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Abstract. Club guessing principles were introduced by Shelah as a weakening

of Jensen’s diamond. Most spectacularly, they were used to prove Shelah’s

ZFC bound on 2ℵω . These principles have found many other applications:
in cardinal arithmetic and PCF theory; in the construction of combinatorial

objects on uncountable cardinals such as Jónsson algebras, strong colourings,

Souslin trees, and pathological graphs; to the non-existence of universals in
model theory; to the non-existence of forcing axioms at higher uncountable

cardinals; and many more.

In this paper, the first part of a series, we survey various forms of club-
guessing that have appeared in the literature, and then systematically study

the various ways in which a club-guessing sequences can be improved, espe-
cially in the way the frequency of guessing is calibrated.

We include an expository section intended for those unfamiliar with club-

guessing and which can be read independently of the rest of the article.

1. Introduction

1.1. Motivation. In this paper, we initiate a study of various aspects and forms of
club guessing. Our definitions are quite general, and in order to motivate them we
start with a brief survey of the various forms of club guessing that have appeared
in the literature as well as their applications. All undefined notation can be found
in Section 1.4, but we remind the reader right away that for a pair λ < κ of infinite
regular cardinals, Eκλ := {δ < κ | cf(δ) = λ}, and Eκ6=λ := {δ < κ | cf(δ) 6= λ}.

Shortly after Jensen constructed Souslin trees in L [Jen68], he isolated a combi-
natorial principle named diamond, which is sufficient for the construction.

Fact 1.1 ([Jen72]). In Gödel’s constructible universe L, for every regular uncount-

able cardinal κ and every stationary S ⊆ κ, there is a sequence ~A = 〈Aδ | δ ∈ S〉
which is a ♦(S)-sequence, that is:

(i) for every δ ∈ S, Aδ is a subset of δ;
(ii) for every subset A ⊆ κ, the set {δ ∈ S | Aδ = A ∩ δ} is stationary in κ.

It is easy to see that for S ⊆ κ as above, ♦(S) implies that 2<κ = κ, and hence
diamond is not a consequence of ZFC. In contrast, the following result of Shelah
[She94c], which is the most well-known club-guessing result, is a theorem of ZFC.

Fact 1.2 ([She94c]). Suppose that λ < λ+ < κ are infinite regular cardinals. Then

there is a sequence ~C = 〈Cδ | δ ∈ Eκλ〉 such that

(i) for every δ ∈ Eκλ , Cδ is a club in δ;
(ii) for every club D ⊆ κ, the set {δ ∈ S | Cδ ⊆ D} is stationary in κ.

Date: Preprint as of July 22, 2022. For the latest version, visit http://p.assafrinot.com/46.

1



2 TANMAY INAMDAR AND ASSAF RINOT

In particular, unlike the ♦ principle or its descendants the ♣ and |• principles
(see [Ost76, BGKT78]), the focus is not on predicting arbitrary or even just cofinal
subsets of κ, but rather only the closed and unbounded subsets of κ. This makes the
task of guessing easier, since the collection of club subsets of κ generate a normal
κ-complete filter.

The most famous application of Fact 1.2 is Shelah’s PCF bound (see [She94a] or
[AM10, Theorem 7.3]):

2ℵω ≤ max{2ℵ0 ,ℵω4
}.

Apart from upper bounds on cardinal exponentiation, Fact 1.2 has many other
uses in PCF theory. As an example from the basic theory, in obtaining exact upper
bounds for sequences of ordinal functions (see [AM10, Lemma 2.19]), in fact showing
that there are stationary sets consisting of points of large cofinality in the approach-
ability ideal I[λ] (see [Eis10b, §3]). Outside of PCF theory, there are applications
of Fact 1.2 to the universality spectrum of models [KS92, Dza05, She21], cardi-
nal invariants of the continuum [Zap04, Zap08], cardinal invariants at uncountable
cardinals [BHZ07, GHZ21], to the study of the Boolean algebra P(λ)/[λ]<λ for λ
singular of countable cofinality [KS01], to showing the incompactness of chromatic
number [She13], to obtain a refinement of the downwards Löwenheim-Skolem The-
orem [FT05], to study the saturation of the non-stationary ideal on Pλ(κ) [Shi99],
to obtain two-cardinal diamond principles in ZFC [Tod02, Shi08, Mat09, SheXX],
to obtaining consequence of forcing axioms [She08], to obtain limitative results on
forcing [RaS96, Tod18], to constructing graphs with a prescribed rate of growth
of the chromatic number of its finite subgraphs [LH20]. That Fact 1.2 is a theo-
rem of ZFC also imposes important limitations on the theory of forcing axioms at
successors of uncountable cardinals (see for example [She03b, She03c, Nee14]).

While club guessing was motivated by finding a weak substitute for the diamond
principle, in [She10], Shelah, using arguments that materialized through the de-
velopment of the theory of club guessing, proved the next theorem on diamond,
concluding a 40 year old search for such a result (see the review in [Rin10b]).

Fact 1.3 ([She10]). Let λ be an uncountable cardinal, and let S ⊆ Eλ
+

6=cf(λ) be

stationary. The following are equivalent:

(1) 2λ = λ+;
(2) ♦(S).

Apart from Fact 1.2, there are other, finer, forms of club guessing which are less
well-known and yet altogether have a variety of applications. For instance, Fact 1.2
says nothing about the case κ = λ+. For this, we have the following result of
Shelah.

Fact 1.4 ([She94c, Claim 2.4]). There is a sequence ~C = 〈Cδ | δ ∈ Eℵ2

ℵ1
〉 such that

(i) for every δ ∈ Eℵ2

ℵ1
, Cδ is a club in δ of ordertype ω1;

(ii) for every club D ⊆ ℵ2, there is a δ ∈ Eℵ2

ℵ1
such that the following set is

cofinal in δ:

{β < δ | min(Cδ \ (β + 1)) ∈ D ∩ Eℵ2

ℵ1
}.

To compare the preceding with Fact 1.2, we see two differences in the corre-
sponding Clause (ii). The first, here we require a single δ instead of stationarily
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many, however, this is easily seen to be equivalent.1 Second, which is more impor-
tant, instead of requiring Cδ to be a subset of D, we now merely require that the
intersection of D with (Eℵ2

ℵ1
and) the set nacc(Cδ) of all non-accumulation points

of Cδ be cofinal in δ. This choice is not arbitrary. For club many δ ∈ Eℵ2

ℵ1
, both

the set acc(Cδ) of all accumulation points of Cδ and the set D ∩ δ are clubs in δ,
and hence acc(Cδ) ∩D is trivially cofinal in δ.

Consider now another example due to Shelah concerning the case κ = λ+ (see
[SS10], for a short proof):

Fact 1.5 ([She03a, Claim 3.5]). There is a sequence ~C = 〈Cδ | δ ∈ Eℵ2

ℵ1
〉 such that

(i) for every δ ∈ Eℵ2

ℵ1
, Cδ is a club in δ of ordertype ω1;

(ii) for every club D ⊆ ℵ2, there is a δ ∈ S such that the following set is
stationary in δ:

{β < δ | min(Cδ \ (β + 1)) ∈ D}.
Comparing the two, we see that Fact 1.4 features a sequence where the guessing

is measured against the ideal Jbd[δ] of bounded subsets of δ, whereas here we
measure against the nonstationary ideal NSδ. However, Fact 1.4 features a sequence
which guesses clubs relative to the set Eℵ2

ℵ1
, and for this reason the two results are

incomparable. In this paper, a join of the two results is obtained.
Note that so far we have always required that the clubs Cδ have the minimal

possible ordertype of cf(δ). The small ordertype requirement is trivially gotten
for a sequence that guesses as in Clause (ii) of Fact 1.2. In other cases, however,
obtaining that the local clubs have a small ordertype requires extra care (see for
example [Koj95, Theorem 9], where the weaker form of Fact 1.4 is proved where
one requires each of the Cδ to merely have size ℵ1). As a sample application,
we mention that in [HHS09], a strong form of club-guessing at ℵ1 with minimal
ordertype is used to construct a small Dowker space.

However, attention should not be restricted only to guessing with minimal order-
types. At the level of ℵ1, the ordertypes of guessing sequences play a crucial role in
separating forcing axioms at ℵ1 in [She98, Chapter XVII], and later in [AFMS13] as

well. At higher cardinals, guessing sequences ~C with very large ordertypes are use-

ful for getting a pathological graph G(~C) with maximal chromatic number [Rin15a].
An open question concerning guessing sequences of maximal ordertype is stated in
[Rin14c, Question 2]. For an extended discussion, see the introduction to [Rin15b].

At a cardinal κ that is a limit or a successor of a limit, another type of relative
club-guessing has shown to be useful, where the guessing feature stipulates addi-
tional conditions on the sequence 〈cf(γ) | γ ∈ nacc(Cδ)〉. In [She94c, Hof13], the
additional condition is that this sequence is strictly increasing and converging to
|δ|. This is used to construct colourings satisfying strong negative square bracket
partition relations [ES05, ES09]. An earlier construction (see [She94c] or [Eis10b,
Theorem 5.19]) requires that the sequence 〈cf(γ) | γ ∈ nacc(Cδ)〉 have cofinally
many cardinals carrying a Jónsson algebra. This is used to construct Jónsson alge-
bras at κ. Note that the existence of a club-guessing sequence of large ordertypes
in ZFC would give rise to such sequences, in particular, solving [ES09, Question 2.4]
in the affirmative.

We move on to the next example, this time a question of Shelah.

1This equivalence is true in greater generality; see the discussion at the end of Section 2.
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Question 1.6 ([She00, Question 5.4]). Let λ < λ+ = κ be regular uncountable

cardinals. Is there a sequence ~C = 〈Cδ | δ ∈ Eκλ〉 such that

(i) for every δ ∈ Eκλ , Cδ is a club in δ of ordertype λ;
(ii) for every club D ⊆ κ, there is a δ ∈ Eκλ such that the following set is

stationary in δ:

{β < δ | β1, β2 ∈ D where β1 := min(Cδ \ (β + 1)) & β2 := min(Cδ \ (β1 + 1))}.

Compared to Fact 1.5, here we require that for stationarily many β < δ, two
consecutive non-accumulation points following β are in the club D. Shelah mentions
(without proof) that this slight strenghening of Fact 1.5 combined with GCH allows
for the construction of a κ-Souslin tree. This is related to the open problem of
whether GCH implies the existence of an ℵ2-Souslin tree (see [Rin19]), and the
earlier work of Kojman and Shelah on that matter [KS93].

Here we shall prove that at the level of ℵ2, an affirmative answer to Shelah’s
question follows from the existence of a sequence as in Fact 1.4 in which D∩Eℵ2

ℵ1
in

Clause (ii) is replaced by D∩Eℵ2

ℵ0
. However, Asperó has answered Shelah’s question

negatively [Asp14]. Getting this failure together with the GCH remains open.
The feature of guessing consecutive points has other applications in the construc-

tion of Souslin trees: in [BR21, §5], the feature of guessing with two consecutive
points allows to reduce a ♦(κ) hypothesis from [BR17a] to just κ<κ = κ. In
[BR17b], a feature of guessing with ω-many consecutive points is used to construct
Souslin trees with precise control over their reduced powers.

Returning to the discussion after Fact 1.5, there is another way to impose that
the set of good guesses be ‘large’. Here is an example, again due to Shelah.

Fact 1.7 ([She97, Claim 3.10]). Suppose that κ = λ+ for a regular uncountable
cardinal λ that is not strongly inaccessible. Then, there is a sequence 〈hδ : Cδ → ω |
δ ∈ Eκλ〉 such that

(1) for every δ ∈ Eκλ , Cδ is a club in δ of ordertype λ;
(2) for every club D ⊆ κ, there is a δ ∈ Eκλ such that∧

n<ω

sup{β < δ | min(Cδ \ (β + 1)) ∈ D ∩ h−1
δ {n}} = δ.

This result is used in [Rin14b, §2] in producing a strong oscillation with ω many
colours, sufficient to derive strong colorings [Rin14b, §3] and transformations of
the transfinite plane [RZ21]. Any improvement of the above result that partitions
the club-guessing into θ many pieces immediately translates to getting a strong
oscillation with θ colours. This also connects to our previous discussion on guessing
sequences 〈Cδ | δ ∈ S〉 with very large ordertypes, since the number of pieces into
which Cδ may be partitioned is bounded by |Cδ|.

We shall later show that for the purpose of obtaining such partitioned club-
guessings, the move from the unbounded ideal to the non-stationary ideal as in
Fact 1.4 to Fact 1.5 is beneficial. Sufficient conditions and applications to an even
stronger form of partitioned club-guessing in which there is global function h :
κ → θ such that hδ = h � Cδ for all δ may be found in [She94c, §3] and [LHR18,
Theorem 4.20].

A very useful feature of club-guessing sequences we have so far ignored is coher-
ence. Coherent club-guessing sequences have been applied to set theory of the real
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line [BLS17], and to cardinal invariants of the continuum [SZ02]. Coherent club-
guessing sequences were also used to show the non-existence of a natural forcing
axiom [She04] and to construct strong colourings [Rin14a, RZ22]. Weakly coherent
club-guessing at the level of ℵ1 have been used to define a pathological topology on
the real line [Zap01], and weakly coherent club-guessing at the level of a successor
λ+ of a singular cardinal λ was used in [BR19a, §2.1] to prevent λ-distributive λ+-
trees from having a cofinal branch, thus, yielding nonspecial λ+-Aronszajn trees.

The above is hardly an exhaustive list of applications of club guessing but merely
a selection biased by the themes of this paper. Additional key results, including
those from [GS97, Ish05, FK05, Eis10a] will be discussed in Part II of this series.
Another caveat is that in this paper we shall only be concerned with getting club-
guessing results at κ ≥ ℵ2. The behavior of club-guessing at the level of ℵ1 is
entirely independent of ZFC, and we refer the reader to [Hir07, Moo08, EN09,
IL12a, IL12b, Ish15, AK20, GS22] for more on that matter.

1.2. The results. Throughout the paper, κ stands for an arbitrary regular un-
countable cardinal; θ, µ, χ are (possibly finite) cardinals ≤ κ, λ and ν are infinite
cardinals < κ, ξ, σ are nonzero ordinals ≤ κ, and S and T are stationary subsets of
κ. We shall sometimes implicitly assume that S consists of nonzero limit ordinals.

Definition 1.8. A C-sequence over S is a sequence ~C = 〈Cδ | δ ∈ S〉 such that,
for every δ ∈ S, Cδ is a closed subset of δ with sup(Cδ) = sup(δ). It is said to be
ξ-bounded if otp(Cδ) ≤ ξ for all δ ∈ S.

Our first main result fulfills the promise of finding a join of Facts 1.4 and 1.5.

Theorem A. For every successor cardinal λ, there exists a λ-bounded C-sequence
~C = 〈Cδ | δ ∈ Eλ

+

λ 〉 satisfying the following. For every club D ⊆ λ+, there is a

δ ∈ Eλ+

λ such that the following set is stationary in δ:

{β < δ | min(Cδ \ (β + 1)) ∈ D ∩ Eλ
+

λ }.

Our next result deals with coherent guessing sequences.

Theorem B. For every cardinal λ ≥ iω such that �(λ+) holds, for all stationary

subsets S, T of λ+, there exists an v∗-coherent C-sequence ~C = 〈Cδ | δ < λ+〉 such
that, for every club D ⊆ λ+, there is a δ ∈ S such that sup(nacc(Cδ)∩D ∩ T ) = δ.

The next two results address the problem of partitioning a given club-guessing
sequence into θ many pieces as in Fact 1.7.2

Theorem C. Suppose that for each δ ∈ Eκλ , Jδ is some λ-complete ideal over δ,

and suppose that ~C = 〈Cδ | δ ∈ Eκλ〉 is a given λ-bounded C-sequence satisfying
that for every club D ⊆ λ, there exists δ ∈ Eκλ such that

{β < δ | min(Cδ \ (β + 1)) ∈ D ∩ T} ∈ J+
δ .

Any of the following hypotheses imply that there exists a map h : λ → θ such
that for every club D ⊆ λ, there is a δ ∈ Eκλ such that, for every τ < θ,

{β < δ | h(otp(Cδ ∩ β)) = τ & min(Cδ \ (β + 1)) ∈ D ∩ T} ∈ J+
δ .

2The related problem of using a given club-guessing sequence to produce another club-guessing
sequence that admits a partition is also addressed in this paper. See Theorem 4.12 and the

introduction to Section 6.
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(i) θ = λ = λ<λ and λ is a successor cardinal;
(ii) θ = λ, ♦(λ) holds, and λ is not Mahlo;

(iii) θ = λ, ♦∗(λ) holds, and each Jδ is normal;
(iv) θ < λ is regular, and λ is not greatly Mahlo.

Theorem D. Under the same setup of the previous theorem, any of the following
hypotheses imply that there exists a sequence of maps 〈hδ : λ → θ | δ ∈ Eκλ〉 such
that for every club D ⊆ λ, there is a δ ∈ Eκλ such that, for every τ < θ,

{β < δ | hδ(otp(Cδ ∩ β)) = τ & min(Cδ \ (β + 1)) ∈ D ∩ T} ∈ J+
δ .

(i) θ = λ and ♦∗(λ) holds;
(ii) λ is not strongly inaccessible, and θ is the least to satisfy 2θ ≥ λ;

(iii) θ+ = λ;
(iv) θ = ω and λ is not ineffable.

Our last result fulfills the promise to show that at the level of ℵ2 an affirmative
answer to Question 1.6 follows from the existence of a sequence as in Fact 1.4 in
which D ∩ Eℵ2

ℵ1
in Clause (ii) is replaced by D ∩ Eℵ2

ℵ0
.

Theorem E. For every successor cardinal λ, if there exists a λ-bounded C-sequence
~C = 〈Cδ | δ ∈ Eλ

+

λ 〉 such that for every club D ⊆ λ+, there is a δ ∈ Eλ+

λ such that

sup(nacc(Cδ) ∩D ∩Eλ
+

<λ) = δ, then there exists a λ-bounded C-sequence ~C = 〈Cδ |
δ ∈ Eλ

+

λ 〉 such that for every club D ⊆ λ+, there is a δ ∈ Eλ
+

λ such that the
following set is stationary in δ:

{β < δ | β1, β2 ∈ D where β1 := min(Cδ \ (β + 1)) & β2 := min(Cδ \ (β1 + 1))}.

1.3. Organization of this paper. The aim of Section 2 is to give the reader
a tour of the basic methods for proving club-guessing theorems. The purpose is
introductory, and with one exception, all the results we prove are not new, though
some of them are not widely known. In particular, we give a proof of Fact 1.2. In
Subsection 2.1 our main definition, Definition 2.2, can be found.

In Section 3, our theme is to obtain club-guessing sequences with additional
coherence properties. This is done by starting with an arbitrary C-sequence with
some degree of coherence, and then improving it to make it guess clubs as well, all
the while preserving the coherence. This allows us to obtain ‘coherent forms’ of
known results such as Fact 1.4. At the end of the section, we record the results which
can be obtained by the same proofs, but without any assumptions of coherence on
the initial C-sequence. A proof of Theorem B can be found in this section.

In Section 4, we consider partitioned club-guessing. We show how the colouring
principles of [IR22a, IR22b] allow us to not just obtain partitioned club guessing,
but in fact partition club guessing (recall Footnote 2). Furthermore, using these
colouring principles allows us to separate the combinatorial content from the club
guessing content in previous results about partitioned club guessing (see [She97,
Lemma 3.10]). A proof of Theorems C and D can be found here.

In Section 5, we turn to the problem of guessing many consecutive non-accumulation
points as in the discussion surrounding Question 1.6. We show how a sequence
guessing clubs relative to points of small cofinality can be modified for this pur-
pose.

In the last section, Section 6, our focus is on improving the quality of the guessing
calibrated against the ideal. Mainly, our focus is moving from the unbounded ideal
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to the non-stationary as in the move from Fact 1.4 to Fact 1.5. Similar ideas also
allow us to improve some results from Section 4. The proofs of Theorems A and E
can be found here.

1.4. Notation and conventions. We have already listed some conventions in
the beginning of Subsection 1.2. Here, we list some more. Let logχ(λ) denote

the least cardinal θ ≤ λ such that χθ ≥ λ. For sets of ordinals A,B, we denote
A ~ B := {(α, β) ∈ A × B | α < β} and we identify [B]2 with B ~ B. For θ > 2,
[κ]θ simply stands for the collection of all subsets of κ of size θ. For sets of ordinals
A,B, we write A v B iff there exists an ordinal δ such that A = B ∩ δ; we write
A v∗ B iff there exists a pair of ordinals ε < δ such that A \ ε = B ∩ [ε, δ).

Let Eκθ := {α < κ | cf(α) = θ}, and define Eκ≤θ, E
κ
<θ, E

κ
≥θ, E

κ
>θ, E

κ
6=θ

analogously. For a stationary S ⊆ κ, we write Tr(S) := {α ∈ Eκ>ω | S ∩
α is stationary in α}.

For a set of ordinals A, we write ssup(A) := sup{α + 1 | α ∈ A}, acc+(A) :=
{α < ssup(A) | sup(A∩α) = α > 0}, acc(A) := A∩acc+(A), nacc(A) := A\acc(A),
and cl(A) := A ∪ acc+(A). A function f : A → Ord is regressive iff f(α) < α for
every nonzero α ∈ A. A function f : [A]2 → Ord is upper-regressive iff f(α, β) < β
for every pair (α, β) ∈ [A]2.

2. Warming up

In this introductory section we have two tasks. The first is to introduce our main
definition, Definition 2.2, and the second is to familiarise the reader with the basic
idea of all club-guessing proofs, the method of ‘collecting counterexamples’.3 The
former is achieved in Subsection 2.1.

For the latter purpose, we provide in Subsection 2.2 a proof of some known club-
guessing results including the most famous, Fact 1.2. In the process we hope to
make the reader comfortable with Definition 2.2. However, we stress that the full
generality of Definition 2.2 is not needed in Subsection 2.2.

2.1. Preliminaries. The aim of our main definition, Definition 2.2, is to provide a
language that is able to differentiate between all of the club-guessing principles we
have met in Subsection 1.1. While there are numerous parameters in the definition,
we hope to have convinced the reader with the examples from Section 1.1 that all
of them have been found fruitful from the point of view of applications.

Definition 2.1 ([BR17a]). For a set of ordinals C, write

succσ(C) := {C(j + 1) | j < σ & j + 1 < otp(C)}.

In particular, for all γ ∈ C such that sup(otp(C \ γ)) ≥ σ, succσ(C \ γ) consists
of the next σ-many successor elements of C above γ.

Throughout the paper, we shall be working with some sequence ~J = 〈Jδ | δ ∈ S〉
such that, for each δ ∈ S, Jδ is a cf(δ)-additive proper ideal over δ extending
Jbd[δ] := {B ⊆ δ | sup(B) < δ}.

3As Shelah puts it in [She94c]: “The moral is quite old-fashioned: if you work hard and
continue to try enough times, correcting and recorrecting yourself you will eventually succeed.”
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Definition 2.2 (Main definition). CGξ(S, T, σ, ~J) asserts the existence of a ξ-

bounded C-sequence ~C = 〈Cδ | δ ∈ S〉 such that, for every club D ⊆ κ there is a
δ ∈ S such that

{β < δ | succσ(Cδ \ β) ⊆ D ∩ T} ∈ J+
δ .

Convention 2.3. We will often simplify the notation by omitting some parameters,
in which case, these parameters take their weakest possible values. Specifically, if

we omit ξ, then we mean that ξ = κ; if we omit ~J , then we mean that ~J = 〈Jbd[δ] |
δ ∈ S〉, if we omit ~J and σ, then we mean that σ = 1 and ~J = 〈Jbd[δ] | δ ∈ S〉.

The following propositions collect some evident properties of CG.

Proposition 2.4 (Monotonicity). Suppose that CGξ(S, T, σ, 〈Jδ | δ ∈ S〉) holds,

as witnessed by a sequence ~C. Then, assuming all of the following conditions are

satisfied, ~C also witnesses that CGξ′(S
′, T ′, σ′, 〈J ′δ | δ ∈ S′〉) holds.

(i) ξ ≤ ξ′;
(ii) S ⊆ S′;

(iii) T ⊆ T ′;
(iv) σ ≥ σ′;
(v) for each δ ∈ S′, J ′δ ⊇ Jδ. �

Proposition 2.5 (Indecomposability). Suppose that CGξ(S, T, σ, ~J) holds, as wit-

nessed by a sequence ~C.

(1) For every regressive map f : S → κ, there exists some i < κ such that ~C

restricted to Si := f−1{i} witnesses CGξ(Si, T, σ, ~J);
(2) For every decomposition T =

⊎
i<θ Ti, if S ⊆ Eκ>θ, then there exists some

i < θ such that ~C witnesses CGξ(S, Ti, σ, ~J). �

2.2. A tour of club-guessing. Most of the results in this article will have the

following format: we shall assume the existence of a C-sequence ~C witnessing a

certain form of club guessing, and then we shall improve or modify this ~C so that
it satisfies another form of club guessing, or such that it has some other proper-

ties. For example, Proposition 2.4 suggests to us that starting from ~C witnessing
CGξ(S, T, σ, 〈Jδ | δ ∈ S〉), we may look into the possibility of reducing ξ, or shrink-
ing S or T , or increasing σ, or enlarging the ideals in 〈Jδ | δ ∈ S〉, all the while

preserving the guessing properties of ~C. We shall be considering these problems
and other similar ones in this article.

What is important in all this is our ability to modify a given C-sequence to
satisfy other, or additional, properties. In this section we shall present some of the
standard techniques that one uses to make such modifications, and we do this by
giving a proof of Fact 1.2 (Corollary 2.14 below). As our purpose is introductory,
we avoid giving the most direct proofs and focus instead upon the gradual process
of improving the guessing.

We then move on to proving a less-known theorem of Shelah that CG(S, κ)
holds for every stationary subset S of every regular cardinal κ ≥ ℵ2 (Theorem 2.15
below).

We finish by giving in Proposition 2.22 an example of how a prediction principle
weaker than ♦ consisting of a matrix of sets can be modified to obtain a club-
guessing principle.

We begin by considering a very weak variation of CGξ(S, T ).
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Definition 2.6. CGξ(S, T,−) asserts the existence of a ξ-bounded C-sequence,
〈Cδ | δ ∈ S〉 such that, for every club D ⊆ κ there is a δ ∈ S with sup(Cδ∩D∩T ) =
δ.

The following might be obvious, but since we have just begun, we give a detailed
proof.

Proposition 2.7. For every triple of regular cardinals µ < λ < κ, for every
stationary S ⊆ Eκλ , any λ-bounded C-sequence over S witnesses CGλ(S,Eκµ ,−).

Proof. Let S ⊆ Eκλ be stationary, and let 〈Cδ | δ ∈ S〉 be a λ-bounded C-sequence.
Given a club D in κ, pick δ ∈ S ∩ acc(D). Since cf(δ) = λ which is a regular
uncountable cardinal, D ∩ δ is club in δ. Pick a closed and unbounded subset
Bδ of δ of ordertype λ such that Bδ ⊆ D. Since Cδ is also club in δ, and δ
has uncountable cofinality, Bδ ∩ Cδ is as well club in δ. Let 〈aδ(i) | i < λ〉 be
the increasing enumeration of Cδ ∩ Dδ. As this is an increasing and continuous
sequence, it is clear then that for every j ∈ acc(λ), cf(aδ(j)) = cf(j). Since µ < λ,
the set Eλµ is cofinal in λ, and so for every j ∈ Eλµ , aδ(j) ∈ Eκµ . It follows that

{aδ(j) | j ∈ Eλµ} is a subset of Cδ ∩D ∩ Eλµ which is unbounded in δ. �

Our goal now is to show that if λ+ < κ, then CGλ(S, T,−) implies that there
is a C-sequence 〈Cδ | δ ∈ S〉 with the property that for every club D ⊆ κ, the
set {δ ∈ S | Cδ ⊆ D} is stationary. In doing so, the challenge lies in improving
instances of “sup(Cδ ∩ D) = δ” into instances of “Cδ ⊆ D”. A natural approach
is to shrink each club Cδ into a smaller club in δ, say Φ(Cδ). In an ideal scenario,
a single such act of shrinking will be enough and we will have our result. If the
scenario is not so ideal, we would hope that Φ(Cδ) is at least ‘better’ than Cδ, or
‘takes care of the requirements imposed by more clubs’ than Cδ (we will be more
precise momentarily). A common strategy in club guessing is to assume that there
are no such ideal scenarios, and then in this case perform this shrinking process
(equivalently, improvement process) iteratively for long enough that a contradiction
results.

We return to precision. We shall need the following operator in what follows for
purposes we have already hinted at.

Definition 2.8. For a subset B ⊆ κ, we define the operator ΦB : P(κ)→ P(κ) by
letting for all x ⊆ κ,

ΦB(x) :=

{
cl(x ∩B), if sup(x ∩B) = sup(x);

x \ sup(x ∩B), otherwise.

We list a few useful properties of ΦB :

(i) sup(ΦB(x)) = sup(x);
(ii) If sup(x ∩B) = sup(x), then nacc(ΦB(x)) is a cofinal subset of x ∩B;

(iii) If x is a closed subset of sup(x), then ΦB(x) ⊆ x and otp(ΦB(x)) ≤ otp(x).

Lemma 2.9. Suppose that ~C = 〈Cδ | δ ∈ S〉 witnesses CGλ(S, T,−), where S and
T are stationary subsets of κ. If λ+ < κ, then there exists a club D ⊆ κ such that
〈ΦD∩T (Cδ) | δ ∈ S〉 witnesses CGλ(S, T, κ).

Proof. Without loss of generality, S ⊆ acc(κ). Suppose that the conclusion does
not hold. In this case, for every club D ⊆ κ, there is a club FD ⊆ κ such that, for
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every δ ∈ S,

sup(nacc(ΦD∩T (Cδ)) \ (FD ∩ T )) = δ.

Here, we use that

otp(nacc(ΦD∩T (Cδ))) ≤ otp(ΦD∩T (Cδ)) ≤ otp(Cδ) ≤ λ < κ.

We construct now a ⊆-decreasing sequence 〈Di | i ≤ λ+〉 of clubs in κ as follows:

(i) D0 := κ;
(ii) Di+1 := Di ∩ FDi ;

(iii) for i ∈ acc(λ+ + 1), Di :=
⋂
i′<iDi′ .

Since λ+ < κ, all these are club subsets of κ. As ~C witnesses CGλ(S, T,−), let
us now pick δ ∈ S with sup(Cδ ∩ Dλ+ ∩ T ) = δ. In particular, for all i < λ+,
sup(Cδ ∩Di ∩ T ) = sup(Cδ), so that ΦDi∩T (Cδ) = cl(Cδ ∩Di ∩ T ). Now, as 〈Di |
i < λ+〉 is ⊆-decreasing, so is 〈Cδ ∩Di ∩ T | i < λ+〉. But otp(Cδ) ≤ λ, so we may
find some i < λ+ such that Cδ ∩Di ∩ T = Cδ ∩Di+1 ∩ T .

By the choice of FDi , and since Di+1 ⊆ FDi , we have that

sup(nacc(ΦDi∩T (Cδ)) \ (Di+1 ∩ T )) = δ.

However, nacc(ΦDi∩T (Cδ)) ⊆ Cδ∩Di∩T = Cδ∩Di+1∩T , which is a contradiction.
�

So CGλ(S, T,−) implies CGλ(S, T, κ), provided that λ+ < κ. Likewise, CG(S,

T, κ) holds whenever there is a witness ~C = 〈Cδ | δ ∈ S〉 to CG(S, T ) such that
|Cδ| < δ for club many δ ∈ S.

The instance CG(S, T, σ) with σ = κ is sometimes dubbed tail club guessing.
The next lemma derives a stronger form of guessing from tail club guessing.

Lemma 2.10. CG(S, T, κ) holds iff there is a C-sequence 〈Cδ | δ ∈ S〉 such that:

(i) for every δ ∈ S, otp(Cδ) = cf(δ);
(ii) for every club D ⊆ κ, the set {δ ∈ S | nacc(Cδ) ⊆ D ∩ T} is stationary.

Proof. Only the forward implication requires an argument. Let ~C = 〈Cδ | δ ∈ S〉 be
a CG(S, T, κ)-sequence. For every i < κ, we define the operator Φi : P(κ)→ P(κ)
by letting for all x ⊆ κ,

Φi(x) :=

{
x, if x ⊆ i;
x \ i, otherwise.

It is clear that Φi(x) is a cofinal subset of x, and nacc(Φi(x)) ⊆ nacc(x). Fur-
thermore, if x is club in its supremum, then so is Φi(x).

Claim 2.10.1. There exists i < κ such that, for every club D ⊆ κ, the set {δ ∈ S |
nacc(Φi(Cδ)) ⊆ D ∩ T} is stationary.

Proof. Suppose not. For each i < κ, fix a sparse enough club Di ⊆ κ for which {δ ∈
S | nacc(Φi(Cδ)) ⊆ Di∩T} is disjoint from Di. Let D :=

a
i<κDi. By the choice of

~C, there are δ ∈ S∩D and β < δ such that succκ(Cδ \β) ⊆ D∩T . As otp(Cδ) < κ,
we can find an i < δ such that nacc(Cδ) \ i ⊆ D ∩ T . Then nacc(Φi(Cδ)) ⊆ D ∩ T .
But i < δ and δ ∈ D, so that δ ∈ Di. This is a contradiction. a
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Let i be given by the preceding claim. The sequence 〈Φi(Cδ) | δ ∈ S〉 satisfies
Clause (ii) of the Lemma. In order to incorporate Clause (i), for each δ ∈ S, we
simply pick a club C•δ in δ of ordertype cf(δ) such that nacc(C•δ ) ⊆ nacc(Φi(Cδ)).
Evidently, 〈C•δ | δ ∈ S〉 is as sought. �

Putting everything together, we arrive at the following striking conclusion.

Corollary 2.11 ([She94c]). For every regular uncountable cardinal λ such that

λ+ < κ, for every stationary S ⊆ Eκλ , there is a C-sequence ~C = 〈Cδ | δ ∈ S〉 such
that the following two hold:

(i) for every δ ∈ S, otp(Cδ) = λ;
(ii) for every club D ⊆ κ, the set {δ ∈ S | Cδ ⊆ D} is stationary.

Proof. By Proposition 2.7, in particular, CGλ(S,Eκℵ0
,−) holds. Then, Lemma 2.9

implies that so does CGλ(S,Eκℵ0
, κ). Now, appeal to Lemma 2.10. �

At this point, it is natural to ask whether it is possible to waive the uncountability
hypothesis on λ in the preceding theorem. We shall show that this is indeed the
case, by invoking an operation different than that of ΦB .

Definition 2.12. For a subset D ⊆ κ, we define the operator ΦD : P(κ) → P(κ)
by letting for all x ⊆ κ,

ΦD(x) :=

{
{sup(D ∩ η) | η ∈ x, η > min(D)}, if sup(D ∩ sup(x)) = sup(x);

x \ sup(D ∩ sup(x)), otherwise.

We list a few useful properties of ΦD:

(i) sup(ΦD(x)) = sup(x);
(ii) otp(ΦD(x)) ≤ otp(x);
(iii) If sup(D∩ sup(x)) = sup(x), then acc+(ΦD(x)) ⊆ acc+(D)∩ acc+(x). If in

addition, D is closed below sup(x), then ΦD(x) ⊆ D.

Lemma 2.13. Suppose that κ ≥ ℵ2, and that 〈Cδ | δ ∈ S〉 is an ω-bounded C-
sequence over a stationary S ⊆ Eκℵ0

.
Then there is a club D ⊆ κ such that 〈ΦD(Cδ) | δ ∈ S〉 witnesses CGω(S, κ, κ).

Proof. Suppose not. In this case, for every club D ⊆ κ, there is a club FD ⊆ κ
such that, for every δ ∈ S,

sup(ΦD(Cδ) \ FD) = δ.

Here we have used that since Cδ has ordertype ω, ΦD(Cδ) has ordertype ω as well,
and hence all of its points are nonaccumulation points.

As κ > ℵ1, we may construct a ⊆-decreasing sequence 〈Di | i ≤ ω1〉 of clubs in
κ as follows:

(i) D0 := κ;
(ii) Di+1 := Di ∩ FDi ;
(iii) for i ∈ acc(ω1 + 1), Di :=

⋂
i′<iDi′ .

Pick δ ∈ S ∩ acc(Dω1
). For each i < ω1, since Di ∩ δ is a closed unbounded

subset of δ, it is the case that ΦDi(Cδ) = {sup(Di ∩ η) | η ∈ Cδ, η > min(Di)}, and
ΦDi(Cδ) ⊆ Di.

As 〈Di | i ≤ ω1〉 is ⊆-decreasing, for each η ∈ Cδ, 〈sup(Di ∩ η) | i < ω1〉 is
a weakly decreasing sequence of ordinals. By well-foundedness of the ordinals, for
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each η ∈ Cδ, there must be some iη < ω1 such that sup(Di ∩ η) = sup(Dj ∩ η)
whenever iη ≤ i < j < ω1. Let i∗ := supη∈Cδ iη, which is a countable ordinal as
Cδ is a countable set. It follows that for any i ∈ [i∗, ω1), ΦDi(Cδ) = ΦDi+1

(Cδ).

However, ΦDi+1
(Cδ) ⊆ Di+1 ⊆ FDi , contradicting the choice of FDi . �

Putting everything together:

Corollary 2.14 ([She94c]). For every pair of infinite regular cardinals λ < κ

and every stationary S ⊆ Eκλ , if λ+ < κ, then there is a C-sequence ~C = 〈Cδ |
δ ∈ S〉 with the property that for every club D ⊆ κ, the set {δ ∈ S | Cδ ⊆ D} is
stationary. �

We now move on to prove a lesser-known theorem of Shelah concerning club-
guessing. Unlike the previous result, in the following, S is not assumed to be a
subset of Eκλ for some fixed cardinal λ < κ. So, for instance, S could be the set of
regular cardinals below a Mahlo cardinal κ.

Theorem 2.15 (Shelah). Suppose κ ≥ ℵ2.
For every stationary S ⊆ κ, CG(S, κ, 1) holds.

Our proof of Theorem 2.15 goes through the notion of an amenable C-sequence,
which is a strengthening of ⊗~C from [She94c, p. 134].

Definition 2.16 ([BR19a, Definition 1.3]). For a stationary S ⊆ κ, a C-sequence
〈Cδ | δ ∈ S〉 is amenable iff for every club D ⊆ κ, the set {δ ∈ S | sup(D ∩ δ \Cδ) <
δ} is nonstationary in κ.

Fact 2.17 ([IR22a, Corollary 3.11]). For every stationary S ⊆ κ, there exists a
stationary S′ ⊆ S such that S′ carries an amenable C-sequence.

Lemma 2.18. Suppose that S ⊆ κ is stationary and ~C = 〈Cδ | δ ∈ S〉 is an
amenable C-sequence. If κ ≥ ℵ2, then there exists a club D ⊆ κ for which 〈ΦD(Cδ) |
δ ∈ S〉 witnesses CG(S, κ, 1).

Proof. Suppose not. In this case, for every club D ⊆ κ, there is a club FD ⊆ κ
such that, for every δ ∈ S,

sup(nacc(ΦD(Cδ)) ∩ FD) < δ.

As κ ≥ ℵ2, we may construct a ⊆-decreasing sequence 〈Di | i ≤ ω1〉 of clubs in κ
as follows:

(i) D0 := κ;
(ii) Di+1 := Di ∩ FDi ;
(iii) for i ∈ acc(ω1 + 1), Di :=

⋂
i′<iDi′ .

As ~C is amenable and Dω1
is club in κ, we may pick some δ ∈ S such that

sup(Dω1
∩ δ \ Cδ) = δ. For each i < ω1, since Di ∩ δ is a closed unbounded subset

of δ, it is the case that

ΦDi(Cδ) = {sup(Di ∩ η) | η ∈ Cδ, η > min(Di)}.
So ΦDi(Cδ) ⊆ Di and acc(ΦDi(Cδ)) ⊆ acc(Di) ∩ acc(Cδ).

In addition, for each i < ω1, since Di+1 ⊆ FDi , the following ordinal is smaller
than δ:

εi := sup(nacc(ΦDi(Cδ)) ∩Di+1).

Claim 2.18.1. There exists I ⊆ ω1 of ordertype ω such that sup{εi | i ∈ I} < δ.
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Proof. If cf(δ) > ω1, then just let I := ω. If cf(δ) = ω, then pick a countable
cofinal subset E of δ and for each i ∈ ω1, find the least ε ∈ E such εi ≤ ε. By the
pigeonhole principle, there is an ε ∈ E for which {i ∈ I | εi ≤ ε} is uncountable. In
particular, this set contains a subset of ordertype ω. a

Fix I as in the claim, and then pick γ ∈ Dω1
∩ δ \ Cδ above sup{εi | i ∈ I}.

As γ /∈ Cδ, η := min(Cδ \ γ) is in nacc(Cδ). As 〈sup(Di ∩ η) | i ∈ I〉 is a weakly
decreasing sequence of ordinals, by well-foundedness there must be a pair of ordinals
i < j in I such that βi := sup(Di ∩ η) is equal to βj := sup(Dj ∩ η).

As γ ∈ Dω1 ⊆ Di, εi < γ ≤ βi ≤ η, so βi ∈ ΦDi(Cδ) ∩ (εi, η]. Likewise,
βj ∈ ΦDj (Cδ) ∩ (εj , η]. Recalling that βi = βj ∈ Dj ⊆ Di+1, it follows that βi is
an element of ΦDi(Cδ) ∩ Di+1 above εi and hence βi ∈ acc(ΦDi(Cδ)). However,
acc(ΦDi(Cδ)) ⊆ acc(Di) ∩ acc(Cδ), and hence βi ∈ acc(Cδ). But γ ≤ βi ≤ η and
Cδ ∩ [γ, η] = {η}, and hence βi = η, contradicting the fact that η ∈ nacc(Cδ). �

Proof of Theorem 2.15. Given a stationary S ⊆ κ, appeal to Fact 2.17 to find
an amenable C-sequence 〈Cδ | δ ∈ S′〉 for some stationary S′ ⊆ S. Then, by
Lemma 2.18, CG(S′, κ, 1) holds. So CG(S, κ, 1) holds as well. �

As pointed out in the introduction, if ♦(S) holds for a given stationary subset
S of κ, then, for every stationary T ⊆ κ, CG(S, T, κ) holds. The next result shows
how to get CG(S, T, κ) from a principle weaker than ♦(S) and even weaker than
♣(S) and of which many instances hold true in ZFC.

Definition 2.19 ([Rin10a]). For a stationary subset S of a regular uncountable
cardinal κ, ♣−(S) asserts the existence of a sequence 〈Aδ | δ ∈ S〉 such that:

(i) for all δ ∈ S, Aδ ⊆ [δ]<|δ| and |Aδ| ≤ |δ|;
(ii) for every cofinal Z ⊆ κ, there are δ ∈ S and A ∈ Aδ with sup(A ∩ Z) = δ.

Remark 2.20. Note that if ♣−(S) holds, then {δ ∈ S | cf(δ) < |δ|} must be
stationary.

Fact 2.21 ([Rin10a]). For an infinite cardinal λ and a stationary S ⊆ λ+:

• If S ∩ Eλ+

6=cf(λ) is stationary, then ♣−(S) holds;

• If �∗λ holds and S reflects stationarily often, then ♣−(S) holds.

In reading the statement of the next two propositions, keep in mind Lemma 2.10.

Proposition 2.22. Suppose that ♣−(S) holds for a given stationary S ⊆ κ.
Then, for every stationary T ⊆ κ, CG(S, T, κ) holds.

Proof. Let 〈Aδ | δ ∈ S〉 be a ♣−(S)-sequence. For each δ ∈ S, fix an enumeration
{Aδ,i | i < δ} of Aδ.

Claim 2.22.1. There exists i < κ such that, for every club E ⊆ κ, there is a δ ∈ S
with sup(Aδ,i ∩ E ∩ T ) = δ.

Proof. Otherwise, for each i < κ, we may pick a counterexample Ei. Let Z := T ∩a
i<κEi. Pick δ ∈ S and i < δ such that sup(Aδ,i∩Z) = δ. Since Z∩(i, δ) ⊆ T ∩Ei,

we have that sup(Aδ,i ∩ Ei ∩ T ) = δ. This contradicts the choice of Ei. a

Fix i as given by the preceding claim, and denote Aδ := Aδ,i. We shall now
make use of the operator ΦB from Definition 2.8.
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Claim 2.22.2. There exists a club D ⊆ κ such that, for every club E ⊆ κ, there
exists δ ∈ S with sup(Aδ) = δ and nacc(ΦD∩T (Aδ)) ⊆ E.

Proof. Suppose not. In this case, for every club D ⊆ κ, there is a club FD ⊆ κ such
that for every δ ∈ S, either sup(Aδ) < δ or nacc(ΦD∩T (Aδ)) * FD. We construct
a ⊆-decreasing sequence 〈Di | i < κ〉 of clubs in κ as follows:

(i) D0 := κ;
(ii) Di+1 := Di ∩ FDi ;
(iii) for i ∈ acc(κ), Di :=

⋂
i′<iDi′ .

Let E :=
a
i<κDi. Pick δ ∈ S with sup(Aδ ∩ E ∩ T ) = δ. For every i < δ,

δ ∈ acc+(Di ∩ T ) and nacc(ΦDi∩T (Aδ)) * Di+1, so that we may pick βi ∈ (Aδ ∩
Di ∩ T ) \Di+1. As |Aδ| < δ, let us fix i < j < δ such that βi = βj . So βi /∈ Di+1

while βj ∈ Dj ⊆ Di+1. This is a contradiction. a

Let D be given by the preceding claim. For δ ∈ S, let Cδ := ΦD∩T (Aδ). Then
〈Cδ | δ ∈ S〉 witness CG(S, T, κ). �

Corollary 2.23. For every uncountable cardinal λ, every stationary S ⊆ Eλ
+

6=cf(λ),

and every stationary T ⊆ λ+, CG(S, T, κ) holds. �

We end this section by saying a few words about the following natural generali-
sation of Definition 2.2.

Definition 2.24. For an ideal Jκ over κ, CGξ(Jκ, T, σ, ~J) asserts the existence of

a C-sequence ~C = 〈Cδ | δ < κ〉 such that {δ < κ | otp(Cδ) > ξ} ∈ Jκ, and such
that for every club D ⊆ κ,

{δ < κ | {β < δ | succσ(Cδ \ β) ⊆ D ∩ T} ∈ J+
δ } ∈ J

+
κ .

First, the proof of Lemma 2.10 makes it clear that obtaining a single witness
δ ∈ S to an instance of guessing a club is equivalent to obtaining stationarily-many

such witnesses. More precisely, the usual principle CGξ(S, T, σ, ~J) coincides with

CGξ(Jκ, T, σ, ~J) for Jκ := NSκ � S. Furthermore, if ~C witnesses CGξ(S, T, σ, ~J),

then the collection of all S′ ⊆ S for which ~C � S′ fails to witness CGξ(S
′, T, σ, ~J)

forms a κ-complete normal (and proper) ideal extending NSκ � S.
Second, in any of the upcoming results that involve pumping an instance CGξ(S, . . .)

into a better instance CGξ̄(S, . . .), no new ideas would be needed in order to get
the analogous result where S is replaced by an abstract κ-complete ideal Jκ over
κ. In fact, for many of the results, letting Jκ be an ℵ1-indecomposable ideal (see
for instance [Eis10a, §2]) over κ would be sufficient. For this reason we eschew the
added generality of Definition 2.24 and focus on Definition 2.2.

3. Coherent sequences

Let us point out some commonalities in the proofs of Lemmas 2.9, 2.10, 2.13
and 2.18. In all of these, we started with a C-sequence, and then we improved it
using some operation Φ : P(κ) → P(κ). These similarities leads one to describe
abstractly the class of such operations to which the examples we’ve met belong,
in the hope that known members or properties of this class might be of assistance
in future endeavours. This class has in fact already been delineated in work of
Brodsky and Rinot in [BR19a], where they occurred in the work on constructing
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trees with prescribed properties by studying how the properties of a C-sequence
affect the properties of the trees derived from walks on ordinals.

Definition 3.1 ([BR19a]). Let K(κ) := {x ∈ P(κ) | x 6= ∅ & acc+(x) ⊆ x &
sup(x) /∈ x} be the set of all closed subsets of some nonzero limit ordinal ≤ κ.

An operator Φ : K(κ)→ K(κ) is a postprocessing function if for every x ∈ K(κ):

(i) Φ(x) is a club in sup(x);
(ii) acc(Φ(x)) ⊆ acc(x);
(iii) Φ(x) ∩ ᾱ = Φ(x ∩ ᾱ) for every ᾱ ∈ acc(Φ(x)).

Remark 3.2. By the first clause, otp(Φ(x)) ≥ cf(sup(x)), and by the second clause,
otp(Φ(x)) ≤ otp(x).

It is easy to verify that the three operations we met in Section 2 — when their
domains are restricted to K(κ) — are postprocessing functions. What’s nice about
postprocessing functions is that requirement (iii) implies that they maintain co-
herence features of C-sequences. Indeed, the theme of this section is to obtain
club-guessing sequences which have additional coherence features. The particu-
lar coherence features we consider can be found in the following definition and in
Definition 3.15 below.

Definition 3.3. Let ~C = 〈Cδ | δ ∈ S〉 be a C-sequence.

(i) For an infinite cardinal χ ≤ κ, we say that ~C is χv-coherent iff for all δ ∈ S
and δ̄ ∈ acc(Cδ) ∩ Eκ≥χ, it is the case that δ̄ ∈ S and Cδ̄ = Cδ ∩ δ̄;

(ii) We say that ~C is coherent iff it is ωv-coherent;

(iii) We say that ~C is weakly coherent iff for every α < κ, |{Cδ∩α | δ ∈ S}| < κ.

It is routine to verify that if Φ : K(κ) → K(κ) is a postprocessing function,
and 〈Cδ | δ ∈ S〉 satisfies any of the above coherence properties, then 〈Φ(Cδ) |
δ ∈ S〉 satisfies the same coherence property as well, Clause (iii) being key in the
verification.

In particular, as a consequence of the use of postprocessing functions, in each
of Lemmas 2.9, 2.10, 2.13, and 2.18, if we start with a C-sequence with one of
the coherence properties above, the exact same proof ensures that the guessing
C-sequence obtained satisfies the same coherence property.

As a concrete example, by [BR19a, Lemma 1.23], every transversal to a�ξ(κ,<µ)-
sequence with ξ < κ or µ < κ gives an amenable C-sequence 〈Cδ | δ ∈ acc(κ)〉 which
can then be supplied to the machinery in Lemma 2.18. Indeed, in [BR19a], solv-
ing Question 16 from [Rin11] in the affirmative, a wide club guessing theorem was
proven using Lemma 2.18.4

Fact 3.4 ([BR19a, Lemma 2.5]). If �ξ(κ,<µ) holds for a regular cardinal κ ≥ ℵ2

and a cardinal µ < κ, then for every stationary S ⊆ κ, �ξ(κ,<µ) may be witnessed
by a sequence 〈Cδ | δ < κ〉 with the added feature that for every club D ⊆ κ, there
exists δ ∈ S such that, for every C ∈ Cδ, sup(nacc(C) ∩D) = δ.

Recall 3.5. �ξ(κ,<µ) asserts the existence of a sequence 〈Cα | α < κ〉 satisfying all
of the following:

4The statement of [BR19a, Lemma 2.5] does not mention the parameter ξ, however, its proof
is an application of a postprocessing function and hence does not increase ordertypes.
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• for every limit ordinal α < κ, 1 < |Cα| < µ, and each C ∈ Cα is club in α
with otp(C) ≤ ξ;
• for every α < κ, C ∈ Cα, and ᾱ ∈ acc(C), C ∩ ᾱ ∈ Cᾱ;
• for every club D in κ, there exists some α ∈ acc(D) such that D ∩ α /∈ Cα.

Remark 3.6. The instance�κ(κ,<2) is better known as�(κ), the instance�λ(λ+, <2)
is better known as �λ, and the instance �λ(λ+, <λ+) is better known as �∗λ.

Note that �λ holds iff there exists a coherent λ-bounded C-sequence over λ+,
and that �∗λ holds iff there exists a weakly coherent λ-bounded C-sequence over
λ+. The following terminology is also quite useful.

Definition 3.7. A C-sequence ~C = 〈Cδ | δ < λ+〉 is a transversal for �∗λ iff it is
λ-bounded and weakly coherent.

A special case of Fact 3.4 states that if �(κ) holds and κ ≥ ℵ2, then for ev-

ery stationary S ⊆ κ, there exists a �(κ)-sequence ~C such that ~C � S witnesses
CG(S, κ).5 Replacing �(κ) by �λ, better forms of guessing are available:

Fact 3.8 ([Rin14c, Corollary 2.4]). Suppose that λ is an uncountable cardinal.
Then �λ holds iff there exists a coherent λ-bounded C-sequence 〈Cδ | δ < λ+〉

with the feature that for every club D ⊆ λ+ and every σ ∈ acc(λ), there exists some
δ < λ+ with otp(Cδ) = σ such that Cδ ⊆ D.

Remark 3.9. Note that for a ~C as above, the map δ 7→ otp(Cδ) yields a canonical
partition of acc(λ+) into λ-many pairwise disjoint stationary sets.

An inspection of the proofs of [Rin14c, Lemma 2.8] and Proposition 2.22 makes
it clear that the following holds true.

Theorem 3.10. Suppose that λ is an uncountable cardinal, and S, T are stationary

subsets of λ+. Suppose also that either S ∩ Eλ+

6=cf(λ) is stationary or that Tr(S) is

stationary. Then:

(1) �λ holds iff there exists a coherent λ-bounded C-sequence 〈Cδ | δ < λ+〉
with the feature that for every club D ⊆ λ+, there exists a δ ∈ S such that
nacc(Cδ) ⊆ D ∩ T ;

(2) �∗λ holds iff there exists a weakly coherent λ-bounded C-sequence 〈Cδ |
δ < λ+〉 with the feature that for every club D ⊆ λ+, there exists a δ ∈ S
such that nacc(Cδ) ⊆ D ∩ T . �

We now turn to present another postprocessing function.

Lemma 3.11 (see [BR21, Lemma 4.9]). For every function f : κ → [κ]<ω, the
operator Φf : K(κ)→ K(κ) defined via:

Φf (x) := x ∪
⋃
{f(γ) ∩ (sup(x ∩ γ), γ) | γ ∈ nacc(x)}

is a postprocessing function. �

The definition of Φf is motivated by the regressive functions ideal J [κ] from
[Rin17], and the following extension of it from [Rin22].

5Replacing κ by an abstract stationary set T is trickier, but note that if S is a stationary subset

of Eκ>σ that reflects stationarily often, then for every �(κ)-sequence ~C such that ~C � S witnesses

CG(S, T, σ), it is also the case that ~C � Tr(S) witnesses CG(Tr(S), T, σ).
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Definition 3.12 ([Rin22]). Jω[κ] stands for the collection of all subsets S ⊆ κ for
which there exist a club C ⊆ κ and a sequence of functions 〈fi : κ→ [κ]<ω | i < κ〉
with the property that for every δ ∈ S ∩C, every regressive function f : δ → δ, and
every cofinal subset Γ ⊆ δ, there exists an i < δ such that

sup{γ ∈ Γ | f(γ) ∈ fi(γ)} = δ.

The next lemma gives a sufficient condition for moving from CGξ(S, κ) to CGξ(S, T ).

Lemma 3.13. Suppose that ~C = 〈Cδ | δ ∈ S〉 is a C-sequence witnessing CGξ(S, κ).
If S ∈ Jω[κ], then for every stationary T ⊆ κ, there exists a function f : κ→ [κ]<ω

such that 〈Φf (Cδ) | δ ∈ S〉 witnesses CGξ(S, T )

Proof. Without loss of generality, S ⊆ acc(κ). Suppose that S ∈ Jω[κ], and fix a
club C ⊆ κ and a sequence of functions 〈fi : κ→ [κ]<ω | i < κ〉 as in Definition 3.12.
For all i < κ and δ ∈ S, denote Ciδ := Φfi(Cδ), so that otp(Ciδ) ≤ otp(Cδ).

Let T be an arbitrary stationary subset of κ.

Claim 3.13.1. There is an i < κ such that 〈Ciδ | δ ∈ S〉 witnesses CG(S, T ).

Proof. Suppose not. For each i < κ, pick a club Di ⊆ κ such that for every δ ∈ S,

sup(nacc(Ciδ) ∩Di ∩ T ) < δ.

Consider the two clubs D := C ∩
a
i<κDi and D′ := acc+(D ∩ T ). By the choice

of ~C, pick δ ∈ S such that Γ := nacc(Cδ) ∩D′ is cofinal in δ. As Γ is a subset of
nacc(Cδ) ∩D′, we may define a regressive function f : Γ→ δ via:

f(γ) := min{β ∈ D ∩ T | sup(Cδ ∩ γ) < β < γ}.

As γ ∈ S∩C, find i < δ such that Γ′ := {γ ∈ Γ | f(γ) ∈ fi(γ)} is cofinal in δ. By
possibly omitting an initial segment of Γ′, we may assume that sup(Cδ∩min(Γ′)) >
i. Recalling the definition of D, it follows that for every γ ∈ Γ′, f(γ) ∈ Di ∩ T .
So, for every γ ∈ Γ′, if we let β := sup(Cδ ∩ γ), then Ciδ ∩ (β, γ) is equal to
the finite set fi(γ) ∩ (β, γ) that contains f(γ) which is an element of Di ∩ T . So
sup(nacc(Ciδ) ∩Di ∩ T ) = δ, contradicting the choice of Di. a

Let i be given by the preceding claim. Then f := fi is as sought. �

By [Rin22, Proposition 3.3], Jω[λ+] contains no stationary subsets of Eλ
+

cf(λ). In

particular, Jω[ω1] is empty. So, unlike Fact 3.4, in the following we don’t need to
explicitly require κ to be ≥ ℵ2.

Corollary 3.14. If �(κ) holds, then for every stationary S ∈ Jω[κ] and ev-

ery stationary T ⊆ κ, there exists a �(κ)-sequence ~C such that ~C � S witnesses
CG(S, T ). �

We have described a way for moving from CG(S, κ) to CG(S, T ). Our next goal
is to describe a way for moving from CG(κ, T ) to CG(S, T ). First, a definition.

Definition 3.15. We say that a C-sequence ~C = 〈Cδ | δ ∈ S〉 is v∗-coherent iff
for all δ ∈ S and δ̄ ∈ acc(Cδ), it is the case that δ̄ ∈ S and sup(Cδ̄ 4 (Cδ ∩ δ̄)) < δ̄.

Remark 3.16. Every v∗-coherent C-sequence is weakly coherent.

To preservev∗-coherence, one needs to consider a strengthening of Definition 3.1.
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Definition 3.17. An operator Φ : K(κ)→ K(κ) is a postprocessing∗ function if for
every x ∈ K(κ), Clause (i)–(iii) of Definition 3.1 hold true, and, in addition:

(iv) for every x̄ ∈ K(κ) such that x̄ v∗ x and sup(x̄) ∈ acc(Φ(x)), Φ(x̄) v∗ Φ(x).

It is readily checked that all the postprocessing functions we have met so far
are moreover postprocessing∗ functions. An example of a postprocessing function
that is not postprocessing∗ function may be found in [LHR19, Lemma 3.8]. In
fact, it is unknown at present how to obtain the same effect of that map using a
postprocessing∗ function.

Theorem 3.18. Suppose that κ ≥ ℵ2, and that there exists an v∗-coherent C-
sequence witnessing CG(κ, T ).

For every stationary S ⊆ κ, there exists an v∗-coherent C-sequence over κ whose
restriction to S witnesses CG(S, T ).

Proof. The proof will be an adaptation of the proof of [Rin17, Theorem 4.13].
Suppose towards a contradiction that S is a counterexample. Fix an v∗-coherent
C-sequence ~e = 〈eδ | δ < κ〉 witnessing CG(κ, T ). By recursion on i < ω1, we

construct a club Di ⊆ κ and an v∗-coherent C-sequence ~Ci = 〈Ciα | α < κ〉. Our
construction will have the property that for all α < κ and j < i < ω1, Cjα ⊆ Ciα.

I For i = 0, let D0 := κ and ~C0 := ~e.

I For every i < ω1 such that a club Di ⊆ κ and an v∗-coherent C-sequence ~Ci

have been constructed, by the assumption we can find a club FDi such that, for
every δ ∈ S,

sup(nacc(Ciδ) ∩ FDi ∩ T ) < δ.

So let Di+1 := Di ∩ FDi . As for constructing ~Ci+1, we do this by recursion on
α < κ. To start, let Ci+1

0 := ∅, and for every α < κ let Ci+1
α+1 := {α}. Next, for

α ∈ acc(κ),

Ci+1
α := Ciα ∪

⋃
{Ci+1

γ \ sup(Ciα ∩ γ) | γ ∈ nacc(Ciα) \ (FDi ∩ T )}.

It is clear that ~Ci+1 = 〈Ci+1
α | α < κ〉 is v∗-coherent as well.

I For every i ∈ acc(ω1) such that 〈(Dj , ~Cj) | j < i〉 has been constructed as
required, let Di :=

⋂
j<iDj and for every α < κ, let Ciα :=

⋃
j<i C

j
α.

Claim 3.18.1. Let α < κ. Then acc+(Ciα) =
⋃
j<i acc(Cjα).

Proof. Let β ∈ acc+(Ciα). The sequence 〈min(Cjα \β) | j < i〉 is weakly decreasing,
and as i is a nonzero limit ordinal, it stabilizes at some j∗ < i. Let β+ be this stable
value (which may be equal to β). If there exists j ∈ [j∗, i) such that β+ ∈ acc(Cjα),
then in fact β+ = β and we can finish. So, suppose that this is not so. If there exists
j ∈ [j∗, i) such that β+ /∈ FDj ∩ T , then β+ ∈ acc(Cj+1

α ) and again we can finish.
So suppose this is not so. Let β− := sup(Cj

∗

α ∩ β+) so that β− < β ≤ β+. Now
examining the construction of Cjα for j ∈ (j∗, i), it is clear that for every j ∈ [j∗, i),

(β−, β+] ∩ Cj
∗

α = (β−, β+] ∩ Cjα.

However, this implies that β /∈ acc(Ciα), which is a contradiction. a

So ~Ci = 〈Ciα | α < κ〉 is a C-sequence. Furthermore, since, ~Cj is v∗-coherent

for every j < i, the preceding claim altogether implies that ~Ci is v∗-coherent.
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Consider the club D :=
⋂
i<ω1

Di. As ~C witnesses CG(κ, T ), the following set is
stationary:

B := {β < κ | sup(nacc(Cβ) ∩D ∩ T ) = β}.
Notice that by the nature of our recursive construction, for all i < ω1,

nacc(Cβ) ∩D ∩ T ) ⊆ nacc(Ciβ) ∩D ∩ T,

and hence, for all β ∈ B and i < ω1,

sup(nacc(Ciβ) ∩D ∩ T ) = β.

Pick δ ∈ S ∩ acc+(B). For each i < ω1 the following ordinal is smaller than δ

εi := sup(nacc(Ciδ) ∩ FDi ∩ T ).

We now perform a case analysis to reach a contradiction.

CASE 1. cf(δ) > ℵ0. Let ε∗ := supi<ω εi, so that ε∗ < δ. Pick β ∈ (ε∗, δ) ∩ B.

For every i < ω, let γi := min(Ciδ \ β) so that 〈γi | i < ω〉 is weakly decreasing.
Then pick i < ω such that γi = γi+1.

SUBCASE 1.1. γi > β. It follows that γi ∈ nacc(Ciδ). As ε∗ < β < γi, we

have that γi /∈ FDi ∩ T . It follows from our recursive construction that Ci+1
δ ∩

[β, γi) = Ci+1
γi ∩ [β, γi) and the latter set is nonempty so that γi+1 < γi which is a

contradiction.
SUBCASE 1.2. γi = β and β ∈ nacc(Ciδ). So γi is an element of nacc(Ciδ) above

ε∗, and we are back to Subcase 1.1.
SUBCASE 1.3. γi = β and β ∈ acc(Ciδ). In this case, byv∗-coherence, we have

that sup((Ciβ 4 Ciδ) ∩ β) < β. This implies that

sup(nacc(Ciδ) ∩ β ∩D ∩ T ) = β.

But D ⊆ FDi , contradicting the fact that εi < β.

SUBCASE 2. cf(δ) = ℵ0. Find an uncountable I ⊆ ω1 such that

ε∗ := sup{max{εi, εi+1} | i ∈ I}

is smaller than δ. Pick β ∈ (ε∗, δ) ∩ B. For every i < ω1, let γi := min(Ciδ \ β)
so that 〈γi | i < ω1〉 is weakly decreasing. Pick a large enough i ∈ I such that
γi = γi+1.

SUBCASE 2.1. γi > β. Same as in Subcase 1.1.

SUBCASE 2.2. γi = β and β ∈ nacc(Ciδ). Same as in Subcase 1.2.

SUBCASE 2.3. γi = β and β ∈ acc(Ciδ). Same as in Subcase 1.3. �

Corollary 3.19. If �(κ) holds and Jω[κ] contains a stationary set, then for all

stationary subsets S, T of κ, there exists an v∗-coherent C-sequence ~C = 〈Cδ |
δ < κ〉 such that ~C � S witnesses CG(S, T ). �

Recalling Theorem 3.10, we now turn to deal with stationary subsets of Eλ
+

cf(λ),

dividing the results into two, depending on whether λ is regular or singular.

Theorem 3.20. Suppose that λ is a regular uncountable cardinal, and �∗λ holds.

For every stationary S ⊆ Eλ
+

λ , there exists a transversal ~C = 〈Cδ | δ < λ+〉 for

�∗λ such that ~C � S witnesses CGλ(S,Eλ
+

λ ).
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Proof. Suppose not, and fix a stationary S ⊆ Eλ+

λ that constitutes a counterexam-
ple. As �∗λ holds, we may fix a transversal ~e = 〈eδ | δ < λ+〉 for �∗λ. We shall

recursively construct a sequence 〈(Dn, ~en, ~Cn) | n < ω〉 such that Dn is a club in

λ+, and ~en and ~Cn are transversals for �∗λ.

Set D0 := acc(λ+), ~e0 := ~e and ~C0 := ~e. Next, suppose that n < ω and that

〈(Dj , ~ej , ~Cj) | j ≤ n〉 has already been successfully defined. As ~Cn = 〈Cnδ | δ < λ+〉
is a transversal for �∗λ, by the choice of the stationary set S, it follows that we may
pick a subclub Dn+1 ⊆ Dn such that, for every δ ∈ S,

sup(nacc(Cnδ ) ∩Dn+1 ∩ Eλ
+

λ ) < δ.

Consider the postprocessing function ΦDn+1
from Definition 2.12. For every

δ ∈ λ+ \S, let en+1
δ := eδ and Cn+1

δ := eδ. For every δ ∈ S, let en+1
δ := ΦDn+1

(Cnδ ),
and then let

Cn+1
δ := en+1

δ ∪ {eγ \ sup(en+1
δ ∩ γ) | γ ∈ nacc(en+1

δ ) ∩ Eλ
+

<λ}.

By [BR19b, Lemma 2.8], ~en+1 := 〈en+1
δ | δ < λ+〉 is again a transversal for �∗λ.

Claim 3.20.1. ~Cn+1 is a transversal for �∗λ.

Proof. Since ~en+1 is a λ-bounded C-sequence, the definition of ~Cn+1 makes it clear

that it is as well. Suppose that ~Cn+1 is not weakly coherent, and pick the least
α < λ+ such that

|{Cn+1
δ ∩ α | δ < λ+}| = λ+.

As ~Cn+1 � (λ+ \ S) = ~en+1 � (λ+ \ S), and ~en+1 is a transversal for �∗λ, it follows
that

|{en+1
δ ∩ α | δ ∈ S}| < |{Cn+1

δ ∩ α | δ ∈ S}| = λ+,

so we may fix ∆ ∈ [S]λ
+

such that:

• δ 7→ Cn+1
δ ∩ α is injective over ∆, but

• δ 7→ en+1
δ ∩ α is constant over ∆.

Fix ε < α such that sup(en+1
δ ∩ α) = ε for all δ ∈ ∆. By minimality of α, and by

possibly shrinking ∆ further, we may also assume that

• δ 7→ Cn+1
δ ∩ ε is constant over ∆.

It thus follows from the definition of ~Cn+1 that the map δ 7→ Cn+1
δ ∩ [ε, α) is

injective over ∆, and that, for every δ ∈ ∆, Cn+1
δ ∩ [ε, α) = eγ ∩ [ε, α) for γ :=

min(en+1
δ \ (ε+ 1)). In particular,

|{eγ ∩ [ε, α) | γ < λ+}| = λ+,

contradicting the fact that ~e is a transversal for a �∗λ-sequence. a

This completes the construction of the sequence 〈(Dn, ~en, ~Cn) | n < ω〉. Now,
let D :=

⋂
n<ωDn. Pick δ ∈ S such that otp(D ∩ δ) = ωδ > λ. Recall that, for

every n < ω, the following ordinal is smaller than δ:

εn := sup(nacc(Cnδ ) ∩Dn+1 ∩ Eλ
+

λ ).

Since cf(λ) > ω, for every α < δ, otp(
⋃
n<ω C

n
δ ∩ α) < λ. So, otp(

⋃
n<ω C

n
δ ) =

λ < ωδ = otp(D ∩ δ), and we may fix β ∈ D \
⋃
n<ω C

n
δ above supn<ω εn. Clearly,

for each n < ω, γn := min(Cnδ \ β) is an element of nacc(Cnδ ) above β.
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Let n < ω. Since en+1
δ = ΦDn+1

(Cnδ ) and sup(Dn+1 ∩ δ) = δ,

en+1
δ = {sup(Dn+1 ∩ η) | η ∈ Cnδ , η > min(Dn+1)}.

In particular, sup(Dn+1 ∩ γn) ∈ en+1
δ . As γn > β and β ∈ D ⊆ Dn+1, it is the case

that β ≤ sup(Dn+1 ∩ γn). As en+1
δ ⊆ Cn+1

δ , altogether,

β < γn+1 = min(Cn+1
δ \ β) ≤ min(en+1

δ \ β) = sup(Dn+1 ∩ γn) ≤ γn.

Now, pick n < ω such that γn+1 = γn. There are two options, each leads to a
contradiction.
I If γn+1 ∈ en+1

δ , then since en+1
δ ⊆ Cn+1

δ , and γn+1 ∈ nacc(Cn+1
δ ), γn+1 ∈

nacc(en+1
δ ). As, γn+1 ∈ en+1

δ ⊆ Dn+1 ⊆ D0, γ is a limit ordinal. Since Cn+1
δ ∩

[β, γn+1) is empty, the definition of Cn+1
δ implies that cf(γn+1) = λ. Altogether,

γn+1 ∈ nacc(Cn+1
δ ) ∩Dn+1 ∩ Eλ

+

λ , contradicting the fact that γn+1 > β > εn+1.

I If γn+1 /∈ en+1
δ , then since γn+1 = γn ∈ Cnδ , the definition of en+1

δ implies that
γn+1 < sup(Dn+1 ∩ γn). So, this time,

γn+1 = min(Cn+1
δ \ β) < min(en+1

δ \ β) = sup(Dn+1 ∩ γn) ≤ γn,

contradicting the choice of n. �

In order to obtain a correct analogue of the preceding result, we introduce the
following natural strengthening of Definition 2.2, in which we replace the stationary

set T ⊆ κ by a sequence ~T = 〈Ti | i < θ〉 of stationary subsets of κ.

Definition 3.21. CGξ(S, ~T , σ, ~J) asserts the existence of a ξ-bounded C-sequence
~C = 〈Cδ | δ ∈ S〉 such that, for every club D ⊆ κ there is a δ ∈ S such that for
every i < min{δ, θ},

{β < δ | succσ(Cδ \ β) ⊆ D ∩ Ti} ∈ J+
δ .

Convention 3.22. Convention 2.3 applies to the above definition, as well.

Theorem 3.23. Suppose that λ is a singular cardinal of uncountable cofinality,
and �∗λ holds. Let 〈λi | i < cf(λ)〉 be the increasing enumeration of a club in λ.

For every stationary S ⊆ Eλ
+

>ω, there exists a transversal ~C = 〈Cδ | δ < λ+〉 for

�∗λ such that ~C � S witnesses CGλ(S, 〈Eλ+

≥λi | i < cf(λ)〉).

Proof. Suppose not, and fix a stationary S ⊆ Eλ+

>ω that constitutes a counterexam-
ple. Without loss of generality, min(S) ≥ λ. As �∗λ holds, we may fix a transversal
~e = 〈eδ | δ < λ+〉 for �∗λ. As λ is singular, we may assume that otp(eδ) < λ for
every δ < λ+ (e.g., by appealing to [BR19a, Lemma 3.1] with Σ := {λi | i < cf(λ)}).

Following the proof approach of Theorem 3.20, we shall recursively construct a

sequence 〈(Dn, ~en, ~Cn) | n < ω〉 such that Dn is a club in λ+, and ~en and ~Cn are
transversals for �∗λ.

Set D0 := acc(λ+), ~e0 := ~e and ~C0 := ~e. Next, suppose that n < ω and that

〈(Dj , ~ej , ~Cj) | j ≤ n〉 has already been successfully defined. As ~Cn = 〈Cnδ | δ < λ+〉
is a transversal for �∗λ, by the choice of the stationary set S, it follows that we may

pick a subclub Dn+1 ⊆ Dn such that, for every δ ∈ S, for some in+1
δ < cf(λ),

sup(nacc(Cnδ ) ∩Dn+1 ∩ Eλ
+

≥λ
i
n+1
δ

) < δ.
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Consider the postprocessing function ΦDn+1
from Definition 2.12. For every

δ ∈ λ+ \S, let en+1
δ := eδ and Cn+1

δ := eδ. For every δ ∈ S, let en+1
δ := ΦDn+1(Cnδ ),

and then let

Cn+1
δ := en+1

δ ∪ {eγ \ sup(en+1
δ ∩ γ) | γ ∈ nacc(en+1

δ ) ∩ Eλ
+

<λ
i
n+1
δ

}.

By [BR19b, Lemma 2.8], ~en+1 := 〈en+1
δ | δ < λ+〉 is again a transversal for �∗λ.

By the exactly same proof of Claim 3.20.1, also ~Cn+1 := 〈Cn+1
δ | δ < λ+〉 is a

transversal for �∗λ. Furthermore, otp(en+1
δ ) ≤ otp(Cn+1

δ ) < λ for all δ < λ+.

This completes the construction of the sequence 〈(Dn, ~en, ~Cn) | n < ω〉. Now,
let D :=

⋂
n<ωDn. Pick δ ∈ S such that otp(D ∩ δ) = ωδ > λ. Recall that, for

every n < ω, the following ordinal is smaller than δ:

εn := sup(nacc(Cnδ ) ∩Dn+1 ∩ Eλ
+

≥λ
i
n+1
δ

).

As cf(λ) > ω, otp(
⋃
n<ω C

n
δ ) < λ, so, we may fix β ∈ D \

⋃
n<ω C

n
δ above

supn<ω εn. Clearly, for each n < ω, γn := min(Cnδ \ β) is an element of nacc(Cnδ )
above β.

Let n < ω. Since en+1
δ = ΦDn+1

(Cnδ ) and sup(Dn+1 ∩ δ) = δ,

en+1
δ = {sup(Dn+1 ∩ η) | η ∈ Cnδ , η > min(Dn+1)}.

In particular, sup(Dn+1 ∩ γn) ∈ en+1
δ . As γn > β and β ∈ D ⊆ Dn+1, it is the case

that β ≤ sup(Dn+1 ∩ γn). As en+1
δ ⊆ Cn+1

δ , altogether,

β < γn+1 = min(Cn+1
δ \ β) ≤ min(en+1

δ \ β) = sup(Dn+1 ∩ γn) ≤ γn.

Now, pick n < ω such that γn+1 = γn. There are two options, each leads to a
contradiction.
I If γn+1 ∈ en+1

δ , then since en+1
δ ⊆ Cn+1

δ , and γn+1 ∈ nacc(Cn+1
δ ), γn+1 ∈

nacc(en+1
δ ). As, γn+1 ∈ en+1

δ ⊆ Dn+1 ⊆ D0, γ is a limit ordinal. So, since

Cn+1
δ ∩ [β, γn+1) is empty, the definition of Cn+1

δ implies that cf(γn+1) ≥ λin+1
δ

.

Altogether, γn+1 ∈ nacc(Cn+1
δ )∩Dn+1∩Eλ

+

λ
i
n+1
δ

, contradicting the fact that γn+1 >

β > εn+1.
I If γn+1 /∈ en+1

δ , then since γn+1 = γn ∈ Cnδ , the definition of en+1
δ implies that

γn+1 < sup(Dn+1 ∩ γn). So, this time,

γn+1 = min(Cn+1
δ \ β) < min(en+1

δ \ β) = sup(Dn+1 ∩ γn) ≤ γn,

contradicting the choice of n. �

By applying the proof of Proposition 2.22 on the C-sequence produced by the
preceding, we get a somewhat cleaner form of guessing, as follows.

Corollary 3.24. Suppose that λ is a singular cardinal of uncountable cofinality,

and �∗λ holds. For every stationary S ⊆ Eλ
+

>ω, there exists a transversal ~C = 〈Cδ |
δ < λ+〉 for �∗λ satisfying the following:

• for every δ < λ+, otp(Cδ) < λ;
• for every club D ⊆ λ+, there exists δ ∈ S such that Cδ ⊆ D and sup(nacc(Cδ)∩
D ∩ Eλ+

>µ) = δ for every µ < λ. �



A CLUB GUESSING TOOLBOX I 23

3.1. When coherence is not available. By waiving any coherence considera-
tions, the proofs of Theorems 3.20 and 3.23 (together with Proposition 2.22) yield,
respectively, the general case of the introduction’s Fact 1.4 and a result from [ES09].

Fact 3.25 ([She94c, Claim 2.4]). For every regular uncountable cardinal λ, for every

stationary S ⊆ Eλ
+

λ , CGλ(S,Eλ
+

λ ) holds. Furthermore, for every triple λ ≤ ν < κ
of regular uncountable cardinals, for every stationary S ⊆ Eκλ , CGν(S,Eκ≥ν) holds.

Fact 3.26 ([ES09, Theorem 2]). For every singular cardinal λ of uncountable co-

finality and every stationary S ⊆ Eλ
+

cf(λ), there exists a cf(λ)-bounded C-sequence

〈Cδ | δ ∈ S〉 satisfying the following.
For every club D ⊆ λ+, there exists δ ∈ S such that Cδ ⊆ D and 〈cf(γ) |

γ ∈ nacc(Cδ)〉 is strictly increasing and converging to λ.

Likewise, by changing the choice of the initial C-sequence ~e in the proof of
Theorem 3.18, one obtains a proof of the following.

Theorem 3.27 (Shelah). Suppose that R,S, T are stationary subsets of a regular
cardinal κ ≥ ℵ2.

(1) If T is a nonreflecting stationary set, then CG(S, T ) holds;
(2) If R is a nonreflecting stationary subset of Eκ≥σ, then CG(R, T, σ) implies

CG(S, T, σ). �

Remark 3.28. Note that even if S ⊆ Eκξ , we still get CG(S, T ), but not CGξ(S, T ).
Indeed, by the preceding corollary, if there exists a nonreflecting stationary subset
of Eℵ2

ℵ0
, then CG(Eℵ2

ℵ1
, Eℵ2

ℵ0
) holds. In contrast, running the forcing from [Asp14,

Theorem 1.6] over a model of �ω1 , one gets a generic extension with a nonreflecting

stationary subset of Eℵ2

ℵ0
in which CGω1

(Eℵ2

ℵ1
, Eℵ2

ℵ0
) fails.

Corollary 3.29. Suppose σ < σ+ < κ are infinite regular cardinals, and Eκσ admits
a nonreflecting stationary set. For every stationary S ⊆ κ:

(1) CG(S, κ, σ) holds;
(2) If κ = λ+ and σ 6= cf(λ), then CG(S, T, σ) holds for every stationary T ⊆ κ.

Proof. LetR be a nonreflecting stationary subset of Eκσ , By Theorem 2.14, CG(R, κ, σ)
holds. By Corollary 2.23, if κ = λ+ and σ 6= cf(λ), then furthermore CG(R, T, σ)
holds for every stationary T ⊆ κ. Now appeal to Corollary 3.27(2). �

Forgetting about coherence, Corollary 3.19 has the following strong consequence.

Corollary 3.30. Suppose that �(λ+) holds, and one of the following:

• λ ≥ iω;
• λℵ0 = λ;
• λ = b = ℵ1;
• λ ≥ 2ℵ1 and Shelah’s Strong Hypothesis (SSH) holds;
• There exists an infinite regular cardinal θ such that 2θ ≤ λ < θ+θ.

Then CG(S, T ) holds for all stationary subsets S, T of λ+.

Proof. By Corollary 5.1, Corollary 5.3 and Corollary 5.7 of [Rin22], any of the
above hypotheses imply that Jω[λ+] contains a stationary set. �
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4. Partitioned the club-guessing

The theme of this section is partitioned club guessing as in Fact 1.7. The main
definition is Definition 4.1, where various types of partitions are considered. The
bulk of our results, with the exception of Subsection 4.2, however are about the
stronger partitioning club-guessing. The difference being that in the former we
obtain a C-sequence and a partition, whereas in the latter we are given the C-
sequence in advance and then are given the task of partitioning it.

In Subsection 4.1, we partition club-guessing sequences using colouring principles
from [IR22a, IR22b] which were in fact discovered while working on partitioning
club-guessing. We show how these colouring principles allow for an abstract ap-
proach to partitioning club-guessing, separating the club-guessing technology from
the combinatorial technology given to us by the relevant hypothesis.

In Subsection 4.2, we construct partitioned club-guessing using these colouring
principles. Furthermore, we can obtain partitioned club-guessing sequences satis-
fying coherence features as well.

In Subsection 4.3, we list the results from [IR22a, IR22b] under which the colour-
ing principles can be obtained, and draw conclusions. In particular, we find an
higher analogue of a combinatorial construction on ℵ1 due to Moore from [Moo08].

In Subsection 4.4, we address the problem of partitioning a club-guessing C-

sequence ~C over S ⊆ κ into κ many guessing sequences 〈~C � Si | i < κ〉.

Definition 4.1. For a C-sequence ~C = 〈Cδ | δ ∈ S〉, we define three sets of
cardinals:

• Θ0(~C, T, σ, ~J) denotes the set of all cardinals θ for which there exists a
function h : κ→ θ satisfying the following.

For every club D ⊆ κ, there exists δ ∈ S such that, for every τ < θ,

{β < δ | succσ(Cδ \ β) ⊆ D ∩ T ∩ h−1{τ}} ∈ J+
δ .

• Θ1(~C, T, σ, ~J) denotes the set of all cardinals θ for which there exists a
function h : κ→ θ satisfying the following.

For every club D ⊆ κ, there exists δ ∈ S such that, for every τ < θ,

{β < δ | h(otp(Cδ ∩ β)) = τ & succσ(Cδ \ β) ⊆ D ∩ T} ∈ J+
δ .

• Θ2(~C, T, σ, ~J) denotes the set of all cardinals θ for which there exists a
sequence of functions 〈hδ : δ → θ | δ ∈ S〉 satisfying the following.

For every club D ⊆ κ, there exists δ ∈ S such that, for every τ < θ,

{β < δ | hδ(β) = τ & succσ(Cδ \ β) ⊆ D ∩ T} ∈ J+
δ .

Convention 4.2. Convention 2.3 applies to the above definition, as well.

Remark 4.3. Θ0(~C, T, σ, ~J) ⊆ Θ2(~C, T, σ, ~J) and Θ1(~C, T, σ, ~J) ⊆ Θ2(~C, T, σ, ~J).

Proposition 4.4. For a stationary S ⊆ Eκθ and a sequence ~C witnessing CG(S, T, κ),

θ ∈ Θ2(~C, T, σ) for any choice of σ < θ. �

Lemma 4.5. Suppose that ~C = 〈Cδ | δ ∈ S〉 is a C-sequence witnessing CGξ(S, T ).

For every θ ∈ Θ2(~C, T ) such that α + β < ξ for all (α, β) ∈ θ × ξ, there exists a

C-sequence ~C• = 〈C•δ | δ ∈ S〉 witnessing CGξ(S, T ) for which θ ∈ Θ1( ~C•, T ).
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Proof. Without loss of generality, S ⊆ acc(κ). Suppose that θ ∈ Θ2(~C, T ) is such
that α + β < ξ for all (α, β) ∈ θ × ξ. Let h : κ → θ be a surjection such that,
for every ε < κ, {h(ι + 1) | ε < ι < ε + θ} = θ. If θ is uncountable, we also
require that {h(ω · ι) | ε < ι < ε + θ} = θ for every ε < κ. It follows that for each
(γ, ε, τ) ∈ κ× κ× θ, we may fix yγ,ε,τ such that:

• yγ,ε,τ is a closed nonempty subset of Eκ<θ;
• min(yγ,ε,τ ) = γ;
• max(yγ,ε,τ ) < γ + θ;
• h(ε+ otp(yγ,ε,τ )− 1) = τ .

Fix a sequence 〈hδ : δ → θ | δ ∈ S〉 witnessing that θ ∈ Θ2(~C, T ). We now

construct ~C• = 〈C•δ | δ ∈ S〉 as follows. Given δ ∈ S, let 〈δi | i < otp(Cδ)〉 denote
the increasing enumeration of {0} ∪ Cδ. Construct a sequence 〈xδi | i < otp(Cδ)〉
by recursion on i < otp(Cδ), as follows:
I if δi+1 < δi + θ, then set xδi := {δi}.
I if δi+1 ≥ δi + θ, then set xδi := yγ,ε,τ , for γ := δi, ε := otp(

⋃
i′<i x

δ
i′), and

τ := hδ(δi). In particular, h(otp(
⋃
i′≤i x

δ
i′)− 1) = hδ(δi).

Finally, let C•δ :=
⋃
i<otp(Cδ)

xδi , so that C•δ is a club in δ. Note that otp(C•δ ) ≤ ξ,
since otp(Cδ) ≤ ξ and α+β < ξ for all (α, β) ∈ θ×ξ. Thus, to see that ~C• := 〈C•δ |
δ ∈ S〉 and h are as sought, let D be a club in κ. By possibly shrinking D, we may
assume that every element of D is an indecomposable ordinal greater than θ.

Pick δ ∈ S such that for every τ < θ, the following set is cofinal in δ:

Bτ := {β < δ | hδ(β) = τ & min(Cδ \ (β + 1)) ∈ D ∩ T}
Let τ < θ and let β ∈ Bτ . Pick i < otp(Cδ) such that β = δi. Put β′ := max(xδi ) so
that β ≤ β′ < δi+1 = min(C•δ \(β′+1)). Since δi+1 ∈ D, we know that δi+θ < δi+1.
Consequently,

h(otp(C•δ ∩ β′)) = h(otp(
⋃

i′≤i
xδi′)− 1) = hδ(δi) = τ,

as sought. �

Remark 4.6. The preceding lemma should not be interpreted as saying that Θ1(. . .)

and Θ2(. . .) are essentially the same, since the move from ~C to ~C• may lead to the

loss of coherence features of ~C. In addition, the above lemma is limited to σ = 1,

though a simple tweak yields that if ~C is a witness for CGξ(S, T, σ, 〈Jδ | δ ∈ S〉)
with σ ≤ ω, σ < θ, and nacc(δ) ∈ Jδ for all δ ∈ S, then a ~C• may be cooked-up to

satisfy θ ∈ Θ1( ~C•, T, σ).

4.1. Using colourings. We now introduce two colouring principles from [IR22a]
which we shall use in this subsection. As explained in [IR22a, Remark 8.2], these
principles are a spin-off of Sierpiński’s onto mapping principle.

Definition 4.7 ([IR22a]). Let J be an ideal over λ, and θ ≤ λ be some cardinal.

• onto(J, θ) asserts the existence of a colouring c : [λ]2 → θ. such that for
every B ∈ J+, there is an η < λ such that

c[{η}~B] = θ;

• unbounded(J, θ) asserts the existence of an upper-regressive colouring c :
[λ]2 → θ such that for every B ∈ J+, there is an η < λ such that

otp(c[{η}~B]) = θ.
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Our first application of which will make use of the following pumping up result.

Fact 4.8 ([IR22b, §4]). Let θ ≤ λ be a pair of infinite cardinals, with λ regular.

(1) If onto(Jbd[λ], θ) holds, then there exists a colouring c : [λ]2 → θ such that
for every λ-complete ideal J on some ordinal δ of cofinality λ and every
map ψ : δ → λ satisfying sup(ψ[B]) = λ for all B ∈ J+, the following
holds. For all B ∈ J+, there exists an η < λ such that

{τ < θ | {β ∈ B | η < ψ(β) & c(η, ψ(β)) = τ} ∈ J+} = θ.

(2) If unbounded(Jbd[λ], θ) holds, then there exists a colouring c : [λ]2 → θ
such that for every λ-complete ideal J on some ordinal δ of cofinality λ and
every map ψ : δ → λ satisfying sup(ψ[B]) = λ for all B ∈ J+, the following
holds. For all B ∈ J+, there exists an η < λ such that

otp({τ < θ | {β ∈ B | η < ψ(β) & c(η, ψ(β)) = τ} ∈ J+}) = θ.

Theorem 4.9. Suppose that ~C witnesses CGξ(S, T, σ, ~J) with S ⊆ Eκλ , and that
θ ≤ λ is infinite.

(1) If onto(Jbd[λ], θ) holds and ξ = λ, then θ ∈ Θ1(~C, T, σ, ~J);

(2) If onto(Jbd[λ], θ) holds, then θ ∈ Θ2(~C, T, σ, ~J);

(3) If unbounded(Jbd[λ], θ) holds and θ < λ, then θ ∈ Θ2(~C, T, σ, ~J).

Proof. For every δ ∈ S, fix a club eδ in δ of ordertype λ. In case that ξ = λ,
moreover set eδ := Cδ. As Jδ is a λ-complete ideal on δ extending Jbd[δ], once
we define ψδ : δ → λ via ψδ(β) := otp(eδ ∩ β), then sup(ψδ[B]) = λ for every
B ∈ (Jδ)

+.

(1) and (2): Suppose that onto(Jbd[λ], θ) holds, and fix a colouring c : [λ]2 → θ
as in Fact 4.8(1).

Claim 4.9.1. There exists an η < λ such that, for every club D ⊆ κ, there exists
a δ ∈ S, such that, for every τ < θ:

{β < δ | η < ψδ(β) & c(η, ψδ(β)) = τ & succσ(Cδ \ β) ⊆ D ∩ T} ∈ J+
δ .

Proof. Suppose not. For every η < λ, fix a counterexample club Dη ⊆ κ. Let

D :=
⋂
η<λDη. By the choice of ~C, let us now pick δ ∈ S such that the following

set is in J+
δ :

B := {β < δ | succσ(Cδ \ β) ⊆ D ∩ T}.
Recalling that c was given by Fact 4.8(1), there is an η < λ such that

{τ < θ | {β ∈ B | η < ψ(β) & c(η, ψ(β)) = τ} ∈ (Jδ)
+} = θ.

However, as D ⊆ Dη, this contradicts the choice of Dη. a

Let η < λ be given by the preceding claim. Choose ~h = 〈hδ : δ → θ | δ ∈ S〉
satisfying hδ(β) = c(η, ψδ(β)) for every δ ∈ S and β < δ such that η < ψδ(β)).

Then ~h witnesses that θ ∈ Θ2(~C, T, σ, ~J). Furthermore, in the special case that ~C
is λ-bounded, any map h : κ → θ satisfying h(β̄) = c(η, β̄) for every β̄ ∈ (η, λ)

witnesses that θ ∈ Θ1(~C, T, σ, ~J).

(3) Suppose that unbounded(Jbd[λ], θ) holds with θ < λ, and fix a colouring
c : [λ]2 → θ as in Fact 4.8(2). For every club D ⊆ κ, for all δ ∈ S and η < λ, denote

D(η, δ) := {τ < θ | {β < δ | η < ψδ(β) & c(η, ψδ(β)) = τ & succσ(Cδ\β) ⊆ D∩T} ∈ J+
δ }.
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Claim 4.9.2. There exists an η < λ such that, for every club D ⊆ κ, there exists
a δ ∈ S, such that |D(η, δ)| = θ.

Proof. Suppose not. For every η < λ, fix a counterexample club Dη ⊆ κ. Let

D :=
⋂
η<λDη. By the choice of ~C, let us now pick δ ∈ S such that the following

set is in J+
δ :

B := {β < δ | succσ(Cδ \ β) ⊆ D ∩ T}.
Recalling that c was given by Fact 4.8(2), there is an η < λ such that

otp({τ < θ | {β ∈ B | η < ψ(β) & c(η, ψ(β)) = τ} ∈ (Jδ)
+}) = θ.

So |D(η, δ)| = θ. However, as D ⊆ Dη, and Dη was chosen so that |Dη(η, δ)| < θ,
we reach a contradiction. a

We fix from hereon an η < λ as given by the previous claim, and for simplicity
of notation, for D ⊆ κ a club and δ ∈ S, we denote D(δ) := D(η, δ).

Claim 4.9.3. There exists a club D∗ ⊆ κ such that for every club D ⊆ D∗, there
exists δ ∈ S such that D(δ) = D∗(δ) and this set has size θ.

Proof. Suppose this is not so. In that case, we can construct a ⊆-decreasing se-
quence 〈Di | i ≤ θ+〉 of clubs in κ as follows:

(i) D0 := κ;
(ii) Di+1 ⊆ Di is some club such that for every δ ∈ S, either |D(δ)| < θ or

Di+1(δ) ( Di(δ);
(iii) for i ∈ acc(θ+ + 1), Di :=

⋂
i′<iDi′ .

Since Dθ+ is again a club in κ, we may fix a δ ∈ S such that |Dθ+(δ)| = θ. In
particular, for every i ≤ θ+, |Di(δ)| = θ, and hence, by the construction, 〈Di(δ) |
i ≤ θ+〉 must be a strictly ⊆-decreasing sequence of subsets of D0(δ), contradicting
the fact that |D0(δ)| = θ. a

LetD∗ ⊆ κ be given by the preceding claim. Then any sequence ~h = 〈hδ : δ → θ |
δ ∈ S〉 satisfying that for all δ ∈ S and β < δ with ψδ(β) > η,

hδ(β) = otp(c(η, ψδ(β)) ∩D∗(δ))

witnesses that θ ∈ Θ2(~C, T, σ, ~J). �

We now move on to the case of normal ideals. We first need an analogue of
Fact 4.8. In what follows, for a set of ordinals A, its collapsing map is the unique
function ψ : A→ otp(A) satisfying ψ(α) = otp(A ∩ α) for all α ∈ A.

Theorem 4.10. Suppose that λ is a regular uncountable cardinal, and θ ≤ λ is a
cardinal.

(1) If unbounded(NSλ, θ) holds, then there exists a colouring c : [λ]2 → θ such
that for every λ-complete normal ideal J on some ordinal δ of cofinality λ,
for every club A in δ of ordertype λ, for its collapsing map ψ : A → λ the
following holds. For all B ∈ J+, there exists an η < λ such that

otp({τ < θ | {β ∈ B ∩A | η < ψ(β) & c(η, ψ(β)) = τ} ∈ J+}) = θ.

(2) If onto(NSλ, θ) holds, then there exists a colouring c : [λ]2 → θ then for
every normal λ-complete ideal J on some ordinal δ of cofinality λ, for every
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club A in δ of ordertype λ, for its collapsing map ψ : A → λ the following
holds. For all B ∈ J+, there exists an η < λ such that

{τ < θ | {β ∈ B ∩A | η < ψ(β) & c(η, ψ(β)) = τ} ∈ J+} = θ.

Proof. Clauses (1) and (2) follow from [IR22a, Proposition 2.25]. Since the proof
of Clause (2) was omitted in [IR22a], we give it here.

(2) Given a normal λ-complete ideal J on some ordinal δ of cofinality λ, and a
club A in δ of ordertype λ, it is the case that A ∈ J∗, since J is normal. Let ψ
denote the collapsing map of A. For all B ⊆ δ, η < λ and τ < θ, denote

Bη,τ := {β ∈ B ∩A | η < ψ(β) & c(η, ψ(β)) = τ}.

Suppose onto(NSλ, θ) holds, and fix a witnessing colouring c : [λ]2 → θ. Towards
a contradiction, suppose that there exists B ∈ J+ such that, for every η < λ, there
is a τη < θ such that Bη,τη ∈ J . As J is normal, E := ψ−1[

a
η<λ(λ \ψ[Bη,τη ]] is in

J∗. Note that

E = {β ∈ A | ∀η < ψ(β) (β /∈ Bη,τη )}.
As E ∈ J∗ and B ∈ J+, B∩E ∈ J+, so since J is normal, ψ[B∩E] is stationary. It
thus follows from the choice of c that we may pick η < λ such that c[{η}~ψ[B∩E]] =
θ. Find β ∈ B ∩ E such that ψ(β) > η and c(η, ψ(β)) = τη. Then β ∈ Bη,τη ,
contradicting the fact that β ∈ E. �

Theorem 4.11. Suppose that λ is a regular uncountable cardinal, ~C witnesses

CGξ(S, T, σ, ~J) with S ⊆ Eκλ and for every δ ∈ S, Jδ is a normal λ-complete ideal
on δ extending Jbd[δ]. Then:

(1) If onto(NSλ, θ) holds and ξ = λ, then θ ∈ Θ1(~C, T, σ, ~J);

(2) If onto(NSλ, θ) holds, then θ ∈ Θ2(~C, T, σ, ~J);

(3) If unbounded(NSλ, θ) holds and θ < λ, then θ2 ∈ Θ2(~C, T, σ, ~J).

Proof. Write ~C as 〈Cδ | δ ∈ S〉. For each δ ∈ S, if otp(Cδ) = λ, then set Aδ := Cδ.
Otherwise, just let Aδ be some club in δ of ordertype λ. Then, let ψδ : Aδ → λ be
the corresponding collapsing map. We can now repeat the proof of Theorem 4.9
except that we use Theorem 4.10 instead of Fact 4.8. �

4.2. Maintaining coherence. By Theorem 4.9, onto(Jbd[λ], θ) implies that θ ∈
Θ1(~C, T ). In contrast, unbounded(Jbd[λ], θ) gives θ ∈ Θ2(~C, T ), and then Lemma 4.5

only yields another C-sequence ~C• such that θ ∈ Θ1( ~C•, T ).
In the next theorem, we combine the two results carefully in order to obtain a

C-sequence ~C• with θ ∈ Θ1( ~C•, T ) while maintaining some coherence features of

the original sequence ~C.

Theorem 4.12. Suppose that θ < λ < κ are infinite cardinals, unbounded(Jbd[λ], θ)
holds, and S is a stationary subset of Eκλ .

For every C-sequence ~C = 〈Cδ | δ < κ〉 such that ~C � S witnesses CGλ(S, T ),

there exists a corresponding C-sequence ~C• = 〈C•δ | δ < κ〉 such that:

• ~C• � S is λ-bounded;

• If ~C is weakly coherent, then so is ~C•;

• For every infinite cardinal χ ∈ [θ, κ), if ~C is χv-coherent, then so is ~C•;

• θ ∈ Θ1( ~C• � S, T ).
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Proof. Without loss of generality, 0 ∈ Cδ for all nonzero δ < κ. For every δ < κ,
denote ξδ := otp(Cδ), let ψδ : Cδ → ξδ be the collapsing map of Cδ, and let 〈δi |
i < ξδ〉 denote the increasing enumeration of Cδ so that ψδ(δi) = i for every i < ξδ.

Fix a colouring c : [λ]2 → θ as in Fact 4.8(2). For every club D ⊆ κ, for all δ ∈ S
and η < λ, denote

D(η, δ) := {τ < θ | sup{β < δ | c(η, ψδ(β)) = τ & min(Cδ \ (β+ 1)) ∈ D∩T} = δ}.

By Claims 4.9.2 and 4.9.3, we may pick η∗ < λ and a club D∗ ⊆ κ such that
for every club D ⊆ D∗, there exists δ ∈ S such that D(η∗, δ) = D∗(η∗, δ) and
this set has size θ. By possibly shrinking D∗, we may assume that D∗ consists of
indecomposable ordinals, and that min(D∗) > θ.

For every δ ∈ S, since cf(δ) = λ > θ, the set

Nδ := {β < δ | c(η∗, ψδ(β)) /∈ D∗(η∗, δ) & min(Cδ \ (β + 1)) ∈ D∗ ∩ T}

is bounded in δ. So, by one more stabilization argument, we may fix an ε < λ
such that every club D ⊆ D∗, there exists δ ∈ S such that D(η∗, δ) = D∗(η∗, δ),
|D∗(η∗, δ)| = θ, and also

sup({ψδ(β) | β ∈ Nδ}) = ε.

For all δ ∈ acc(κ) and i ≤ ξδ, denote:

T iδ := {c(η∗, j) | ε < j < i, η∗ < j, δj+1 ∈ D∗ ∩ T}.

Fix a surjection h : κ → θ and a sequence of sets 〈yγ,ε,τ | (γ, ε, τ) ∈ κ × κ × θ〉
as in the proof of Lemma 4.5. We now construct the new C-sequence ~C• = 〈C•δ |
δ < κ〉, as follows. Set C•0 := ∅ and C•γ+1 := {γ} for every γ < κ. Next, given

δ ∈ acc(κ), construct a sequence 〈xiδ | i < ξδ〉 by recursion on i < ξδ, as follows:
I If δi+1 /∈ D∗, then set xiδ := {δi}.
I If δi+1 ∈ D∗, then in particular, δi+1 ≥ δi + θ, so we set xiδ := yγ,ε,τ , for

γ := δi, ε := otp(
⋃
i′<i x

i′

δ ), and

τ := otp(c(η∗, i) ∩ T iδ).

Note that, for every δ ∈ acc(κ), Cδ ⊆ C•δ , and also acc(C•δ ) ∩ Eκ≥θ = acc(Cδ),

since yγ,ε,τ ⊆ Eκ<θ for every (γ, ε, τ) ∈ κ× κ× θ. In addition, for every δ ∈ acc(κ),
if α+ β < ξδ for all (α, β) ∈ θ × ξδ, then otp(C•δ ) = ξδ. In particular, otp(C•δ ) = λ
for all δ ∈ S.

Claim 4.12.1. Let χ ∈ [θ, κ) be an infinite cardinal.

If ~C is χv-coherent, then so is ~C•.

Proof. Suppose that ~C is χv-coherent. Let δ < κ and δ̄ ∈ acc(C•δ ) ∩Eκ≥χ; we need

to verify that C•δ ∩ δ̄ v C•δ . As acc(C•δ ) ∩ Eκ≥θ = acc(Cδ) and χ ≥ θ, we infer that

δ̄ ∈ acc(Cδ), so by χv-coherence of ~C, Cδ ∩ δ̄ v Cδ. It follows that:

• 〈δ̄i | i < ξδ̄〉 = 〈δi | i < ξδ̄〉,
• 〈T i

δ̄
| i < ξδ̄〉 = 〈T iδ | i < ξδ̄〉, and hence

• 〈xi
δ̄
| i < ξδ̄〉 = 〈xiδ | i < ξδ̄〉,

so C•δ ∩ δ̄ =
⋃
i<ξδ̄

xiδ =
⋃
i<ξδ̄

xi
δ̄

= C•
δ̄
, as sought. a

Claim 4.12.2. If ~C is weakly coherent, then so is ~C•.
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Proof. Towards a contradiction, suppose that ~C is weakly coherent, but ~C• is not.
Fix the least α < κ such that |{C•δ ∩α | δ < κ}| = κ. So we may fix a cofinal subset
∆ of acc(κ) such that:

(1) δ 7→ C•δ ∩ α is injective over ∆, but
(2) δ 7→ Cδ ∩ α is constant over ∆.

Fix γ < α such that sup(Cδ ∩ α) = γ for all δ ∈ ∆. By minimality of α, and by
possibly shrinking ∆ further, we may also assume that

(3) δ 7→ C•δ ∩ γ is constant over ∆.

It thus follows that the map δ 7→ C•δ ∩ [γ, α) is injective over ∆. However, for every
δ ∈ ∆, C•δ ∩ [γ, α) is equal to yγ,ε,τ ∩ α, for ε := otp(C•δ ∩ γ) and some τ < θ.
Recalling Clause (3), there exists an ε < κ such that:

{C•δ ∩ [γ, α) | δ ∈ ∆} ⊆ {yγ,ε,τ ∩ α | τ < θ},
contradicting the fact that the set on the right hand size has size ≤ θ < κ. a

Finally, to see that θ ∈ Θ1( ~C• �S, T ), let D be a club in κ. By possibly shrinking
D, we may assume that D ⊆ D∗. Pick δ ∈ S such that D(η∗, δ) = D∗(η∗, δ),
|D∗(η∗, δ)| = θ, and also

sup({ψδ(β) | β ∈ Nδ}) = ε.

For any D′ ∈ {D,D∗},
D′(η∗, δ) = {τ < θ | sup{i < λ | c(η∗, i) = τ & δi+1 ∈ D′ ∩ T} = λ}.

So, since D(η∗, δ) = D∗(η∗, δ), the definition of ε implies that

D(η∗, δ) = {c(η∗, j) | ε < j < λ, η∗ < j, δj+1 ∈ D∗ ∩ T} = Tλδ .

In particular, |Tλδ | = θ. Now, given a prescribed colour τ∗ and some α < δ, we shall
find a β∗ ∈ C•δ above α such that min(C•δ \ (β∗+ 1)) ∈ D∩T and h(C•δ ∩β∗) = τ∗.
Fix the unique τ ∈ Tλδ such that otp(Tλδ ∩ τ) = τ∗. Note that for a tail of i < λ,
Tλδ ∩ τ = T iδ ∩ τ .

As τ ∈ D(η∗, δ), there are cofinally many β ∈ Cδ such that min(Cδ \ (β + 1)) ∈
D ∩ T , η∗ < ψδ(β) and c(η∗, ψδ(β)) = τ . So, we may find a large enough i < λ
such that:

• δi+1 ∈ D ∩ T ,
• η∗ < i,
• c(η∗, i) = τ ,
• α < δi, and
• Tλδ ∩ τ = T iδ ∩ τ .

So otp(c(η∗, i) ∩ T iδ) = otp(τ ∩ T iδ) = otp(Tλδ ∩ τ) = τ∗. Put β∗ := max(xiδ) so
that δi ≤ β∗ < δi+1 = min(C•δ \ (β∗ + 1)). Since δi+1 ∈ D ⊆ D∗, we know that

xiδ = yγ,ε,τ∗ , for γ := δi and ε := otp(
⋃
i′<i x

i′

δ ). Consequently,

h(otp(C•δ ∩ β∗)) = h(otp(
⋃

i′≤i
xδi′)− 1) = τ∗,

as sought. �

By [IR22a, Proposition 2.18 and Lemma 8.4], in Gödel’s constructible universe
L, for every weakly compact cardinal λ that is not ineffable, unbounded(Jbd[λ], θ)
fails for every cardinal θ ∈ [3, λ], but onto(NSλ, λ) holds. Thus, it is easier to
get unbounded(J, θ) with J := NSλ than with J := Jbd[λ]. In the upcoming
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theorem, the hypothesis of unbounded(Jbd[λ], θ) from Theorem 4.12 is reduced to

unbounded(NSλ, θ) at the cost of requiring ~C � S to witness CGλ(S, T, 1, 〈NSδ |
δ ∈ S〉).

Theorem 4.13. Suppose that θ < λ < κ are infinite cardinals, unbounded(NSλ, θ)
holds, and S is a stationary subset of Eκλ .

For every C-sequence ~C = 〈Cδ | δ < κ〉 such that ~C � S witnesses CGλ(S, T, 1,

〈NSδ | δ ∈ S〉), there exists a corresponding C-sequence ~C• = 〈C•δ | δ < κ〉 such
that:

• ~C• � S is λ-bounded;

• If ~C is weakly coherent, then so is ~C•;

• For every infinite cardinal χ ∈ [θ, κ), if ~C is χv-coherent, then so is ~C•;

• θ ∈ Θ1( ~C• � S, T ).

Proof. For every δ < κ, let ψδ : Cδ → otp(Cδ) denote the collapsing map of Cδ.
Let c : [κ]2 → θ be a colouring given by Theorem 4.10(1).

Claim 4.13.1. There exists an η < λ such that, for every club D ⊆ κ, there exists
a δ ∈ S, such that the following set has size θ:

D(η, δ) := {τ < θ | sup{β < δ | c(η, ψδ(β)) = τ & min(Cδ \ (β+ 1)) ∈ D∩T} = δ}.

Proof. Suppose not. For every η < λ, fix a counterexample club Dη ⊆ κ. Let

D :=
⋂
η<λDη. By the hypothesis on ~C � S, let us now pick δ ∈ S such that the

following set is stationary in δ:

B := {β < δ | min(Cδ \ (β + 1)) ∈ D ∩ T}.
By the choice of c, there is an η < λ such that

otp({τ < θ | {β ∈ B | η < ψδ(β) & c(η, ψδ(β)) = τ} ∈ (NSδ)
+}) = θ.

In particular, |D(η, δ)| = θ, contradicting the fact that D ⊆ Dη. a

The rest of the proof is now identical to that of Theorem 4.12. �

Remark 4.14. Since nacc(δ) ∈ NSδ for all δ ∈ S, for every σ ≤ ω such that σ < θ,

if ~C � S moreover witnesses CGλ(S, T, σ, 〈NSδ | δ ∈ S〉), then the preceding proof

may be slightly tweaked to secure that θ ∈ Θ1( ~C• � S, T, σ). The first change is to
require that the surjection h : κ→ θ satisfies that for every ε < κ, for every τ < θ,
there exists ι ∈ (ε, ε+ θ) such that {h(ι+ ς) | ς ≤ σ} = {τ}. The second change is
to impose xiδ = {δi} for all i ∈ nacc(ξδ). The details are left to the reader.

4.3. Applications. We now utilize the results from [IR22a, IR22b] in order to
partition club-guessing sequences.

Fact 4.15 ([IR22a]). Suppose that λ is regular and uncountable.
Any of the following implies that onto(Jbd[λ], θ) holds:

(1) θ = λ = ℵ1 = non(M);

(2) θ = λ is a successor cardinal, and |•(λ) holds;
(3) θ = λ and ♦(T ) holds for a stationary T ⊆ λ that does not reflect at

regulars;
(4) θ < λ and λ9 [λ]2θ holds;
(5) θ < λ is regular and unbounded(Jbd[λ], λ) holds.
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Fact 4.16 ([IR22b]). Suppose that λ is regular and uncountable, and θ ≤ λ.
Any of the following implies that unbounded(Jbd[λ], θ) holds:

(1) λ admits a nontrivial C-sequence in the sense of [Tod07, Definition 6.3.1];
(2) �(λ,<µ) holds for some µ < λ;
(3) λ is not greatly Mahlo;
(4) λ is not weakly compact in L;
(5) λ is not weakly compact, and θ = ω;
(6) λ is not strongly inaccessible, and θ = log2(λ).

Corollary 4.17. Suppose that λ is a regular uncountable cardinal, and ~C witnesses

CGλ(S, T, σ, ~J) with S ⊆ Eκλ .

(1) If λ = λ<λ is a successor cardinal, then λ ∈ Θ1(~C, T, σ, ~J);

(2) If λ = θ+ and θ is regular, then θ ∈ Θ1(~C, T, σ, ~J);

(3) If λ is not Mahlo and ♦(λ) holds, then λ ∈ Θ1(~C, T, σ, ~J);

(4) If λ is not greatly Mahlo then θ ∈ Θ2(~C, T, σ, ~J) for every cardinal θ < λ;

(5) If λ is not strongly inaccessible, then log2(λ) ∈ Θ2(~C, T, σ, ~J);

(6) If λ is not weakly compact, then ω ∈ Θ2(~C, T, σ, ~J). �

Fact 4.18 ([IR22a]). Let λ be a regular uncountable cardinal.

(1) if ♦∗(λ) holds, then so does onto(NSλ, λ);
(2) If λ admits an amenable C-sequence, then onto(NSλ, θ) holds for all regular

θ < λ;
(3) unbounded(NSλ, ω) holds iff λ is not ineffable.

Corollary 4.19. Suppose that λ is a regular uncountable cardinal, and ~C witnesses

CGλ(S, T, σ, ~J) with S ⊆ Eκλ and ~J is a sequence of normal ideals.

(1) If ♦∗(λ) holds, then λ ∈ Θ1(~C, T, σ, ~J);

(2) If λ admits an amenable C-sequence, then θ ∈ Θ1(~C, T, σ, ~J) for all regular
θ < λ;

(3) If λ is not ineffable, then ω ∈ Θ2(~C, T, σ, ~J). �

In [Moo08], the (weak) club-guessing principle f was shown to give rise to a C-

sequence ~C over ω1 for which the corresponding object T (ρ
~C
0 ) is a special Aronszajn

tree of pathological nature. In the terminology developed in this paper, the key

features of ~C sufficient for the construction are that ~C be a transversal for �∗ω and

that ω ∈ Θ1(~C, ω1). Arguably, the higher analog of this would assert the existence

of a transversal ~C = 〈Cδ | δ < λ+〉 for �∗λ such that log2(λ) ∈ Θ1(~C, λ+). By the
next corollary, if λ is not strongly inaccessible (in particular, if λ = ℵ1), then the
existence of such a C-sequence is in fact no stronger than �∗λ.

Corollary 4.20. Suppose that λ is a regular uncountable cardinal, and θ = log2(λ).

(1) If �∗λ holds and θ < λ, then there exists a transversal ~C for �∗λ such that

θ ∈ Θ1(~C � Eλ
+

λ , Eλ
+

λ );

(2) If ♦(λ) holds and λ is not Mahlo, then there exists a transversal ~C for �∗λ
such that θ ∈ Θ1(~C � Eλ

+

λ , Eλ
+

λ );

(3) If ♦∗(λ) holds, then there exists a transversal ~C for �∗λ such that θ ∈
Θ1(~C � Eλ

+

λ , λ+).
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Proof. (1) Suppose that θ < λ and �∗λ holds. Appeal to Theorem 3.20 to find

a transversal ~C for �∗λ such that ~C � Eλ
+

λ witnesses CGλ(Eλ
+

λ , Eλ
+

λ ). By Corol-

lary 4.17(5), θ ∈ Θ1(~C � Eλ
+

λ , Eλ
+

λ ).

(2) Appeal to Fact 3.25 to pick a λ-bounded C-sequence ~C = 〈Cδ | δ < λ+〉
such that C � Eλ

+

λ witnesses CGλ(Eλ
+

λ , Eλ
+

λ ). Suppose that ♦(λ) holds. In par-

ticular, λ<λ = λ, so ~C is trivially weakly coherent. In addition, since ♦(λ) holds,

Corollary 4.17(3) implies that λ ∈ Θ1(Eλ
+

λ , Eλ
+

λ ).
(3) By Fact 3.25 together with Corollary 6.10 below, we may fix a λ-bounded

C-sequence ~C = 〈Cδ | δ < λ+〉 such that ~C �Eλ
+

λ witnesses CGλ(Eλ
+

λ , λ+, 1, 〈NSδ |
δ ∈ S〉). Suppose that ♦∗(λ) holds. In particular, ~C is trivially weakly coherent. In

addition, since ♦∗(λ) holds, Corollary 4.19(1) implies that λ ∈ Θ1(~C �Eλ
+

λ , λ+). �

We also record the following variation.

Corollary 4.21. Suppose that λ is a regular uncountable cardinal that is not

strongly inaccessible. If �λ holds, then it may be witnessed by a C-sequence ~C

such that log2(λ) ∈ Θ1(~C � Eλ
+

λ , λ+).

Proof. By Fact 3.4, using (ξ, κ, µ, S) := (λ, λ+, 2, Eλ
+

λ ), and Corollary 4.17(5). �

4.4. Another form of partitioning. By [BR21, Theorem 3.7], if ♣(S) holds,
then there exists a decomposition S =

⊎
i<κ Si such that ♣(Si) holds for every

i < κ. We close this section by showing that this form of partitioning also holds for
CG. When taken together with Theorem 2.15, this yields Solovay’s decomposition
theorem for cardinals greater than ℵ1 (at the level of ℵ1, Solovay’s theorem follows
using an Ulam matrix).

Proposition 4.22. Suppose that ~C witnesses CGξ(S, T, σ, ~J). Then there exists a

decomposition S =
⊎
i<κ Si such that ~C �Si witnesses CGξ(Si, T, σ, ~J) for all i < κ.

Proof. For all β < i < κ, let Sβi := {δ ∈ S ∩ acc(κ \ β) | min(Cδ \ (β + 1)) = i}. It
suffices to prove that there exists a β < κ for which the following set has size κ:

Iβ := {i ∈ (β, κ) | ~C � Sβi witnesses CGξ(S
β
i , T, σ,

~J)}.
So, suppose that this is not the case, and fix a sparse enough club E ⊆ κ such that,
for every ε ∈ E, for every β < ε, sup(Iβ) < ε. In addition, fix a triangular matrix

〈Dβ
i | β < i < κ〉 of clubs in κ such that, for all β < i < κ, if i /∈ Iβ , then for every

δ ∈ Sβi ,

{β < δ | succσ(Cδ \ β) ⊆ Dβ
i ∩ T} ∈ Jδ.

Consider the club D := {δ ∈ acc(E) | ∀i < δ∀β < i(δ ∈ Dβ
i )}. By the choice of ~C,

pick δ ∈ S such that the following set is in J+
δ :

B := {β < δ | succσ(Cδ \ β) ⊆ D ∩ T}.

Claim 4.22.1. For every β < δ, min(Cδ \ (β + 1)) ∈ Iβ.

Proof. Given β < δ, if we let i := min(Cδ \ (β + 1)), then δ ∈ Sβi , and since D ∩ δ
is almost included in Dβ

i ∩ δ, it is the case that

{β < δ | succσ(Cδ \ β) ⊆ Dβ
i ∩ T} ∈ J

+
δ ,

so that i ∈ Iβ . a
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Pick β ∈ B and set ε := min(E \ (β + 1)). Since min(Cδ \ (β + 1)) is in acc(E),
we infer that

β < ε < min(Cδ \ (β + 1).

As β < ε with ε ∈ E, sup(Iβ) < ε, contradicting the preceding claim. �

5. Increasing σ

In this section we are interested in improving the quality of guessing by guessing
many consecutive nonaccumulation points as in Question 1.6. As we shall see,
guessing clubs relative to points of prescribed cofinality turns out be of great help
for this purpose. The main result of this section reads as follows.

Corollary 5.1. Suppose ν < ξ ≤ κ are infinite cardinals, and that S ⊆ Eκ>ν .

For every (possibly finite) cardinal σ < ν, if CGξ(S,E
κ
≥σ ∩Eκ≤ν , 1, ~J) holds, then

so does CGξ(S, κ, σ, ~J).

Proof. I If σ is finite, then appeal to Theorem 5.2 below.

I If σ = ω and CGξ(S,E
κ
σ , 1, ~J) holds then appeal to Theorem 5.4 below.

I If σ = ω and CGξ(S,E
κ
σ , 1,

~J) fails, then since S ⊆ Eκ>ν , it follows from

Proposition 2.5 that CGξ(S,E
κ
ν̄ , 1,

~J) holds for some cardinal ν̄ with σ < ν̄ ≤ ν.
Now appeal to Theorem 5.5(2) below with T := κ.
I If σ > ω, then appeal to Theorem 5.5 below with T := κ. �

Another key result is Theorem 5.5 below where a version of this result relative
to a set T is proved.

We commence with a result that pumps up σ from 1 to any prescribed positive
integer using a postprocessing∗ function (thereby, preserving coherence features).

Theorem 5.2. Suppose σ < ω ≤ ν < κ are cardinals.

Suppose that ~C = 〈Cδ | δ ∈ S〉 witnesses CGξ(S,E
κ
≤ν , 1,

~J), with S ⊆ Eκ>ν . Then

there exists a postprocessing∗ function Φ : K(κ) → K(κ) such that 〈Φ(Cδ) | δ ∈ S〉
witnesses CGξ(S, κ, σ, ~J).

Proof. Fix an auxiliary C-sequence ~e = 〈eγ | γ < κ〉 such that otp(eγ) = cf(γ) for
every γ < κ. In what follows we shall use the operator ΦD from Definition 2.12.

Claim 5.2.1. There is a club D ⊆ κ such that for every club E ⊆ κ there is a
δ ∈ S such that

{α < δ | γ := min(Cδ \ (α+ 1)) & γ ∈ Eκ≤ν & |ΦD(eγ) ∩ (E \ α)| > σ} ∈ J+
δ .

Proof. Suppose that the claim does not hold. In this case, for every club D ⊆ κ,
there is a club FD ⊆ κ such that for every δ ∈ S,

{α < δ | γ := min(Cδ \ (α+ 1)) & γ ∈ Eκ≤ν & |ΦD(eγ) ∩ (FD \ α)| > σ} ∈ Jδ.

Let µ := ℵ0 so that µ ≤ ν < κ. We construct now a ⊆-decreasing sequence 〈Di |
i ≤ µ〉 of clubs in κ as follows:

(i) D0 := κ;
(ii) Di+1 := Di ∩ FDi ;
(iii) for i ∈ acc(µ+ 1), Di :=

⋂
i′<iDi′ .
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Since µ < κ, all these are clubs in κ. Finally, consider the club

D∗ := {γ < κ | otp(Dµ ∩ γ) = γ > ν}.

As ~C = 〈Cδ | δ ∈ S〉 witnesses CGξ(S,E
κ
≤ν , 1,

~J), let us pick δ ∈ S such that

A := {α < δ | min(Cδ \ (α+ 1)) ∈ D∗ ∩ Eκ≤ν}

is in J+
δ .

For every i < µ, by the choice of FDi , the following set

Ai := {α < δ | γ := min(Cδ \ (α+ 1)) & γ ∈ Eκ≤ν & |ΦDi(eγ) ∩ (FDi \ α)| > σ}

is in Jδ. As Jδ is cf(δ)-additive, and cf(δ) > ν, we may now fix α ∈ A \
⋃
i<µAi.

Set γ := min(Cδ \ (α + 1)), so that γ ∈ D∗ ∩ Eκ≤ν . Since γ ∈ D∗ ⊆ acc(Di) for

every i ≤ µ, we have that ΦDi(eγ) ⊆ Di.
As γ ∈ D∗, otp(D∗ ∩ γ) = γ > ν ≥ otp(eγ), so that (D∗ ∩ γ) \ eγ is cofinal in γ.

Recursively construct 〈(δn, βn) | n ≤ σ〉 by letting

(i) δ0 := min(D∗ \ (eγ ∪ α)), and
(ii) β0 := min(eγ \ δ0), and
(iii) δn+1 := min(D∗ \ (eγ ∪ βn)), and
(iv) βn+1 := min(eγ \ δn+1).

Evidently, α ≤ δn < βn < δn+1.
For every n ≤ σ, denote βni := sup(βn ∩Di), and fix a large enough jn < ω such

that βni = βnjn for every integer i ≥ jn. Set i∗ := max{jn | n ≤ σ} which is finite as
σ is finite. Altogether, for every n < σ,

α ≤ δn ≤ βni∗ = βni∗+1 ≤ βn < δn+1.

It thus follows that {βni∗ | n ≤ σ} consists of σ + 1 many distinct elements of
ΦDi∗ (eγ)∩(Di∗+1\α). But Di∗+1 is a subset of FDi∗ so |ΦDi∗ (eγ)∩(FDi∗ \α)| > σ,
and since γ = min(Cδ \ (α+ 1)), we have contradicted the fact that α 6∈ Ai∗ . a

Let D ⊆ κ be a club as given by the preceding claim. For all γ ∈ Eκ≤ν and

z ∈ [ν]<ω, we define a finite subset of γ:

zγ := {η ∈ ΦD(eγ) | otp(ΦD(eγ) ∩ η) ∈ z}.

Now, for every z ∈ [ν]<ω, define a postprocessing∗ function Φz : K(κ)→ K(κ) via:

Φz(x) := x ∪ {zγ \ sup(x ∩ γ) | γ ∈ nacc(x) ∩ Eκ≤ν}.

Claim 5.2.2. There exists z ∈ [ν]σ+1 such that ~Cz := 〈Φz(Cδ) | δ ∈ S〉 witnesses

CGξ(S, κ, σ, ~J).

Proof. Suppose not. For each z ∈ [ν]σ+1 fix a counterexample Ez. Set E :=
⋂
{Ez |

z ∈ [ν]σ+1}. Recalling the choice of D, let us now fix δ ∈ S for which

A := {α < δ | γ := min(Cδ \ (α+ 1)) & γ ∈ Eκ≤ν & |ΦD(eγ) ∩ (E \ α)| > σ}

is in J+
δ . For every α ∈ A, let γα := min(Cδ \ (α+ 1)) and fix zα ∈ [ν]σ+1 such that

(zα)γα ⊆ E \ α. As Jδ is cf(δ)-additive and cf(δ) > ν = |[ν]σ+1|, it follows that
there exists some z ∈ [ν]σ+1 for which {α ∈ A | zα = z} is in J+

δ . As E ⊆ Ez, this
is a contradiction. a

Let z be given by the preceding claim. Then Φz is as sought. �
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Corollary 5.3. Suppose ν < λ < κ are infinite regular cardinals, and S ⊆ Eκλ .

If CGλ(S,Eκν ) holds, then there exists a λ-bounded C-sequence ~C = 〈Cδ | δ ∈ S〉
satisfying the following. For every club D ⊆ κ, for every n < ω, there exists a
δ ∈ S such that sup{β < δ | succn(Cδ \ β) ⊆ D} = δ. �

Theorem 5.4. Suppose ξ ≤ κ are uncountable cardinals.

For every stationary S ⊆ Eκ>ω1
, CGξ(S,E

κ
ω, 1,

~J) implies CGξ(S, κ, ω, ~J);

Proof. Suppose that ~C = 〈Cδ | δ ∈ S〉 witnesses CGξ(S,E
κ
ω, 1,

~J), with S ⊆ Eκ>ω.
In particular, κ ≥ ℵ2. Fix an auxiliary C-sequence ~e = 〈eγ | γ < κ〉 such that
otp(eγ) = cf(γ) for every γ < κ. In what follows we shall use the operator ΦD from
Definition 2.12.

Claim 5.4.1. There is a club D ⊆ κ such that for every club E ⊆ κ there is a
δ ∈ S such that

{α < δ | γ := min(Cδ \ (α+ 1)) & γ ∈ Eκω & ΦD(eγ) ⊆ E} ∈ J+
δ .

Proof. Suppose that the claim does not hold. In this case, for every club D ⊆ κ,
there is a club FD ⊆ κ such that for every δ ∈ S,

{α < δ | γ := min(Cδ \ (α+ 1)) & γ ∈ Eκω & ΦD(eγ) ⊆ FD} ∈ Jδ.

Let µ := ℵ1 so that µ < κ. We construct now a ⊆-decreasing sequence 〈Di |
i ≤ µ〉 of clubs in κ as follows:

(i) D0 := κ;
(ii) Di+1 := Di ∩ FDi ;

(iii) for i ∈ acc(µ+ 1), Di :=
⋂
i′<iDi′ .

Since µ < κ, all these are club in κ. Finally, consider the club

D∗ := {γ < κ | otp(Dµ ∩ γ) = γ}.

As ~C = 〈Cδ | δ ∈ S〉 witnesses CGξ(S,E
κ
ω, 1, ~J), let us pick δ ∈ S such that

A := {α < δ | min(Cδ \ (α+ 1)) ∈ D∗ ∩ Eκω}

is in J+
δ .

For every i < µ, by the choice of FDi , the following set is in Jδ:

Ai := {α < δ | γ := min(Cδ \ (α+ 1)) & γ ∈ Eκω & ΦDi(eγ) ⊆ FDi}.

As Jδ is cf(δ)-additive, and cf(δ) > ω1, we may now fix α ∈ A \
⋃
i<µAi. Set

γ := min(Cδ \ (α + 1)), so that γ ∈ D∗ ∩ Eκω. Since γ ∈ D∗ ⊆ acc(Di) for every
i ≤ µ, we have that ΦDi(eγ) ⊆ Di for every i < µ.

For β ∈ eγ , let βi := sup(β ∩ Di). Since 〈Di | i ≤ µ〉 is ⊆-decreasing, 〈βi |
i < µ〉 is a non-increasing sequence, and hence it must stabilize beyond some ordinal
j(β) < µ. That is, for every i ≥ j(β) we have βi = βj(β). Let i∗ := supβ∈eγ j(β),

and note that i∗ < µ, since µ = ℵ1 = |eγ |+. In particular, this implies that

ΦDi∗ (eγ) = ΦDi∗+1
(eγ) ⊆ Di∗+1 ⊆ Di∗ ∩ FDi∗ .

On the other hand, since α /∈ Ai∗ , we have that ΦDi∗ (eγ) * FDi∗ . This is a
contradiction. a
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Let D ⊆ κ be a club as given by the preceding claim. Consider a new C-sequence
~C• = 〈C•δ | δ ∈ S〉 defined via:

C•δ := Cδ ∪ {ΦD(eγ) \ sup(Cδ ∩ γ) | γ ∈ nacc(Cδ) ∩ Eκω}.

Note that for any δ ∈ S, since otp(Cδ) ≤ ξ and for each γ ∈ Eκω we have
otp(ΦD(eγ)) ≤ otp(e) ≤ ω, we have that the ordertype of every initial segment of
C•δ is strictly less than ξ, and hence otp(C•δ ) ≤ ξ.

Now, if E ⊆ κ is a club, then by the choice of D there is some δ ∈ S such that

A := {α < δ | γ := min(Cδ \ (α+ 1)) & γ ∈ Eκω & ΦD(eγ) ⊆ acc(D) ∩ E}

is in J+
δ . For every α ∈ A, if we let γα := min(C•δ \ (α + 1)), then γα ∈ Eκω

and C•δ ∩ [α, γα) is equal to ΦD(eγα) \ α, which is an end segment of ΦD(eγα).
Since any end segment of ΦD(eγα) has ordertype ω as well, it follows that for any
α ∈ A, there is an end segment of C•δ ∩ γα of ordertype ω which is contained in E.
Since this interval of ordertype ω which is contained in E also contains ω successive
non-accumulation points of C•δ ∩ γα, we infer that

B := {β < δ | succω(C•δ \ β) ⊆ E}

covers A. In particular, B ∈ J+
δ . �

Theorem 5.5. Let σ < ν < ξ ≤ κ be infinite cardinals. Suppose that S ⊆ Eκ>ν
and T ⊆ κ are stationary sets.

(1) If CGξ(S,E
κ
σ ∩ Tr(T ), 1, ~J) holds, then so does CGξ(S, T, σ, ~J);

(2) If CGξ(S,E
κ
ν ∩ Tr(T ), 1, ~J) holds, then so does CGξ(S, T, σ, ~J).

Proof. For the proof of both cases, we fix an auxiliary C-sequence ~e = 〈eγ | γ < κ〉
such that otp(eγ) = cf(γ) for every γ < κ.

(1) Suppose that ~C = 〈Cδ | δ ∈ S〉 witnesses CGξ(S,E
κ
σ ∩ Tr(T ), 1, ~J). Let ΦB

be the operator from Definition 2.8.

Claim 5.5.1. There is a club D ⊆ κ such that for every club E ⊆ κ there is a
δ ∈ S such that

{α < δ | γ := min(Cδ \ (α+ 1)) & γ ∈ Eκσ ∩ Tr(T ) & ΦD∩T (eγ) ⊆ E} ∈ J+
δ .

Proof. Suppose that the claim does not hold. In this case, for every club D ⊆ κ,
there is a club FD ⊆ κ such that, for every δ ∈ S,

{α < δ | γ := min(Cδ \ (α+ 1)) & γ ∈ Eκσ ∩ Tr(T ) & ΦD∩T (eγ) ⊆ FD} ∈ Jδ.

Set µ := σ+, so that µ ≤ ν < κ. We construct now a ⊆-decreasing sequence 〈Di |
i ≤ µ〉 of clubs in κ as follows:

(i) D0 := κ;
(ii) Di+1 := Di ∩ FDi ;
(iii) for i ∈ acc(µ+ 1), Di :=

⋂
i′<iDi′ .

Next, let D∗ := acc(Dµ) and fix δ ∈ S such that

A := {α < δ | min(Cδ \ (α+ 1)) ∈ D∗ ∩ Eκσ ∩ Tr(T )}

is in J+
δ .

For every i < µ, as Di+1 ⊆ FDi , the following set

Ai := {α < δ | γ := min(Cδ \ (α+ 1)) & γ ∈ Eκσ ∩ Tr(T ) & ΦDi∩T (eγ) ⊆ D+i}
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is in Jδ. As cf(δ) > ν ≥ µ, we may fix α ∈ A \
⋃
i<µAi. Set γ := min(Cδ \ (α+ 1)),

so that γ ∈ D∗ ∩ Eκσ ∩ Tr(T ).
For every i < µ, γ ∈ acc(Di) ∩ Tr(T ), so that eγ ∩ Di ∩ T is stationary in γ,

and hence ΦDi∩T (eγ) = cl(eγ ∩ Di ∩ T ). Thus, for every i < µ, as α /∈ Ai, it
must be the case that ΦDi∩T (eγ) * Di+i; but Di+1 is closed, so that, in fact,
eγ ∩Di ∩T * Di+i. For each i < µ, pick βi ∈ (eγ ∩Di ∩T ) \Di+i. As |eγ | < µ, we
may now fix (i, j) ∈ [µ]2 such that βi = βj . So βi /∈ Di+1 while βj ∈ Dj ⊆ Di+1.
This is a contradiction. a

Let D ⊆ κ be given by the preceding claim. Consider the C-sequence ~C• = 〈C•δ |
δ ∈ S〉 defined via:

C•δ := Cδ ∪ {ΦD∩T (eγ) \ sup(Cδ ∩ γ) | γ ∈ nacc(Cδ) ∩ Eκσ}.

It is clear that ~C• witnesses CGξ(S, T, σ, ~J).

(2) Suppose that ~C = 〈Cδ | δ ∈ S〉 witnesses CGξ(S,E
κ
ν ∩ Tr(T ), 1, ~J). For all

γ < κ and ε < ν, let eεγ := {β ∈ eγ ∩ T | otp(eγ ∩ β) < ε} so that it is an initial
segment of eγ ∩ T .

Claim 5.5.2. There is ε < ν such that, for every club E ⊆ κ, there is δ ∈ S with

{α < δ | γ := min(Cδ \ (α+ 1)) & otp(eεγ ∩ (E \ α)) > σ} ∈ J+
δ .

Proof. Otherwise, pick a counterexample Eε for each ε < ν, and set E :=
⋂
ε<ν Eε.

Pick δ ∈ S such that

A := {α < δ | min(Cδ \ (α+ 1)) ∈ acc(E) ∩ Tr(T ) ∩ Eκν }

is in J+
δ . For every α ∈ A, if we let γα := min(Cδ \ (α + 1)), then eγ ∩ E ∩ T

is a stationary subset of γ of ordertype ν, so there exists some εα < ν such that
otp(eεαγα ∩ E \ α) > σ. As Jδ is cf(δ)-additive and cf(δ) > ν, there must exist

some ε < ν for which Aε := {α ∈ A | εα = ε} is in J+
δ . But E ⊆ Eε. This is a

contradiction. a

Let ε be given by the claim.

Claim 5.5.3. There is a club D ⊆ κ such that for every club E ⊆ κ there is a
δ ∈ S such that

{α < δ | γ := min(Cδ \ (α+ 1)) & eεγ ∩D ⊆ E & otp(eεγ ∩ (D \ α)) > σ} ∈ J+
δ .

Proof. Suppose that the claim does not hold. In this case, for every club D ⊆ κ,
there is a club FD ⊆ κ such that, for every δ ∈ S,

{α < δ | γ := min(Cδ \ (α+ 1)) & eεγ ∩D ⊆ FD & otp(eεγ ∩ (D \ α)) > σ} ∈ Jδ.

We construct now a ⊆-decreasing sequence 〈Di | i ≤ ν〉 of clubs in κ as follows:

(i) D0 := κ;
(ii) Di+1 := Di ∩ FDi ;
(iii) for i ∈ acc(ν + 1), Di :=

⋂
i′<iDi′ .

Let D∗ := Dν and fix δ ∈ S such that

A := {α < δ | γ := min(Cδ \ (α+ 1)) & otp(eεγ ∩ (D∗ \ α)) > σ}

is in J+
δ .
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For every i < ν, the following set

Ai := {α < δ | γ := min(Cδ \ (α+ 1)) & eεγ ∩Di ⊆ FDi & otp(eεγ ∩ (Di \ α)) > σ}

is in Jδ. Fix α ∈ A\
⋃
i<ν Ai. Set γ := min(Cδ\(α+1)), so that otp(eεγ∩(D∗\α)) >

σ.
For every i < ν, sinceD∗ ⊆ Di andDi+1 ⊆ FDi , we have that otp(eεγ∩(Di\α)) >

σ, and hence it must be the case that Di∩eεγ * FDi , and therefore, Di∩eεγ * Di+1.
So 〈Di∩eεγ | i < ν〉 is a strictly ⊆-decreasing sequence of subsets of eεγ , contradicting
the fact that |eεγ | ≤ |ε| < ν. a

Let D be given by the claim. As ε < ν, for every γ < κ, |eεγ | < ν. It altogether

follows that the C-sequence ~C• = 〈C•δ | δ ∈ S〉 defined via:

C•δ := Cδ ∪ {cl(D ∩ eεγ) \ sup(Cδ ∩ γ) | γ ∈ nacc(Cδ)},
is as sought. �

Corollary 5.6. Let µ < σ < σ+ < λ < κ be infinite regular cardinals.

Then CGλ(Eκλ , E
κ
σ , 1, ~J) implies CGλ(Eκλ , E

κ
µ , σ, ~J).

Proof. Appeal to Theorem 5.5(1) with ν := σ+, ξ := λ, S := Eκλ and T := Eκµ . �

Corollary 5.7. For every successor cardinal λ, if CGξ(E
λ+

λ , Eλ
+

<λ, 1) holds, then so

does CGξ(E
λ+

λ , λ+, 2).

Proof. By Theorem 5.2, using σ := 2, λ := ν+, κ := λ+, S := Eκλ , and ~J := 〈Jbd[δ] |
δ ∈ S〉. �

Remark 5.8. This shows that Clause (4) of [Asp14, Theorem 1.6] follows from
Clause (5) of the same theorem, provided that the cardinal κ there is a successor
cardinal.

6. Moving between ideals

As shown in the Section 4, it is easier to partition a witness for CGξ(S, T, σ, ~J)

in the case that the ideals in ~J are normal. So, we address here the problem of
deriving CGξ(S, T, σ, 〈NSδ | δ ∈ S〉) from CGξ(S, T, σ, 〈Jbd[δ] | δ ∈ S〉). The key
lemma is Lemma 6.3. In Theorem 6.4 it is used to improve results from Section 4.
At successor cardinals, Lemma 6.3 is particularly useful as seen by the main result
of this section, which combines Theorems A and E:

Corollary 6.1. Suppose that λ is a successor cardinal, and S ⊆ Eλ+

λ is stationary.
Then:

(1) CGλ(S,Eλ
+

λ , 1, 〈NSδ | δ ∈ S〉) holds;

(2) CGλ(S,Eλ
+

<λ) implies CGλ(S, λ+, n, 〈NSδ | δ ∈ S〉) for every n < ω;

(3) If λ > ℵ1, then CGλ(S,Eλ
+

<λ) implies CGλ(S, λ+, ω, 〈NSδ | δ ∈ S〉).

Proof. Let ν denote the predecessor of λ.
(1) By Fact 3.25 and Theorem 6.11(1) below.

(2) Suppose that CGλ(S,Eλ
+

<λ), equivalently CGλ(S,Eλ
+

≥ω ∩ Eλ
+

≤ν ), holds. Then,

by Corollary 5.1, also CGλ(S, λ+, n) holds for every n < ω. Finally, By Theo-

rem 6.11(1) below, moreover CGλ(S, λ+, n, 〈NSδ | δ ∈ Eλ
+

λ 〉) holds for every n < ω.



40 TANMAY INAMDAR AND ASSAF RINOT

(3) Assuming that ν is uncountable, by Corollary 5.1, CGλ(S,Eλ
+

≥ω∩Eλ
+

≤ν ) implies

CGλ(S, λ+, ω), which, by Theorem 6.11(1) below, implies CGλ(S, λ+, ω, 〈NSδ |
δ ∈ Eλ+

λ 〉). �

Lemma 6.2. Let ℵ0 < ξ < κ and S ⊆ Eκξ be stationary. Assume 1 ≤ σ < ξ.

If ~J = 〈Jδ | δ ∈ S〉 is such that NSδ ⊆ Jδ for all δ, then CG(S, T, σ, ~J) implies

CGξ(S, T, σ, ~J).

Proof. Let ~C = 〈Cδ | δ ∈ S〉 be a witness to CG(S, T, σ, ~J). For each δ ∈ S, define
a function fδ : δ → δ via

fδ(β) := sup(succσ(Cδ \ β)) + 1,

then fix a club eδ in δ of ordertype cf(δ) consisting of closure points of fδ, and
finally let C•δ be the ordinal closure below δ of the following set:⋃

{succσ(Cδ \ β) | β ∈ eδ}.

To see that 〈C•δ | δ ∈ S〉 witnesses CGξ(S, T, σ, ~J), let D be a club in κ. Pick δ ∈ S
for which the following set is in J+

δ :

B := {β < δ | succσ(Cδ \ β) ⊆ D ∩ T}.
Then eδ ∩B ∈ J+

δ , and for every β ∈ eδ ∩B, succσ(C•δ \ β) = succσ(Cδ \ β). �

Lemma 6.3. Suppose that ~C = 〈Cδ | δ ∈ S〉 witnesses CG(S, T, σ), with S ⊆ Eκ>ω
and T ⊆ κ. Then there exists a C-sequence ~e = 〈eδ | δ ∈ S〉 such that, for every
club D ⊆ κ, there exists δ ∈ S such that the following set is stationary in δ:

{α ∈ eδ | ∃β ∈ Cδ [α ≤ β < min(eδ \ (α+ 1)) & succσ(Cδ \ β) ⊆ D ∩ T ]}.

Proof. Suppose not. For every δ ∈ S, let e0
δ := Cδ. Next, suppose that i < ω and

that 〈eiδ | δ ∈ S〉 has already been defined. By assumption, we can find a club
Di ⊆ κ such that, for every δ ∈ S, the following set is nonstationary in δ:

{α ∈ eiδ | ∃β ∈ Cδ [α ≤ β < min(eiδ \ (α+ 1)) & succσ(Cδ \ β) ⊆ Di ∩ T ]},
so let us pick a subclub ei+1

δ of eiδ disjoint from it.

Put D :=
⋂
i<ωDi. By the choice of ~C, let us now pick δ ∈ S such that

sup{β < δ | succσ(Cδ \ β) ⊆ D ∩ T} = δ.

Pick β < δ above min(
⋂
i<ω e

i
δ) such that succσ(Cδ \ β) ⊆ D ∩ T . Consider the

ordinal
γ := min(succσ(Cδ \ β)),

and then, for every i < ω, let αi := sup(eiδ ∩ γ). As acc(eiδ) ⊆ acc(Cδ), and γ is
in nacc(Cδ) and above min(eiδ), we infer that αi ∈ eiδ ∩ γ. As 〈eiδ | i < ω〉 is a
⊆-decreasing chain, 〈αi | i < ω〉 is ≤-decreasing, so we may find a large enough
i < ω such that αi+1 = αi. In particular, αi ∈ ei+1

δ , so by the choice of ei+1
δ ,

∀β ∈ Cδ [α ≤ β < min(eiδ \ (α+ 1))→ succσ(Cδ \ β) * Di ∩ T ].

On the other hand, since αi = sup(eiδ∩γ), it is the case that min(eiδ\(αi+1)) ≥ γ.
Recalling also that e0

δ ⊆ Cδ, altogether αi ≤ β < min(eiδ \ (αi + 1)), and

succσ(Cδ \ β) ⊆ D ∩ T ⊆ Di ∩ T.
This is a contradiction. �
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An immediate consequence of the preceding lemma is an improvement of Clauses

(2) and (3) of Theorem 4.9, for the special case of ~J = 〈Jbd[δ] | δ ∈ S〉.

Theorem 6.4. Suppose that ~C witnesses CG(S, T, σ) with S ⊆ Eκλ .

(1) If onto(NSλ, λ) holds, then λ ∈ Θ2(~C, T, σ);

(2) If unbounded(NSλ, θ) holds and θ < λ, then θ ∈ Θ2(~C, T, σ).

Proof. Let ~e = 〈eδ | δ ∈ S〉 be the corresponding C-sequence given by Lemma 6.3.
Without loss of generality, otp(eδ) = λ for all δ ∈ S. Define ψδ : δ → λ via
ψδ(β) := otp(eδ ∩ β), so that, for every A ⊆ δ, ψδ[A] is stationary in λ iff A is
stationary in δ.

(1): Suppose that onto(NSδ, λ) holds, and fix a colouring c : [λ]2 → λ as in
Theorem 4.10(2). As nacc(κ) is in NSλ, we may assume that for all η < α < κ,
c(η, α+ 1) = c(η, α). Now, a proof nearly identical to that of Claim 4.9.1 yields an
η < λ such that, for every club D ⊆ κ, there exists a δ ∈ S, such that, for every
τ < λ:

sup{β < δ | η < ψδ(β) & c(η, ψδ(β)) = τ & succσ(Cδ \ β) ⊆ D ∩ T} = δ.

Choose ~h = 〈hδ : δ → λ | δ ∈ S〉 satisfying hδ(β) = c(η, ψδ(β)) for every δ ∈ S and

β < δ such that η < ψδ(β)). Then ~h witnesses that λ ∈ Θ2(~C, T, σ).

(2) Suppose that unbounded(Jbd[λ], θ) holds with θ < λ, and fix a colouring
c : [λ]2 → θ as in Theorem 4.10(1). For every club D ⊆ κ, for all δ ∈ S and η < λ,
let D(η, δ) denote the set:

{τ < θ | sup{β < δ | η < ψδ(β) & c(η, ψδ(β)) = τ & succσ(Cδ \ β) ⊆ D ∩ T} = δ}.

A proof nearly identical to that of Claim 4.9.2 yields an η < λ such that, for every
club D ⊆ κ, there exists δ ∈ S, such that |D(η, δ)| = θ. The rest of the proof is
now identical to that of Theorem 4.9(3). �

Corollary 6.5. Suppose that ~C witnesses CG(S, T, σ) with S ⊆ Eκλ .

If λ is not ineffable, then ω ∈ Θ2(~C, T, σ).

Proof. By Theorem 6.4 and Corollary 4.19(3). �

Motivated by Fact 4.16(1), we ask:

Question 6.6. Suppose that CG(S, T ) holds for stationary S ⊆ Eκ>ω and T ⊆ κ.
Does there exist a cardinal µ < κ such that CG(S, T, 1, 〈NSδ �Eδµ | δ ∈ S〉) holds?

Lemma 6.3 suggests the following variation of Definition 2.2.

Definition 6.7. CGξ(S, T,
1
2 ,
~J) asserts the existence of a ξ-bounded C-sequence

~C = 〈Cδ | δ ∈ S〉 such that, for every club D ⊆ κ there is a δ ∈ S such that

{β < δ | (β,min(Cδ \ (β + 1))] ∩D ∩ T 6= ∅} ∈ J+
δ .

Corollary 6.8. For all stationary S ⊆ Eκ>ω and T ⊆ κ, if CG(S, T ) holds, then
so does CG(S, T, 1

2 , 〈NSδ | δ ∈ S〉). �

We now show that it is possible to upgrade σ = 1
2 to σ = 1, but at the cost of

losing control over the set T .
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Lemma 6.9. Suppose that S ⊆ Eκ>ω is stationary.

For every C-sequence 〈Cδ | δ ∈ S〉 witnessing CG(S, κ, 1
2 ,
~J), there exists a

postprocessing∗ function Φ : K(κ) → K(κ) such that 〈Φ(Cδ) | δ ∈ S〉 witnesses

CG(S, κ, 1, ~J).

Proof. We shall make use of the operator ΦD from Definition 2.12.

Claim 6.9.1. There exists a club D ⊆ κ such that, 〈ΦD(Cδ) | δ ∈ S〉 witnesses

CG(S, κ, 1, ~J).

Proof. Suppose not. In this case, for every club D ⊆ κ, there is a club FD ⊆ κ
such that for every δ ∈ S

{β < δ | min(ΦD(Cδ) \ (β + 1)) ∈ FD} ∈ Jδ.

Construct a ⊆-decreasing sequence 〈Dn | n < ω〉 of clubs in κ by letting D0 := κ
and Dn+1 := acc(Dn) ∩ FDn for every n < ω. Set D :=

⋂
n<ωDn and then pick

δ ∈ S for which the following set is in J+
δ :

B := {β ∈ Cδ | (β,min(Cδ \ (β + 1))] ∩D 6= ∅}.

In particular, δ ∈ acc(D), so that, for every n < ω,

ΦDn(Cδ) = {sup(Dn ∩ η) | η ∈ Cδ, η > min(Dn)}.

Now, as cf(δ) > ω and Jδ is cf(δ)-complete, the following set is nonempty:

B \
⋃
n<ω

{β < δ | min(ΦDn(Cδ) \ (β + 1)) ∈ FDn},

so we may pick in it some ordinal β. Set γ := min(Cδ \ (β + 1)). As β ∈ B, we
know that D ∩ (β, γ] 6= ∅. In particular, for every n < ω, acc(Dn) ∩ (β, γ] 6= ∅ and
βn := sup(Dn ∩ γ) is an element of Dn greater than β, so that

min(ΦDn(Cδ) \ (β + 1)) = {βn}.

As 〈Dn | n < ω〉 is a ⊆-decreasing chain, we may fix n < ω such that βn+1 = βn.
Then min(ΦDn(Cδ)\(β+1)) = βn = βn+1 ∈ Dn+1 ⊆ FDn , contradicting the choice
of β. a

Let D be given by the preceding claim. Then Φ := ΦD is as sought. �

Corollary 6.10. Suppose that S ⊆ Eκ>ω is stationary.
If CG(S, κ) holds, then so does CG(S, κ, 1, 〈NSδ | δ ∈ S〉).

Proof. By Corollary 6.8 and Lemma 6.9. �

Note that the preceding result is restricted to σ := 1 and T := κ. We now
provide a condition sufficient for waiving this restriction.

Theorem 6.11. Suppose that ξ is an infinite successor cardinal, and S ⊆ Eκξ is
stationary.

(1) If CGξ(S, T, σ) holds, then so does CGξ(S, T, σ, 〈NSδ | δ ∈ S〉);
(2) If CGξ(S, T,

1
2 ) holds, then so does CGξ(S, T, 1, 〈NSδ | δ ∈ S〉).
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Proof. We provide a proof of Clause (1) and leave the modification of the argument
to obtain Clause (2) to the reader.

As CGξ(S, T, ξ) is equivalent to CG(S, T, κ), by Lemma 2.10, we may assume

that σ < ξ. Now, suppose that ~C = 〈Cδ | δ ∈ S〉 witnesses CGξ(S, T, σ), and let
~e = 〈eδ | δ ∈ S〉 be the corresponding C-sequence given by Lemma 6.3. For each
δ ∈ S, by possibly shrinking eδ as in the proof of Lemma 6.2, we may assume that
for every γ ∈ eδ and every β < γ, sup(succσ(Cδ \ β)) < γ.

Let µ be such that ξ = µ+, and then, for all δ ∈ S and α ∈ eδ, let ϕδ,α be some
surjection from µ to Cδ ∩ [α,min(eδ \ (α+ 1))).

For every i < µ, let Ciδ be the ordinal closure below δ of the following set:⋃
{succσ(Cδ \ ϕδ,α(i)) | α ∈ eδ}.

Claim 6.11.1. There exists i < µ, such that, for every club D ⊆ κ, there exists
δ ∈ S for which the following set is stationary in δ:

{β < δ | succσ(Ciδ \ β) ⊆ D ∩ T}.

Proof. Suppose not. For each i < µ, pick a counterexample club Di ⊆ κ. Consider
the club D :=

⋂
i<µDi. By the choice of ~e, pick δ ∈ S such that

A := {α ∈ eδ | ∃β ∈ Cδ [α ≤ β < min(eδ \ (α+ 1)) & succσ(Cδ \ β) ⊆ D ∩ T ]}
is stationary. For every α ∈ A, pick iα < µ such that βα := ϕδ,α(i) witnesses that
α ∈ A, that is, such that succσ(Cδ \ϕδ,α(i)) ⊆ D∩T . As cf(δ) = ξ > µ, there must
exist some stationary A∗ ⊆ A on which the map α 7→ iα is constant, with value,
say, i∗. For every pair α < α′ of ordinals from eδ,

sup(succσ(Cδ \ ϕδ,α(i∗))) < α′ ≤ min(succσ(Cδ \ ϕδ,α′(i∗))),
so, recalling the definition of Ci∗δ , for every α ∈ A∗,

succσ(Ci
∗

δ \ α) = succσ(Cδ \ ϕδ,α(i∗)) ⊆ D ∩ T,
contradicting the fact that D ⊆ Di∗ . a

Let i < µ be given by the preceding. Then 〈Ciδ | δ ∈ S〉 witnesses CGξ(S, T, σ,
〈NSδ | δ ∈ S〉). �

Remark 6.12. The above ordertype restriction cannot be waived, that is, the hy-
pothesis CGξ(S, T, σ) in Theorem 6.11 cannot be relaxed to CG(S, T, σ).

By Theorem 3.27(1), if there exists a nonreflecting stationary subset of Eℵ2

ℵ0
, then

CG(Eℵ2

ℵ1
, Eℵ2

ℵ0
) holds, and then, by Theorem 5.2, using ξ = κ = ℵ2 and S = Eℵ2

ℵ1
, so

does CG(Eℵ2

ℵ1
, ω2, 2). Now, if the ordertype restriction in Theorem 6.11 could have

been waived, then this would imply that CG(Eℵ2

ℵ1
, ω2, 2, 〈NSδ | δ ∈ Eℵ2

ℵ1
〉) holds. In

particular, by Lemma 6.2, CGω1(Eℵ2

ℵ1
, ω2, 2) holds. However, running the forcing

from [Asp14, Theorem 1.6] over a model of �ω1 , one gets a generic extension with

a nonreflecting stationary subset of Eℵ2

ℵ0
in which CGω1

(Eℵ2

ℵ1
, ω2, 2) fails. This is a

contradiction.

Remark 6.13. An obvious complication of the proof of Theorem 6.11 shows that

if ξ an infinite successor cardinal, S ⊆ Eκξ is stationary, and ~C is a ξ-bounded

C-sequence over S such that θ ∈ Θ2(~C, T, σ), then there exists a ξ-bounded C-

sequence ~C• over S such that θ ∈ Θ2( ~C•, T, σ, 〈NSδ | δ ∈ S〉).
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