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Abstract. The strongest type of coloring of pairs of countable ordinals, got-

ten by Todorčević from a strongly Luzin set, is shown to be equivalent to
the existence of a nonmeager set of reals of size ℵ1. In the other direction,

it is shown that the existence of both a strongly Luzin set and a coherent

Souslin tree is compatible with the existence of a countable partition of pairs
of countable ordinals such that no coloring is strong over it.

This clarifies the interaction between a gallery of coloring assertions going

back to Luzin and Sierpinski a hundred years ago.

1. Introduction

Each of the following propositions is a consequence of Cantor’s Continuum Hy-
pothesis (CH):

(M) There is a nonmeager set of reals of size ℵ1;
(L) There is an uncountable set of reals whose intersection with every meager

set is countable;
(L*) There is an uncountable set of reals X such that, for every positive integer

d, and every meager subset Y of Rd, the intersection Y ∩Xd contains no
uncountable pairwise disjoint subfamily;1

(S) There is a sequence 〈fn | n ∈ N〉 of functions from from ℵ1 to ℵ1 such that
for every uncountable I ⊆ ℵ1, for all but finitely many n’s, fn[I] = ℵ1;

(EHM) There is a coloring c : [ℵ1]2 → ℵ1 such that for every infinite A ⊆ ℵ1 and
every uncountable B ⊆ ℵ1 there is α ∈ A such that c[{α} ×B] = ℵ1;

(G) There is a coloring c : [ℵ1]2 → 2 such that for every uncountable pairwise
disjoint family B ⊆ [ℵ1]<ℵ0 and every δ < 2, there are a, b ∈ B with
max(a) < min(b) such that c[a× b] = {δ};

(T) There is a coloring c : [ℵ1]2 → ℵ1 such that for all k, l < ω, for every infinite
pairwise disjoint family A ⊆ [ℵ1]k and every uncountable pairwise disjoint
family B ⊆ [ℵ1]l there is a ∈ A such that for every function f : k× l→ ℵ1,
there is b ∈ B such that c(a(i), b(j)) = f(i, j) for all (i, j) ∈ k × l.

(L) was derived from CH by Mahlo and independently by Luzin around 1913;
such a set of reals is called a Luzin set. (L*) was derived by Todorčević [27, p. 51],
and such a set was named strongly Luzin. (S) was derived by Sierpiński in 1932,
and may be found in his monograph [24]. (EHM) was derived by Erdős, Hajnal and
Milner in 1966 [7] and (G) was derived by Galvin in 1980 [8]. A special case of (T)
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in which either k or l is 1 and the number of colors is just 2 was gotten from CH
by Hajnal and Juhász [10] in their work on HFC and HFD spaces from the 1970’s .

Evidently, (L*) =⇒ (L) =⇒ (M), (T) =⇒ (G) and (T) =⇒ (EHM) =⇒ (S). In
1980, Shelah [22, 12] established that (M) 6=⇒ (L). In 1987, Todorčević [25, pp. 290–
291] proved that (L) =⇒ (S)⇐⇒ (EHM). In 1989, Todorčević [27, Proposition 6.4]
proved that (L*) =⇒ (T). Recently, Miller [18] proved (S) =⇒ (M) and Guzmán
[9] proved (M) =⇒ (S), establishing (M)⇐⇒ (S).

The first main result of this paper expands this circle of equivalences:

Theorem A. (M)⇐⇒ (T).

Proposition (T), which in the language of Definition 2.1 below is denoted

Pr0(ℵ1, ℵ0~ℵ1�1~ℵ1 ,ℵ1,ℵ0)

asserts the existence of an extremely strong coloring, yet one can ask for even more.
The notion of a strong coloring over a partition p was introduced recently in [4],
where it was shown that for every strong coloring c : [ℵ1]2 → ℵ1 there is a partition
p : [ℵ1]2 → 2 such that c is not strong over p. Nevertheless, by [4, Lemma 9], if the
space of strong colorings which witness Pr0(ℵ1, ℵ0~ℵ1�1~ℵ1 ,ℵ1,ℵ0) is non-empty,

then for every partition p : [ℵ1]2 → µ with (ℵ1)µ = ℵ1 there is a strong coloring
which witnesses it over p; the existence of such a coloring is denoted by

Pr0(ℵ1, ℵ0~ℵ1�1~ℵ1 ,ℵ1,ℵ0)p.

Altogether, by Theorem A, (M) implies Pr0(ℵ1, ℵ0~ℵ1�1~ℵ1 ,ℵ1,ℵ0)p for all par-

titions p : [ℵ1]2 → θ with a finite θ, and CH implies Pr0(ℵ1, ℵ0~ℵ1�1~ℵ1 ,ℵ1,ℵ0)p
also for θ = ℵ0. By Theorem 3.4 below, Pr0(ℵ1, ℵ0~ℵ1�1~ℵ1 ,ℵ1,ℵ0)p can hold for

all p : [ℵ1]2 → ℵ0 also in models with an arbitrarily large continuum.
It is natural to ask, then, whether (M) implies Pr0(ℵ1, ℵ0~ℵ1�1~ℵ1 ,ℵ1,ℵ0)p for

all countable p. We prove in Section 3 below:

Theorem A’. (M) is equivalent to Pr0(ℵ1, ℵ0~ℵ1�1~ℵ1 ,ℵ1,ℵ0)p for all `∞-coherent

partitions p : [ℵ1]2 → ℵ0.

This leaves open the question whether Theorem A’ can be extended to cover all
countable partitions. The second main result of this paper shows that this is not
the case. In fact, (L*) does not even imply ℵ1 →p [ℵ1]2ℵ0 for all countable p, whereas
without the p this relation holds in ZFC by Todorčević’s celebrated theorem [25].

Theorem B. It is consistent that (L*) holds and there is a partition p : [ℵ1]2 → ℵ0

such that the positive Ramsey relation ℵ1 →p (ℵ1)2
ℵ0 holds.

Theorem B is proved in Section 4. The model witnessing the theorem is obtained
by forcing over a ground model of CH to which the partition p, whose existence is
equivalent to the statement d = ℵ1, belongs. In the forcing extension there exist a
strongly Luzin set and a coherent Souslin tree, but every coloring c : [ℵ1]2 → ℵ0 is
p-special : there is a decomposition 〈Xi | i < ω〉 of ℵ1 into (p, c)-homogeneous sets,
that is, for each i < ω, p(α, β) determines c(α, β) for all (α, β) ∈ [Xi]

2.

2. Strong colorings and partitions

Surveys of the rich theory of strong colorings that was developed since Sierpiński’s
time to the present may be found in the introductions to [21, 4]. For the scope of
this paper, we just need the following.
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Definition 2.1 ([14]). Let p : [ω1]2 → ω be a partition. For cardinals χ ≤ ω and
θ ≤ ω1, a coloring c : [ω1]2 → θ is said to witness

• Pr1(ω1, ω1, θ, χ)p iff for every uncountable pairwise disjoint subfamily A ⊆
[ω1]n, every n < χ, and every function τ : ω → θ there are a, b ∈ A with
a < b such that

c(α, β) = τ(p(α, β)) for all α ∈ a and β ∈ b;

• Pr1(ω1, ω~ω1�1~ω1 , θ, χ)p iff for every pairwise disjoint subfamilies A,B of

[ω1]n with |A| = ω, |B| = ω1 and n < χ there is a ∈ A such that for every
function τ : ω → θ, there is b ∈ B with a < b such that

c(α, β) = τ(p(α, β)) for all α ∈ a and β ∈ b;

• Pr0(ω1, ω~ω1�1~ω1 , θ, χ)p iff for every pairwise disjoint subfamilies A,B of

[ω1]n with |A| = ω, |B| = ω1 and n < χ, there is a ∈ A such that for every
matrix (τi,j)i,j<n of functions from ω to θ, there is b ∈ B with a < b such
that

c(a(i), b(j)) = τi,j(p(a(i), b(j))) for all i, j < n.

Remark 2.2. Here a(i) stands for the ith element of a.

Definition 2.3. For a partition p : [ω1]2 → ω:

• p has injective fibers iff p(α, β) 6= p(α′, β) for all α < α′ < β;
• p has finite-to-one fibers iff {α < β | p(α, β) = j} is finite for all β < ω1

and j < ω;
• p has almost-disjoint fibers iff {p(α, β) | α < β}∩{p(α, β′) | α < β} is finite

for all β < β′ < ω1;
• p has Cohen fibers iff for every injection g : a → ω with a ∈ [ω1]<ω, there

are cofinally many β < ω1 such that g(α) = p(α, β) for all α ∈ a;
• p is coherent iff {α < β | p(α, β) 6= p(α, β′)} is finite for all β < β′ < ω1;
• p is `∞-coherent iff {p(α, β)− p(α, β′) | α < β} is finite for all β < β′ < ω1.

Remark 2.4. An example of an `∞-coherent partition which is not coherent is the
map ρ2 : [ω1]2 → ω from the theory of walks on ordinals [25, p. 269].

For many cardinal characteristics x of the continuum, the assertion “x = ℵ1” may
be reformulated as a statement about the existence of a partition p : [ω1]2 → ω with
certain properties. In Section 4 we shall need following reformulation of “d = ℵ1”.

Lemma 2.5. d = ℵ1 iff there exists a partition p : [ω1]2 → ω with injective,
almost-disjoint and Cohen fibers which satisfies the following:

For every function h : ε→ ω with ε < ω1 there exists γ < ω1 such that for every
b ∈ [ω1 \ γ]<ℵ0 there exists ∆ ∈ [ε]<ℵ0 such that:

• for all α ∈ ε \∆ and β ∈ b, h(α) < p(α, β);
• p � ((ε \∆)× b) is injective.

Proof. For the backwards implication, derive an ω1-sized cofinal family {rβ | ω ≤
β < ω1} in (ωω,<∗) by letting rβ(n) := p(n, β).

We turn now to the forward implication. Fix a coherent q : [ω1]2 → ω having
injective fibers (see, e.g., [15, Theorem 5.9]). Fix an enumeration 〈gβ | β < ω1〉 of
all injections g with dom(g) ∈ [ω1]<ℵ0 and Im(g) ⊆ ω in which each such injection
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occurs cofinally often. For each β < ω1, let mβ := sup(Im(gβ)) + 1. Fix a bijection
π : ω × ω ↔ ω. Derive a function ψ : ω → ω via

ψ(m) := max{i < ω | ∃j < ω (π(i, j) ≤ m)}.

Using d = ℵ1, it is easy to construct recursively a sequence ~d = 〈dβ | β < ω1〉 such

that ~d is increasing and cofinal in (ωω,<∗), and, for every β < ω1, min(Im(dβ)) >
ψ(mβ). Finally, define a partition p : [ω1]2 → ω via:

p(α, β) :=

{
gβ(α) if α ∈ dom(gβ);

π(dβ(q(α, β)), q(α, β)) otherwise.

Claim 2.5.1. Let α < β < ω1. Then α ∈ dom(gβ) iff p(α, β) ∈ Im(gβ).

Proof. The forward implication is clear, so suppose that α /∈ dom(gβ), and set
j := q(α, β). By the choice of dβ , i := dβ(j) is greater than ψ(mβ), and hence
π(i, j) > mβ > sup(Im(gβ)). Altogether, p(α, β) = π(i, j) > sup(Im(gβ)). �

As π is injective, q has injective fibers and each gβ is injective, it follows that p
has injective fibers. It is also clear that p has Cohen fibers.

Claim 2.5.2. p has almost-disjoint fibers.

Proof. Fix an arbitrary pair (β, β′) ∈ [ω1]2 and consider the set

A := {p(α, β) | α < β} ∩ {p(α, β′) | α < β}.

Evidently, |A| ≤ mβ +mβ′ + |{n < ω | dβ(n) = dβ′(n)}| < ω. �

To see that p is as sought, fix arbitrary ordinal ε < ω1 and function h : ε → ω.
As q has coherent fibers, for every β < ω1 above ε, the following set is finite

A0
β := {α < ε | q(α, ε) 6= q(α, β)}.

Define a real r : ω → ω via

r(n) :=

{
0 if ∀α < ε (q(α, ε) 6= n));

ψ(h(α)) if q(α, ε) = n.

Find a large enough ordinal γ < ω1 such that ε < γ and r <∗ dβ for every
β ∈ [γ, ω1). Now, let b ∈ [ω1 \ γ]<ℵ0 be arbitrary. As q has injective fibers, for
every β ∈ [γ, ω1), the following set is finite

A1
β := {α < ε | r(q(α, β)) ≥ dβ(q(α, β))}.

As ~d is <∗-increasing, we may find some m∗ < ω such that, for all n ∈ [m∗, ω)
and (β, β′) ∈ [b]2, dβ(n) < dβ′(n). Now, as q has injective fibers, it follows that the
following set is finite:

∆ :=
⋃
β∈b

(A0
β ∪A1

β ∪ dom(gβ) ∪ {α < ε | q(α, β) < m∗}).

Claim 2.5.3. (1) for all α ∈ ε \∆ and β ∈ b, h(α) < p(α, β);
(2) p � ((ε \∆)× b) is injective.
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Proof. (1) Let α ∈ ε \∆ and β ∈ b. Set n := q(α, ε). As α ∈ ε \ A0
β , q(α, β) = n,

so that ψ(h(α)) = r(n) = r(q(α, β)). As α ∈ ε \ A1
β , r(q(α, β)) < dβ(q(α, β)).

Altogether, ψ(h(α)) < dβ(q(α, β)) and hence π(dβ(q(α, β)), j) > h(α) for all j < ω.
In particular, since α /∈ dom(gβ), p(α, β) = π(dβ(q(α, β)), q(α, β)) > h(α).

(2) Fix (α, β), (α′, β′) ∈ (ε\∆)×b with p(α, β) = p(α′, β′). If β = β′, then since p
has injective injective fibers, α = α′ and we are done. So, suppose that β 6= β′, say,
β < β′. Denote (k, n) := (dβ(q(α, β)), q(α, β)). As p(α, β) = p(α′, β′), α /∈ dom(gβ)
and α′ /∈ dom(gβ′), it follows that (dβ′(q(α′, β′)), q(α′, β′)) = (k, n). In particular,
dβ(n) = dβ′(n). As α ∈ ε \∆, we infer that n ≥ m∗, so dβ(n) < dβ′(n). This is a
contradiction. �

This completes the proof. �

3. Strong colorings from a nonmeager set

In the next Theorem, which proves Theorems A and A’: Clause (1) is propo-
sition (M). Clause (2) is a syntactic weakening of proposition (S), but addressing
a concern raised by Bagemihl and Sprinkle [2], it was shown by Miller [18] to be
equivalent to it. Clause (3) is a high-dimensional version of Clause (2). Clause (4)
asserts the existence of a coloring c : [ω1]2 → ω1×ω for which the map (α, β) 7→ δ iff
∃ι[c(α, β) = (δ, ι)] witnesses Pr1(ℵ1, ℵ0~ℵ1�1~ℵ1 ,ℵ1,ℵ0) of Definition 2.1 and c itself

has finite-to-one fibers. Clause (5) is proposition (T) over `∞-coherent partitions.
Clause (6) is slightly weaker than proposition (EHM). The implication (7) =⇒ (1)
is due to Miller [17] and the implication (1) =⇒ (2) is due to Guzmán [9].

Theorem 3.1. All of the following are equivalent:

(1) non(M) = ℵ1;

(2) There exists a sequence ~f = 〈fm | m < ω〉 of functions from ω1 to ω1

satisfying that for every cofinal subset B ⊆ ω1 there exists m < ω such that
fm[B] = ω1;

(3) There exists a sequence ~g = 〈gn | n < ω〉 of functions from ω1 to ω1 sat-
isfying that for every uncountable pairwise disjoint subfamily B ⊆ [ω1]<ℵ0

there are infinitely many n < ω such that for every γ < ω1, for some b ∈ B,
gn[b] = {γ};

(4) There exists a coloring c : [ω1]2 → ω1×ω with finite-to-one fibers, such that
for every
• k < ω and an infinite pairwise disjoint subfamily A ⊆ [ω1]k

• l < ω and an uncountable pairwise disjoint subfamily B ⊆ [ω1]l

there exists a ∈ A such that for every δ < ω1 there are ι < ω and b ∈ B
such that

{α < β | c(α, β) = (δ, ι)} = a for every β ∈ b;

(5) For every `∞-coherent partition p : [ω1]2 → ω, there exists a corresponding
coloring d : [ω1]2 → ω1 satisfying that for every
• k < ω and an infinite pairwise disjoint subfamily A ⊆ [ω1]k

• l < ω and an uncountable pairwise disjoint subfamily B ⊆ [ω1]l

there exists a ∈ A such that for every matrix 〈τn,m | n < k,m < l〉 of
functions from ω to ω1 there exists b ∈ B such that

d(a(n), b(m)) = τn,m(p(a(n), b(m))) for all n < k and m < l;
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(6) There exists a coloring e : [ω1]2 → ω such that for every infinite A ⊆ ω1 and
uncountable B ⊆ ω1, there is α ∈ A such that {e(α, β) | β ∈ B\(α+1)} = ω;

(7) There exists a subset X ⊆ ωω of size ℵ1 with the property that for every
real y : ω → ω, for some x ∈ X, x ∩ y is infinite.

Proof. For the rest of the proof we fix a bijection π : ω ↔ ω × ω and, by the
Engelking-Karlowicz theorem [5], we fix a sequence 〈hj | j < ω〉 of functions from
ω1 to ω such that for every set x ∈ [ω1]<ℵ0 and a function h : x → ω there exists
j < ω such that h ⊆ hj .

(1) =⇒ (2): This is Proposition 2.2 of [9].

(2) =⇒ (3): Let ~f witness Clause (2). For every β < ω1 fix a surjection
eβ : ω → β + 1. Define a sequence ~g = 〈gn | n < ω〉 of functions from ω1 to ω1, as
follows. Given n < ω, let (m, j) := π(n) and for every β < ω1 set

gn(β) := fm(eβ(hj(β))).

To see that ~g witnesses Clause (3), fix an arbitrary uncountable pairwise disjoint
subfamily B ⊆ [ω1]<ℵ0 and some k < ω. We shall find an integer n > k such that,
for every γ < ω1 there is some b ∈ B such that gn[b] = {γ}.

For every b ∈ B, define a function hb : b→ ω via:

hb(β) := min{i < ω | eβ(i) = min(b)}.
Fix j′ < ω for which B′ := {b ∈ B | hb ⊆ hj′} is uncountable, and then let

m′ := max({0} ∪ {m < ω | π−1(m, j′) ≤ k}).
Evidently, B0 := {min(b) | b ∈ B′} is uncountable. Next, for every i ≤ m′ such that
Bi has already been defined, proceed as follows:
I If Zi := {β ∈ Bi | fi(β) 6= 0} is uncountable, then let Bi+1 := Zi;
I Otherwise, let Bi+1 := Bi \ Zi.
In either case, Bi+1 ⊆ Bi is uncountable with fi[Bi+1] 6= ω1.

Finally, as Bm′+1 is uncountable, let us pick, by the choice of ~f , an integer m < ω
such that fm[Bm′+1] = ω1.

For all i ≤ m′, fi[Bm′+1] ⊆ fi[Bi+1] ( ω1, so m > m′. In particular, n :=
π(m, j′) is larger than k. To see that n is as sought, let γ ∈ ω1 = fm[Bm′+1] be
arbitrary. Pick β′ ∈ Bm′+1 with fm(β′) = γ. As β′ ∈ Bm′+1 ⊆ B0, let us pick
b ∈ B such that hb ⊆ hj′ and min(b) = β′. Let β ∈ b be arbitrary. Then

gn(β) = fm(eβ(hj′(β))) = fm(eβ(hb(β))) = fm(β′) = γ.

So gn[b] = {γ}, as required.
(3) =⇒ (4): The proof here is inspired by Miller’s proof of [18, Proposition 4].

Define an eventually increasing sequence of integers 〈mn | n < ω〉 by recursion,
setting m0 := 1, and mn+1 := n! · (

∑
i≤nmi) for every n < ω. For every n < ω, let

Φn :=
⋃
{x(ω1 × ω) | x ⊆ ω1, |x| = mn}. Evidently, |Φn| = ω1, so we may fix an

injective enumeration 〈φγn | γ < ω1〉 of Φn.
Let ~g witness Clause (3). Define a coloring d : [ω1]2 → (ω1 × ω) × ω by letting

for all α < β < ω1:

d(α, β) :=

{
((α, 0), 0) if α /∈

⋃
i<ω dom(φ

gi(β)
i );

(φ
gn(β)
n (α), n+ 1) if n = min{i < ω | α ∈ dom(φ

gi(β)
i )}.

Finally, define a coloring c : [ω1]2 → ω1 × ω by letting c(α, β) := (γ, π(ι, n)) iff
d(α, β) = ((γ, ι), n). It is clear that d has finite-to-one fibers, and hence so does c.
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To see that c witnesses Clause (4), fix positive integers k, l along with A,B such
that:

• A is an infinite pairwise disjoint subfamily of [ω1]k,
• B is an uncountable pairwise disjoint subfamily of [ω1]l, and
• a < b for all a ∈ A and b ∈ B.

By the choice of ~g, let us fix an integer n > max{k, l} such that, for every γ < ω1,
for some b ∈ B, gn+1[b] = {γ}. As mn+1 is divisible by k, we now fix an injective
sequence 〈aι | ι < mn+1

k 〉 consisting of elements of A.

Claim 3.1.1. There exists ι < mn+1

k such that, for every δ < ω1, there is b ∈ B,
such that, for every β ∈ b:

{α < β | c(α, β) = (δ, π(ι, n+ 2))} = aι.

Proof. Suppose not. Then, for every ι < mn+1

k , we may find some δι < ω1 such
that for all b ∈ B, for some β ∈ b,

{α < β | d(α, β) = ((δι, ι), n+ 2)} 6= aι.

Define a function φ :
⊎
{aι | ι < mn+1

k } → ω1×ω by letting φ(α) := (δι, ι) iff α ∈ aι.
As |

⊎
{aι | ι < mn+1

k }| =
mn+1

k · k = mn+1, we infer that φ ∈ Φn+1, so we may fix
γ < ω1 such that φ = φγn+1. Now, pick b ∈ B with gn+1[b] = {γ}.

For every i ≤ n and β ∈ b, let xβi := dom(φ
gi(β)
i ), so that |xβi | = mi. Next, set

x :=
⋃
{xβi | i ≤ n, β ∈ b}. As |b| = l, we infer that |x| ≤ l ·

∑
i≤nmi. Thus

k · |x| ≤ k · l ·
∑
i≤n

mi < n! ·
∑
i≤n

mi = mn+1.

In particular, |x| < mn+1

k , so we may fix ι < mn+1

k such that aι ∩ x = ∅.
Let β ∈ b be arbitrary. Consider the set

A := {α < β | d(α, β) = ((δι, ι), n+ 2)}.

As gn+1(β) = γ, we infer that φ
gn+1(β)
n+1 = φ, so, by the definition of d:

A ⊆ {α < β | φgn+1(β)
n+1 (α) = (δι, ι)} ⊆ {α < β | φ(β)(α) = (δι, ι)} = aι.

On the other hand, for every α ∈ aι ⊆ dom(φ
gn+1(β)
n+1 ), as α /∈ x, it follows that

min{i < ω | α ∈ dom(φ
gi(β)
i )} = n+ 1, and hence

d(α, β) = (φ
gn+1(β)
n+1 (α), n+ 2) = (φ(α), n+ 2) = ((δι, ι), n+ 2),

so that α ∈ Ai. Altogether, A = aι, contradicting the choice of δι. �

(4) =⇒ (5): Fix c witnessing Clause (4). Let 〈ηγ | γ < ω1〉 be some injective
enumeration of

⋃
{k×l×tω1 | k, l, t < ω} and let 〈(iδ, jδ, γδ) | δ < ω1〉 be some

injective enumeration of ω × ω × ω1,
Now, given any `∞-coherent partition p : [ω1]2 → ω, define a coloring d : [ω1]2 →

ω1 as follows. Given (α, β) ∈ [ω1]2, let (δ, ι) := c(α, β) and then set

d(α, β) :=

{
ηγδ(hiδ(α), hjδ(β), p(α, β)) if (hiδ(α), hjδ(β), p(α, β)) ∈ dom(ηγδ)

0 otherwise.

To see that d witnesses Clause (5), fix k, l,A,B and ε < ω1 such that:

• A is an infinite pairwise disjoint subfamily of [ω1]k,
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• B is an uncountable pairwise disjoint subfamily of [ω1]l and
• max(a) < ε ≤ min(b) for all a ∈ A and all b ∈ B.

For every x ∈ A ∪ B, define a function hx : x→ ω via:

hx(β) := otp(x ∩ β).

Now pick j′ < ω for which B′ := {b ∈ B | hb ⊆ hj′} is uncountable. As p is
`∞-coherent, we may shrink B′ further and assume the existence of some q < ω
such that, for all b ∈ B′:

{|p(α, ε)− p(α, β)| | β ∈ b} ⊆ q.
Now, as |A| = ℵ0 and |B′| = ℵ1, by the choice of c, we may fix a ∈ A such that,

for every δ < ω1, there are b ∈ B′ and ι < ω such that c[a× b] = {(δ, ι)}.

Claim 3.1.2. Let 〈τn,m | n < k,m < l〉 be a matrix of functions from ω to ω1.
Then there exists b ∈ B′ satisfying that, for all n < k and m < l,

d(a(n), b(m)) = τn,m(p(a(n), b(m))).

Proof. Fix i′ < ω such that ha ⊆ hi′ . Let t := max{p(α, ε) + q | α ∈ a}. Define a
function η : k × l × t→ ω1 via:

η(n,m, s) := τn,m(s).

Let δ < ω1 be such that (iδ, jδ, ηγδ) = (i′, j′, η). Pick b ∈ B′ and ι < ω such that
c[a× b] = {(δ, ι)}. Now, given n < k and m < l, we have c(a(n), b(m)) = (δ, ι),
p(a(n), b(m)) < p(a(n), ε) + q ≤ t, so that

d(a(n), b(m)) = ηγδ(hiδ(a(n)), hjδ(b(m)), p(a(n), b(m)))
= η(ha(a(n)), hb(b(m)), p(a(n), b(m)))
= η(n,m, p(a(n), b(m)))
= τn,m(p(a(n), b(m))),

as sought. �

(5) =⇒ (6): Let d witness Clause (5) with respect to the constant partition
p : [ω1]2 → 1. Define a function e : [ω1]2 → ω by letting e(α, β) := d(α, β) whenever
d(α, β) < ω, and e(α, β) := 0, otherwise. Clearly, e witnesses (6).

(6) =⇒ (7): Let e witness Clause (6). Define X = {xβ | β < ω1}, as follows.
For every β < ω1, define a function xβ : ω → ω via xβ(n) := e(n, β). Towards
a contradiction, suppose that y : ω → ω is a counterexample. It follows that
there exists a large enough n < ω for which B := {β < ω1 | dom(xβ ∩ y) ⊆ n}
is uncountable. By the choice of e, we may now fix an integer α > n such that
{e(α, β) | β ∈ B \ (α + 1)} = ω. In particular, we may find β ∈ B such that
e(α, β) = y(α). Altogether, xβ(α) = e(α, β) = y(α) contradicting the fact that
β ∈ B and α > n.

(7) =⇒ (1): By Theorem 1.3 of [17]. �

Corollary 3.2 (Theorem A’). non(M) = ℵ1 iff Pr0(ℵ1, ℵ0~ℵ1�1~ℵ1 ,ℵ1,ℵ0)p holds

for all `∞-coherent partitions p : [ω1]2 → ω. �

Corollary 3.3. In the following, (1) =⇒ (2) =⇒ (3) and none of the implica-
tions is revertible.

(1) Pr0(ℵ1, ℵ0~ℵ1�1~ℵ1 ,ℵ1,ℵ0);

(2) Pr0(ℵ1,ℵ1,ℵ1,ℵ0);
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(3) Pr0(ℵ1,ℵ1,ℵ1, n) for all n < ω.

Proof. To see that (2) does not imply (1), recall that non(M) > ℵ1 = b is consistent
(e.g., after adding ℵ2 random reals to a model of CH) and that Todorčević [26]
proved that Clause (2) is a consequence of b = ℵ1.

To see that (3) does not imply (2) recall that Clause (2) is refuted by MAℵ1 , and
that Peng and Wu [19] proved Clause (3) in ZFC. �

We conclude this section by pointing out that by a proof similar to that of [4,
Theorem 27], Pr0(ℵ1, ℵ0~ℵ1�1~ℵ1 ,ℵ1,ℵ0)p for all countable p is compatible with the
failure of CH:

Theorem 3.4. In the forcing extension after adding adding ℵ2 many Cohen reals,
for every partition p : [ω1]2 → ω, Pr0(ℵ1, ℵ0~ℵ1�1~ℵ1 ,ℵ1,ℵ0)p holds. �

4. Strongly Luzin sets and strong colorings over partitions

Luzin sets are tightly connected with strong colorings. In addition to Todorčević’s
theorems [25, pp. 291],[27, Proposition 6.4] that were improved by the main result
of the previous section, an earlier result connecting Luzin sets with strong color-
ings may be found in [6, Theorem 5.3]. Likewise, Souslin trees give rise to strong
colorings (see [11, Lemma 6.6], [23, Lemma 1], [27, §5], and [20, §3]), and coherent
Souslin trees have further strong coloring applications (see [16, §3.3]). By [1, §6],
the existence of a Souslin tree does not imply the existence of a coherent one.

Now we show that a strongly Luzin set together with a coherent Souslin tree do
not suffice to entail ℵ1 9p [ℵ1]2ℵ0 for all countable partitions p.

Theorem 4.1. It is consistent that all of the following hold simultaneously:

• There exists a strongly Luzin set;
• There exists a coherent Souslin tree;
• There exists a partition p : [ω1]2 → ω such that all colorings c : [ω1]2 → ω

are p-special, that is, for every coloring c : [ω1]2 → ω, there is a de-
composition ω1 =

⊎
i<ωXi such that for all i, j < ω, c is constant over

{(α, β) ∈ [Xi]
2 | p(α, β) = j}.

The model of Theorem 4.1 will be the outcome of a finite support iteration of
posets Q(p, c) of the following form.

Definition 4.2. Q(p, c) consists of all triples q = (aq, fq, wq) satisfying all of the
following:

(1) aq ∈ [ω1]<ℵ0 ;
(2) fq : aq → ω is a function;
(3) wq is a function from a finite subset of ω × ω to ω;
(4) for all (α, β) ∈ [aq]

2, if fq(α) = fq(β), then (fq(α), p(α, β)) ∈ dom(wq) and
c(α, β) = wq(fq(α), p(α, β)).

For a generic G ⊆ Q(p, c), let Xi,G = {α < ω1 | ∃q ∈ G (fq(α) = i)}. It is not
hard to see that for every partition p : [ω1]2 → ω with injective and almost-disjoint
fibers, Q(p, c) has Property K,2 and for all i, j < ω,

1l Q(p,c) “|{c(α, β) | (α, β) ∈ [Xi,Ġ]2 and p(α, β) = j}| ≤ 1”.

2In fact, by a result from [13, §3], Q(p, c) satisfies the stationary-cc.
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Definition 4.3. For all q ∈ Q(p, c), k < ω and z ∈ [ω1]<ℵ0 , define q∧(k, z) to be
the triple (a, f, w) satisfying:

• a := aq ∪ z;
• f : a → ω is a function extending fq and satisfying f(α) = k + otp(z ∩ α)

for all α ∈ a \ aq;
• wq := w.

Note that q∧(k, z) may not be in Q(p, c), but it will be, provided that k ⊇ Im(fq).

Corollary 4.4. For every β < ω1, Dβ := {q ∈ Q(p, c) | β ∈ aq} is dense, so that

1l Q(p,c) “
⊎
i<ω

Xi,Ġ = ω1”.

Proof. Given arbitrary q ∈ Q(p, c) and β < ω1, for all sufficiently large k, q∧(k, {β})
is a condition in Dβ , extending q. �

Corollary 4.5. 1l Q(p,c) “c is p-special”. �

Definition 4.6. Let p : [ω1]2 → ω be a partition. For any ordinal η, a finite-
support iteration {Qξ}ξ∈η will be called a p-iteration iff Q0 is the trivial forcing,
and, for each ordinal ξ with ξ + 1 < η there is a Qξ-name ċξ such that

(1) 1l Qξ “ċξ : [ω1]2 → ω is a coloring”,
(2) Qξ+1 = Qξ ∗Q(p, ċξ).

Convention 4.7. If {Qξ}ξ∈η is a p-iteration, with η > 0 a limit ordinal, then we
denote its direct limit by Qη.

From now on, we fix a p-iteration {Qξ}ξ∈η for some partition p : [ω1]2 → ω with
injective and almost-disjoint fibers, hence each of the iterands has Property K, and
so does the whole iteration.

Definition 4.8. A structure M is said to be good for the p-iteration {Qξ}ξ∈η iff
there is a large enough regular cardinal κ > η such that all of the following hold:

• M is a countable elementary submodel of (Hκ,∈,Cκ), where Cκ is a well-
ordering of Hκ;
• p, {Qξ}ξ∈η and {ċξ | ξ + 1 < η} are in M.

Definition 4.9. Define q ∈ Qξ to be determined by recursion on ξ ∈ η:
I For ξ = 0, all the conditions are determined.
I For any ξ, a condition q ∈ Qξ+1 is determined if:

(1) q � ξ is determined;
(2) q � ξ Qξ “q(ξ) = (aq,ξ, fq,ξ, wq,ξ)” for an actual triple of finite sets;

(3) for all (α, β) ∈ [aq,ξ]
2 there is n < ω such that q � ξ Qξ “ċξ(α, β) = n”.

I For any ξ ∈ acc(η), q ∈ Qξ is determined if q � ζ is determined for all ζ < ξ.

By a standard argument, the determined conditions are dense in Qη.

Definition 4.10. For a determined condition q in the p-iteration, we say that k is
sufficiently large for q iff k ⊇ Im(fq,ξ) for all ξ in the support of q.

Definition 4.11. For a condition q in the p-iteration, k < ω and z ∈ [ω1]<ℵ0 ,
define q∧(k, z) by letting q∧(k, z)(ξ) := q(ξ)∧(k, z) for each ξ in the support of q.
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Note that if q is determined and k is sufficiently large for q, then for each ξ in
the support of q, q � ξ Qξ “q∧(k, z) ∈ Q(p, ċξ)”. In effect, if k is sufficiently large
for q, then q∧(k, z) is a legitimate condition.

Definition 4.12. For any structure M good for the p-iteration {Qξ}ξ∈η, for all
ξ ∈ η and a determined condition q ∈ Qξ, we define qM, as follows. The definition
is by recursion on ξ ∈ η:
I For ξ = 0 there is nothing to do.
I For any ξ such that qM has been defined for all determined q in Qξ, given a

determined condition q ∈ Qξ+1, we consider two cases:
II If ξ ∈M, then let qM := (q � ξ)M ∗ (aq,ξ ∩M, fq,ξ ∩M, wq,ξ);
II Otherwise, just let qM := (q � ξ)M ∗ (∅, ∅, ∅).
I For any ξ ∈ acc(η), since this is a finite-support iteration, there is nothing

new to define.

If q is determined, then, for every coordinate ξ in the support of q, qM(ξ) is
a triple consisting of finite sets lying in M. It is important to note that qM may
not, in general, be a condition in Qξ, because the last clause of Definition 4.2 may
fail. Nevertheless, (qM)∧(k, z) is a well-defined object, since its definition does not
depend on the ċξ’s.

Notation 4.13. For any determined condition q ∈ Qξ, we denote by Aq the union
of aq,ξ over all ξ in the support of q.

We now arrive at the main technical lemma of this section.

Lemma 4.14. Suppose p : [ω1]2 → ω satisfies the conclusion of Lemma 2.5, and
M is a structure which is good for the p-iteration {Qξ}ξ∈η.

For all ζ ≤ sup(η) and a determined condition r ∈ Qζ , there is a finite set
z̄ ⊆M ∩ ω1 such that:

A: For every z ∈ [M∩ω1]<ℵ0 covering z̄ and every integer k that is sufficiently
large for r, (rM)∧(k, z) is in M ∩Qζ and is determined;

B: For every z ∈ [M∩ω1]<ℵ0 covering z̄ and every integer k that is sufficiently
large for r, for the condition r̄ := (rM)∧(k, z) and a condition q ∈M∩Qζ ,
if the following three requirements hold:
(1) M |= q ≤ r̄ and q is determined;
(2) the mapping (α, β) 7→ p(α, β) is injective over (Aq \Ar̄)× (Ar \Ar̄);
(3) p(α, β) > p(α′, β′) for all (α, β) ∈ (Aq \Ar̄)× (Ar \Ar̄) and (α′, β′) ∈

[Ar]
2 ∪ [Aq]

2,
then q 6⊥ r.

Proof. Proceed by induction on ζ ≤ sup(η) proving A and B simultaneously. The
case ζ = 0 is immediate. The case ζ = 1 is simple as well, but it may be instructive
to consider it in detail. So c0 is a coloring in the ground model and all conditions
are determined. In effect, given r ∈ Q1, rM is a condition, as well. It will be shown
that z̄ = ∅ satisfies the conclusion.

Let k be sufficiently large for r. We know that (rM)∧(k, z) ∈ M ∩ Q1 for any
z ∈ [M∩ω1]<ℵ0 . Hence A is immediate. To see that B holds, suppose that we are
given z ∈ [M ∩ ω1]<ℵ0 , we let r̄ := (rM)∧(k, z), and we are also given a condition
q ∈M ∩Q1 satisfying requirements (1)–(3) above.

To see that q 6⊥ r, let a := aq,0 ∪ ar,0, f := fq,0 ∪ fr,0 and w := wq,0 ∪ wr,0. It is
immediate to see that f and w are functions, Ar = ar,0, Aq = aq,0 and Aq∩Ar = Ar̄.
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We need to show that there exists a function w∗ extending w for which (a, f, w∗) is
a legitimate condition. For this, suppose that we are given i, j < ω, (α, β), (α′, β′) ∈
[a]2, with f(α) = f(β) = i = f(α′) = f(β′) and p(α, β) = j = p(α′, β′). It must be
shown that c0(α, β) = c0(α′, β′). There are two cases to consider:

Case I: If (α, β), (α′, β′) ∈ [Aq]
2 ∪ [Ar]

2, then since w extends wq,0 and wr,0,
c0(α, β) = w(i, j) = c0(α′, β′).

Case II: If (α, β) ∈ [a]2 \ ([Aq]
2 ∪ [Ar]

2), then since Aq ∩ Ar = Ar̄ and
α < β, we infer that (α, β) ∈ (Aq \ Ar̄) × (Ar \ Ar̄). So, by Clause (3),
(α′, β′) ∈ [a]2 \ ([Aq]

2 ∪ [Ar]
2), as well. Then, likewise (α′, β′) ∈ (Aq \

Ar̄)× (Ar \Ar̄). Altogether, by Clause (2), (α, β) = (α′, β′). In particular,
c0(α, β) = c0(α′, β′).

Next, assume that ζ ≤ sup(η) and that A and B have been established for all
ξ < ζ. If ζ is a limit, then the finite-support nature of the iteration also establishes
both A and B hold, so suppose that ζ = ξ + 1. The successor case in which
ξ /∈M also follows directly from the induction hypothesis by the definition of qM,
so assume that ξ ∈M.

Let r ∈ Qζ be determined. Let z̄ ∈ [M ∩ ω1]<ℵ0 be given by the induction
hypothesis with respect to r � ξ. In particular, for every z ∈ [M ∩ ω1]<ℵ0 covering
z̄, and k sufficiently large for r � ξ, ((r � ξ)M)∧(k, z) is in M∩Qξ and is determined.

To establish A, note that, since ξ ∈M, it follows that for any z ∈ [M ∩ ω1]<ℵ0

covering z̄, and k sufficiently large for r (in particular, sufficiently large for r � ξ),
sk,z := ((r � ξ)M)∧(k, z) ∗ (ar,ξ ∩M, fr,ξ ∩M, wr,ξ) is in M. It must also be shown
that sk,z belongs to Qζ . For this, it suffices to show that for all i, j < ω,

((r � ξ)M)∧(k, z) Qξ “∀(α, β) ∈ [f−1
r,ξ [{i}] ∩ p−1[{j}] ∩M]2 ċξ(α, β) = wr,ξ(i, j)”.

As ċξ belongs to M, for each (α, β) ∈ [ar,ξ ∩M]2 there is a countable, maximal
antichain deciding ċξ(α, β) and belonging to M because; in other words, all possible
decisions about the value of ċξ(α, β) can be forced without leaving M. So, if the
above displayed assertion fails, then there must be some q∗ ≤ ((r � ξ)M)∧(k, z) in
M and (α, β) in [f−1

r,ξ [{i}] ∩M]2 such that p(α, β) = j, but q∗ Qξ “ċξ(α, β) 6=
wr,ξ(i, j)”. Fix k sufficiently large for r. Then, under the assumption that for any
z ∈ [M ∩ ω1]<ℵ0 covering z̄, sk,z does not belong to Qζ , it is possible to construct
recursively a sequence {(zn, qn, in, jn, (αn, βn)}n∈ω such that:

• z0 = z̄;
• qn ≤ ((r � ξ)M)∧(k, zn) and qn is determined;
• (αn, βn) ∈ [f−1

r,ξ [{in}] ∩ p−1[{jn}] ∩M]2;

• qn Qξ “ċξ(αn, βn) 6= wr,ξ(in, jn)”;
• zn+1 ) Aqn .

By making canonical choices (e.g., by consulting with Cκ), this construction can
be carried out in M. Let ε := sup(

⋃
n∈ω Aqn) + 1. Define a function h : ε→ ω via

h(α) := max{k, p(α′, β′) | (α′, β′) ∈ [Aqn+1
]2 and α ∈ Aqn+1

\Aqn},

and note that h is in M.
Let γ satisfy the conclusion of Lemma 2.5 for h. As h ∈ M, γ ∈ M, so, since

b := Ar \M is an element of [ω1 \ γ]<ℵ0 , there exists ∆ ∈ [ε]<ℵ0 such that:

• p � ((ε \∆)× b) is injective;
• for all α ∈ ε \∆ and β ∈ b, h(α) < p(α, β).
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Fix a large enough n < ω such that Aqn+1
\ Aqn is disjoint from ∆. Denote

r̄ := ((r � ξ)M)∧(k, zn+1). As zn+1 ⊇ Aqn , (Aqn+1 \Ar̄) ⊆ (Aqn+1 \Aqn) ⊆ (ε \∆),
(Ar�ξ \Ar̄) ⊆ b, and all of the following hold:

(1) M |= qn+1 ≤ r̄ and q is determined;
(2) the mapping (α, β) 7→ p(α, β) is injective over (Aqn+1 \Ar̄)× (Ar�ξ \Ar̄);
(3) p(α, β) > p(α′, β′) for all (α, β) ∈ (Aqn+1 \Ar̄)× (Ar�ξ \Ar̄) and (α′, β′) ∈

[Ar�ξ]
2 ∪ [Aqn+1 ]2.

Then applying the induction hypothesis for B yields that qn+1 6⊥ (r � ξ). Pick
a determined condition q∗ in Qξ simultaneously extending qn+1 and (r � ξ). As
q∗ ≤ qn+1, we infer that

q∗ Qξ “ċξ(αn+1, βn+1) 6= wr,ξ(in+1, jn+1)”.

As (αn, βn) ∈ [f−1
r,ξ [{in}] ∩M]2, p(αn, βn) = jn and q∗ ≤ r � ξ, we infer that

q∗ Qξ “ċξ(αn+1, βn+1) = wr,ξ(in+1, jn+1)”.

This is a contradiction. So A does hold.
Next, let us establish B. Recall that we have a determined condition r ∈ Qζ

and z̄ ∈ [M ∩ ω1]<ℵ0 satisfying that for every z ∈ [M ∩ ω1]<ℵ0 covering z̄, and k
sufficiently large for r � ξ, ((r � ξ)M)∧(k, z) is in M ∩ Qξ and is determined. We
have just established A, proving that we may fix a finite z∗ with z̄ ⊆ z∗ ⊆M∩ω1,
satisfying that for every z ∈ [M ∩ ω1]<ℵ0 covering z∗, and every integer k that is
sufficiently large for r, (rM)∧(k, z) is in M ∩Qζ and is determined.

Now, fix arbitrary z ∈ [M ∩ ω1]<ℵ0 covering z∗, an integer k that is sufficiently
large for r, and a condition q ∈M∩Qζ . Set r̄ := (rM)∧(k, z) and suppose that the
requirements (1)–(3) of B for r̄ and q hold. In particular, they hold for r̄ � ξ and
q � ξ. That is:

• M |= q � ξ ≤ r̄ � ξ and q � ξ is determined;
• the mapping (α, β) 7→ p(α, β) is injective over (Aq�ξ \Ar̄�ξ)× (Ar�ξ \Ar̄�ξ);
• p(α, β) > p(α′, β′) for all (α, β) ∈ (Aq�ξ \Ar̄�ξ)×(Ar�ξ \Ar̄�ξ) and (α′, β′) ∈

[Ar�ξ]
2 ∪ [Aq�ξ]

2.

Now, as z∗ ⊇ z̄, we get from B of the previous stage that (q � ξ) 6⊥ (r � ξ). Pick
a determined condition q∗ in Qξ simultaneously extending (q � ξ) and (r � ξ). Let
a := aq,ξ ∪ ar,ξ , f := fq,ξ ∪ fr,ξ and w := wq,ξ ∪wr,ξ. It is immediate to see that f
and w are functions, Ar ⊇ ar,ξ, Aq ⊇ aq,ξ and Aq ∩Ar = Ar̄. To see that q 6⊥ r, it
suffices to prove that there exists w∗ ⊇ w such that q∗ ∗ (a, f, w∗) ∈ Qζ .

For this, suppose that we are given i, j < ω, (α, β), (α′, β′) ∈ [a]2, with f(α) =
f(β) = i = f(α′) = f(β′) and p(α, β) = j = p(α′, β′). It must be shown that
q∗ Qξ “ċξ(α, β) = ċξ(α

′, β′)”. There are two cases to consider:

Case I: If (α, β), (α′, β′) ∈ [aq,ξ]
2∪[ar,ξ]

2, then since w extends wq,ξ and wr,ξ,
the conclusion follows from the fact that q∗ extends q � ξ and r � ξ.

Case II: If (α, β) ∈ [a]2 \ ([aq,ξ]
2∪ [ar,ξ]

2), then, as seen earlier, requirements
(2) and (3) imply that (α, β) = (α′, β′).

So, we are done. �

Lemma 4.15. Suppose:

• p : [ω1]2 → ω satisfies the conclusion of Lemma 2.5;
• L = {lδ}δ∈ω1

is a strongly Luzin subset of 2ω;
• {Qξ}ξ∈η is a p-iteration with η > 0 a limit ordinal.
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Then 1l Qη “L is strongly Luzin”.

Proof. Suppose not. Then it can be assumed that there is a Qη-name Ṫ and a
positive integer d such that for the set Qd :=

⋃
n<ω(2n)d of the ‘rationals’ of (2ω)d:

• 1l Qη “Ṫ ⊆ Qd is a closed nowhere dense tree”, and

• 1l Qη “[Ṫ ] ∩ Ld contains an uncountable pairwise disjoint subfamily”.

It follows that for each γ < ω1, we may fix a determined condition rγ ∈ Qη and

a sequence 〈δγi | i < d〉 of ordinals in ω1 \ γ such that rγ Qη “~lγ := 〈lδγi |
i < d〉 is a branch through Ṫ”. Pick an uncountable Γ ⊆ ω1 along with k < ω
which is sufficiently large for rγ for all γ ∈ Γ. By possibly shrinking Γ further, we
may also assume that {Arγ | γ ∈ Γ} forms a ∆-system with root ρ, and that 〈{δγi |
i < d} | γ ∈ Γ〉 consists of pairwise disjoint sets.

Let M be a structure good for the p-iteration {Qξ}ξ∈η, with ρ, Ṫ ,Qη ∈M.
For each γ ∈ Γ, let z̄γ be given by Lemma 4.14 with respect to rγ . Fix an

uncountable Γ′ ⊆ Γ and some z̄ ∈ [ω1 ∩M]<ω such that z̄γ = z̄ for all γ ∈ Γ′. By
possibly shrinking further, we may assume the existence of q such that (rγ)M = q
for all γ ∈ Γ′. In particular, for every z ∈ [M∩ω1]<ℵ0 covering z̄, q∧(k, z) ∈M∩Qη
is determined. Let {τn}n∈ω enumerate the set Qd. Construct recursively a sequence
{(zn, qn, tn)}n∈ω such that:

• z0 = z̄ ∪ ρ;
• qn ≤ q∧(k, zn) and qn is a determined condition lying in M;

• τn ⊆ tn ∈ Qd with qn Qη “tn /∈ Ṫ”;
• zn+1 ) Aqn .

Let ε := sup(
⋃
n∈ω Aqn) + 1. Define a function h : ε→ ω via

h(α) := max{k, p(α′, β′) | (α′, β′) ∈ [Aqn+1 ]2 and α ∈ Aqn+1 \Aqn}.

Recalling that p was given by Lemma 2.5, we now fix γ∗ < ω1 satisfying that for
every b ∈ [ω1 \ γ∗]<ℵ0 , there exists ∆ ∈ [ε]<ℵ0 such that:

(I) p � ((ε \∆)× b) is injective;
(II) for all α ∈ ε \∆ and β ∈ b, h(α) < p(α, β).

Clearly, Γ∗ := {γ ∈ Γ′ | min(Arγ \ ρ) > γ∗} is uncountable. For each n <

ω, consider the open set Un := {~l ∈ (2ω)d |
∧
i<d(tn(i) ⊆ ~l(i))}. Then W :=⋂∞

j=0

⋃∞
j=n Un+1 is a dense Gδ set, and hence Ld \ W contains no uncountable

pairwise disjoint subfamily. Consequently, we may find some γ ∈ Γ∗ such that ~lγ is
in W . Set b := Arγ \ ρ and then find ∆ ∈ [ε]<ℵ0 satisfying (I) and (II). Fix a large

enough j < ω such that Aqn+1
\Aqn is disjoint from ∆ for all n ≥ j. As ~lγ ∈W , we

may now fix some n ≥ j such that ~lγ ∈ Un+1. Denote r̄ := (qM)∧(k, zn+1). Then
(Aqn+1

\Ar̄) ⊆ (Aqn+1
\Aqn) ⊆ (ε\∆), (Arγ \Ar̄) ⊆ b, and all of the following hold:

(1) M |= qn+1 ≤ r̄ and q is determined;
(2) the mapping (α, β) 7→ p(α, β) is injective over (Aqn+1 \Ar̄)× (Arγ \Ar̄);
(3) p(α, β) > p(α′, β′) for all (α, β) ∈ (Aqn+1

\ Ar̄)× (Arγ \ Ar̄) and (α′, β′) ∈
[Arγ ]2 ∪ [Aqn+1

]2.

Since zn+1 ⊇ z̄ and z̄ was given by Lemma 4.14, we may apply B and infer that

qn+1 6⊥ rγ . However, qn+1 Qη “tn+1 /∈ Ṫ” and rγ Qη “~lγ is a branch through Ṫ”,

contradicting the fact that tn+1 ⊆ ~lγ . �
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Proof of Theorem 4.1. Start with a model V of GCH in which there exists a coherent
Souslin tree (see [3, Proposition 2.5 and Theorem 3.6]). Using CH, fix a strongly
Luzin set L and a partition p as in Lemma 2.5. Let Qω2 be the corresponding
p-iteration, using Hℵ2 as our bookkeeping device of names of colorings ċξ. The
iteration satisfies Property K, being a finite-support iteration of Property K posets,
hence the coherent Souslin tree survives. In addition, the ccc of the iteration implies
that for every coloring c : [ω1]2 → ω in the extension, there is a tail of ξ ∈ ω2 such
that c admits a Qξ-name in Hℵ2 of V . So, in V Qω2 , all colorings c : [ω1]2 → ω are
p-special. Finally, by Lemma 4.15, the strongly Luzin set L survives. �
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