, 𝜙(𝛼) < 𝛼 for co-boundedly many 𝛼 < 𝜇;
(2) 𝑢𝛼 and 𝑣𝛼 are nonempty elements of [<𝜔𝜇]<𝜈 ;
(3) 𝛼 ∈ Im(𝜚) for all 𝜚 ∈ 𝑢𝛼;
(4) 𝜎𝛼

⌢⟨𝛼⟩ ⊑ 𝜎 for all 𝜎 ∈ 𝑣𝛼,

there exist (𝛼, 𝛽) ∈ [𝜇]2 with 𝜙(𝛼) = 𝜙(𝛽) such that, for all 𝜚 ∈ 𝑢𝛼 and 𝜎 ∈ 𝑣𝛽 ,
𝑑(𝜚⌢𝜎) = ℓ(𝜚) .

The main result of [Rin14b, S2] states that Pℓ6(𝜈+, 𝜈) holds for every infinite
regular cardinal 𝜈. In [RZ21], we show that Pℓ6(𝜈+, 𝜈) fails for every singular
cardinal 𝜈, and that Pℓ6(𝜇, 𝜇) fails for every infinite cardinal 𝜇.

In this paper, we shall be making use of two variations of Pℓ6(𝜈+, 𝜈). The first
variation reads as follows:

Fact 3.2. Suppose that 𝜇 = 𝜈+ for an infinite regular cardinal 𝜈. Then there
exists a map 𝑑 : <𝜔𝜇 → 𝜔 × 𝜇 × 𝜇 × 𝜇 such that, for every 𝛾* < 𝜇, and every
sequence ⟨(𝑢𝛼, 𝑣𝛼, 𝜎𝛼) | 𝛼 < 𝜇⟩ satisfying clauses (2)–(4) of Definition 3.1, there
exist (𝛼, 𝛽) ∈ [𝜇]2 such that, for all 𝜚 ∈ 𝑢𝛼 and 𝜎 ∈ 𝑣𝛽, 𝑑(𝜚a𝜎) = (ℓ(𝜚), 𝛼, 𝛽, 𝛾*).

Proof. This follows immediately from Theorems 2.3 and 2.6 of [Rin14b]. �

The second variation reads as follows:

Lemma 3.3. Suppose that 𝜇 = 𝜈+ for an infinite regular cardinal 𝜈. Then there
exist a map 𝑑0 : <𝜔𝜇 → 𝜔 and a 𝜇-additive normal ideal 𝐽 on 𝜇 with 𝐸𝜇

𝜈 /∈ 𝐽
such that, for every sequence ⟨(𝑢𝛼, 𝑣𝛼, 𝜎𝛼) | 𝛼 ∈ 𝐴⟩ with 𝐴 ∈ 𝐽+ satisfying clauses
(2)–(4) of Definition 3.1, there exist (𝛼, 𝛽) ∈ [𝐴]2 such that, for all 𝜚 ∈ 𝑢𝛼 and
𝜎 ∈ 𝑣𝑗, 𝑑0(𝜚a𝜎) = ℓ(𝜚).
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Proof. By [Rin14b, Theorem 2.6], we may assume that 𝜈<𝜈 > 𝜈. In particular,
there exists a cardinal 𝜃 < 𝜈 with 2𝜃 ≥ 𝜈. So, by [She97, Claim 3.1] and [She97,

Lemma 3.10], we may fix a 𝐶-sequence �⃗� = ⟨𝐶𝛽 | 𝛽 < 𝜇⟩ and a sequence of
functions ⟨𝑔𝛽 : 𝐶𝛽 → 𝜔 | 𝛽 ∈ 𝐸𝜇

𝜈 ⟩ such that:

∙ otp(𝐶𝛽) = cf(𝛽) for all 𝛽 < 𝜇;
∙ for every club 𝐷 ⊆ 𝜇, there exists some 𝛽 ∈ 𝐸𝜇

𝜈 such that, for every 𝑛 < 𝜔,
sup{𝛿 ∈ nacc(𝐶𝛽) ∩𝐷 | 𝑔𝛽(𝛿) = 𝑛} = 𝛽.

Fix a coloring 𝑑 : [𝜇]2 → 𝜔 that satisfies 𝑑(𝛼, 𝛽) = 𝑔𝛽(min(𝐶𝛽 ∖ 𝛼)) for all 𝛽 ∈ 𝐸𝜇
𝜈

and 𝛼 < 𝛽. Also, define a function ℎ : [𝜇]<𝜈 → 𝜈 via

ℎ(𝑧) := sup{otp(𝐶𝛽 ∩ 𝛼) | (𝛼, 𝛽) ∈ [𝑧]2}.

Next, define an ideal 𝐽 as follows: 𝐴 is in 𝐽 iff 𝐴 ⊆ 𝜇 and there exists a
club 𝐷 ⊆ 𝜇 such that, for every 𝛽 ∈ 𝐷 ∩ 𝐴 ∩ 𝐸𝜇

𝜈 , there exists 𝑛 < 𝜔 such that
sup{𝛿 ∈ nacc(𝐶𝛽) ∩𝐷 | 𝑔𝛽(𝛿) = 𝑛} < 𝛽.

Claim 3.3.1. 𝐽 is a 𝜇-additive normal ideal on 𝜇 with 𝐸𝜇
𝜈 /∈ 𝐽 .

Proof. By the choice of �⃗�, 𝐸𝜇
𝜈 /∈ 𝐽 . It is clear that for all 𝐴 ∈ 𝐽 and 𝐵 ∈ [𝜇]<𝜇,

𝒫(𝐴 ∪ 𝐵) ⊆ 𝐽 . Thus, it suffices to verify that 𝐽 is normal. So, suppose that ⟨𝐴𝑖 |
𝑖 < 𝜇⟩ is a sequence of sets in 𝐽 , and we shall prove that 𝐴 :=

`
𝑖<𝜇𝐴𝑖 is in 𝐽 . For

each 𝑖 < 𝜇, fix a club 𝐷𝑖 witnessing that 𝐴𝑖 ∈ 𝐽 . We claim that 𝐷 :=
a

𝑖<𝜇𝐷𝑖

witnesses that 𝐴 is in 𝐽 . Indeed, let 𝛽 ∈ 𝐷 ∩𝐴∩𝐸𝜇
𝜈 be arbitrary. Find 𝑖 < 𝛽 such

that 𝛽 ∈ 𝐴𝑖. In particular, 𝛽 ∈ 𝐷𝑖 ∩ 𝐴𝑖 ∩ 𝐸𝜇
𝜈 , and hence there exists 𝑛 < 𝜔 such

that sup{𝛿 ∈ nacc(𝐶𝛽) ∩𝐷 | 𝑔𝛽(𝛿) = 𝑛} < 𝛽. �

The rest of the proof now follows that of [Rin14b, Theorem 2.3]. Given a sequence
𝜂 ∈ <𝜔𝜇, let

𝒟𝜂 := {(𝑖, 𝑗) | 𝑖 < 𝑗 < ℓ(𝜂) & 𝜂(𝑖) < 𝜂(𝑗)},

and whenever 𝒟𝜂 ̸= ∅, set

∙ m𝜂 := max{otp(𝐶𝜂(𝑗) ∩ 𝜂(𝑖)) | (𝑖, 𝑗) ∈ 𝒟𝜂};
∙ 𝒫𝜂 := {(𝑖, 𝑗) ∈ 𝒟𝜂 | otp(𝐶𝜂(𝑗) ∩ 𝜂(𝑖)) = m𝜂};
∙ 𝑗𝜂 := min{𝑗 | ∃𝑖 (𝑖, 𝑗) ∈ 𝒫𝜂};
∙ 𝛼𝜂 := min{𝜂(𝑖) | ∃𝑗 (𝑖, 𝑗) ∈ 𝒫𝜂};
∙ 𝛽𝜂 := 𝜂(𝑗𝜂).

Finally, define 𝑑0 : <𝜔𝜇→ 𝜇 by letting for every 𝜂 ∈ <𝜔𝜇 with 𝒟𝜂 ̸= ∅:

𝑑0(𝜂) := max{0, 𝑗𝜂 − 𝑑(𝛼𝜂, 𝛽𝜂)}.

To verify this works, suppose that we are given a sequence ⟨(𝑢𝛼, 𝑣𝛼, 𝜎𝛼) | 𝛼 ∈ 𝐴⟩
as in the statement of the lemma. Note that, without loss of generality, we may
assume that 𝛼 /∈ Im(𝜎𝛼) for all 𝛼 ∈ 𝐴.

For every 𝛼 ∈ 𝐴, write 𝑎𝛼 :=
⋃︀
{Im(𝜎) | 𝜎 ∈ 𝑢𝛼 ∪ 𝑣𝛼}, and 𝑥𝛼 := 𝑎𝛼 ∖ 𝛼. Let 𝜅

be a large enough regular cardinal, and let E𝜅 be a well-ordering of ℋ𝜅. Let ⟨𝑀𝛿 |
𝛿 < 𝜇⟩ be a continuous ∈-chain of elementary submodels of (ℋ𝜅,∈,E𝜅), each of
size 𝜈, such that 𝜈 ⊆𝑀0 and {ℎ, ⟨𝑎𝛼 | 𝛼 ∈ 𝐴⟩} ∈𝑀0.

Write 𝐷 := {𝛿 < 𝜇 |𝑀𝛿 ∩ 𝜇 = 𝛿}. As 𝐴 ∈ 𝐽+, let us pick 𝛽 ∈ 𝐷 ∩ 𝐴 ∩ 𝐸𝜇
𝜈 such

that sup{𝛿 ∈ nacc(𝐶𝛽)∩𝐷 | 𝑔𝛽(𝛿) = 𝑛} = 𝛽 for all 𝑛 < 𝜔. Put 𝜉 := sup(𝑎𝛽∩𝛽)+1.
As |𝑎𝛽 | < cf(𝛽), 𝜉 < 𝛽. Let 𝑓 : 𝜈 → 𝜉 be the E𝜅-least surjection. From |𝑎𝛽 | < 𝜈
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and regularity of 𝜈, let 𝑖′ < 𝜈 be large enough such that 𝑎𝛽 ∩ 𝛽 ⊆ 𝑓 [𝑖′]. Write
𝑛* := ℓ(𝜎𝛽), 𝑧 := 𝑓 [𝑖′], 𝜖 := ℎ(𝑎𝛽 ∪ 𝑧), and

𝐴′ := {𝛼 ∈ 𝐴 | 𝑎𝛼 ∩ 𝛼 ⊆ 𝑧, ℎ(𝑎𝛼 ∪ 𝑧) = 𝜖}.

Pick 𝛿 ∈ nacc(𝐶𝛽) ∩𝐷 above 𝜉 with otp(𝐶𝛽 ∩ 𝛿) > 𝜖 such that 𝑔𝛽(𝛿) = 𝑛*. As
𝜉 ∈𝑀𝛿, 𝐴′ ∈𝑀𝛿. Since 𝛽 ∈ 𝐴′ ∖𝑀𝛿, sup(𝐴′∩𝑀𝛿) = 𝛿. So, let us pick 𝛼 ∈ 𝐴′∩𝑀𝛿

above max(𝐶𝛽 ∩ 𝛿).

Claim 3.3.2. (1) ℎ(𝑎𝛼 ∪ 𝑧) = 𝜖;
(2) 𝑎𝛼 ∩ 𝛼 ⊆ 𝑧;
(3) 𝑥𝛼 ⊆ (max(𝐶𝛽 ∩ 𝛿), 𝛿). In particular, otp(𝐶𝛽 ∩ 𝛼) > 𝜖;
(4) 𝑑(𝛼, 𝛽) = ℓ(𝜎𝛽).

Proof. By the same proof of [Rin14b, Claim 2.3.1]. �

To see that the pair (𝛼, 𝛽) is as sought, suppose that we are given 𝜚 ∈ 𝑢𝛼 and
𝜎 ∈ 𝑣𝛽 , and let us show that 𝑑0(𝜂) = ℓ(𝜚) for 𝜂 := 𝜚⌢𝜎.

As 𝛼 ∈ Im(𝜚) and 𝛽 ∈ Im(𝜎), there exist �̂� < �̂� < ℓ(𝜂) such that 𝜂(̂𝑖) = 𝛼 and

𝜂(�̂�) = 𝛽. So (̂𝑖, �̂�) witnesses that 𝒟𝜂 ̸= ∅, and then by Claim 3.3.2(3), we have
m𝜂 ≥ otp(𝐶𝛽 ∩ 𝛼) > 𝜖.

Claim 3.3.3. For every (𝑖, 𝑗) ∈ 𝒫𝜂:

(1) {𝜂(𝑖), 𝜂(𝑗)} * (𝑎𝛼 ∪ 𝑧), and {𝜂(𝑖), 𝜂(𝑗)} * (𝑎𝛽 ∪ 𝑧);
(2) If 𝜂(𝑖) ∈ 𝑎𝛼, then 𝜂(𝑗) /∈ 𝑎𝛽 ∩ 𝛽;
(3) 𝜚 ⊑ 𝜂 � 𝑗;
(4) 𝜂(𝑗) = 𝛽;
(5) 𝜂(𝑖) ∈ 𝑥𝛼.

Proof. By the same proof of [Rin14b, Claim 2.3.2]. �

As 𝛽 /∈ Im(𝜎𝛽), we get from the minimality of 𝑗𝜂 together with Clauses (3) and
(4) of the preceding claim that

𝜂 � (𝑗𝜂 + 1) = 𝜚⌢𝜎𝛽
⌢⟨𝛽⟩.

So 𝛽𝜂 = 𝛽 and 𝑗𝜂 = ℓ(𝜚⌢𝜎𝛽). By Clause (5) of the preceding claim, 𝛼𝜂 ∈ 𝑥𝛼.
Then, by Claim 3.3.2(3), we get that otp(𝐶𝛽 ∩ 𝛼𝜂) = otp(𝐶𝛽 ∩ 𝛼). Recalling that
min(𝑥𝛼) = 𝛼 ∈ Im(𝜚), Claims 3.3.3(5) and 3.3.2(3) then imply that 𝛼𝜂 = 𝛼.

Recalling Claim 3.3.2(4), we altogether infer that

𝜂 � (𝑗𝜂 − 𝑑(𝛼𝜂, 𝛽𝜂)) = (𝜚⌢𝜎) � (ℓ(𝜚⌢𝜎𝛽) − ℓ(𝜎𝛽)) = 𝜚.

So, 𝑑0(𝜎) = max{0, 𝑗𝜂 − 𝑑(𝛼𝜂, 𝛽𝜂)} = ℓ(𝜚), as sought. �

4. Clause (2) of Theorem C

In this section, we suppose that 𝜒 ∈ Reg(𝜅) is a cardinal satisfying 𝜒+ < 𝜅, and
there exists a stationary subset of 𝐸𝜅

≥𝜒 that does not reflect. We shall construct a

witness to Pℓ1(𝜅, 𝜅, 𝜒). The proof is split into two cases: 𝜒++ < 𝜅 and 𝜒++ = 𝜅.
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4.1. Case I. In this subsection, we suppose that 𝜒++ < 𝜅. Note that, by Propo-
sition 2.19(2), the result of this subsection cannot be improved.

Lemma 4.1. There exists 𝜈 ∈ Reg(𝜅) ∖ 𝜒 with 𝜈+ < 𝜅 and a stationary subset
Γ ⊆ 𝐸𝜅

≥𝜒 ∩ 𝐸𝜅
̸=𝜈+ that does not reflect.

Proof. By the hypothesis of this section, let us fix a stationary subset 𝑅 ⊆ 𝐸𝜅
≥𝜒

that does not reflect.
If 𝑅∩Reg(𝜅) is stationary, then we may simply let 𝜈 := 𝜒 and Γ := 𝑅∩Reg(𝜅)∖

(𝜈+ + 1). Next, suppose that 𝑅 ∩ Reg(𝜅) is nonstationary, and use Fodor’s lemma
to fix a regular cardinal 𝜃 ≥ 𝜒 for which 𝑅 ∩ 𝐸𝜅

𝜃 is stationary.
I If 𝜃+ < 𝜅, then we let 𝜈 := 𝜃. It follows that 𝜈+ < 𝜅, and 𝐸𝜅

𝜃 ∩ 𝐸𝜅
𝜈+ = ∅, so

that Γ := 𝑅 ∖ 𝐸𝜅
𝜈+ is as sought.

I If 𝜃+ = 𝜅, then we let 𝜈 := 𝜒. As 𝜒++ < 𝜅, we infer that 𝜈+ < 𝜃 < 𝜅, so that
𝐸𝜅

𝜃 ∩ 𝐸𝜅
𝜈+ = ∅ and Γ := 𝑅 ∖ 𝐸𝜅

𝜈+ is as sought. �

Let 𝜈 and Γ be given by the preceding lemma. Set 𝜇 := 𝜈+, so that Γ∩𝐸𝜅
𝜇 = ∅.

Fix a surjection 𝑔 : 𝜅→ 𝜅×𝜅 such that 𝐺𝜂,𝜏 := {𝛿 ∈ Γ | 𝑔(𝛿) = (𝜂, 𝜏)} is stationary
for every (𝜂, 𝜏) ∈ 𝜅× 𝜅. Fix another surjection ℎ : 𝜅→ 𝜇 such that 𝐻𝑖 := {𝛼 ∈ Γ |
ℎ(𝛼) = 𝑖} is stationary for every 𝑖 < 𝜇.

As Γ is nonreflecting, let �⃗� = ⟨𝐶𝛼 | 𝛼 < 𝜅⟩ be a sequence such that 𝐶𝛼+1 = {𝛼}
for every 𝛼 < 𝜅, and such that, for every 𝛼 ∈ acc(𝜅), 𝐶𝛼 is a club in 𝛼 with
acc(𝐶𝛼)∩Γ = ∅. By a club-guessing theorem due to Shelah (cf. [BR19, Remark 1.5
and Lemma 2.5]), we may also assume that, for every club 𝐷 ⊆ 𝜅, there exists 𝛾 ∈ Γ
with sup(nacc(𝐶𝛾) ∩𝐷) = 𝛾. Recalling Subsection 2.1, we now let Tr, tr, 𝜆 and 𝜌2
be the characteristic functions of walking along �⃗�, and let 𝜂𝛼,𝛽 be the notation
established in Definition 2.12. In addition, we consider yet another function trℎ :
[𝜅]2 → <𝜔𝜇 which is defined via trℎ(𝛼, 𝛽) := ℎ ∘ tr(𝛼, 𝛽).

Appeal to Lemma 3.3 to fix a map 𝑑0 : <𝜔𝜇→ 𝜔 and its corresponding 𝜇-additive
proper ideal 𝐽 . Define 𝑐 : [𝜅]2 → 𝜅× 𝜅 via

𝑐(𝛼, 𝛽) := 𝑔(Tr(𝛼, 𝛽)(𝑑0(trℎ(𝛼, 𝛽)))).

We are finally ready to define our transformation.

Definition 4.2. Define t : [𝜅]2 → [𝜅]3 by letting, for all (𝛼, 𝛽) ∈ [𝜅]2, t(𝛼, 𝛽) :=
(𝜏, 𝛼*, 𝛽*) provided that the following conditions are met:

∙ (𝜂, 𝜏) := 𝑐(𝛼, 𝛽) and max{𝜂 + 1, 𝜏} < 𝛼,
∙ 𝛽* = Tr(𝛼, 𝛽)(𝜂𝛼,𝛽) is > 𝛼, and
∙ 𝛼* = Tr(𝜂 + 1, 𝛼)(𝜂𝜂+1,𝛼).

Otherwise, let t(𝛼, 𝛽) := (0, 𝛼, 𝛽).

To verify that t witnesses Pℓ1(𝜅, 𝜅, 𝜒), suppose that we are given a family 𝒜 ⊆
[𝜅]<𝜒 consisting of 𝜅 many pairwise disjoint sets. Fix a sequence �⃗� = ⟨𝑥𝛿 | 𝛿 < 𝜅⟩
such that, for all 𝛿 < 𝜅, 𝑥𝛿 ∈ 𝒜 with min(𝑥𝛿) > 𝛿.

Definition 4.3. For 𝜂 < 𝜅, 𝑆𝜂 denotes the set of all 𝜖 < 𝜅 with the property that,
for every 𝜍 < 𝜅, there exist 𝐼 ∈ 𝐽+ and a sequence ⟨𝛽𝑖 | 𝑖 ∈ 𝐼⟩ ∈

∏︀
𝑖∈𝐼 𝐻𝑖 ∖ 𝜍, such

that, for all 𝑖 ∈ 𝐼 and 𝛽 ∈ 𝑥𝛽𝑖 :

(i) 𝑖 ∈ Im(trℎ(𝜖, 𝛽));
(ii) 𝜆(𝜖, 𝛽) = 𝜂;
(iii) 𝜌2(𝜖, 𝛽) = 𝜂𝜖,𝛽 .
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Lemma 4.4. There exists 𝜂 < 𝜅 for which 𝑆𝜂 is stationary.

Proof. By the pressing down lemma, it suffices to prove that, for every club 𝐷 ⊆ 𝜅,
there exist 𝜖 ∈ 𝐷 and 𝜂 < 𝜖 for which 𝜖 ∈ 𝑆𝜂. Thus, let 𝐷 be an arbitrary club in
𝜅.

Define a function 𝑓 : Γ → 𝜅 via

𝑓(𝛿) := sup{𝜆(𝛿, 𝛽) | 𝛽 ∈ 𝑥𝛿}.
By Fact 2.6 and since |𝑥𝛿| < 𝜒 ≤ cf(𝛿) for all 𝛿 ∈ Γ, 𝑓 is regressive. So, for all

𝑖 < 𝜇, let us pick a stationary subset �̄�𝑖 ⊆ 𝐻𝑖 such that 𝑓 � �̄�𝑖 is constant. Set

𝜁 := sup(𝑓 [
⋃︀

𝑖<𝜇 �̄�𝑖]). Now, by the club-guessing feature of �⃗�, let us pick 𝛾 ∈ Γ

with sup(nacc(𝐶𝛾) ∩ (𝐷 ∖ 𝜁)) = 𝛾.
Let 𝜍 < 𝜅. Fix a sequence ⟨𝛽𝜍

𝑖 | 𝑖 < 𝜇⟩ ∈
∏︀

𝑖<𝜇 �̄�𝑖 ∖ max{𝛾 + 1, 𝜍}. For every

𝑖 < 𝜇, by Fact 2.6, 𝜆(𝛾, 𝛽𝜍
𝑖 ) < 𝛾, so as 𝛾 ∈ Γ ⊆ 𝐸𝜅

̸=𝜇 and as 𝐽 is a 𝜇-additive

proper ideal on 𝜇, we may fix 𝐼𝜍 ∈ 𝐽+ along with some ordinal 𝜉𝜍 < 𝛾 such that
𝜆(𝛾, 𝛽𝜍

𝑖 ) ≤ 𝜉𝜍 for all 𝑖 ∈ 𝐼𝜍 . Then, pick a large enough 𝜖𝜍 ∈ nacc(𝐶𝛾)∩𝐷 such that
sup(𝐶𝛾 ∩ 𝜖𝜍) > max{𝜉𝜍 , 𝜁}.

Next, by the pigeonhole principle, let us fix 𝜖 ∈ nacc(𝐶𝛾) ∩ 𝐷 for which Σ :=
{𝜍 < 𝜅 | 𝜖𝜍 = 𝜖} is cofinal in 𝜅. Put 𝜂 := sup(𝐶𝛾 ∩ 𝜖), so that 𝜂 < 𝜖.

We already know that 𝜖 ∈ 𝐷. To see that 𝜖 ∈ 𝑆𝜂, let 𝜍 < 𝜅 be arbitrary. By
increasing 𝜍, we may assume that 𝜍 ∈ Σ. Let 𝑖 ∈ 𝐼𝜍 and 𝛽 ∈ 𝑥𝛽𝜍

𝑖
be arbitrary. As

𝛽𝜍
𝑖 ∈ 𝐻𝑖, it suffices to show that:

(i’) tr(𝜖, 𝛽) = tr(𝛽𝜍
𝑖 , 𝛽)a tr(𝜖, 𝛽𝜍

𝑖 );
(ii’) 𝜆(𝜖, 𝛽) = 𝜂;
(iii’) 𝜌2(𝜖, 𝛽) = 𝜂𝜖,𝛽 .

We have:

𝜆(𝛽𝜍
𝑖 , 𝛽) ≤ 𝑓(𝛽𝜍

𝑖 ) ≤ 𝜁 ≤ max{𝜆(𝛾, 𝛽𝜍
𝑖 ), 𝜁} ≤ max{𝜉𝜍 , 𝜁} < 𝜂 < 𝜖 < 𝛾 < 𝛽𝜍

𝑖 < 𝛽.

It thus follows from Fact 2.7 that Clause (i’) is satisfied. It also follows from Fact 2.7
that tr(𝜖, 𝛽𝜍

𝑖 ) = tr(𝛾, 𝛽𝜍
𝑖 )a tr(𝜖, 𝛾), so that altogether

tr(𝜖, 𝛽) = tr(𝛽𝜍
𝑖 , 𝛽)a tr(𝛾, 𝛽𝜍

𝑖 )a tr(𝜖, 𝛾).

By Lemma 2.9 and the above equation,

𝜆(𝜖, 𝛽) = max{𝜆(𝛽𝜍
𝑖 , 𝛽), 𝜆(𝛾, 𝛽𝜍

𝑖 ), 𝜆(𝜖, 𝛾)}.
Recall that max{𝜆(𝛽𝜍

𝑖 , 𝛽), 𝜆(𝛾, 𝛽𝜍
𝑖 )} ≤ max{𝜁, 𝜉𝜍} < 𝜂. As 𝜖 ∈ 𝐶𝛾 , we infer that

𝜆(𝜖, 𝛾) = sup(𝐶𝛾 ∩ 𝜖) = 𝜂. In effect, 𝜆(𝜖, 𝛽) = 𝜂 and 𝜌2(𝜖, 𝛽) = 𝜂𝜖,𝛽 . �

Let 𝜂 be given by the preceding lemma. Let 𝐷 be a club in 𝜅 such that, for all

𝛿 ∈ 𝐷, there exists 𝑀𝛿 ≺ ℋ𝜅+ containing the parameter 𝑝 := {Γ, 𝑆𝜂, �⃗�, �⃗�, ℎ, 𝜇} and
satisfying 𝑀𝛿 ∩ 𝜅 = 𝛿. Finally, let

𝑆* := 𝑆𝜂 ∩
i

𝜏<𝜅

acc+
(︁
𝐺𝜂,𝜏 ∩

⋂︁
𝑗<𝜇

acc+(𝐻𝑗 ∩𝐷)
)︁
.

Lemma 4.5. Let (𝜏*, 𝛼*, 𝛽*) ∈ 𝜅 ~ 𝑆* ~ 𝑆*. There exists (𝑎, 𝑏) ∈ [𝒜]2 such that
t[𝑎× 𝑏] = {(𝜏*, 𝛼*, 𝛽*)}.

Proof. As 𝛽* ∈ 𝑆* ⊆ 𝑆𝜂, let us pick 𝐼 ∈ 𝐽+ and a sequence ⟨𝛽𝑖 | 𝑖 ∈ 𝐼⟩ ∈∏︀
𝑖∈𝐼 𝐻𝑖 ∖ (𝛽* + 1) such that, for all 𝑖 ∈ 𝐼 and 𝛽 ∈ 𝑥𝛽𝑖

:

(1) 𝑖 ∈ Im(trℎ(𝛽*, 𝛽));
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(2) 𝜆(𝛽*, 𝛽) = 𝜂;
(3) 𝜌2(𝛽*, 𝛽) = 𝜂𝛽*,𝛽 .

As (𝜏*, 𝛽*) ∈ 𝜅~𝑆*, pick a large enough 𝜀 ∈
(︁
𝐺𝜂,𝜏* ∩

⋂︀
𝑗<𝜇 acc+(𝐻𝑗 ∩𝐷)

)︁
∩𝛽*

such that sup(𝐶𝛽* ∩ 𝜀) > 𝛼*. In particular, 𝜆(𝜀, 𝛽*) > 𝛼* > 𝜂.
For all 𝑗 < 𝜇, as 𝜀 ∈ Γ∩ acc+(𝐻𝑗 ∩𝐷), Fact 2.6 entails that we may pick a large

enough 𝛿𝑗 ∈ 𝐻𝑗 ∩𝐷 ∩ 𝜀 such that 𝛿𝑗 > 𝜆(𝜀, 𝛽*). As 𝑀𝛿𝑗 contains 𝑝, we have that
𝑆𝜂 ∈ 𝑀𝛿𝑗 . As 𝛿𝑗 ∈ Γ, Fact 2.6 entails that 𝜍𝑗 := max{𝛼*, 𝜆(𝜀, 𝛽*), 𝜆(𝛿𝑗 , 𝜀)} + 1 is
smaller than 𝛿𝑗 . Since 𝛼* ∈𝑀𝛿𝑗 ∩ 𝑆𝜂, we may then find 𝛼𝑗 ∈𝑀𝛿𝑗 ∩ (

⋃︀
𝑖<𝜇𝐻𝑖) ∖ 𝜍𝑗

such that, for all 𝛼 ∈ 𝑥𝛼𝑗
:

(2’) 𝜆(𝛼*, 𝛼) = 𝜂;
(3’) 𝜌2(𝛼*, 𝛼) = 𝜂𝛼*,𝛼.

Note that from 𝛼𝑗 ∈ 𝑀𝛿𝑗 , it follows that sup(𝑥𝛼𝑗
) < 𝛿𝑗 . Write 𝑎𝑗 := 𝑥𝛼𝑗

and
𝑏𝑖 := 𝑥𝛽𝑖

. Let (𝑖, 𝑗, 𝛼, 𝛽) ∈ 𝐼 × 𝜇× 𝑎𝑗 × 𝑏𝑖 be arbitrary. Then:

𝜂 < 𝜂 + 1 < 𝛼* < 𝜍𝑗 ≤ 𝛼𝑗 < 𝛼 < 𝛿𝑗 < 𝜀 < 𝛽* < 𝛽𝑖 < 𝛽.

In particular, Fact 2.7 yields the following conclusions:

(a) from 𝜆(𝛽*, 𝛽) = 𝜂 < 𝛼 < 𝛽* < 𝛽, we have tr(𝛼, 𝛽) = tr(𝛽*, 𝛽)a tr(𝛼, 𝛽*);
(b) from 𝜆(𝜀, 𝛽*) < 𝜍𝑗 < 𝛼 < 𝜀 < 𝛽*, we have tr(𝛼, 𝛽*) = tr(𝜀, 𝛽*)a tr(𝛼, 𝜀);
(c) from 𝜆(𝛿𝑗 , 𝜀) < 𝜍𝑗 < 𝛼 < 𝛿𝑗 < 𝜀, we have tr(𝛼, 𝜀) = tr(𝛿𝑗 , 𝜀)

a tr(𝛼, 𝛿𝑗).

So that, altogether,

tr(𝛼, 𝛽) = tr(𝛽*, 𝛽)a tr(𝜀, 𝛽*)a tr(𝛿𝑗 , 𝜀)
a tr(𝛼, 𝛿𝑗).

In addition, from 𝜆(𝛼*, 𝛼) = 𝜂 < 𝜂 + 1 < 𝛼* < 𝛼, we infer that

(d) tr(𝜂 + 1, 𝛼) = tr(𝛼*, 𝛼)a tr(𝜂 + 1, 𝛼*).

For each 𝑖 ∈ 𝐼, denote 𝑢𝑖 := {trℎ(𝜀, 𝛽) | 𝛽 ∈ 𝑏𝑖}. For each 𝑗 < 𝜇, denote
𝑣𝑗 := {trℎ(𝛼, 𝜀) | 𝛼 ∈ 𝑎𝑗}.

Claim 4.5.1. (i) For every 𝑖 ∈ 𝐼, 𝑖 ∈ Im(𝜚) for all 𝜚 ∈ 𝑢𝑖;
(ii) For every 𝑗 < 𝜇, there exists 𝜎𝑗 ∈ <𝜔𝜇 such that 𝜎𝑗

a⟨𝑗⟩ ⊑ 𝜎 for all 𝜎 ∈ 𝑣𝑗.

Proof. (i) For all 𝛽 ∈ 𝑏𝑖, trℎ(𝜀, 𝛽) = trℎ(𝛽*, 𝛽)a trℎ(𝜀, 𝛽*), so the conclusion follows
from Clause (1).

(ii) Since 𝛿𝑗 ∈ 𝐻𝑗 , by Clause (c) above, trℎ(𝛿𝑗 , 𝜀)
a⟨𝑗⟩ ⊑ 𝜎 for all 𝜎 ∈ 𝑣𝑗 . �

Next, by the choice of 𝑑0, fix (𝑖, 𝑗) ∈ [𝐼]2 such that 𝑑0(𝜚a𝜎) = ℓ(𝜚) for all 𝜚 ∈ 𝑢𝑖
and 𝜎 ∈ 𝑣𝑗 . Set 𝑎 := 𝑎𝑗 and 𝑏 := 𝑏𝑖, so that (𝑎, 𝑏) ∈ [𝒜]2.

To see that t[𝑎× 𝑏] = {(𝜏*, 𝛼*, 𝛽*)}, fix arbitrary 𝛼 ∈ 𝑎 and 𝛽 ∈ 𝑏.

Claim 4.5.2. 𝑐(𝛼, 𝛽) = (𝜂, 𝜏*).

Proof. Write 𝜚 := trℎ(𝜀, 𝛽) and 𝜎 := trℎ(𝛼, 𝜀). Then:

∙ trℎ(𝛼, 𝛽) = 𝜚a𝜎;
∙ 𝑑0(trℎ(𝛼, 𝛽)) = ℓ(𝜚) = ℓ(tr(𝜀, 𝛽)) = 𝜌2(𝜀, 𝛽);
∙ Tr(𝛼, 𝛽)(𝑑0(trℎ(𝛼, 𝛽))) = Tr(𝛼, 𝛽)(𝜌2(𝜀, 𝛽)) = 𝜀.

So, 𝑐(𝛼, 𝛽) = 𝑔(Tr(𝛼, 𝛽)(𝑑0(trℎ(𝛼, 𝛽)))) = 𝑔(𝜀) = (𝜂, 𝜏*). �

By Clause (a) above, tr(𝛼, 𝛽) = tr(𝛽*, 𝛽)a tr(𝛼, 𝛽*), so Clause (3) above implies
that 𝜂𝛼,𝛽 = 𝜂𝛽*,𝛽 = 𝜌2(𝛽*, 𝛽).

By Clause (d) above, tr(𝜂+ 1, 𝛼) = tr(𝛼*, 𝛼)a tr(𝜂+ 1, 𝛼*), so Clause (3’) above
implies that 𝜂𝜂+1,𝛼 = 𝜂𝛼*,𝛼 = 𝜌2(𝛼*, 𝛼). Altogether, t(𝛼, 𝛽) = (𝜏*, 𝛼*, 𝛽*). �
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4.2. Case II. In this subsection, we suppose that 𝜒++ = 𝜅. Denote 𝜇 := 𝜒+. It is
clear that Pℓ1(𝜅, 𝜅, 𝜒) is equivalent to Pℓ1(𝜅, 𝜇, 𝜒), so we shall focus on constructing
a witness to the latter. Denote Γ := 𝐸𝜅

𝜇 .
Fix a function ℎ : 𝜅 → 𝜇 such that, for every 𝑖 < 𝜇, 𝐻𝑖 := {𝛼 ∈ Γ | ℎ(𝛼) = 𝑖} is

stationary. By a club-guessing theorem due to Shelah [She94, S2] (cf. [SS10]), we

may fix a 𝐶-sequence �⃗� = ⟨𝐶𝛼 | 𝛼 < 𝜅⟩ such that:

∙ for every 𝛼 < 𝜅, otp(𝐶𝛼) = cf(𝛼);
∙ for every club𝐷 ⊆ 𝜅 and every 𝑖 < 𝜇, there exists 𝛾 ∈ 𝐻𝑖 with sup(nacc(𝐶𝛾)∩
𝐷) = 𝛾.

Note that acc(𝐶𝛼) ∩ Γ = ∅ for all 𝛼 < 𝜅. Recalling Subsection 2.1, we now let

Tr, tr, 𝜆 and 𝜌2 be the characteristic functions of walking along �⃗�. In addition, we
consider yet another function trℎ : [𝜅]2 → <𝜔𝜇 which is defined via trℎ(𝛼, 𝛽) :=
ℎ ∘ tr(𝛼, 𝛽).

Fix a sequence ⟨𝑍𝜖 | 𝜖 < 𝜅⟩ of elements of [𝜇]𝜇 such that, for every (𝛼, 𝛽) ∈ [𝜇]𝜇,
|𝑍𝛼 ∩ 𝑍𝛽 | < 𝜇.

Definition 4.6. For every ordinal 𝜉 < 𝜇 and a pair (𝛼, 𝛽) ∈ [𝜅]2, let

𝜉𝛼,𝛽 := min{𝑛 < 𝜔 | 𝜉 ∈ 𝑍Tr(𝛼,𝛽)(𝑛) or 𝑛 = 𝜌2(𝛼, 𝛽) + 1}.

Lemma 4.7. There exists a map 𝑑1 : <𝜔𝜇 → 𝜔 × 𝜇 × 𝜇 × 𝜇, such that, for every
(𝜏, 𝜉, 𝜑) ∈ 𝜇× 𝜇× 𝜇 and every sequence ⟨(𝑢𝑖, 𝑣𝑖, 𝜎𝑖) | 𝑖 < 𝜇⟩, with

(1) 𝑢𝑖 and 𝑣𝑖 are nonempty elements of [<𝜔𝜇]<𝜒;
(2) 𝑖 ∈ Im(𝜚) for all 𝜚 ∈ 𝑢𝑖;
(3) 𝜎𝑗

a⟨𝑗⟩ ⊑ 𝜎 for all 𝜎 ∈ 𝑣𝑗,

there exist (𝑖, 𝑗) ∈ [𝜇]2 satisfying that 𝑑1(𝜚a𝜎) = (ℓ(𝜚), 𝜏, 𝜉, 𝜑) for all 𝜚 ∈ 𝑢𝑖 and
𝜎 ∈ 𝑣𝑗.

Proof. Let 𝑑 : <𝜔𝜇 → 𝜔 × 𝜇 × 𝜇 × 𝜇 be given by Fact 3.2 using 𝜈 := 𝜒. Fix a
bijection 𝜋 : 𝜇 ↔ 𝜇 × 𝜇 × 𝜇. Then, define 𝑑1 : <𝜔𝜇 → 𝜔 × 𝜇 × 𝜇 × 𝜇 by letting
𝑑1(𝜎) := (𝑛, 𝜏, 𝜉, 𝜑) whenever 𝑑(𝜎) = (𝑛, 𝑖, 𝑗, 𝛾) and 𝜋(𝛾) = (𝜏, 𝜉, 𝜑). Evidently, 𝑑1
is as sought. �

Let 𝑑1 : <𝜔𝜇→ 𝜔×𝜇×𝜇×𝜇 be given by the preceding lemma. For every nonzero
𝜖 < 𝜅, fix a surjection 𝜓𝜖 : 𝜇→ 𝜖. We are now ready to define our transformation.

Definition 4.8. Define t : [𝜅]2 → [𝜅]3 by letting, for all (𝛼, 𝛽) ∈ [𝜅]2, t(𝛼, 𝛽) :=
(𝜏*, 𝛼*, 𝛽*) provided that, for (𝑛, 𝜏, 𝜉, 𝜑) := 𝑑1(trℎ(𝛼, 𝛽)), all of the following con-
ditions are met:

∙ 𝛽* = Tr(𝛼, 𝛽)(𝑛) is > 𝛼,
∙ 𝜂 := 𝜓𝛽*(𝜑) satisfies that 𝜂 + 1 < 𝛼,
∙ 𝛼* = Tr(𝜂 + 1, 𝛼)(𝜉𝜂+1,𝛼), and
∙ 𝜏* = 𝜏 < 𝛼*.

Otherwise, let t(𝛼, 𝛽) := (0, 𝛼, 𝛽).

To verify that t witnesses Pℓ1(𝜅, 𝜇, 𝜒), suppose that we are given a family 𝒜 ⊆
[𝜅]<𝜒 consisting of 𝜅 many pairwise disjoint sets.

Lemma 4.9. For every 𝑖 < 𝜇, there exist an ordinal 𝜁𝑖 < 𝜅 and a sequence

𝑥𝑖 = ⟨𝑥𝑖𝛾 | 𝛾 ∈ Γ𝑖⟩ such that:

∙ Γ𝑖 is a stationary subset of 𝜅;
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∙ for all 𝛾 ∈ Γ𝑖, 𝑥
𝑖
𝛾 ∈ 𝒜 with min(𝑥𝑖𝛾) > 𝛾;

∙ for all 𝛾 ∈ Γ𝑖 and 𝛽 ∈ 𝑥𝑖𝛾 , 𝜆(𝛾, 𝛽) = 𝜁𝑖 and 𝑖 ∈ Im(trℎ(𝛾, 𝛽)).

Proof. Let 𝑖 < 𝜇. By the pressing down lemma, it suffices to prove that, for every
club 𝐷 ⊆ 𝜅, there exist 𝛾 ∈ 𝐷, 𝜁 < 𝛾 and 𝑥 ∈ 𝒜 with min(𝑥) > 𝛾 such that
𝜆(𝛾, 𝛽) = 𝜁 and 𝑖 ∈ trℎ(𝛾, 𝛽) for all 𝛽 ∈ 𝑥. Thus, let 𝐷 be an arbitrary club in 𝜅.

By the choice of �⃗�, fix 𝛿 ∈ 𝐻𝑖 such that sup(nacc(𝐶𝛿) ∩𝐷) = 𝛿. Then, fix any
𝑥 ∈ 𝒜 with min(𝑥) > 𝛿. As 𝛿 ∈ Γ and |𝑥| < 𝜒 < cf(𝛿), Fact 2.6 entails that we
may find a large enough 𝛾 ∈ nacc(𝐶𝛿) ∩ 𝐷 with 𝜁 := sup(𝐶𝛿 ∩ 𝛾) being greater
than sup𝛽∈𝑥 𝜆(𝛿, 𝛽). Now, for every 𝛽 ∈ 𝑥, we have 𝜆(𝛿, 𝛽) < 𝜁 < 𝛾 < 𝛿 < 𝛽, so,

by Fact 2.7, tr(𝛾, 𝛽) = tr(𝛿, 𝛽)a tr(𝛾, 𝛿). In particular, 𝑖 = ℎ(𝛿) ∈ Im(trℎ(𝛾, 𝛽))
Next, by Lemma 2.9, 𝜆(𝛾, 𝛽) = max{𝜆(𝛿, 𝛽), 𝜆(𝛾, 𝛿)}. As 𝛾 ∈ 𝐶𝛿, we have 𝜆(𝛾, 𝛿) =
sup(𝐶𝛿 ∩ 𝛾) > 𝜁 = 𝜆(𝛿, 𝛽), so that, altogether, 𝜆(𝛾, 𝛽) = 𝜁. �

For each 𝑖 < 𝜇, let 𝜁𝑖 and 𝑥𝑖 = ⟨𝑥𝑖𝛾 | 𝛾 ∈ Γ𝑖⟩ be given by the preceding lemma. For

notational simplicity, we shall drop the superscript 𝑖, writing 𝑥𝑖 = ⟨𝑥𝛾 | 𝛾 ∈ Γ𝑖⟩.3
Set 𝜁 := sup𝑖<𝜇 𝜁𝑖.

Definition 4.10. For 𝜂 < 𝜅 and 𝜉, 𝜑 < 𝜇, 𝑆𝜂,𝜉,𝜑 denotes the set of all 𝜖 ∈ Γ with
the property that, for every 𝜍 < 𝜅, there exists a sequence ⟨𝛽𝑖 | 𝑖 < 𝜇⟩ ∈

∏︀
𝑖<𝜇 Γ𝑖 ∖ 𝜍

such that, for all 𝑖 < 𝜇 and 𝛽 ∈ 𝑥𝛽𝑖 :

(i) tr(𝜖, 𝛽) = tr(𝛽𝑖, 𝛽)a tr(𝜖, 𝛽𝑖);
(ii) 𝜆(𝜖, 𝛽) < 𝜖;
(iii) if 𝑖 = 0, then 𝜆(𝜖, 𝛽) = 𝜂 = 𝜓𝜖(𝜑), and 𝜌2(𝜖, 𝛽) = 𝜉𝜖,𝛽 .

Lemma 4.11. There exist 𝜂 < 𝜅 and 𝜉, 𝜑 < 𝜇 for which 𝑆𝜂,𝜉,𝜑 is stationary.

Proof. For all 𝑖 < 𝜇 and 𝜍 < 𝜅, denote 𝛽𝜍
𝑖 := min(Γ𝑖 ∖ 𝜍).

Let 𝜖 ∈ Γ ∖ (𝜁 + 1). For every 𝜍 in the interval (𝜖, 𝜅), define 𝑓 𝜍𝜖 : 𝜇 → 𝜖 via
𝑓 𝜍𝜖 (𝑖) := max{𝜁𝑖, 𝜆(𝜖, 𝛽𝜍

𝑖 )}. Now, find 𝜂𝜖 < 𝜖 and 𝜑𝜖, 𝜉𝜖 < 𝜇 for which

Σ𝜖 :=
{︁
𝜍 ∈ (𝜖, 𝜅) | 𝑓 𝜍𝜖 (0) = 𝜂𝜖 = 𝜓𝜖(𝜑𝜖) & 𝜉𝜖 ∈ 𝑍𝜖 ∖

⋃︁
{𝑍𝜏 | 𝜏 ∈ Im(tr(𝜖, 𝛽)), 𝛽 ∈ 𝑥𝛽𝜍

0
}
}︁

is cofinal in 𝜅.
Finally, find 𝜂, 𝜉, 𝜑 for which 𝑆 := {𝜖 ∈ Γ ∖ (𝜁 + 1) | (𝜂, 𝜉, 𝜑) = (𝜂𝜖, 𝜉𝜖, 𝜑𝜖)} is

stationary. We claim that 𝑆 ⊆ 𝑆𝜂,𝜉,𝜑. Let 𝜖 ∈ 𝑆 be arbitrary; to see that 𝜖 ∈ 𝑆𝜂,𝜉,𝜑,
let 𝜍 < 𝜅 be arbitrary. By increasing 𝜍, we may assume that 𝜍 ∈ Σ𝜖. Let 𝑖 < 𝜇 and
𝛽 ∈ 𝑥𝛽𝜍

𝑖
be arbitrary. We will show that:

(i’) tr(𝜖, 𝛽) = tr(𝛽𝜍
𝑖 , 𝛽)a tr(𝜖, 𝛽𝜍

𝑖 );
(ii’) 𝜆(𝜖, 𝛽) = 𝑓 𝜍𝜖 (𝑖);
(iii’) if 𝑖 = 0, then 𝜌2(𝜖, 𝛽) = 𝜉𝜖,𝛽 .

As 𝜆(𝛽𝜍
𝑖 , 𝛽) = 𝜁𝑖 < 𝜖 < 𝛽𝜍

𝑖 < 𝛽, it follows from Fact 2.7 that Clause (i’) is
satisfied, and it follows from Lemma 2.9 that

𝜆(𝜖, 𝛽) = max{𝜆(𝛽𝜍
𝑖 , 𝛽), 𝜆(𝜖, 𝛽𝜍

𝑖 )} = max{𝜁𝑖, 𝜆(𝜖, 𝛽𝜍
𝑖 )} = 𝑓 𝜍𝜖 (𝑖).

In addition, from 𝜍 ∈ Σ𝜖, Clause (iii’) is satisfied. �

3This is formally legitimate provided that the stationary sets in ⟨Γ𝑖 | 𝑖 < 𝜇⟩ are pairwise

disjoint. Now, as 𝜇 is regular, for any sequence ⟨Γ𝑖 | 𝑖 < 𝜇⟩ of stationary subsets of 𝜇+, there

exists a sequence ⟨Γ̄𝑖 | 𝑖 < 𝜇⟩ of pairwise disjoint stationary sets such that Γ̄𝑖 ⊆ Γ𝑖 for all 𝑖 < 𝜇
(cf. [IR21]). So, we may as well assume that the original sequence consists of pairwise disjoint

sets.
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Let 𝜂, 𝜉, 𝜑 be given by the preceding lemma. Let 𝐷 be a club in 𝜅 such that, for all

𝛿 ∈ 𝐷, there exists 𝑀𝛿 ≺ ℋ𝜅+ containing the parameter 𝑝 := {Γ, 𝑆𝜂,𝜉,𝜑, 𝑥0, �⃗�, ℎ, 𝜇}
and satisfying 𝑀𝛿 ∩ 𝜅 = 𝛿. Finally, let

𝑆* := 𝑆𝜂,𝜉,𝜑 ∩
⋂︁

𝑗<𝜇
acc+(𝐻𝑗 ∩𝐷).

Lemma 4.12. Let (𝜏*, 𝛼*, 𝛽*) ∈ 𝜇~ 𝑆* ~ 𝑆*. There exists (𝑎, 𝑏) ∈ [𝒜]2 such that
t[𝑎× 𝑏] = {(𝜏*, 𝛼*, 𝛽*)}.

Proof. As 𝛽* ∈ 𝑆* ⊆ 𝑆𝜂,𝜉,𝜑, let us fix a sequence ⟨𝛽𝑖 | 𝑖 < 𝜇⟩ ∈
∏︀

𝑖<𝜇 Γ𝑖 ∖ (𝛽* + 1)
such that, for all 𝑖 < 𝜇 and 𝛽 ∈ 𝑥𝛽𝑖 :

(1) tr(𝛽*, 𝛽) = tr(𝛽𝑖, 𝛽)a tr(𝛽*, 𝛽𝑖);
(2) 𝜆(𝛽*, 𝛽) < 𝛽*;
(3) 𝜓𝛽*(𝜑) = 𝜂.

For each 𝑖 < 𝜇, |𝑥𝛽𝑖 | < 𝜒 < cf(𝛽*), so we may define a function 𝑓 : 𝜇 → 𝛽*

via 𝑓(𝑖) := sup{𝜆(𝛽*, 𝛽) | 𝛽 ∈ 𝑥𝛽𝑖}. For all 𝑗 < 𝜇, as 𝛽* ∈ Γ ∩ acc+(𝐻𝑗 ∩𝐷), we
may pick a large enough 𝛿𝑗 ∈ 𝐻𝑗 ∩ 𝐷 ∩ 𝛽* such that 𝛿𝑗 > max{𝛼*, sup𝑖<𝑗 𝑓(𝑖)}.
As 𝑀𝛿𝑗 contains 𝑝, we have that 𝑆𝜂,𝜉,𝜑 ∈ 𝑀𝛿𝑗 . As 𝛿𝑗 ∈ Γ, Fact 2.6 entails that
𝜍𝑗 := max{𝛼*, sup𝑖<𝑗 𝑓(𝑖), 𝜆(𝛿𝑗 , 𝛽

*)}+1 is smaller than 𝛿𝑗 . Since 𝛼* ∈𝑀𝛿𝑗 ∩𝑆𝜂,𝜉,𝜑,
we may then find 𝛼𝑗 ∈𝑀𝛿𝑗 ∩ Γ0 ∖ 𝜍𝑗 such that, for all 𝛼 ∈ 𝑥𝛼𝑗

:

(4) 𝜆(𝛼*, 𝛼) = 𝜂 and 𝜌2(𝛼*, 𝛼) = 𝜉𝛼
*,𝛼.

Note that from 𝛼𝑗 ∈ 𝑀𝛿𝑗 , it follows that sup(𝑥𝛼𝑗
) < 𝛿𝑗 . Write 𝑎𝑗 := 𝑥𝛼𝑗

and

𝑏𝑖 := 𝑥𝛽𝑖 . Fix arbitrary (𝑖, 𝑗) ∈ [𝜇]2 and (𝛼, 𝛽) ∈ 𝑎𝑗 × 𝑏𝑖. Then:

𝜂 + 1 < 𝛼* ≤ max{𝛼*, 𝜆(𝛽*, 𝛽), 𝜆(𝛿𝑗 , 𝛽
*)} ≤ 𝜍𝑗 ≤ 𝛼𝑗 < 𝛼 < 𝛿𝑗 < 𝛽* < 𝛽𝑖 < 𝛽.

In particular, Fact 2.7 yields the following conclusions:

(a) from 𝜆(𝛽*, 𝛽) < 𝛼 < 𝛽* < 𝛽, we have tr(𝛼, 𝛽) = tr(𝛽*, 𝛽)a tr(𝛼, 𝛽*);
(b) from 𝜆(𝛿𝑗 , 𝛽

*) < 𝛼 < 𝛿𝑗 < 𝛽*, we have tr(𝛼, 𝛽*) = tr(𝛿𝑗 , 𝛽
*)a tr(𝛼, 𝛿𝑗).

Altogether,

tr(𝛼, 𝛽) = tr(𝛽𝑖, 𝛽)a tr(𝛽*, 𝛽𝑖)
a tr(𝛿𝑗 , 𝛽

*)a tr(𝛼, 𝛿𝑗).

For each 𝑖 < 𝜇, set 𝑢𝑖 := {trℎ(𝛽*, 𝛽) | 𝛽 ∈ 𝑏𝑖}. As 𝛽𝑖 ∈ Γ𝑖, Clause (1) above
implies that 𝑖 ∈ Im(𝜚) for all 𝜚 ∈ 𝑢𝑖. For each 𝑗 < 𝜇, set 𝑣𝑗 := {trℎ(𝛼, 𝛽*) | 𝛼 ∈ 𝑎𝑗}
and 𝜎𝑗 := trℎ(𝛿𝑗 , 𝛽

*). As 𝛿𝑗 ∈ 𝐻𝑗 , we infer that 𝜎𝑗
a⟨𝑗⟩ ⊑ 𝜎 for all 𝜎 ∈ 𝑣𝑗 .

Next, by the choice of 𝑑1, fix (𝑖, 𝑗) ∈ [𝜇]2 such that 𝑑1(𝜚a𝜎) = (ℓ(𝜚), 𝜏*, 𝜉, 𝜑) for
all 𝜚 ∈ 𝑢𝑖 and 𝜎 ∈ 𝑣𝑗 . Set 𝑎 := 𝑎𝑗 and 𝑏 := 𝑏𝑖, so that (𝑎, 𝑏) ∈ [𝒜]2.

To see that t[𝑎 × 𝑏] = {(𝜏*, 𝛼*, 𝛽*)}, fix arbitrary 𝛼 ∈ 𝑎 and 𝛽 ∈ 𝑏. Denote
𝜚 := trℎ(𝛽*, 𝛽) and 𝜎 := trℎ(𝛼, 𝛽*), so that 𝜚 ∈ 𝑢𝑖 and 𝜎 ∈ 𝑣𝑗 . Then 𝑑1(trℎ(𝛼, 𝛽)) =
(ℓ(𝜚), 𝜏*, 𝜉, 𝜑), so that

∙ Tr(𝛼, 𝛽)(ℓ(𝜚)) = Tr(𝛼, 𝛽)(𝜌2(𝛽*, 𝛽)) = 𝛽*;
∙ 𝜂 = 𝜓𝛽*(𝜑) and 𝜂 + 1 < 𝛼;
∙ 𝜏* < 𝛼*.

Now, since 𝜆(𝛼*, 𝛼) = 𝜂 < 𝜂+1 < 𝛼* < 𝛼, tr(𝜂+1, 𝛼) = tr(𝛼*, 𝛼)a tr(𝜂+1, 𝛼*).
So, since 𝜌2(𝛼*, 𝛼) = 𝜉𝛼

*,𝛼, 𝜌2(𝛼*, 𝛼) = 𝜉𝜂+1,𝛼 and 𝛼* = Tr(𝜂 + 1, 𝛼)(𝜉𝜂+1,𝛼). �
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5. Clause (1) of Theorem C

In this section, we suppose that �(𝜅) holds. Fix an arbitrary 𝜒 ∈ Reg(𝜅) with
𝜒+ < 𝜅. We shall construct a witness to Pℓ1(𝜅, 𝜅, 𝜒). Denote 𝜇 := 𝜒+.

Lemma 5.1. There exists a 𝐶-sequence �⃗� = ⟨𝐶𝛼 | 𝛼 < 𝜅⟩ satisfying the following:

(1) 𝐶𝛼+1 = {0, 𝛼} for every 𝛼 < 𝜅;
(2) for every club 𝐷 ⊆ 𝜅, there exists 𝛿 ∈ 𝐸𝜅

̸=𝜇 with sup(nacc(𝐶𝛿) ∩𝐷) = 𝛿;

(3) for every 𝛼 ∈ acc(𝜅) and �̄� ∈ acc(𝐶𝛼), 𝐶�̄� = 𝐶𝛼 ∩ �̄�;
(4) for every 𝛾 < 𝜅, {𝛿 ∈ 𝐸𝜅

𝜒 | min(𝐶𝛿) = 𝛾} is stationary.

Proof. As �(𝜅) holds, we may appeal to [Rin17, Proposition 3.5] with 𝑆 := 𝐸𝜅
̸=𝜇,

and obtain a 𝐶-sequence �⃗� satisfying Clauses (2) and (3). In particular, �⃗� is a�(𝜅)-

sequence. Now, by feeding Γ := 𝐸𝜅
𝜒 and �⃗� to the proof of [Rin14a, Proposition 3.2],

we obtain a 𝐶-sequence ⟨𝐶𝛼 | 𝛼 < 𝜅⟩ satisfying Clauses (1), (3) and (4). An
inspection of the said proof makes clear that sup(𝐶𝛼△𝐶𝛼) < 𝛼 for every 𝛼 ∈ acc(𝜅),
so that Clause (2) is valid for ⟨𝐶𝛼 | 𝛼 < 𝜅⟩, as well. �

Let �⃗� be given by the preceding lemma. Recalling Subsection 2.1, we now let

Tr, tr, 𝜆 and 𝜌2 be the characteristic functions of walking along �⃗�, and let 𝜂𝛼,𝛽 be
the notation established in Definition 2.12.

Fix a bijection 𝜋 : 𝜅 ↔ 𝜅 × 𝜅. Define a function 𝑔 : 𝜅 → 𝜅 × 𝜅 via 𝑔(𝛼) :=
𝜋(min(𝐶𝛼)). Define a function ℎ : 𝜅 → 𝜇 by letting ℎ(𝛼) := min(𝐶𝛼) for all
𝛼 < 𝜅 with min(𝐶𝛼) < 𝜇, and ℎ(𝛼) := 0, otherwise. Then, define a function
trℎ : [𝜅]2 → <𝜔𝜇 via trℎ(𝛼, 𝛽) := ℎ ∘ tr(𝛼, 𝛽). Also, for each (𝜂, 𝜏) ∈ 𝜅× 𝜅, denote
𝐺𝜂,𝜏 := {𝛿 < 𝜅 | 𝑔(𝛿) = (𝜂, 𝜏)}, and for each 𝑖 < 𝜇, denote 𝐻𝑖 := ℎ−1{𝑖}.

Lemma 5.2. For every (𝛿, 𝛽) ∈ [𝜅]2, 𝐶𝛿 = 𝐶ð𝛿,𝛽
∩ 𝛿. In particular:

∙ ℎ(𝛿) = ℎ(ð𝛿,𝛽);
∙ for every 𝜖 < 𝛿, 𝜆(𝜖, 𝛿) = 𝜆(𝜖, ð𝛿,𝛽).

Proof. By Lemma 5.1(3) together with Lemma 2.11(2). �

Exactly as in Subsection 4.1, we appeal to Lemma 3.3 to fix a map 𝑑0 : <𝜔𝜇→ 𝜔,
its corresponding 𝜇-additive proper ideal 𝐽 , define a coloring 𝑐 : [𝜅]2 → 𝜅× 𝜅 via

𝑐(𝛼, 𝛽) := 𝑔(Tr(𝛼, 𝛽)(𝑑0(trℎ(𝛼, 𝛽)))),

and define the sets 𝑆𝜂 and the transformation t in the very same way.

Definition 5.3. For 𝜂 < 𝜅, 𝑆𝜂 denotes the set of all 𝜖 < 𝜅 with the property that,
for every 𝜍 < 𝜅, there exist 𝐼 ∈ 𝐽+ and a sequence ⟨𝛽𝑖 | 𝑖 ∈ 𝐼⟩ ∈

∏︀
𝑖∈𝐼 𝐻𝑖 ∖ 𝜍, such

that, for all 𝑖 ∈ 𝐼 and 𝛽 ∈ 𝑥𝛽𝑖
:

(i) 𝑖 ∈ Im(trℎ(𝜖, 𝛽));
(ii) 𝜆(𝜖, 𝛽) = 𝜂;

(iii) 𝜌2(𝜖, 𝛽) = 𝜂𝜖,𝛽 .

Definition 5.4. Define t : [𝜅]2 → [𝜅]3 by letting, for all (𝛼, 𝛽) ∈ [𝜅]2, t(𝛼, 𝛽) :=
(𝜏, 𝛼*, 𝛽*) provided that the following conditions are met:

∙ (𝜂, 𝜏) := 𝑐(𝛼, 𝛽) and max{𝜂 + 1, 𝜏} < 𝛼,
∙ 𝛽* = Tr(𝛼, 𝛽)(𝜂𝛼,𝛽) is > 𝛼, and
∙ 𝛼* = Tr(𝜂 + 1, 𝛼)(𝜂𝜂+1,𝛼).

Otherwise, let t(𝛼, 𝛽) := (0, 𝛼, 𝛽).
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To verify that t witnesses Pℓ1(𝜅, 𝜅, 𝜒), suppose that we are given a family 𝒜 ⊆
[𝜅]<𝜒 consisting of 𝜅 many pairwise disjoint sets. Fix a sequence �⃗� = ⟨𝑥𝛿 | 𝛿 < 𝜅⟩
such that, for all 𝛿 < 𝜅, 𝑥𝛿 ∈ 𝒜 with min(𝑥𝛿) > 𝛿.

Lemma 5.5. There exists 𝜂 < 𝜅 for which 𝑆𝜂 is stationary.

Proof. It suffices to prove that, for every club 𝐷 ⊆ 𝜅, there exist 𝜖 ∈ 𝐷 and 𝜂 < 𝜖
for which 𝜖 ∈ 𝑆𝜂. Thus, let 𝐷 be an arbitrary club in 𝜅.

Define a function 𝑓 : 𝐸𝜅
𝜒 → 𝜅 via

𝑓(𝛿) := sup{𝜆(ð𝛿,𝛽 , 𝛽) | 𝛽 ∈ 𝑥𝛿}.
As |𝑥𝛿| < 𝜒 = cf(𝛿), Lemma 2.11(1) entails that 𝑓 is regressive. So, for all

𝑖 < 𝜇, let us pick a stationary subset �̄�𝑖 ⊆ 𝐻𝑖 such that 𝑓 � �̄�𝑖 is constant. Set
𝜁 := sup(𝑓 [

⋃︀
𝑖<𝜇 �̄�𝑖]). Now, by Lemma 5.1(2), let us pick a nonzero 𝛾 ∈ 𝐸𝜅

̸=𝜇 with

sup(nacc(𝐶𝛾) ∩ (𝐷 ∖ 𝜁)) = 𝛾.
Let 𝜍 < 𝜅. Fix a sequence ⟨𝛽𝜍

𝑖 | 𝑖 < 𝜇⟩ ∈
∏︀

𝑖<𝜇 �̄�𝑖 ∖ max{𝛾 + 1, 𝜍}. For every
𝑖 < 𝜇, let

𝜁𝜍𝑖 :=

⎧⎪⎨⎪⎩
0, if 𝛾 ∈ acc(𝐶𝛽𝜍

𝑖
);

sup(𝐶𝛽𝜍
𝑖
∩ 𝛾), if 𝛾 ∈ nacc(𝐶𝛽𝜍

𝑖
);

𝜆(ð𝛾,𝛽𝜍
𝑖
, 𝛽𝜍

𝑖 ), otherwise.

Note that, by Lemma 2.11(1), 𝜁𝜍𝑖 < 𝛾.
As cf(𝛾) ̸= 𝜇 and as 𝐽 is a 𝜇-additive proper ideal on 𝜇, we may now fix 𝐼𝜍 ∈ 𝐽+

along with some ordinal 𝜉𝜍 < 𝛾 such that max{𝜁, 𝜁𝜍𝑖 } ≤ 𝜉𝜍 for all 𝑖 ∈ 𝐼𝜍 . Then, pick
a large enough 𝜖𝜍 ∈ nacc(𝐶𝛾) ∩𝐷 such that sup(𝐶𝛾 ∩ 𝜖𝜍) > 𝜉𝜍 .

Fix 𝜖 ∈ nacc(𝐶𝛾) ∩ 𝐷 for which Σ := {𝜍 < 𝜅 | 𝜖𝜍 = 𝜖} is cofinal in 𝜅. Denote
𝜂 := sup(𝐶𝛾 ∩ 𝜖), so that 𝜂 < 𝜖. We have 𝜖 ∈ 𝐷. To see that 𝜖 ∈ 𝑆𝜂, let 𝜍 < 𝜅 be
arbitrary. By increasing 𝜍, we may assume that 𝜍 ∈ Σ. Let 𝑖 ∈ 𝐼𝜍 and 𝛽 ∈ 𝑥𝛽𝜍

𝑖
be

arbitrary. We must show that:

(i) 𝑖 ∈ Im(trℎ(𝜖, 𝛽));
(ii) 𝜆(𝜖, 𝛽) = 𝜂;
(iii) 𝜌2(𝜖, 𝛽) = 𝜂𝜖,𝛽 .

We have:

𝜆(ð𝛽𝜍
𝑖 ,𝛽
, 𝛽) ≤ 𝑓(𝛽𝜍

𝑖 ) ≤ 𝜁 ≤ 𝜉𝜍 < 𝜂 < 𝜖 < 𝛾 < 𝛽𝜍
𝑖 < 𝛽.

It thus follows from Fact 2.7 that tr(𝜖, 𝛽) = tr(ð𝛽𝜍
𝑖 ,𝛽
, 𝛽)a tr(𝜖,ð𝛽𝜍

𝑖 ,𝛽
). So, since

𝛽𝜍
𝑖 ∈ 𝐻𝑖, Lemma 5.2 implies that 𝑖 ∈ Im(trℎ(𝜖, 𝛽)).

Claim 5.5.1. 𝜆(𝜖, 𝛽) = 𝜂 and 𝜌2(𝜖, 𝛽) = 𝜂𝜖,𝛽.

Proof. By Lemma 2.9, 𝜆(𝜖, 𝛽) = max{𝜆(ð𝛽𝜍
𝑖 ,𝛽
, 𝛽), 𝜆(𝜖, ð𝛽𝜍

𝑖 ,𝛽
)}. Now, there are three

cases to consider:
I If 𝛾 ∈ acc(𝐶𝛽𝜍

𝑖
), then 𝐶𝛽𝜍

𝑖
∩𝛾 = 𝐶𝛾 , and since 𝜖 ∈ 𝐶𝛾 , tr(𝜖, 𝛽) = tr(ð𝛽𝜍

𝑖 ,𝛽
, 𝛽)a⟨ð𝛽𝜍

𝑖 ,𝛽
⟩,

and 𝜆(𝜖,ð𝛽𝜍
𝑖 ,𝛽

) = sup(𝐶𝛾 ∩ 𝜖) = 𝜂 > 𝜁 ≥ 𝜆(ð𝛽𝜍
𝑖 ,𝛽
, 𝛽), so the conclusion follows.

I If 𝛾 ∈ nacc(𝐶𝛽𝜍
𝑖
), then since 𝜖 ∈ 𝐶𝛾 , tr(𝜖, 𝛽) = tr(ð𝛽𝜍

𝑖 ,𝛽
, 𝛽)a⟨ð𝛽𝜍

𝑖 ,𝛽
, 𝛾⟩, so that

𝜆(𝜖, 𝛽) = max{𝜆(ð𝛽𝜍
𝑖 ,𝛽
, 𝛽), sup(𝐶ð𝛽𝜍

𝑖
,𝛽

∩ 𝜖), sup(𝐶𝛾 ∩ 𝜖)} = max{𝜆(ð𝛽𝜍
𝑖 ,𝛽
, 𝛽), 𝜁𝜍𝑖 , 𝜂},

and the conclusion follows.
I Otherwise, ð𝛾,𝛽𝜍

𝑖
̸= 𝛽𝜍

𝑖 . Then 𝜆(ð𝛾,𝛽𝜍
𝑖
, 𝛽𝜍

𝑖 ) = 𝜁𝜍𝑖 ≤ 𝜉𝜍 < 𝜖 < 𝛾 ≤ ð𝛾,𝛽𝜍
𝑖
< 𝛽𝜍

𝑖 ,

and so, by Fact 2.7, tr(𝜖, 𝛽𝜍
𝑖 ) = tr(ð𝛾,𝛽𝜍

𝑖
, 𝛽𝜍

𝑖 )a tr(𝜖,ð𝛾,𝛽𝜍
𝑖
). Thus, by Lemma 2.9,

𝜆(𝜖, 𝛽𝜍
𝑖 ) = max{𝜆(ð𝛾,𝛽𝜍

𝑖
, 𝛽𝜍

𝑖 ), 𝜆(𝜖, ð𝛾,𝛽𝜍
𝑖
)} = max{𝜁𝜍𝑖 , 𝜆(𝜖,ð𝛾,𝛽𝜍

𝑖
)}.
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By Lemma 5.2, 𝜆(𝜖,ð𝛽𝜍
𝑖 ,𝛽

) = 𝜆(𝜖, 𝛽𝜍
𝑖 ). As 𝜖 ∈ 𝐶𝛾 = 𝐶ð𝛾,𝛽𝜍

𝑖
∩ 𝛾, we get that

𝜆(𝜖,ð𝛾,𝛽𝜍
𝑖
) = sup(𝐶𝛾 ∩ 𝜖) = 𝜂. Altogether, 𝜆(𝜖, 𝛽) = max{𝜆(ð𝛽𝜍

𝑖 ,𝛽
, 𝛽), 𝜁𝜍𝑖 , 𝜂}. But,

𝜂 > 𝜉𝜍 ≥ max{𝜁, 𝜁𝜍𝑖 } ≥ {𝜆(ð𝛽𝜍
𝑖 ,𝛽
, 𝛽), 𝜁𝜍𝑖 }, and the conclusion follows.

�

This completes the proof. �

Let 𝜂 be given by the preceding lemma. Let 𝐷 be a club in 𝜅 such that, for

all 𝛿 ∈ 𝐷, there exists 𝑀𝛿 ≺ ℋ𝜅+ containing the parameter 𝑝 := {𝑆𝜂, �⃗�, �⃗�, ℎ} and
satisfying 𝑀𝛿 ∩ 𝜅 = 𝛿. Consider the club

𝐸 :=
i

𝜏<𝜅

acc+(𝐺𝜂,𝜏 ∩
⋂︁

𝑗<𝜇
acc+(𝐻𝑗 ∩𝐷)).

Finally, let 𝑆* := {𝜖 ∈ 𝑆𝜂 | sup(𝐸 ∩ 𝜖 ∖ 𝐶𝜖) = 𝜖}.

Lemma 5.6. 𝑆* is stationary.

Proof. As �⃗� is a �(𝜅)-sequence, [BR19, Lemma 1.23] implies that �⃗� is amenable
in the sense of [BR19, Definition 1.3], so that {𝜖 ∈ 𝜅 | sup(𝐸 ∩ 𝜖 ∖ 𝐶𝜖) < 𝜖} is
nonstationary. �

Lemma 5.7. Let (𝜏*, 𝛼*, 𝛽*) ∈ 𝜅 ~ 𝑆* ~ 𝑆*. There exists (𝑎, 𝑏) ∈ [𝒜]2 such that
t[𝑎× 𝑏] = {(𝜏*, 𝛼*, 𝛽*)}.

Proof. As 𝛽* ∈ 𝑆* ⊆ 𝑆𝜂, let us pick 𝐼 ∈ 𝐽+ and a sequence ⟨𝛽𝑖 | 𝑖 ∈ 𝐼⟩ ∈∏︀
𝑖∈𝐼 𝐻𝑖 ∖ (𝛽* + 1) such that, for all 𝑖 ∈ 𝐼 and 𝛽 ∈ 𝑥𝛽𝑖

:

(1) 𝑖 ∈ trℎ(𝛽*, 𝛽);
(2) 𝜆(𝛽*, 𝛽) = 𝜂;
(3) 𝜌2(𝛽*, 𝛽) = 𝜂𝛽*,𝛽 .

Denote 𝐺 := 𝐺𝜂,𝜏* ∩
⋂︀

𝑗<𝜇 acc+(𝐻𝑗 ∩𝐷). From 𝛽* ∈ 𝑆* and as 𝐶𝛽* is closed, it

follows that sup(𝐺∩𝛽* ∖𝐶𝛽*) = 𝛽*. Thus, we pick a large enough 𝛾 ∈ 𝐺∩𝛽* ∖𝐶𝛽*

such that sup(𝐶𝛽* ∩ 𝛾) > 𝛼*. In particular, for 𝜀 := ð𝛾,𝛽* , 𝜆(𝜀, 𝛽*) > 𝛼* > 𝜂.
For each 𝑗 < 𝜇, as 𝛾 ∈ 𝐺 ⊆ acc+(𝐻𝑗 ∩𝐷), Lemma 2.11(1) entails that we may

pick a large enough 𝛿𝑗 ∈ 𝐻𝑗 ∩𝐷∩ 𝛾 such that 𝛿𝑗 > 𝜆(𝜀, 𝛽*). As 𝑀𝛿𝑗 contains 𝑝, we
have that 𝑆𝜂 ∈ 𝑀𝛿𝑗 . By Lemma 2.11(1), 𝜍𝑗 := max{𝛼*, 𝜆(𝜀, 𝛽*), 𝜆(ð𝛿𝑗 ,𝛾 , 𝛾)} + 1 is

smaller than 𝛿𝑗 .
4 Since 𝛼* ∈𝑀𝛿𝑗 ∩𝑆𝜂, we may then find 𝛼𝑗 ∈𝑀𝛿𝑗 ∩ (

⋃︀
𝑖<𝜇𝐻𝑖) ∖ 𝜍𝑗

such that, for all 𝛼 ∈ 𝑥𝛼𝑗
:

(2’) 𝜆(𝛼*, 𝛼) = 𝜂;
(3’) 𝜌2(𝛼*, 𝛼) = 𝜂𝛼*,𝛼.

Note that from 𝛼𝑗 ∈ 𝑀𝛿𝑗 , it follows that sup(𝑥𝛼𝑗
) < 𝛿𝑗 . Write 𝑎𝑗 := 𝑥𝛼𝑗

and
𝑏𝑖 := 𝑥𝛽𝑖

. Let (𝑖, 𝑗, 𝛼, 𝛽) ∈ 𝐼 × 𝜇× 𝑎𝑗 × 𝑏𝑖 be arbitrary. Then:

𝜂 < 𝜂 + 1 < 𝛼* < 𝜍𝑗 ≤ 𝛼𝑗 < 𝛼 < 𝛿𝑗 < 𝛾 ≤ 𝜀 < 𝛽* < 𝛽𝑖 < 𝛽.

In particular, Fact 2.7 yields the following conclusions:

(a) from 𝜆(𝛽*, 𝛽) = 𝜂 < 𝛼 < 𝛽* < 𝛽, we have tr(𝛼, 𝛽) = tr(𝛽*, 𝛽)a tr(𝛼, 𝛽*);
(b) from 𝜆(𝜀, 𝛽*) < 𝜍𝑗 < 𝛼 < 𝛽*, we have tr(𝛼, 𝛽*) = tr(𝜀, 𝛽*)a tr(𝛼, 𝜀);
(c) from 𝜆(ð𝛿𝑗 ,𝛾 , 𝜀) = 𝜆(ð𝛿𝑗 ,𝛾 , 𝛾) < 𝜍𝑗 < 𝛼 < 𝛿𝑗 ≤ ð𝛿𝑗 ,𝛾 ≤ 𝛾 ≤ 𝜀, we have

tr(𝛼, 𝜀) = tr(ð𝛿𝑗 ,𝛾 , 𝜀)a tr(𝛼,ð𝛿𝑗 ,𝛾).

4By Convention 2.8, if ð𝛿𝑗 ,𝛾 = 𝛾, then 𝜆(ð𝛿𝑗 ,𝛾 , 𝛾) = 0.
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So that, altogether,

tr(𝛼, 𝛽) = tr(𝛽*, 𝛽)a tr(𝜀, 𝛽*)a tr(ð𝛿𝑗 ,𝛾 , 𝜀)a tr(𝛼,ð𝛿𝑗 ,𝛾).

In addition, from 𝜆(𝛼*, 𝛼) = 𝜂 < 𝜂 + 1 < 𝛼* < 𝛼, we infer that

(d) tr(𝜂 + 1, 𝛼) = tr(𝛼*, 𝛼)a tr(𝜂 + 1, 𝛼*).

For each 𝑖 ∈ 𝐼, denote 𝑢𝑖 := {trℎ(𝜀, 𝛽) | 𝛽 ∈ 𝑏𝑖}. By Clause (1) above, for all
𝜚 ∈ 𝑢𝑖, 𝑖 ∈ Im(trℎ(𝛽*, 𝛽)) ⊆ Im(𝜚).

For each 𝑗 < 𝜇, denote 𝑣𝑗 := {trℎ(𝛼, 𝜀) | 𝛼 ∈ 𝑎𝑗}. By Clause (c) above, for all
𝜎 ∈ 𝑣𝑗 , trℎ(ð𝛿𝑗 ,𝛾 , 𝜀)a⟨𝑗⟩ ⊑ 𝜎.

Next, by the choice of 𝑑0, fix (𝑖, 𝑗) ∈ [𝐼]2 such that 𝑑0(𝜚a𝜎) = ℓ(𝜚) for all 𝜚 ∈ 𝑢𝑖
and 𝜎 ∈ 𝑣𝑗 . Set 𝑎 := 𝑥𝑗 and 𝑏 := 𝑥𝑖. The rest of the proof is now identical to that
of Lemma 4.5. �

6. Clause (3) of Theorem C

In this section, we suppose that 𝜅 is inaccessible, 𝜒 ∈ Reg(𝜅), and 𝐸𝜅
≥𝜒 admits

a stationary set that does not reflect at inaccessibles. Let 𝜇 := 𝜒+. We shall prove
that Pℓ1(𝜅, 𝜇, 𝜒) holds. Note that by the result of Section 4, we may assume that
every stationary subset of 𝐸𝜅

≥𝜒 reflects.

Lemma 6.1. There exist 𝜎1, 𝜎0 ∈ Reg(𝜅) with 𝜇 < 𝜎1 < 𝜎0 and stationary subsets
𝑆1, 𝑆0 of 𝜅 consisting of singular cardinals such that

∙ 𝑆1 ⊆ 𝐸𝜅
𝜎1 , and 𝑆1 does not reflect at inaccessibles;

∙ 𝑆0 ⊆ 𝐸𝜅
𝜎0 , and 𝑆0 does not reflect at inaccessibles.

Proof. Fix a stationary subset 𝑇 ⊆ 𝐸𝜅
≥𝜒 that does not reflect at inaccessibles. Since

Card(𝜅) is a club in the inaccessible 𝜅, we may assume that 𝑇 ⊆ Card(𝜅), so that
Tr(𝑇 ) is a stationary set consisting of singular cardinals. By Fodor’s lemma, fix a
cardinal 𝜈 ∈ Reg(𝜅)∖𝜇 for which 𝑅 := Tr(𝑇 )∩𝐸𝜅

𝜈 is stationary. As Tr(𝑅) ⊆ Tr(𝑇 ),
we can repeat the process to find 𝜎1 ∈ Reg(𝜅) ∖ (𝜈 + 1) such that Tr(𝑅) ∩ 𝐸𝜅

𝜎1 is
stationary. Now 𝑆1 := Tr(𝑅) ∩𝐸𝜅

𝜎1 ∖ {𝜎1} is a stationary set consisting of singular
cardinals. Repeating the process for the last time, we find 𝜎0 ∈ Reg(𝜅) ∖ (𝜎1 + 1)
such that 𝑆0 := Tr(𝑆) ∩ 𝐸𝜅

𝜎0 ∖ {𝜎0} is stationary. Then 𝜎0 > 𝜎1 > 𝜈 ≥ 𝜇 and
Tr(𝑆0) ⊆ Tr(𝑆1) ⊆ Tr(𝑇 ), so 𝜎1, 𝜎0, 𝑆1, and 𝑆0 are as sought. �

Let 𝜎1, 𝜎0, 𝑆1, and 𝑆0 be given by the preceding claim. Note that since 𝑆1

consists of singular cardinals, min(𝑆1) > 𝜎1. By [Hof13, Theorem 2.1.1], we fix a
sequence �⃗� = ⟨𝑒𝛿 | 𝛿 ∈ 𝑆1⟩ such that

∙ for all 𝛿 ∈ 𝑆1, 𝑒𝛿 is a club in 𝛿 of order type 𝜎1;
∙ for all 𝛿 ∈ 𝑆1, ⟨cf(𝛾) | 𝛾 ∈ nacc(𝑒𝛿)⟩ is strictly increasing, converging to 𝛿;
∙ for every club 𝐷 ⊆ 𝜅, there exists 𝛿 ∈ 𝑆1 with 𝑒𝛿 ⊆ 𝐷.

Lemma 6.2. There exists a 𝐶-sequence �⃗� = ⟨𝐶𝛼 | 𝛼 < 𝜅⟩ such that, for all 𝛼 < 𝜅:

(1) |𝐶𝛼| = cf(𝛼);
(2) if acc(𝐶𝛼) ∩ 𝑆1 ̸= ∅, then min(𝐶𝛼) ≥ cf(𝛼) > 𝜎1;
(3) for every 𝛿 ∈ (acc(𝐶𝛼) ∪ {𝛼}) ∩ 𝑆1, sup(𝑒𝛿 ∖ 𝐶𝛼) < 𝛿.

Proof. This is a standard club-swallowing trick, but we do not know of a reference
in which the above precise properties are exposed.

By recursion on 𝑛 < 𝜔, we shall define a 𝐶-sequence 𝐶𝑛 = ⟨𝐶𝑛
𝛼 | 𝛼 < 𝜅⟩, as

follows. We commence with the case 𝑛 = 0:
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I Let 𝐶0
0 := ∅ and 𝐶0

𝛼+1 := {𝛼} for all 𝛼 < 𝜅.
I For each 𝛼 ∈ acc(𝜅) ∖ (Reg(𝜅) ∪ 𝑆1), let 𝐶0

𝛼 be a club in 𝛼 with otp(𝐶0
𝛼) =

cf(𝛼) = min(𝐶0
𝛼).

I For each 𝛼 ∈ 𝑆1, let 𝐶0
𝛼 := 𝑒𝛼 ∖ cf(𝛼).

I For each 𝛼 ∈ Reg(𝜅), since 𝑆1 consists of singular cardinals and does not
reflect at inaccessibles, we may let 𝐶0

𝛼 be a club in 𝛼 with acc(𝐶𝛼) ∩ 𝑆1 = ∅.

Next, suppose that 𝑛 < 𝜔 is such that 𝐶𝑛 has already been defined to satisfy

requirements (1) and (2) of the lemma. Define a 𝐶-sequence �⃗�𝑛+1 = ⟨𝐶𝑛+1
𝛼 |

𝛼 < 𝜅⟩ by letting, for each 𝛼 < 𝜅, 𝐶𝑛+1
𝛼 be the closure in 𝛼 of the set

𝐶𝑛
𝛼 ∪

⋃︁
{𝑒𝛿 ∖ cf(𝛼) | 𝛿 ∈ acc(𝐶𝑛

𝛼) ∩ 𝑆1}.

To see that Clauses (1) and (2) remain valid also for �⃗�𝑛+1, let 𝛼 < 𝜅 be arbitrary.
If 𝐶𝑛

𝛼 = 𝐶𝑛+1
𝛼 , then we are done, so assume 𝐶𝑛

𝛼 ̸= 𝐶𝑛+1
𝛼 . In particular, acc(𝐶𝑛

𝛼) ∩
𝑆1 ̸= ∅, so that, by the inductive hypothesis, |𝐶𝑛

𝛼 | = cf(𝛼) > 𝜎1 = cf(𝛿) for all
𝛿 ∈ acc(𝐶𝑛

𝛼) ∩ 𝑆1. In effect, |𝐶𝑛+1
𝛼 | = cf(𝛼).

Finally, for each 𝛼 < 𝜅, let 𝐶𝛼 be the closure in 𝛼 of
⋃︀

𝑛<𝜔 𝐶
𝑛
𝛼 . As 𝑆1 ⊆ 𝐸𝜅

𝜎1 ⊆
𝐸𝜅

>𝜔, the above construction ensures that Clause (3) holds, as well. �

Let �⃗� be given by the preceding lemma. Recalling Subsection 2.1, we now let

Tr, tr, 𝜆 and 𝜌2 be the characteristic functions of walking along �⃗�, and let 𝜂𝛼,𝛽 be
the notation established in Definition 2.12.

Definition 6.3. For every (𝛿, 𝛽) ∈ 𝑆1~𝜅, let Λ(𝛿, 𝛽) denote the least 𝛾 ∈ nacc(𝑒𝛿)
such that all of the following hold:

∙ 𝛾 > 𝜆(ð𝛿,𝛽 , 𝛽);
∙ cf(𝛾) > cf(ð𝛿,𝛽);
∙ 𝑒𝛿 ∖ sup(𝑒𝛿 ∩ 𝛾) ⊆ 𝐶ð𝛿,𝛽

.

Lemma 6.4. Let (𝛿, 𝛽) ∈ 𝑆1 ~ 𝜅. Then Λ(𝛿, 𝛽) is well-defined, and:

(1) nacc(𝑒𝛿) ∖ Λ(𝛿, 𝛽) ⊆ nacc(𝐶ð𝛿,𝛽
);

(2) for every 𝜀 ∈ nacc(𝐶ð𝛿,𝛽
) ∩ [Λ(𝛿, 𝛽), 𝛿), sup(𝑒𝛿 ∩ 𝜀) ≤ 𝜆(𝜀, 𝛽) < 𝜀;

(3) for every 𝜀 ∈ nacc(𝐶ð𝛿,𝛽
) ∩ [Λ(𝛿, 𝛽), 𝛿), min(Im(tr(𝜀, 𝛽)) = ð𝛿,𝛽;

(4) cf(ð𝛿,𝛽) ≥ 𝜎1.

Proof. Since ⟨cf(𝛾) | 𝛾 ∈ nacc(𝑒𝛿)⟩ is strictly increasing and converging to 𝛿, the
first part of the following claim implies that Λ(𝛿, 𝛽) is well-defined.

Claim 6.4.1. max{𝜆(ð𝛿,𝛽 , 𝛽), cf(ð𝛿,𝛽), sup(𝑒𝛿 ∖ 𝐶ð𝛿,𝛽
)} < 𝛿 and cf(ð𝛿,𝛽) ≥ 𝜎1.

Proof. By Lemma 2.11(1), 𝜆(ð𝛿,𝛽 , 𝛽) < 𝛿. Now, there are two cases to consider:
I If ð𝛿,𝛽 = 𝛿, then from 𝛿 ∈ 𝑆1 ⊆ 𝐸𝜅

𝜎1 and min(𝑆1) > 𝜎1, we infer that
cf(𝛿) = 𝜎1 < 𝛿. Now, by Lemma 6.2(3), sup(𝑒𝛿 ∖ 𝐶𝛿) < 𝛿.
I If ð𝛿,𝛽 ̸= 𝛿, then set 𝛼 := ð𝛿,𝛽 . By Lemma 2.11(2), 𝛿 ∈ acc(𝐶𝛼). So,

by Lemma 6.2(2), 𝛿 > min(𝐶𝛼) ≥ cf(𝛼) > 𝜎1. In addition, by Lemma 6.2(3),
sup(𝑒𝛿 ∖ 𝐶𝛼) < 𝛿. �

For every 𝜀 ∈ nacc(𝑒𝛿) above sup(𝑒𝛿 ∖ 𝐶ð𝛽,𝛿
) and of cofinality greater than

cf(ð𝛽,𝛿) = |𝐶ð𝛽,𝛿
|, we have 𝜀 ∈ nacc(𝐶ð𝛽,𝛿

), so that Clause (1) holds.
Now, let 𝜀 ∈ nacc(𝐶ð𝛿,𝛽

) ∩ [Λ(𝛿, 𝛽), 𝛿) be arbitrary. We have

𝜆(ð𝛿,𝛽 , 𝛽) < Λ(𝛿, 𝛽) ≤ 𝜀 < 𝛿 ≤ ð𝛿,𝛽 ≤ 𝛽,
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so, by Fact 2.7, tr(𝜀, 𝛽) = tr(ð𝛿,𝛽 , 𝛽)a tr(𝜀,ð𝛿,𝛽) and Clause (3) holds. By Lemma 2.9,
𝜆(𝜀, 𝛽) = max{𝜆(ð𝛿,𝛽 , 𝛽), sup(𝐶ð𝛿,𝛽

∩ 𝜀)}. Since 𝑒𝛿 ∖ sup(𝑒𝛿 ∩ Λ(𝛿, 𝛽)) ⊆ 𝐶ð𝛿,𝛽
, we

infer that sup(𝐶ð𝛿,𝛽
∩ 𝜀) ≥ sup(𝑒𝛿 ∩ 𝜀), and hence Clause (2) holds as well. �

Define a collection ℐ ⊆ 𝒫(𝜅) via 𝐴 ∈ ℐ iff there exists a club 𝐷 ⊆ 𝜅 such that for
every 𝛿 ∈ 𝑆1∩acc(𝐷), sup(nacc(𝑒𝛿)∩𝐷∩𝐴) < 𝛿. It is clear that ℐ is a 𝜎1-complete
ideal over 𝜅, extending NS𝜅. By the choice of �⃗�, ℐ is moreover proper. The next
lemma is the only part of the proof that makes use of 𝑆0 and 𝜎0.

Lemma 6.5. ℐ is not weakly 𝜇-saturated, i.e., there is a partition 𝜅 =
⨄︀

𝑖<𝜇𝐻𝑖

such that 𝐻𝑖 ∈ ℐ+ for every 𝑖 < 𝜇.

Proof. For each 𝛿 ∈ 𝑆1, let 𝐼𝛿 := {𝐴 ⊆ 𝑒𝛿 | sup(nacc(𝑒𝛿) ∩𝐴) < 𝛿}, and note:

∙ As cf(𝛿) = 𝜎1, 𝐼𝛿 is a 𝜎1-complete ideal over 𝑒𝛿;
∙ As 𝜎0 is a regular cardinal greater than cf(𝛿), for every ⊆-increasing se-

quence ⟨𝐴𝑗 | 𝑗 < 𝜎0⟩ of sets from 𝐼𝛿, the union
⋃︀

𝑗<𝜎0 𝐴𝑗 is in 𝐼𝛿, as well.

That is, the ideal 𝐼𝛿 is 𝜎0-indecomposable.

Trivially, sup𝛿∈𝑆1 |𝑒𝛿|+ < 𝜅. Setting 𝐶 := ⟨𝑒𝛿 | 𝛿 ∈ 𝑆1⟩ and 𝐼 := ⟨𝐼𝛿 | 𝛿 ∈ 𝑆1⟩,
and recalling [She94, Definition 3.0], it is evident that the ideal id𝑝(𝐶, 𝐼) is equal
to our proper ideal ℐ. As 𝑆0 is a stationary subset of 𝐸𝜅

𝜎0 that does not reflect at
inaccessibles, Case (𝛽)(𝑎) of [She94, Claim 3.3] entails the existence of a partition
of 𝜅 into 𝜎0 many ℐ-positive sets. In particular, since 𝜎0 > 𝜇, ℐ is not weakly
𝜇-saturated. �

By the preceding lemma, fix a surjection ℎ : 𝜅 → 𝜇 such that 𝐻𝑖 := ℎ−1{𝑖}
is in ℐ+ for all 𝑖 < 𝜇. Then, define a function trℎ : [𝜅]2 → <𝜔𝜇 via trℎ(𝛼, 𝛽) :=
ℎ ∘ tr(𝛼, 𝛽).

Let 𝑑 : <𝜔𝜇→ 𝜔×𝜇×𝜇×𝜇 be the function given by Fact 3.2 using 𝜈 := 𝜒. We
are now ready to define our transformation.

Definition 6.6. Define t : [𝜅]2 → [𝜅]3 by letting, for all (𝛼, 𝛽) ∈ [𝜅]2, t(𝛼, 𝛽) :=
(𝜏*, 𝛼*, 𝛽*) provided that, for (𝑛, 𝑖, 𝑗, 𝜏) := 𝑑(trℎ(𝛼, 𝛽)), all of the following condi-
tions are met:

∙ 𝛽* = Tr(𝛼, 𝛽)(𝑛) is > 𝛼,
∙ 𝜂 := 𝜆(𝛽*, 𝛽) satisfies that 𝜂 + 1 < 𝛼,
∙ 𝛼* = Tr(𝜂 + 1, 𝛼)(𝜂𝜂+1,𝛼), and
∙ 𝜏* = 𝜏 < 𝛼*.

Otherwise, let t(𝛼, 𝛽) := (0, 𝛼, 𝛽).

To verify that t witnesses Pℓ1(𝜅, 𝜇, 𝜒), suppose that we are given a family 𝒜 ⊆
[𝜅]<𝜒 consisting of 𝜅 many pairwise disjoint sets.

Lemma 6.7. For every 𝑖 < 𝜇, there exist an ordinal 𝜁𝑖 < 𝜅 and a sequence ⟨𝑥𝛾 |
𝛾 ∈ �̄�𝑖⟩ such that:

∙ �̄�𝑖 is a stationary subset of 𝐻𝑖;
∙ for all 𝛾 ∈ �̄�𝑖, 𝑥𝛾 ∈ 𝒜 with min(𝑥𝛾) > 𝛾;
∙ for all 𝛾 ∈ �̄�𝑖 and 𝛽 ∈ 𝑥𝛾 , 𝜆(𝛾, 𝛽) ≤ 𝜁𝑖.

Proof. Let 𝑖 < 𝜇. By the pressing down lemma, it suffices to prove that for every
club 𝐷 ⊆ 𝜅, there exist 𝛾 ∈ 𝐷 ∩𝐻𝑖, 𝜁 < 𝛾 and 𝑥 ∈ 𝒜 with min(𝑥) > 𝛾 such that
𝜆(𝛾, 𝛽) ≤ 𝜁 for all 𝛽 ∈ 𝑥. Thus, let 𝐷 be an arbitrary club in 𝜅.
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Since 𝐻𝑖 is in ℐ+, we may fix 𝛿 ∈ 𝑆1 such that sup(nacc(𝑒𝛿) ∩ 𝐷 ∩ 𝐻𝑖) = 𝛿.
Fix any 𝑥 ∈ 𝒜 with min(𝑥) > 𝛿. As cf(𝛿) = 𝜎1 > |𝑥|, we may fix a large enough
𝜀 ∈ nacc(𝑒𝛿) ∩ 𝐷 ∩ 𝐻𝑖 above sup𝛽∈𝑥 Λ(𝛿, 𝛽). Then, by Clauses (1) and (2) of
Lemma 6.4, sup𝛽∈𝑥 𝜆(𝜀, 𝛽) < 𝜀. So 𝛾 := 𝜀 and 𝜁 := sup𝛽∈𝑥 𝜆(𝛾, 𝛽) are as sought. �

For each 𝑖 < 𝜇, let 𝜁𝑖 and 𝑥𝑖 = ⟨𝑥𝛾 | 𝛾 ∈ �̄�𝑖⟩ be given by the preceding lemma.
Set 𝜁 := sup𝑖<𝜇 𝜁𝑖.

Definition 6.8. For 𝜂 < 𝜅, 𝑆𝜂 denotes the set of all 𝜖 < 𝜅 with the property that,
for every 𝜍 < 𝜅, there exists a sequence ⟨𝛽𝑖 | 𝑖 < 𝜇⟩ ∈

∏︀
𝑖<𝜇 �̄�𝑖 ∖ 𝜍, such that, for

all 𝑖 < 𝜇 and 𝛽 ∈ 𝑥𝛽𝑖 :

(i) 𝑖 ∈ Im(trℎ(𝜖, 𝛽));
(ii) 𝜆(𝜖, 𝛽) = 𝜂;

(iii) 𝜌2(𝜖, 𝛽) = 𝜂𝜖,𝛽 .

Lemma 6.9. There exists 𝜂 < 𝜅 for which 𝑆𝜂 is stationary.

Proof. Let 𝐷 be an arbitrary club in 𝜅; we shall find 𝜖 ∈ 𝐷 and 𝜂 < 𝜖 for which
𝜖 ∈ 𝑆𝜂. By the choice of �⃗�, the set Γ := {𝛾 ∈ 𝑆1 | 𝜁 < 𝛾 & 𝑒𝛾 ⊆ 𝐷} is stationary.
Now, fix 𝛿 ∈ 𝑆1 such that 𝑒𝛿 ⊆ acc+(Γ).

Let 𝜍 < 𝜅. Fix any sequence ⟨𝛽𝜍
𝑖 | 𝑖 < 𝜇⟩ ∈

∏︀
𝑖<𝜇 �̄�𝑖 ∖ max{𝛿 + 1, 𝜍}. We shall

find an ordinal 𝜖𝜍 ∈ 𝐷 ∩ 𝛿, as follows.
As cf(𝛿) = 𝜎1 > 𝜇, let us fix a large enough 𝜀𝜍 ∈ nacc(𝑒𝛿) above max{𝜁,

sup𝑖<𝜇 Λ(𝛿, 𝛽𝜍
𝑖 )}. As ⟨cf(𝜀) | 𝜀 ∈ nacc(𝑒𝛿)⟩ is strictly increasing and converging to 𝛿,

we may also require that cf(𝜀𝜍) > 𝜇. By Lemma 6.4(2), Λ𝜍 := max{𝜁, sup𝑖<𝜇 𝜆(𝜀𝜍 , 𝛽𝜍
𝑖 )}

is smaller than 𝜀𝜍 . As 𝜀𝜍 ∈ nacc(𝑒𝛿) ⊆ acc+(Γ), let us pick 𝛾𝜍 ∈ Γ with Λ𝜍 < 𝛾𝜍 <
𝜀𝜍 . Now, fix a large enough 𝜖𝜍 ∈ nacc(𝑒𝛾𝜍 ) ⊆ 𝐷 ∩ 𝛿 to satisfy sup(𝑒𝛾𝜍 ∩ 𝜖𝜍) >
max{Λ𝜍 ,Λ(𝛾𝜍 , 𝜀𝜍)}. Denote 𝛼𝜍 := ð𝛾𝜍 ,𝜀𝜍 .

By the pigeonhole principle, let us fix 𝜖 ∈ 𝐷 ∩ 𝛿, and 𝜂 ≤ 𝜖 for which

Σ := {𝜍 < 𝜅 | 𝜖𝜍 = 𝜖 & sup(𝐶𝛼𝜍 ∩ 𝜖𝜍) = 𝜂}

is cofinal in 𝜅. We already know that 𝜖 ∈ 𝐷; we shall later show that 𝜂 < 𝜖.
To see that 𝜖 ∈ 𝑆𝜂, let 𝜍 < 𝜅 be arbitrary. By increasing 𝜍, we may assume that

𝜍 ∈ Σ. Let 𝑖 < 𝜇 and 𝛽 ∈ 𝑥𝛽𝜍
𝑖

be arbitrary. We shall show that:

(i’) tr(𝜖, 𝛽) = tr(𝛽𝜍
𝑖 , 𝛽)a tr(𝜖, 𝛽𝜍

𝑖 );
(ii’) 𝜆(𝜖, 𝛽) = 𝜂;
(iii’) 𝜌2(𝜖, 𝛽) = 𝜂𝜖,𝛽 .

We have:

max{𝜆(𝛽𝜍
𝑖 , 𝛽), 𝜆(𝜀𝜍 , 𝛽𝜍

𝑖 )} ≤ max{Λ𝜍 ,Λ(𝛾𝜍 , 𝜀𝜍)} < 𝜖 < 𝛾𝜍 < 𝜀𝜍 < 𝛿 < 𝛽𝜍
𝑖 < 𝛽.

It thus follows from Fact 2.7 that Clause (i’) is satisfied, so that 𝑖 ∈ Im(trℎ(𝜖, 𝛽)).
It also follows from Fact 2.7 that tr(𝜖, 𝛽𝜍

𝑖 ) = tr(𝜀𝜍 , 𝛽𝜍
𝑖 )a tr(𝜖, 𝜀𝜍). In addition, by

Clauses (1) and (3) of Lemma 6.4, tr(𝜖, 𝜀𝜍) = tr(𝛼𝜍 , 𝜀𝜍)a tr(𝜖, 𝛼𝜍). Thus, altogether:

tr(𝜖, 𝛽) = tr(𝛽𝜍
𝑖 , 𝛽)a tr(𝜀𝜍 , 𝛽𝜍

𝑖 )a tr(𝛼𝜍 , 𝜀𝜍)a tr(𝜖, 𝛼𝜍).

As 𝜖 is an element of nacc(𝑒𝛾𝜍 ) above Λ(𝛾𝜍 , 𝜀𝜍) ≥ sup(𝑒𝛾𝜍 ∖ 𝐶𝛼𝜍 ), we infer from
Lemma 6.4(1) that 𝜖 ∈ nacc(𝐶𝛼𝜍 ) and hence 𝜆(𝜖, 𝛼𝜍) = sup(𝐶𝛼𝜍 ∩ 𝜖). As 𝜖 = 𝜖𝜍 , it
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follows from Lemma 6.4(2) that

max{𝜆(𝛽𝜍
𝑖 , 𝛽), 𝜆(𝜀𝜍 , 𝛽𝜍

𝑖 ), 𝜆(𝛼𝜍 , 𝜀𝜍)} ≤ max{Λ𝜍 ,Λ(𝛾𝜍 , 𝜀𝜍)}
< sup(𝑒𝛾𝜍 ∩ 𝜖)
≤ sup(𝐶𝛼𝜍 ∩ 𝜖)
= 𝜂.

Altogether, 𝜆(𝜖, 𝛽) = sup(𝐶𝛼𝜍 ∩ 𝜖) = 𝜂 and 𝜌2(𝜖, 𝛽) = 𝜂𝜖,𝛽 . In addition, since
𝜂 = sup(𝐶𝛼𝜍 ∩ 𝜖) and 𝜖 ∈ nacc(𝐶𝛼𝜍 ), we infer that 𝜂 < 𝜖, as promised. �

Let 𝜂 be given by the preceding lemma. Let 𝐷 be a club in 𝜅 such that, for all

𝛿 ∈ 𝐷, there exists 𝑀𝛿 ≺ ℋ𝜅+ containing the parameter 𝑝 := {𝑆𝜂, ⟨𝑥𝑖 | 𝑖 < 𝜇⟩, �⃗�, ℎ}
and satisfying𝑀𝛿∩𝜅 = 𝛿. For every 𝑗 < 𝜇, since𝐻𝑗 is in ℐ+, the set ∆𝑗 := {𝛿 ∈ 𝑆1 |
sup(nacc(𝑒𝛿) ∩𝐷 ∩𝐻𝑗) = 𝛿} is stationary. Finally, let

𝑆* := 𝑆𝜂 ∩
⋂︁

𝑗<𝜇
acc+(∆𝑗).

Lemma 6.10. Let (𝜏*, 𝛼*, 𝛽*) ∈ 𝜇~ 𝑆* ~ 𝑆*. There exists (𝑎, 𝑏) ∈ [𝒜]2 such that
t[𝑎× 𝑏] = {(𝜏*, 𝛼*, 𝛽*)}.

Proof. As 𝛽* ∈ 𝑆* ⊆ 𝑆𝜂, let us fix a sequence ⟨𝛽𝑖 | 𝑖 < 𝜇⟩ ∈
∏︀

𝑖<𝜇 �̄�𝑖 ∖ (𝛽* + 1)
such that, for all 𝑖 < 𝜇 and 𝛽 ∈ 𝑥𝛽𝑖 :

(1) 𝑖 ∈ Im(trℎ(𝛽*, 𝛽));
(2) 𝜆(𝛽*, 𝛽) = 𝜂;
(3) 𝜌2(𝛽*, 𝛽) = 𝜂𝛽*,𝛽 .

For all 𝑗 < 𝜇, as 𝛽* ∈ acc+(∆𝑗), we may pick 𝛿𝑗 ∈ ∆𝑗 ∩ 𝛽* above 𝛼*, so that
𝛿𝑗 > 𝛼* > 𝜂. Now, pick 𝜀𝑗 ∈ nacc(𝑒𝛿𝑗 )∩𝐷∩𝐻𝑗 above max{𝛼*,Λ(𝛿𝑗 , 𝛽

*)}. As 𝑀𝜀𝑗

contains 𝑝, we have that 𝑆𝜂 ∈ 𝑀𝜀𝑗 . Now, by Clauses (1) and (2) of Lemma 6.4,
𝜍𝑗 := max{𝛼*,Λ(𝛿𝑗 , 𝛽

*), 𝜆(𝜀𝑗 , 𝛽
*)} + 1 is smaller than 𝜀𝑗 . Since 𝛼* ∈𝑀𝜀𝑗 ∩ 𝑆𝜂, we

may then find 𝛼𝑗 ∈𝑀𝜀𝑗 ∩ �̄�𝑗 ∖ 𝜍𝑗 such that, for all 𝛼 ∈ 𝑥𝛼𝑗 :

(2’) 𝜆(𝛼*, 𝛼) = 𝜂;
(3’) 𝜌2(𝛼*, 𝛼) = 𝜂𝛼*,𝛼.

Note that from 𝛼𝑗 ∈ 𝑀𝜀𝑗 , it follows that sup(𝑥𝛼𝑗 ) < 𝜀𝑗 . Write 𝑎𝑗 := 𝑥𝛼𝑗 and

𝑏𝑖 := 𝑥𝛽𝑖 . Fix arbitrary (𝑖, 𝑗) ∈ [𝜇]2 and (𝛼, 𝛽) ∈ 𝑎𝑗 × 𝑏𝑖. Then:

𝜂 + 1 < 𝛼* ≤ max{𝛼*, 𝜆(𝛽*, 𝛽), 𝜆(𝜀𝑗 , 𝛽
*)} < 𝜍𝑗 ≤ 𝛼𝑗 < 𝛼 < 𝜀𝑗 < 𝛽* < 𝛽𝑖 < 𝛽.

So, by Fact 2.7:

tr(𝛼, 𝛽) = tr(𝛽*, 𝛽)a tr(𝜀𝑗 , 𝛽
*)a tr(𝛼, 𝜀𝑗).

For each 𝑖 < 𝜇, set 𝑢𝑖 := {trℎ(𝛽*, 𝛽) | 𝛽 ∈ 𝑏𝑖}. By Clause (1) above, 𝑖 ∈ Im(𝜚)
for all 𝜚 ∈ 𝑢𝑖. For each 𝑗 < 𝜇, set 𝑣𝑗 := {trℎ(𝛼, 𝛽*) | 𝛼 ∈ 𝑎𝑗} and 𝜎𝑗 := trℎ(𝜀𝑗 , 𝛽

*).
As 𝜀𝑗 ∈ 𝐻𝑗 , we infer that 𝜎𝑗

a⟨𝑗⟩ ⊑ 𝜎 for all 𝜎 ∈ 𝑣𝑗 .
Finally, by the choice of 𝑑, fix (𝑖, 𝑗) ∈ [𝜇]2 such that 𝑑(𝜚a𝜎) = (ℓ(𝜚), 𝑖, 𝑗, 𝜏*) for

all 𝜚 ∈ 𝑢𝑖 and 𝜎 ∈ 𝑣𝑗 . Set 𝑎 := 𝑎𝑗 and 𝑏 := 𝑏𝑖, so that (𝑎, 𝑏) ∈ [𝒜]2.
To see that t[𝑎 × 𝑏] = {(𝜏*, 𝛼*, 𝛽*)}, fix arbitrary 𝛼 ∈ 𝑎 and 𝛽 ∈ 𝑏. Denote

𝜚 := trℎ(𝛽*, 𝛽) and 𝜎 := trℎ(𝛼, 𝛽*), so that 𝜚 ∈ 𝑢𝑖 and 𝜎 ∈ 𝑣𝑗 . Denote (𝑛, 𝑖′, 𝑗′, 𝜏) :=
𝑑(trℎ(𝛼, 𝛽)). Then:

∙ Tr(𝛼, 𝛽)(𝑛) = Tr(𝛼, 𝛽)(𝜌2(𝛽*, 𝛽)) = 𝛽*;
∙ 𝜏 = 𝜏*;
∙ 𝜂 = 𝜆(𝛽*, 𝛽) and 𝜂 + 1 < 𝛼;
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Figure 2. Illustration of the proof of Lemma 6.10.

∙ 𝜏* < 𝜇 < 𝛼*.

Now, since 𝜆(𝛼*, 𝛼) = 𝜂 < 𝜂+1 < 𝛼* < 𝛼, tr(𝜂+1, 𝛼) = tr(𝛼*, 𝛼)a tr(𝜂+1, 𝛼*).
So, since 𝜌2(𝛼*, 𝛼) = 𝜂𝛼*,𝛼, 𝜌2(𝛼*, 𝛼) = 𝜂𝜂+1,𝛼 and 𝛼* = Tr(𝜂 + 1, 𝛼)(𝜂𝜂+1,𝛼). �
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