ITERATIONS, STATIONARY REFLECTION AND PRIKRY-TYPE FORCINGS

Alejandro Poveda

Einstein Institute of Mathematics

Oberwolfach's meeting on Set Theory - January 2022

This is based on a joint work with A. Rinot & D. Sinapova

- **[PRS1] Sigma-Prikry forcing I: The axioms**, Canadian Journal of Mathematics.
- **[PRS2] Sigma-Prikry forcing II: Iteration Scheme**, Journal of Mathematical Logic.
- **§** [PRS3] Sigma-Prikry forcing III: Down to \aleph_{ω} , Submitted on October 2021.

Find the papers here http://assafrinot.com/t/sigma-prikry https://homepages.math.uic.edu/~sinapova/

Two applications

The very first application of the Σ -Prikry framework:

Theorem (P., Rinot, Sinapova) ([PRS2])

Assume that $\langle \kappa_n \mid n < \omega \rangle$ is an increasing sequence of supercompact cardinals. Then there is a generic extension where $\kappa = \sup_{n < \omega} \kappa_n$ is a strong limit cardinal, SCH_{κ} fails and Refl(κ^+) holds (actually, Refl($<\omega, \kappa^+$) holds).

Initially proved by Sharon and later by Ben-Neria, Hayut and Unger, and Gitik.

Two applications

The very first application of the Σ -Prikry framework:

Theorem (P., Rinot, Sinapova) ([PRS2])

Assume that $\langle \kappa_n \mid n < \omega \rangle$ is an increasing sequence of supercompact cardinals. Then there is a generic extension where $\kappa = \sup_{n < \omega} \kappa_n$ is a strong limit cardinal, SCH_{κ} fails and Refl(κ^+) holds (actually, Refl($<\omega, \kappa^+$) holds).

Initially proved by Sharon and later by Ben-Neria, Hayut and Unger, and Gitik.

Theorem (P., Rinot, Sinapova) ([PRS3])

Assume that $\langle \kappa_n \mid n < \omega \rangle$ is an increasing sequence of supercompact cardinals. Then there is a generic extension of the set-theoretic universe where the following hold:

•
$$2^{\aleph_n} = \aleph_{n+1}$$
 for all $n < \omega$;

$$2^{\aleph_{\omega}} = \aleph_{\omega+2}$$

3 Refl $(\aleph_{\omega+1})$ holds.

Stationary Reflection

Compactness Principle

A **Compactness Principle** for a given property φ is a statement of the form:

"If every small substructure has property φ then the structure itself has property φ "

Compactness Principle

A **Compactness Principle** for a given property φ is a statement of the form:

"If every small substructure has property arphi then the structure itself has property arphi"

The dual of CP are Reflection Principles:

Reflection Principle

A **Reflection Principle** for a given property φ is a statement of the form:

"If a structure has property φ then there is a *small* substructure having property φ "

In practice, *small* means "having cardinality $<\kappa$ ", where κ is some relevant cardinal

Definition

Let κ be a regular uncountable cardinal.

() A stationary set $S \subseteq \kappa$ reflects if there is $\alpha < \kappa$ with $cf(\alpha) > \omega$ such that

 $S \cap \alpha$ is stationary at α .

② For a stationary set $S \subseteq \kappa$, $\operatorname{Refl}(S)$ asserts that every stationary set $T \subseteq S$ reflects.

Definition

Let κ be a regular uncountable cardinal.

() A stationary set $S \subseteq \kappa$ reflects if there is $\alpha < \kappa$ with $cf(\alpha) > \omega$ such that

 $S \cap \alpha$ is stationary at α .

② For a stationary set $S \subseteq \kappa$, $\operatorname{Refl}(S)$ asserts that every stationary set $T \subseteq S$ reflects.

Question

For which cardinals κ and stationary sets $S \subseteq \kappa$ does $\operatorname{Refl}(S)$ hold?

Definition

Let κ be a regular uncountable cardinal.

() A stationary set $S \subseteq \kappa$ reflects if there is $\alpha < \kappa$ with $cf(\alpha) > \omega$ such that

 $S \cap \alpha$ is stationary at α .

② For a stationary set $S \subseteq \kappa$, $\operatorname{Refl}(S)$ asserts that every stationary set $T \subseteq S$ reflects.

Question

For which cardinals κ and stationary sets $S \subseteq \kappa$ does $\operatorname{Refl}(S)$ hold?

We need to separate the discussion into three cases:

() Limit cardinals: Large-cardinal properties use to entail stationary reflection:

Theorem (Tarski (19_), Jensen (1972))

If κ is weakly compact then $\operatorname{Refl}(\kappa)$ holds. Under V = L this is an equivalence.

Theorem (Solovay) (19_)

If κ is supercompact then $\operatorname{Refl}(\mu \cap \operatorname{cf}(\langle \kappa \rangle))$ holds for every regular $\mu \geq \kappa$.

() Limit cardinals: Large-cardinal properties use to entail stationary reflection:

Theorem (Tarski (19_), Jensen (1972))

If κ is weakly compact then $\operatorname{Refl}(\kappa)$ holds. Under V = L this is an equivalence.

Theorem (Solovay) (19_)

If κ is supercompact then $\operatorname{Refl}(\mu \cap \operatorname{cf}(\langle \kappa \rangle))$ holds for every regular $\mu \geq \kappa$.

2 Successor of a regular: If $\kappa := \lambda^+$, with $\lambda = cf(\lambda)$, then $Refl(\kappa \cap cf(\lambda))$ fails.

O Limit cardinals: Large-cardinal properties use to entail stationary reflection:

Theorem (Tarski (19_), Jensen (1972))

If κ is weakly compact then $\operatorname{Refl}(\kappa)$ holds. Under V = L this is an equivalence.

Theorem (Solovay) (19_)

If κ is supercompact then $\operatorname{Refl}(\mu \cap \operatorname{cf}(\langle \kappa \rangle))$ holds for every regular $\mu \geq \kappa$.

2 Successor of a regular: If $\kappa := \lambda^+$, with $\lambda = cf(\lambda)$, then $Refl(\kappa \cap cf(\lambda))$ fails.

Despite of this, one can force optimal reflection patterns:

Theorem (Harrington & Shelah) (NDJFL, 1985)

The following are equiconsistent:

- There is a Mahlo cardinal.
- ▶ $\operatorname{Refl}(\kappa \cap \operatorname{cf}(<\lambda))$ holds.

Successors of a singular:

Unlike successors of regulars here one can arrange full stationary reflection:

Theorem (Magidor) (JSL, 1982)

Assume there are ω -many supercompact cardinals and that the GCH holds. Then there is a generic extension where $\operatorname{Refl}(\aleph_{\omega+1})$ holds.

Successors of a singular:

Unlike successors of regulars here one can arrange full stationary reflection:

Theorem (Magidor) (JSL, 1982)

Assume there are ω -many supercompact cardinals and that the GCH holds. Then there is a generic extension where $\operatorname{Refl}(\aleph_{\omega+1})$ holds.

Theorem (Hayut & Unger) (JSL, 2020)

The principle $\operatorname{Refl}(\aleph_{\omega+1})$ is consistent relative to the existence of a cardinal κ which is κ^+ - Π_1^1 -subcompact.

The Singular Cardinal Hypothesis

The **S**ingular **C**ardinal **H**ypothesis (SCH) asserts that for every singular strong limit cardinal κ , $2^{\kappa} = \kappa^+$ (i.e., SCH_{κ} holds).

The **S**ingular **C**ardinal **H**ypothesis (SCH) asserts that for every singular strong limit cardinal κ , $2^{\kappa} = \kappa^+$ (i.e., SCH_{κ} holds).

Facts

• The SCH holds above the first strong compact cardinal (Solovay);

The **S**ingular **C**ardinal **H**ypothesis (SCH) asserts that for every singular strong limit cardinal κ , $2^{\kappa} = \kappa^+$ (i.e., SCH_{κ} holds).

Facts

- The SCH holds above the first strong compact cardinal (Solovay);
- Intermediate of the SCH is consistent modulo large cardinals (Silver & Prikry);

The **S**ingular **C**ardinal **H**ypothesis (SCH) asserts that for every singular strong limit cardinal κ , $2^{\kappa} = \kappa^+$ (i.e., SCH_{κ} holds).

Facts

- In the SCH holds above the first strong compact cardinal (Solovay);
- On the failure of the SCH is consistent modulo large cardinals (Silver & Prikry);
- The SCH can fail at the first singular cardinal.

Theorem (Magidor) (Ann. Math, 1977)

Assume there is a supercompact cardinal along with a huge cardinal on top. Then there is a generic extension where $\text{GCH}_{<\aleph_{\omega}}$ holds but $\text{SCH}_{\aleph_{\omega}}$ fails.

General fact

Getting \neg SCH usually involves singularizing cardinals, which entails \square -sequences (**Džamonja-Shelah** and **Gitik**). These latter are at odds with stationary reflection.

General fact

Getting \neg SCH usually involves singularizing cardinals, which entails \square -sequences (**Džamonja-Shelah** and **Gitik**). These latter are at odds with stationary reflection.

Let us illustrate this tension by analysing the most basic example: The Prikry model.

General fact

Getting \neg SCH usually involves singularizing cardinals, which entails \square -sequences (**Džamonja-Shelah** and **Gitik**). These latter are at odds with stationary reflection.

Let us illustrate this tension by analysing the most basic example: The Prikry model.

Theorem (Cummings, Foreman and Magidor) (JML, 2001)

Assume that κ is a κ^+ -supercompact cardinal. Then $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(<\kappa))$ holds in any Prikry generic extension derived from a normal measure on κ .

Tension between $\neg \mathsf{SCH}_{\kappa}$ and $\operatorname{Refl}(\kappa^+)$

Theorem (Cummings, Foreman and Magidor) (JML, 2001)

Assume that κ is a κ^+ -supercompact cardinal. Then $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(<\kappa))$ holds in any Prikry extension derived from a mormal measure on κ .

Proof sketch:

Assume that κ is a κ^+ -supercompact cardinal. Then $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(<\kappa))$ holds in any Prikry extension derived from a mormal measure on κ .

Proof sketch:

• Assume \dot{T} is a \mathbb{P} -name for a non-reflecting stationary subset of $S := \kappa^+ \cap \mathrm{cf}^V(\langle \kappa \rangle)$.

Assume that κ is a κ^+ -supercompact cardinal. Then $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(<\kappa))$ holds in any Prikry extension derived from a mormal measure on κ .

Proof sketch:

- Assume \dot{T} is a \mathbb{P} -name for a non-reflecting stationary subset of $S := \kappa^+ \cap \mathrm{cf}^V(<\kappa)$.
- **2** Let $G \subseteq \mathbb{P}$ and $\vec{\kappa}$ be the induced Prikry sequence. For each $s \sqsubseteq \vec{\kappa}$, put

$$T_s := \{ \alpha \in S \mid \exists A \in U (s, A) \Vdash_{\mathbb{P}} \check{\alpha} \in \dot{T} \}.$$

Assume that κ is a κ^+ -supercompact cardinal. Then $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(<\kappa))$ holds in any Prikry extension derived from a mormal measure on κ .

Proof sketch:

- Assume \dot{T} is a \mathbb{P} -name for a non-reflecting stationary subset of $S := \kappa^+ \cap \mathrm{cf}^V(\langle \kappa \rangle)$.
- **2** Let $G \subseteq \mathbb{P}$ and $\vec{\kappa}$ be the induced Prikry sequence. For each $s \sqsubseteq \vec{\kappa}$, put

$$T_s := \{ \alpha \in S \mid \exists A \in U (s, A) \Vdash_{\mathbb{P}} \check{\alpha} \in \dot{T} \}.$$

Solution Note that $T_s \in V$ and that for some (many) s, T_s is stationary.

Assume that κ is a κ^+ -supercompact cardinal. Then $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(<\kappa))$ holds in any Prikry extension derived from a mormal measure on κ .

Proof sketch:

- Assume \dot{T} is a \mathbb{P} -name for a non-reflecting stationary subset of $S := \kappa^+ \cap \mathrm{cf}^V(\langle \kappa \rangle)$.
- **2** Let $G \subseteq \mathbb{P}$ and $\vec{\kappa}$ be the induced Prikry sequence. For each $s \sqsubseteq \vec{\kappa}$, put

$$T_s := \{ \alpha \in S \mid \exists A \in U (s, A) \Vdash_{\mathbb{P}} \check{\alpha} \in \dot{T} \}.$$

- **③** Note that $T_s \in V$ and that for some (many) s, T_s is stationary.
- Since κ is κ^+ -supercompact, T_s reflects (in V) at an ordinal α with $cf^V(\alpha) \in (\omega, \kappa)$.

Assume that κ is a κ^+ -supercompact cardinal. Then $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(<\kappa))$ holds in any Prikry extension derived from a mormal measure on κ .

Proof sketch:

- Assume \dot{T} is a \mathbb{P} -name for a non-reflecting stationary subset of $S := \kappa^+ \cap \mathrm{cf}^V(\langle \kappa \rangle)$.
- **2** Let $G \subseteq \mathbb{P}$ and $\vec{\kappa}$ be the induced Prikry sequence. For each $s \sqsubseteq \vec{\kappa}$, put

$$T_s := \{ \alpha \in S \mid \exists A \in U (s, A) \Vdash_{\mathbb{P}} \check{\alpha} \in \dot{T} \}.$$

- **③** Note that $T_s \in V$ and that for some (many) s, T_s is stationary.
- Since κ is κ^+ -supercompact, T_s reflects (in V) at an ordinal α with $cf^V(\alpha) \in (\omega, \kappa)$.
- Let $C \subseteq \alpha$ with $\operatorname{otp}(C) = \operatorname{cf}^{V}(\alpha)$. Note that $|T_s \cap C| < \kappa$.

Assume that κ is a κ^+ -supercompact cardinal. Then $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(<\kappa))$ holds in any Prikry extension derived from a mormal measure on κ .

Proof sketch:

- Assume \dot{T} is a \mathbb{P} -name for a non-reflecting stationary subset of $S := \kappa^+ \cap \mathrm{cf}^V(\langle \kappa \rangle)$.
- **2** Let $G \subseteq \mathbb{P}$ and $\vec{\kappa}$ be the induced Prikry sequence. For each $s \sqsubseteq \vec{\kappa}$, put

$$T_s := \{ \alpha \in S \mid \exists A \in U (s, A) \Vdash_{\mathbb{P}} \check{\alpha} \in \dot{T} \}.$$

- Solution Note that $T_s \in V$ and that for some (many) s, T_s is stationary.
- Since κ is κ^+ -supercompact, T_s reflects (in V) at an ordinal α with $\mathrm{cf}^V(\alpha) \in (\omega, \kappa)$.
- Solution Let $C \subseteq \alpha$ with $\operatorname{otp}(C) = \operatorname{cf}^{V}(\alpha)$. Note that $|T_s \cap C| < \kappa$.
- $\textcircled{O} \hspace{0.1cm} \text{Use the } \kappa\text{-closure of } \langle \mathbb{P}, \leq^* \rangle \text{ to obtain some } A^* \in U \text{ such that}$

 $(s, A^*) \Vdash_{\mathbb{P}} "T_s \cap C \subseteq \dot{T} \cap \alpha".$

Still, the tension between $\neg \mathsf{SCH}_{\kappa}$ and $\operatorname{Refl}(\kappa^+)$ prevails:

Theorem (Cummings, Foreman and Magidor) (JML, 2001)

Assume that κ is a κ^+ -supercompact cardinal. Then $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(\langle \kappa \rangle))$ holds in any Prikry generic extension derived from a normal measure on κ . But, $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(\kappa))$ fails.

Still, the tension between $\neg\mathsf{SCH}_\kappa$ and $\operatorname{Refl}(\kappa^+)$ prevails:

Theorem (Cummings, Foreman and Magidor) (JML, 2001)

Assume that κ is a κ^+ -supercompact cardinal. Then $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(\langle \kappa \rangle))$ holds in any Prikry generic extension derived from a normal measure on κ . But, $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(\kappa))$ fails.

- Assume $S := \kappa^+ \cap \mathrm{cf}^V(\kappa)$ reflects in some Prikry-extension V[G].
- Let $\alpha < \kappa^+$ with $\omega < cf^{V[G]}(\alpha)$ witnessing this, and note that $cf^V(\alpha) < \kappa$.
- There is a V-club $C \subseteq \alpha$ (hence, a V[G]-club) such that $C \cap S = \emptyset$.

Still, the tension between $\neg SCH_{\kappa}$ and $Refl(\kappa^+)$ prevails:

Theorem (Cummings, Foreman and Magidor) (JML, 2001)

Assume that κ is a κ^+ -supercompact cardinal. Then $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(<\kappa))$ holds in any Prikry generic extension derived from a normal measure on κ . But, $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(\kappa))$ fails.

- Assume $S := \kappa^+ \cap \mathrm{cf}^V(\kappa)$ reflects in some Prikry-extension V[G].
- Let $\alpha < \kappa^+$ with $\omega < cf^{V[G]}(\alpha)$ witnessing this, and note that $cf^V(\alpha) < \kappa$.
- There is a V-club $C \subseteq \alpha$ (hence, a V[G]-club) such that $C \cap S = \emptyset$.

The above argument applies to fairly any Prikry-type forcing singularizing κ . Even more, it applies to any such forcing singularizing an interval of cardinals $[\kappa, \lambda)$.

Still, the tension between $\neg SCH_{\kappa}$ and $Refl(\kappa^+)$ prevails:

Theorem (Cummings, Foreman and Magidor) (JML, 2001)

Assume that κ is a κ^+ -supercompact cardinal. Then $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(<\kappa))$ holds in any Prikry generic extension derived from a normal measure on κ . But, $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(\kappa))$ fails.

- Assume $S := \kappa^+ \cap \mathrm{cf}^V(\kappa)$ reflects in some Prikry-extension V[G].
- Let $\alpha < \kappa^+$ with $\omega < cf^{V[G]}(\alpha)$ witnessing this, and note that $cf^V(\alpha) < \kappa$.
- There is a V-club $C \subseteq \alpha$ (hence, a V[G]-club) such that $C \cap S = \emptyset$.

The above argument applies to fairly any Prikry-type forcing singularizing κ . Even more, it applies to any such forcing singularizing an interval of cardinals $[\kappa, \lambda)$.

In particular, $\operatorname{Refl}(\aleph_{\omega+1})$ fails in Magidor's model for $\neg \mathsf{SCH}_{\aleph_{\omega}}$.

Suggestion to get $\neg \mathsf{SCH}_{\kappa} + \operatorname{Refl}(\kappa^+)$

Start with a cardinal κ for which $\operatorname{Refl}(\kappa^+)$ holds in the ground model: e.g., a cardinal κ that is the limit of an increasing sequence $\langle \kappa_n \mid n < \omega \rangle$ of supercompact cardinals.

Suggestion to get $\neg \mathsf{SCH}_{\kappa} + \operatorname{Refl}(\kappa^+)$

Start with a cardinal κ for which $\operatorname{Refl}(\kappa^+)$ holds in the ground model: e.g., a cardinal κ that is the limit of an increasing sequence $\langle \kappa_n \mid n < \omega \rangle$ of supercompact cardinals.

There are Prirkry-type forcings that allow to violate SCH_κ - even when κ is singular (e.g., the Extender Based Prikry Forcing (Gitik-Magidor))

Suggestion to get $\neg \mathsf{SCH}_{\kappa} + \operatorname{Refl}(\kappa^+)$

Start with a cardinal κ for which $\operatorname{Refl}(\kappa^+)$ holds in the ground model: e.g., a cardinal κ that is the limit of an increasing sequence $\langle \kappa_n \mid n < \omega \rangle$ of supercompact cardinals.

- There are Prirkry-type forcings that allow to violate SCH_κ even when κ is singular (e.g., the Extender Based Prikry Forcing (Gitik-Magidor))
- What is the reflection pattern in the EBPF-extensions?

Suggestion to get $\neg \mathsf{SCH}_{\kappa} + \operatorname{Refl}(\kappa^+)$

Start with a cardinal κ for which $\operatorname{Refl}(\kappa^+)$ holds in the ground model: e.g., a cardinal κ that is the limit of an increasing sequence $\langle \kappa_n \mid n < \omega \rangle$ of supercompact cardinals.

- There are Prirkry-type forcings that allow to violate SCH_κ even when κ is singular (e.g., the Extender Based Prikry Forcing (Gitik-Magidor))
- What is the reflection pattern in the EBPF-extensions?

Lemma (Sharon) (2005)

Assume $\langle \kappa_n \mid n < \omega \rangle$ is an increasing sequence of Laver-indestructible supercompact cardinals, and put $\kappa := \sup_{n < \omega} \kappa_n$. Then, in any generic extension by the EBPF

 $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(>\omega))$ holds.

Assume $\langle \kappa_n \mid n < \omega \rangle$ is an increasing sequence of Laver-indestructible supercompact cardinals, and put $\kappa := \sup_{n < \omega} \kappa_n$. Then, in any generic extension by the EBPF $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(>\omega))$ holds.

Proof sketch: Mimic Cummings, Foreman and Magidor:

Assume $\langle \kappa_n \mid n < \omega \rangle$ is an increasing sequence of Laver-indestructible supercompact cardinals, and put $\kappa := \sup_{n < \omega} \kappa_n$. Then, in any generic extension by the EBPF

 $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(>\omega))$ holds.

Proof sketch: Mimic Cummings, Foreman and Magidor:

• Assume \dot{T} is a \mathbb{P} -name for a stationary subset of $S := \kappa^+ \cap \mathrm{cf}^V(>\omega)$.

Assume $\langle \kappa_n \mid n < \omega \rangle$ is an increasing sequence of Laver-indestructible supercompact cardinals, and put $\kappa := \sup_{n < \omega} \kappa_n$. Then, in any generic extension by the EBPF

 $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(>\omega))$ holds.

Proof sketch: Mimic Cummings, Foreman and Magidor:

- Assume \dot{T} is a \mathbb{P} -name for a stationary subset of $S := \kappa^+ \cap \mathrm{cf}^V(>\omega)$.
- \blacktriangleright For each $n<\omega,$ define $\mathbb{P}_n:=\{p\in\mathbb{P}\mid \ell(p)=n\}$ and put

$$\dot{T}_n := \{ (\check{\alpha}, p) \mid (\alpha, p) \in S \times \mathbb{P}_n \land (p \Vdash_{\mathbb{P}} \check{\alpha} \in \dot{T}) \}.$$

Assume $\langle \kappa_n \mid n < \omega \rangle$ is an increasing sequence of Laver-indestructible supercompact cardinals, and put $\kappa := \sup_{n < \omega} \kappa_n$. Then, in any generic extension by the EBPF

 $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(>\omega))$ holds.

Proof sketch: Mimic Cummings, Foreman and Magidor:

- Assume \dot{T} is a \mathbb{P} -name for a stationary subset of $S := \kappa^+ \cap \mathrm{cf}^V(>\omega)$.
- \blacktriangleright For each $n<\omega,$ define $\mathbb{P}_n:=\{p\in\mathbb{P}\mid \ell(p)=n\}$ and put

$$\dot{T}_n := \{ (\check{\alpha}, p) \mid (\alpha, p) \in S \times \mathbb{P}_n \land (p \Vdash_{\mathbb{P}} \check{\alpha} \in \dot{T}) \}.$$

▶ Show that $p \Vdash_{\mathbb{P}_{\ell(p)}} "\dot{T}_{\ell(p)}$ is stationary" for densely many $p \in \mathbb{P}$.

Assume $\langle \kappa_n \mid n < \omega \rangle$ is an increasing sequence of Laver-indestructible supercompact cardinals, and put $\kappa := \sup_{n < \omega} \kappa_n$. Then, in any generic extension by the EBPF

 $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(>\omega))$ holds.

Proof sketch: Mimic Cummings, Foreman and Magidor:

- Assume \dot{T} is a \mathbb{P} -name for a stationary subset of $S := \kappa^+ \cap \mathrm{cf}^V(>\omega)$.
- \blacktriangleright For each $n<\omega,$ define $\mathbb{P}_n:=\{p\in\mathbb{P}\mid \ell(p)=n\}$ and put

$$\dot{T}_n := \{ (\check{\alpha}, p) \mid (\alpha, p) \in S \times \mathbb{P}_n \land (p \Vdash_{\mathbb{P}} \check{\alpha} \in \dot{T}) \}.$$

Show that $p \Vdash_{\mathbb{P}_{\ell(p)}} ``\dot{T}_{\ell(p)}$ is stationary" for densely many $p \in \mathbb{P}$.

▶ If κ_n is Laver-indestructible, $V^{\mathbb{P}_n} \models \operatorname{Refl}(\kappa^+ \cap \operatorname{cf}(\langle \kappa_n \rangle))$, hence \dot{T}_n reflects in $V^{\mathbb{P}_n}$.

Assume $\langle \kappa_n \mid n < \omega \rangle$ is an increasing sequence of Laver-indestructible supercompact cardinals, and put $\kappa := \sup_{n < \omega} \kappa_n$. Then, in any generic extension by the EBPF

 $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(>\omega))$ holds.

Proof sketch: Mimic Cummings, Foreman and Magidor:

- Assume \dot{T} is a \mathbb{P} -name for a stationary subset of $S := \kappa^+ \cap \mathrm{cf}^V(>\omega)$.
- ▶ For each $n < \omega$, define $\mathbb{P}_n := \{p \in \mathbb{P} \mid \ell(p) = n\}$ and put

$$\dot{T}_n := \{ (\check{\alpha}, p) \mid (\alpha, p) \in S \times \mathbb{P}_n \land (p \Vdash_{\mathbb{P}} \check{\alpha} \in \dot{T}) \}.$$

- Show that $p \Vdash_{\mathbb{P}_{\ell(p)}} ``\dot{T}_{\ell(p)}$ is stationary" for densely many $p \in \mathbb{P}$.
- ▶ If κ_n is Laver-indestructible, $V^{\mathbb{P}_n} \models \operatorname{Refl}(\kappa^+ \cap \operatorname{cf}(\langle \kappa_n \rangle))$, hence \dot{T}_n reflects in $V^{\mathbb{P}_n}$.
- ▶ As before, argue that some condition q forces " \dot{T} reflects".

Theorem (Sharon) (2005)

In the EBPF-models there is a stationary set $S \subseteq \kappa^+ \cap \mathrm{cf}^V(\omega)$ that fails to reflect.

Theorem (Sharon) (2005)

In the EBPF-models there is a stationary set $S \subseteq \kappa^+ \cap \mathrm{cf}^V(\omega)$ that fails to reflect.

• Getting $\operatorname{Refl}(\kappa^+)$ will require to (iterative) kill all the non-reflecting stationary sets.

Theorem (Sharon) (2005)

In the EBPF-models there is a stationary set $S \subseteq \kappa^+ \cap \mathrm{cf}^V(\omega)$ that fails to reflect.

- Getting $\operatorname{Refl}(\kappa^+)$ will require to (iterative) kill all the non-reflecting stationary sets.
- Note that such iteration may introduce new counterexamples for $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(>\omega))$.

Theorem (Sharon) (2005)

In the EBPF-models there is a stationary set $S \subseteq \kappa^+ \cap \mathrm{cf}^V(\omega)$ that fails to reflect.

- Getting $\operatorname{Refl}(\kappa^+)$ will require to (iterative) kill all the non-reflecting stationary sets.
- ▶ Note that such iteration may introduce new counterexamples for $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(>\omega))$.

Our strategy

• Isolate a general class of Prikry-type forcings (Σ -Prikry) that encompasses both the EBPF and all the stages of the eventual iteration;

Theorem (Sharon) (2005)

In the EBPF-models there is a stationary set $S \subseteq \kappa^+ \cap \mathrm{cf}^V(\omega)$ that fails to reflect.

- Getting $\operatorname{Refl}(\kappa^+)$ will require to (iterative) kill all the non-reflecting stationary sets.
- ▶ Note that such iteration may introduce new counterexamples for $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(>\omega))$.

Our strategy

- Isolate a general class of Prikry-type forcings (Σ -Prikry) that encompasses both the EBPF and all the stages of the eventual iteration;
- Prove that any such forcing yields the very same reflection pattern as the EBPF did;

Theorem (Sharon) (2005)

In the EBPF-models there is a stationary set $S \subseteq \kappa^+ \cap \mathrm{cf}^V(\omega)$ that fails to reflect.

- Getting $\operatorname{Refl}(\kappa^+)$ will require to (iterative) kill all the non-reflecting stationary sets.
- ▶ Note that such iteration may introduce new counterexamples for $\operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(>\omega))$.

Our strategy

- Isolate a general class of Prikry-type forcings (Σ-Prikry) that encompasses both the EBPF and all the stages of the eventual iteration;
- Prove that any such forcing yields the very same reflection pattern as the EBPF did;
- Prove an iteration theorem for the class of Σ -Prikry forcings and devise an iteration aimed to kill all non-reflecting stationary sets $S \subseteq \kappa^+ \cap \mathrm{cf}^V(\omega)$.

Σ -Prikry forcings

A Σ -Prikry poset is a triple (\mathbb{P}, ℓ, c) such that:

A Σ -Prikry poset is a triple (\mathbb{P}, ℓ, c) such that:

9 $\ell \colon \mathbb{P} \to \omega$ is a "canonical notion of length";

A Σ -Prikry poset is a triple (\mathbb{P}, ℓ, c) such that:

 $\ \, \bullet \ \, \ell \colon \mathbb{P} \to \omega \text{ is a "canonical notion of length"};$

2 $c: \mathbb{P} \to \mu$ witnesses a strong form of μ^+ -Linkedness, where $\mathbb{1} \Vdash_{\mathbb{P}} \check{\mu} = \check{\kappa}^+$.

$$c(p) = c(q) \Longrightarrow \exists r \in \mathbb{P} \ (r \le^0 p, q).$$

A Σ -Prikry poset is a triple (\mathbb{P}, ℓ, c) such that:

- **2** $c: \mathbb{P} \to \mu$ witnesses a strong form of μ^+ -Linkedness, where $\mathbb{1} \Vdash_{\mathbb{P}} \check{\mu} = \check{\kappa}^+$.

$$c(p) = c(q) \Longrightarrow \exists r \in \mathbb{P} \ (r \leq^0 p, q).$$

③ \mathbb{P} is a forcing poset such that:

- For each $n < \omega$, \mathbb{P}_n (contains a dense subforcing that) is κ_n -directed-closed;
- \blacktriangleright \mathbb{P} has the **Complete Prikry Property**.

Complete Prikry property

For each $p \in \mathbb{P}$, $n < \omega$ and a 0-open set $D \subseteq \mathbb{P}$ there is a condition $q \leq^0 p$ such that either $P_n^q \subseteq D$ or $P_n^q \cap D = \emptyset$ (Here, $P_n^q := \{r \leq q \mid \ell(r) = \ell(q) + n\}$).

• There is a natural notion of length associated to each condition $(s, A) \in \mathbb{P}(\mathcal{U})$:

 $\ell(s,A) := |s|.$

() There is a natural notion of length associated to each condition $(s, A) \in \mathbb{P}(\mathcal{U})$:

 $\ell(s,A) := |s|.$

 $\textbf{O} \text{ Let } c: \mathbb{P}(\mathcal{U}) \to \kappa^+ \text{ be the map defined by } c(s,A) := s.$

 $c(s,A) = c(t,B) \implies (s,A \cap B) \leq^0 (s,A), (t,B).$

9 There is a natural notion of length associated to each condition $(s, A) \in \mathbb{P}(\mathcal{U})$:

 $\ell(s,A) := |s|.$

 $\textbf{O} \ \ \text{Let} \ c:\mathbb{P}(\mathcal{U})\to\kappa^+ \text{ be the map defined by } c(s,A):=s.$

$$c(s,A) = c(t,B) \implies (s,A \cap B) \leq^0 (s,A), (t,B)$$

• Set $\Sigma := \langle \kappa \mid n < \omega \rangle$. Then, $\mathbb{P}_n = \{(s, A) \in \mathbb{P}(\mathcal{U}) \mid |s| = n\}$ is κ -directed-closed.

() There is a natural notion of length associated to each condition $(s, A) \in \mathbb{P}(\mathcal{U})$:

 $\ell(s,A) := |s|.$

 $\textbf{O} \ \ \text{Let} \ c:\mathbb{P}(\mathcal{U})\to\kappa^+ \text{ be the map defined by } c(s,A):=s.$

$$c(s,A) = c(t,B) \implies (s,A \cap B) \leq^0 (s,A), (t,B) \in \mathcal{C}$$

• Set $\Sigma := \langle \kappa \mid n < \omega \rangle$. Then, $\mathbb{P}_n = \{(s, A) \in \mathbb{P}(\mathcal{U}) \mid |s| = n\}$ is κ -directed-closed. • $\mathbb{P}(\mathcal{U})$ has the CPP.

- Diagonal Prikry forcing;
- Supercompact Prikry forcing;
- Gitik-Sharon forcing;
- AIM forcing;
- S Extender Based Prikry forcing;
- Extender Based Prikry forcing with a single extender;
- Supercompact Extender Based Prikry forcing;

Iterations of Σ -Prikry forcings

Let Q be a Σ -Prikry forcing along with a *problem* $\sigma \in V^{\mathbb{Q}}$. Want to find a Σ -Prikry forcing A that projects onto Q and settles the problem raised by σ . Instead of $\mathbb{A} := \mathbb{Q} * \dot{\mathbb{P}}(\sigma)$ for a notion of forcing $\dot{\mathbb{P}}(\sigma)$ that solves σ , we will be doing something different.

Let \mathbb{Q} be a Σ -Prikry forcing along with a *problem* $\sigma \in V^{\mathbb{Q}}$. Want to find a Σ -Prikry forcing \mathbb{A} that projects onto \mathbb{Q} and settles the problem raised by σ . Instead of $\mathbb{A} := \mathbb{Q} * \dot{\mathbb{P}}(\sigma)$ for a notion of forcing $\dot{\mathbb{P}}(\sigma)$ that solves σ , we will be doing something different.

The above is achieved by invoking a solving-problem functor $\mathbb{A}(\cdot, \cdot)$ such that **2** $\mathbb{A} := \mathbb{A}(\mathbb{Q}, \sigma)$, "solves the problem raised by σ "

Let \mathbb{Q} be a Σ -Prikry forcing along with a *problem* $\sigma \in V^{\mathbb{Q}}$. Want to find a Σ -Prikry forcing \mathbb{A} that projects onto \mathbb{Q} and settles the problem raised by σ . Instead of $\mathbb{A} := \mathbb{Q} * \dot{\mathbb{P}}(\sigma)$ for a notion of forcing $\dot{\mathbb{P}}(\sigma)$ that solves σ , we will be doing something different.

The above is achieved by invoking a solving-problem functor $\mathbb{A}(\cdot,\cdot)$ such that

Q $\mathbb{A} := \mathbb{A}(\mathbb{Q}, \sigma)$, "solves the problem raised by σ "

and for which there is a pair of maps (\pitchfork,π) such that:

- **()** π **defines a projection** from **A** to **Q**
- **2** \pitchfork is a canonical operation to move from $\mathbb Q$ back to $\mathbb A$, which coheres with π

Let \mathbb{Q} be a Σ -Prikry forcing along with a *problem* $\sigma \in V^{\mathbb{Q}}$. Want to find a Σ -Prikry forcing \mathbb{A} that projects onto \mathbb{Q} and settles the problem raised by σ . Instead of $\mathbb{A} := \mathbb{Q} * \dot{\mathbb{P}}(\sigma)$ for a notion of forcing $\dot{\mathbb{P}}(\sigma)$ that solves σ , we will be doing something different.

The above is achieved by invoking a solving-problem functor $\mathbb{A}(\cdot,\cdot)$ such that

Q $\mathbb{A} := \mathbb{A}(\mathbb{Q}, \sigma)$, "solves the problem raised by σ "

and for which there is a pair of maps (\uparrow, π) such that:

- **()** π defines a projection from \mathbb{A} to \mathbb{Q}
- **2** \pitchfork is a canonical operation to move from $\mathbb Q$ back to $\mathbb A$, which coheres with π

Upshot

Provided (1) & (2) of the above hold then \mathbb{A} is not so far from being Σ -Prikry.

Provided (1) & (2) of the above hold then \mathbb{A} is not so far from being Σ -Prikry.

The two main concerns are the Chain Condition and the Complete Prikry property:

Provided (1) & (2) of the above hold then \mathbb{A} is not so far from being Σ -Prikry.

The two main concerns are the Chain Condition and the Complete Prikry property:

▶ A has a good chain condition: This is a consequence of the following:

 $c_{\mathbb{A}}(a) = c_{\mathbb{A}}(a') \implies \exists p \le \pi(a), \pi(a') \ (\pitchfork(a)(p) = \pitchfork(a')(p)).$

Provided (1) & (2) of the above hold then \mathbb{A} is not so far from being Σ -Prikry.

The two main concerns are the Chain Condition and the Complete Prikry property:

▶ A has a good chain condition: This is a consequence of the following:

 $c_{\mathbb{A}}(a) = c_{\mathbb{A}}(a') \implies \exists p \le \pi(a), \pi(a') \ (\pitchfork(a)(p) = \pitchfork(a')(p)).$

▲ has the CPP: The crux of the matter is Diagonalizability:
For all a ∈ A and D ⊆ A dense open there is a* ≤⁰ a that "diagonalizes" D:
(D) If some b ≤ a* is in D then w(a*, b) ∈ D, as well

Provided (1) & (2) of the above hold then \mathbb{A} is not so far from being Σ -Prikry.

The two main concerns are the Chain Condition and the Complete Prikry property:

▶ A has a good chain condition: This is a consequence of the following:

 $c_{\mathbb{A}}(a) = c_{\mathbb{A}}(a') \implies \exists p \le \pi(a), \pi(a') \ (\pitchfork(a)(p) = \pitchfork(a')(p)).$

▲ has the CPP: The crux of the matter is Diagonalizability:
For all a ∈ A and D ⊆ A dense open there is a* ≤⁰ a that "diagonalizes" D:
(D) If some b ≤ a* is in D then w(a*, b) ∈ D, as well

This is achieved by:

- ${f 0}\,$ Assuming that ${f P}$ enjoys Diagonalizability;
- Showing that the forking projection (\pitchfork, π) has the Mixing Property;

(Allows to lift diagonalizability witnesses from $\mathbb P$ to $\mathbb A$)

A model for $\neg \mathsf{SCH}_{\kappa} + \operatorname{Refl}(\kappa^+)$

Set up

- Let Σ := ⟨κ_n | n < ω⟩ be a strictly increasing sequence of Laver-indestructible supercompact cardinals κ_n. Put κ := sup(Σ);
- **2** Let \mathbb{P} be the Extender-Based Prikry forcing associated to Σ ;
- S Assuming $2^{2^{\kappa}} = \kappa^{++}$, we fix a bookkeeping function $\psi : \kappa^{++} \to H_{\kappa^{++}}$.

Proposition (P., Rinot & Sinapova) ([PRS1])

Let \mathbb{Q} be a Σ -Prikry forcing not collapsing κ^+ . Then $V^{\mathbb{Q}} \models \operatorname{Refl}(\langle \omega, \kappa^+ \cap \operatorname{cf}^V(\rangle \omega))$.

Proposition (P., Rinot & Sinapova) ([PRS1])

Let \mathbb{Q} be a Σ -Prikry forcing not collapsing κ^+ . Then $V^{\mathbb{Q}} \models \operatorname{Refl}(\langle \omega, \kappa^+ \cap \operatorname{cf}^V(\rangle \omega))$.

Strategy

Define a $\Sigma\operatorname{-Prikry}$ forcing iteration $\mathbb{P}_{\kappa^{++}}$ such that

$${\small \bigcirc} \ \mathbb{P}_{\kappa^{++}} \text{ is } \Sigma \text{-} \mathsf{Prikry and does not collapse } \kappa^+$$

$$2 V^{\mathbb{P}_{\kappa^{++}}} \models \operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(\omega)),$$

3 $\mathbb{P}_{\kappa^{++}}$ projects to \mathbb{P} .

If $\mathbb{P}_{\kappa^{++}}$ fulfills the above conditions it will yield the desired generic extension.

An iteration to get $\operatorname{Refl}(\kappa^+) + \neg \mathsf{SCH}_{\kappa}$

• Set $\mathbb{P}_0 := (\{\emptyset\}, \leq)$ and $\mathbb{P}_1 := {}^1\mathbb{P};$

An iteration to get $\operatorname{Refl}(\kappa^+) + \neg \operatorname{SCH}_{\kappa}$

• Set $\mathbb{P}_0 := (\{\emptyset\}, \leq)$ and $\mathbb{P}_1 := {}^1\mathbb{P};$

 $\ \, {\mathbb P}_{\alpha+1}: \ \, {\rm If} \ \psi(\alpha)=(\beta,r,\sigma) \ {\rm with} \ \beta<\alpha, \ r\in P_\beta, \ \sigma\in V^{\mathbb P_\beta} \ {\rm and} \ \,$

 $r \Vdash_{\mathbb{P}_{\beta}} \sigma$ is a non-reflecting stationary set of $\kappa^+ \cap \mathrm{cf}^V(\omega)$,

then $\mathbb{P}_{\alpha+1} := \mathbb{A}(\mathbb{P}_{\alpha}, \sigma)$, where $\mathbb{A}(\cdot, \cdot)$ is a functor that *destroys the stationarity of* σ . (Sharon's functor)

An iteration to get $\operatorname{Refl}(\kappa^+) + \neg \operatorname{SCH}_{\kappa}$

• Set $\mathbb{P}_0 := (\{\emptyset\}, \leq)$ and $\mathbb{P}_1 := {}^1\mathbb{P};$

 $\ \ \, {\mathbb P}_{\alpha+1}: \ \ \, {\rm If} \ \psi(\alpha)=(\beta,r,\sigma) \ {\rm with} \ \beta<\alpha, \ r\in P_\beta, \ \sigma\in V^{\mathbb P_\beta} \ {\rm and} \ \ \,$

 $r \Vdash_{\mathbb{P}_{\beta}} \sigma$ is a non-reflecting stationary set of $\kappa^{+} \cap \mathrm{cf}^{V}(\omega)$,

then $\mathbb{P}_{\alpha+1} := \mathbb{A}(\mathbb{P}_{\alpha}, \sigma)$, where $\mathbb{A}(\cdot, \cdot)$ is a functor that *destroys the stationarity of* σ . (Sharon's functor)

3 \mathbb{P}_{α} is the $\leq \kappa$ -supported inverse limit of $\langle \mathbb{P}_{\beta} \mid \beta < \alpha \rangle$.

Fact

Q $\mathbb{P}_{\kappa^{++}}$ is Σ -Prikry and does not collapse κ^+ .

Proof

Corollary of our iteration theorem.

Fact

- $V^{\mathbb{P}_{\kappa^{++}}} \models \operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(\omega)).$

Proof

- Corollary of our iteration theorem.
- **2** By the κ^{++} -cc of $\mathbb{P}_{\kappa^{++}}$ and the usual "catch our tail" argument.

Fact

- $V^{\mathbb{P}_{\kappa^{++}}} \models \operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(\omega)).$
- $\ \ \, \mathbb{P}_{\kappa^{++}} \ \, \text{projects to} \ \ \, \mathbb{P}.$

Proof

- Orollary of our iteration theorem.
- **2** By the κ^{++} -cc of $\mathbb{P}_{\kappa^{++}}$ and the usual "catch our tail" argument.
- Sessentially, by our assumption over the functors.

A model for $\neg \mathsf{SCH}_{\aleph_{\omega}} + \operatorname{Refl}(\aleph_{\omega+1})$

Two classical results of Magidor:

Theorem (Magidor) (Ann. Math, 1977) (\aleph_{ω} may be non-compact)

Assuming strong enough large cardinals there is a generic extension of the set-theoretic universe where GCH_{< \aleph_{ω}} holds but SCH_{\aleph_{ω}} fails.

Theorem (Magidor) (JSL, 1982) (\aleph_{ω} may be compact)

Assuming strong enough large cardinals there is a generic extension of the set-theoretic universe where $Refl(\aleph_{\omega+1})$ holds.

Two classical results of Magidor:

Theorem (Magidor) (Ann. Math, 1977) (\aleph_{ω} may be non-compact)

Assuming strong enough large cardinals there is a generic extension of the set-theoretic universe where GCH_{< \aleph_{ω}} holds but SCH_{\aleph_{ω}} fails.

Theorem (Magidor) (JSL, 1982) (\aleph_{ω} may be compact)

Assuming strong enough large cardinals there is a generic extension of the set-theoretic universe where $Refl(\aleph_{\omega+1})$ holds.

Question

Is it possible to combine these two rather contradictory features of \aleph_{ω} ?

Two classical results of Magidor:

Theorem (Magidor) (Ann. Math, 1977) (\aleph_{ω} may be non-compact)

Assuming strong enough large cardinals there is a generic extension of the set-theoretic universe where GCH_{< \aleph_{ω}} holds but SCH_{\aleph_{ω}} fails.

Theorem (Magidor) (JSL, 1982) (\aleph_{ω} may be compact)

Assuming strong enough large cardinals there is a generic extension of the set-theoretic universe where $Refl(\aleph_{\omega+1})$ holds.

Question

Is it possible to combine these two rather contradictory features of \aleph_{ω} ? (Yes)

Assuming the consistency of infinitely many supercompact cardinals, there is a generic extension where GCH_{$<\aleph_{\omega}$} holds, SCH_{\aleph_{ω}} fails and $\operatorname{Refl}(\aleph_{\omega+1})$ holds.

Assuming the consistency of infinitely many supercompact cardinals, there is a generic extension where GCH_{< \aleph_{ω}} holds, SCH_{\aleph_{ω}} fails and $\operatorname{Refl}(\aleph_{\omega+1})$ holds.

New components of the proof:

• Need to generalize the Σ -Prikry class to the broader one of (Σ, \vec{S}) -Prikry. (Necessary to enable interleaved collapses)

Assuming the consistency of infinitely many supercompact cardinals, there is a generic extension where GCH_{< \aleph_{ω}} holds, SCH_{\aleph_{ω}} fails and $\operatorname{Refl}(\aleph_{\omega+1})$ holds.

- **②** Verify that Gitik's EBPFC falls into the (Σ, \vec{S}) -Prikry framework;

Assuming the consistency of infinitely many supercompact cardinals, there is a generic extension where GCH_{$<\aleph_{\omega}$} holds, SCH_{\aleph_{ω}} fails and $\operatorname{Refl}(\aleph_{\omega+1})$ holds.

- Need to generalize the Σ -Prikry class to the broader one of (Σ, \vec{S}) -Prikry. (Necessary to enable interleaved collapses)
- **②** Verify that Gitik's EBPFC falls into the (Σ, \vec{S}) -Prikry framework;
- **③** Generalize the iteration scheme to the more general setting of (Σ, \vec{S}) -Prikry forcings.

Assuming the consistency of infinitely many supercompact cardinals, there is a generic extension where GCH_{$<\aleph_{\omega}$} holds, SCH_{\aleph_{ω}} fails and $\operatorname{Refl}(\aleph_{\omega+1})$ holds.

- Need to generalize the Σ -Prikry class to the broader one of (Σ, \vec{S}) -Prikry. (Necessary to enable interleaved collapses)
- **②** Verify that Gitik's EBPFC falls into the (Σ, \vec{S}) -Prikry framework;
- **③** Generalize the iteration scheme to the more general setting of (Σ, \vec{S}) -Prikry forcings.
- Generalize Sharon's functor A(·, ·) into a (Σ, S)-Prikry functor for killing "fragile" stationary sets;

Assuming the consistency of infinitely many supercompact cardinals, there is a generic extension where GCH_{< \aleph_{ω}} holds, SCH_{\aleph_{ω}} fails and $\operatorname{Refl}(\aleph_{\omega+1})$ holds.

- Need to generalize the Σ -Prikry class to the broader one of (Σ, \vec{S}) -Prikry. (Necessary to enable interleaved collapses)
- **②** Verify that Gitik's EBPFC falls into the (Σ, \vec{S}) -Prikry framework;
- **③** Generalize the iteration scheme to the more general setting of (Σ, \vec{S}) -Prikry forcings.
- Generalize Sharon's functor A(·, ·) into a (Σ, S)-Prikry functor for killing "fragile" stationary sets;
- Find a scenario in which the iteration to kill all fragile stationary sets moreover produces a model of Refl(ℵ_{ω+1}).

Assuming the consistency of infinitely many supercompact cardinals, there is a generic extension where $\text{GCH}_{<\aleph_{\omega}}$ holds, $\text{SCH}_{\aleph_{\omega}}$ fails and $\text{Refl}(\aleph_{\omega+1})$ holds.

Proof skecth:

• Start with GCH and ω -many supercompact cardinals $\langle \kappa_n \mid n < \omega \rangle$.

Assuming the consistency of infinitely many supercompact cardinals, there is a generic extension where $\text{GCH}_{<\aleph_{\omega}}$ holds, $\text{SCH}_{\aleph_{\omega}}$ fails and $\text{Refl}(\aleph_{\omega+1})$ holds.

Proof skecth:

- Start with GCH and ω -many supercompact cardinals $\langle \kappa_n \mid n < \omega \rangle$.
- **②** Make each κ_n indestructible under κ_n -directed-closed forcing that preserve the GCH.

Assuming the consistency of infinitely many supercompact cardinals, there is a generic extension where $\text{GCH}_{<\aleph_{\omega}}$ holds, $\text{SCH}_{\aleph_{\omega}}$ fails and $\text{Refl}(\aleph_{\omega+1})$ holds.

Proof skecth:

- Start with GCH and ω -many supercompact cardinals $\langle \kappa_n \mid n < \omega \rangle$.
- **②** Make each κ_n indestructible under κ_n -directed-closed forcing that preserve the GCH.
- **③** Define a (Σ, \vec{S}) -Prikry-style iteration $\langle \mathbb{P}_{\alpha} \mid \alpha \leq \kappa^{++} \rangle$ with $\leq \kappa$ support such that:
 - ▶ \mathbb{P}_1 is Gitik's EBPFC, which makes $\kappa = \aleph_{\omega}$ and $2^{\aleph_{\omega}} = \aleph_{\omega+2}$, and preserves $\mathsf{GCH}_{<\aleph_{\omega}}$.
 - $\mathbb{P}_{\alpha+1} := \mathbb{A}(\mathbb{P}_{\alpha}, \dot{T})$ is the generalization of Sharon's functor killing the stationarity of \dot{T} .

Assuming the consistency of infinitely many supercompact cardinals, there is a generic extension where $\text{GCH}_{<\aleph_{\omega}}$ holds, $\text{SCH}_{\aleph_{\omega}}$ fails and $\text{Refl}(\aleph_{\omega+1})$ holds.

Proof skecth:

- Start with GCH and ω -many supercompact cardinals $\langle \kappa_n \mid n < \omega \rangle$.
- **②** Make each κ_n indestructible under κ_n -directed-closed forcing that preserve the GCH.
- Define a (Σ, \vec{S}) -Prikry-style iteration $\langle \mathbb{P}_{\alpha} \mid \alpha \leq \kappa^{++} \rangle$ with $\leq \kappa$ support such that:
 - ▶ \mathbb{P}_1 is Gitik's EBPFC, which makes $\kappa = \aleph_{\omega}$ and $2^{\aleph_{\omega}} = \aleph_{\omega+2}$, and preserves $\mathsf{GCH}_{<\aleph_{\omega}}$.
 - $\mathbb{P}_{\alpha+1} := \mathbb{A}(\mathbb{P}_{\alpha}, \dot{T})$ is the generalization of Sharon's functor killing the stationarity of \dot{T} .
- Show that this is **successful**: to wit, $\mathbb{P}_{\kappa^{++}}$ preserves all cardinals, is κ^{++} -cc and kills all non-reflecting stationary subsets of κ^+ .

Now our posets \mathbb{P}_{α} fail to satisfy that its *layers* $(\mathbb{P}_{\alpha})_n$ contain a sufficiently closed dense subforcing (because of the interleaved collapses).

Now our posets \mathbb{P}_{α} fail to satisfy that its *layers* $(\mathbb{P}_{\alpha})_n$ contain a sufficiently closed dense subforcing (because of the interleaved collapses).

 It turns out that the former Σ-Prikry machinery can be naturally adapted to handle the preservation of cardinals and the chain condition calculations;

Now our posets \mathbb{P}_{α} fail to satisfy that its *layers* $(\mathbb{P}_{\alpha})_n$ contain a sufficiently closed dense subforcing (because of the interleaved collapses).

- It turns out that the former Σ-Prikry machinery can be naturally adapted to handle the preservation of cardinals and the chain condition calculations;
- The main issue is to secure that all non-reflecting stationary sets are killed:

Now our posets \mathbb{P}_{α} fail to satisfy that its *layers* $(\mathbb{P}_{\alpha})_n$ contain a sufficiently closed dense subforcing (because of the interleaved collapses).

- It turns out that the former Σ-Prikry machinery can be naturally adapted to handle the preservation of cardinals and the chain condition calculations;
- The main issue is to secure that all non-reflecting stationary sets are killed:

Key lemma in the non-collapsing scenario

Assume $\Sigma := \langle \kappa_n \mid n < \omega \rangle$ is a sequence of Laver-indestructible supercompact cardinals. If \mathbb{P} is a Σ -Prikry forcing and \dot{T} is a \mathbb{P} -name for a non-reflecting stationary set then \dot{T} is fragile (hence, it can be killed in a Σ -Prikry fashion).

Now our posets \mathbb{P}_{α} fail to satisfy that its *layers* $(\mathbb{P}_{\alpha})_n$ contain a sufficiently closed dense subforcing (because of the interleaved collapses).

- It turns out that the former Σ-Prikry machinery can be naturally adapted to handle the preservation of cardinals and the chain condition calculations;
- The main issue is to secure that all non-reflecting stationary sets are killed:

Key lemma in the non-collapsing scenario

Assume $\Sigma := \langle \kappa_n \mid n < \omega \rangle$ is a sequence of Laver-indestructible supercompact cardinals. If \mathbb{P} is a Σ -Prikry forcing and \dot{T} is a \mathbb{P} -name for a non-reflecting stationary set then \dot{T} is fragile (hence, it can be killed in a Σ -Prikry fashion).

A key ingredient: For each $n < \omega$, $V^{\mathbb{P}_n} \models \operatorname{Refl}(\kappa^+ \cap \operatorname{cf}(<\kappa_n))$.

Now our posets \mathbb{P}_{α} fail to satisfy that its *layers* $(\mathbb{P}_{\alpha})_n$ contain a sufficiently closed dense subforcing (because of the interleaved collapses).

- It turns out that the former Σ-Prikry machinery can be naturally adapted to handle the preservation of cardinals and the chain condition calculations;
- The main issue is to secure that all non-reflecting stationary sets are killed:

Key lemma in the non-collapsing scenario

Assume $\Sigma := \langle \kappa_n \mid n < \omega \rangle$ is a sequence of Laver-indestructible supercompact cardinals. If \mathbb{P} is a Σ -Prikry forcing and \dot{T} is a \mathbb{P} -name for a non-reflecting stationary set then \dot{T} is fragile (hence, it can be killed in a Σ -Prikry fashion).

A key ingredient: For each $n < \omega$, $V^{\mathbb{P}_n} \models \operatorname{Refl}(\kappa^+ \cap \operatorname{cf}(<\kappa_n))$.

(But now $V^{\mathbb{P}_n}$ does not contain large cardinals!)

Let \mathbb{P} be some stage of the iteration and \dot{T} be a \mathbb{P}_n -name for a stationary:

Let \mathbb{P} be some stage of the iteration and \dot{T} be a \mathbb{P}_n -name for a stationary:

- $\textcircled{0} \hspace{0.1in} \mathbb{Q}_n := \mathbb{P}'_n \times \mathbb{S}_n \hspace{0.1in} \text{projects to} \hspace{0.1in} \mathbb{P}_n \text{, where}$
 - ▶ \mathbb{P}'_n is κ_{n-1}^+ -directed closed and GCH-preserving (hence preserve supercomp. of κ_{n-1});
 - ▶ S_n is the product of the first *n*-many Lévy collapses in Gitik's EBPFC;

Let $\mathbb P$ be some stage of the iteration and \dot{T} be a $\mathbb P_n\text{-name}$ for a stationary:

- $\textcircled{\ } {\mathbb Q}_n := {\mathbb P}'_n \times {\mathbb S}_n \text{ projects to } {\mathbb P}_n \text{, where}$
 - ▶ \mathbb{P}'_n is κ_{n-1}^+ -directed closed and GCH-preserving (hence preserve supercomp. of κ_{n-1});
 - ▶ S_n is the product of the first *n*-many Lévy collapses in Gitik's EBPFC;
- **2** To prove reflection in $V^{\mathbb{P}_n}$ we need:
 - An outer elementary embedding $j: V^{\mathbb{Q}_n} \to N \subseteq V^{\mathbb{Q}_n * \mathbb{R}_n}$;
 - A stationary-preservation lemma between V^{Q_n} and $V^{Q_n * \dot{\mathbb{R}}_n}$;
 - A further stationary-preservation lemma between $V^{\mathbb{P}_n}$ and $V^{\mathbb{Q}_n}$.

Thank you very much for your attention!