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This is based on a joint work with A. Rinot & D. Sinapova
1 [PRS1] Sigma-Prikry forcing I: The axioms, Canadian Journal of Mathematics.
2 [PRS2] Sigma-Prikry forcing II: Iteration Scheme, Journal of Mathematical Logic.
3 [PRS3] Sigma-Prikry forcing III: Down to ℵω, Submitted on October 2021.

Find the papers here
http://assafrinot.com/t/sigma-prikry

https://homepages.math.uic.edu/˜sinapova/

http://assafrinot.com/?t=sigma-prikry
https://homepages.math.uic.edu/~{}sinapova/
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Two applications

The very first application of the Σ-Prikry framework:

Theorem (P., Rinot, Sinapova) ([PRS2])
Assume that ⟨κn | n < ω⟩ is an increasing sequence of supercompact cardinals. Then there
is a generic extension where κ = supn<ω κn is a strong limit cardinal, SCHκ fails and
Refl(κ+) holds (actually, Refl(<ω,κ+) holds).

Initially proved by Sharon and later by Ben-Neria, Hayut and Unger, and Gitik.

Theorem (P., Rinot, Sinapova) ([PRS3])
Assume that ⟨κn | n < ω⟩ is an increasing sequence of supercompact cardinals. Then there
is a generic extension of the set-theoretic universe where the following hold:

1 2ℵn = ℵn+1 for all n < ω;
2 2ℵω = ℵω+2;
3 Refl(ℵω+1) holds.
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Compactness principles

Compactness Principle
A Compactness Principle for a given property φ is a statement of the form:

“If every small substructure has property φ then the structure itself has property φ”

The dual of CP are Reflection Principles:

Reflection Principle
A Reflection Principle for a given property φ is a statement of the form:

“If a structure has property φ then there is a small substructure having property φ”

In practice, small means “having cardinality <κ”, where κ is some relevant cardinal
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Compactness in Set Theory: Stationary reflection

Definition
Let κ be a regular uncountable cardinal.

1 A stationary set S ⊆ κ reflects if there is α < κ with cf(α) > ω such that
S ∩ α is stationary at α.

2 For a stationary set S ⊆ κ, Refl(S) asserts that every stationary set T ⊆ S reflects.

Question
For which cardinals κ and stationary sets S ⊆ κ does Refl(S) hold?

We need to separate the discussion into three cases:
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1 Limit cardinals: Large-cardinal properties use to entail stationary reflection:

Theorem (Tarski (19 ), Jensen (1972))
If κ is weakly compact then Refl(κ) holds. Under V = L this is an equivalence.

Theorem (Solovay) (19 )
If κ is supercompact then Refl(µ∩ cf(<κ)) holds for every regular µ ≥ κ.

2 Successor of a regular: If κ := λ+, with λ = cf(λ), then Refl(κ∩ cf(λ)) fails.
Despite of this, one can force optimal reflection patterns:

Theorem (Harrington & Shelah) (NDJFL, 1985)
The following are equiconsistent:
▶ There is a Mahlo cardinal.
▶ Refl(κ∩ cf(<λ)) holds.
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3 Successors of a singular:
Unlike successors of regulars here one can arrange full stationary reflection:

Theorem (Magidor) (JSL, 1982)
Assume there are ω-many supercompact cardinals and that the GCH holds. Then there is a
generic extension where Refl(ℵω+1) holds.

Theorem (Hayut & Unger) (JSL, 2020)
The principle Refl(ℵω+1) is consistent relative to the existence of a cardinal κ which is
κ+-Π1

1-subcompact.
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The Singular Cardinal Hypothesis

Definition (simplified version)
The Singular Cardinal Hypothesis (SCH) asserts that for every singular strong limit
cardinal κ, 2κ = κ+ (i.e., SCHκ holds).

Facts
1 The SCH holds above the first strong compact cardinal (Solovay);
2 The failure of the SCH is consistent modulo large cardinals (Silver & Prikry);
3 The SCH can fail at the first singular cardinal.

Theorem (Magidor) (Ann. Math, 1977)
Assume there is a supercompact cardinal along with a huge cardinal on top. Then there is
a generic extension where GCH<ℵω holds but SCHℵω fails.
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Tension between ¬SCHκ and Refl(κ+)

General fact
Getting ¬SCH usually involves singularizing cardinals, which entails □-sequences
(Džamonja-Shelah and Gitik). These latter are at odds with stationary reflection.

Let us illustrate this tension by analysing the most basic example: The Prikry model.

Theorem (Cummings, Foreman and Magidor) (JML, 2001)
Assume that κ is a κ+-supercompact cardinal. Then Refl(κ+ ∩ cfV (<κ)) holds in any
Prikry generic extension derived from a normal measure on κ.
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Tension between ¬SCHκ and Refl(κ+)

Theorem (Cummings, Foreman and Magidor) (JML, 2001)
Assume that κ is a κ+-supercompact cardinal. Then Refl(κ+ ∩ cfV (<κ)) holds in any
Prikry extension derived from a mormal measure on κ.

Proof sketch:

1 Assume Ṫ is a P-name for a non-reflecting stationary subset of S := κ+ ∩ cfV (<κ).
2 Let G ⊆ P and κ⃗ be the induced Prikry sequence. For each s ⊑ κ⃗, put

Ts := {α ∈ S | ∃A ∈ U (s,A) ⊩P α̌ ∈ Ṫ}.

3 Note that Ts ∈ V and that for some (many) s, Ts is stationary.
4 Since κ is κ+-supercompact, Ts reflects (in V ) at an ordinal α with cfV (α) ∈ (ω,κ).
5 Let C ⊆ α with otp(C) = cfV (α). Note that |Ts ∩C| < κ.
6 Use the κ-closure of ⟨P, ≤∗⟩ to obtain some A∗ ∈ U such that

(s,A∗) ⊩P “Ts ∩C ⊆ Ṫ ∩ α”.
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1 Assume Ṫ is a P-name for a non-reflecting stationary subset of S := κ+ ∩ cfV (<κ).
2 Let G ⊆ P and κ⃗ be the induced Prikry sequence. For each s ⊑ κ⃗, put

Ts := {α ∈ S | ∃A ∈ U (s,A) ⊩P α̌ ∈ Ṫ}.
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Tension between ¬SCHκ and Refl(κ+)

Still, the tension between ¬SCHκ and Refl(κ+) prevails:

Theorem (Cummings, Foreman and Magidor) (JML, 2001)
Assume that κ is a κ+-supercompact cardinal. Then Refl(κ+ ∩ cfV (<κ)) holds in any
Prikry generic extension derived from a normal measure on κ. But, Refl(κ+ ∩ cfV (κ)) fails.

▶ Assume S := κ+ ∩ cfV (κ) reflects in some Prikry-extension V [G].
▶ Let α < κ+ with ω < cfV [G](α) witnessing this, and note that cfV (α) < κ.
▶ There is a V -club C ⊆ α (hence, a V [G]-club) such that C ∩ S = ∅.

The above argument applies to fairly any Prikry-type forcing singularizing κ. Even more, it
applies to any such forcing singularizing an interval of cardinals [κ,λ).

In particular, Refl(ℵω+1) fails in Magidor’s model for ¬SCHℵω .
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Tension between ¬SCHκ and Refl(κ+)

Suggestion to get ¬SCHκ + Refl(κ+)

Start with a cardinal κ for which Refl(κ+) holds in the ground model: e.g., a cardinal κ
that is the limit of an increasing sequence ⟨κn | n < ω⟩ of supercompact cardinals.

▶ There are Prirkry-type forcings that allow to violate SCHκ - even when κ is singular
(e.g., the Extender Based Prikry Forcing (Gitik-Magidor))

▶ What is the reflection pattern in the EBPF-extensions?

Lemma (Sharon) (2005)
Assume ⟨κn | n < ω⟩ is an increasing sequence of Laver-indestructible supercompact
cardinals, and put κ := supn<ω κn. Then, in any generic extension by the EBPF

Refl(κ+ ∩ cfV (>ω)) holds.



Dr
aft

Tension between ¬SCHκ and Refl(κ+)

Suggestion to get ¬SCHκ + Refl(κ+)

Start with a cardinal κ for which Refl(κ+) holds in the ground model: e.g., a cardinal κ
that is the limit of an increasing sequence ⟨κn | n < ω⟩ of supercompact cardinals.

▶ There are Prirkry-type forcings that allow to violate SCHκ - even when κ is singular
(e.g., the Extender Based Prikry Forcing (Gitik-Magidor))

▶ What is the reflection pattern in the EBPF-extensions?

Lemma (Sharon) (2005)
Assume ⟨κn | n < ω⟩ is an increasing sequence of Laver-indestructible supercompact
cardinals, and put κ := supn<ω κn. Then, in any generic extension by the EBPF

Refl(κ+ ∩ cfV (>ω)) holds.



Dr
aft

Tension between ¬SCHκ and Refl(κ+)

Suggestion to get ¬SCHκ + Refl(κ+)

Start with a cardinal κ for which Refl(κ+) holds in the ground model: e.g., a cardinal κ
that is the limit of an increasing sequence ⟨κn | n < ω⟩ of supercompact cardinals.

▶ There are Prirkry-type forcings that allow to violate SCHκ - even when κ is singular
(e.g., the Extender Based Prikry Forcing (Gitik-Magidor))

▶ What is the reflection pattern in the EBPF-extensions?

Lemma (Sharon) (2005)
Assume ⟨κn | n < ω⟩ is an increasing sequence of Laver-indestructible supercompact
cardinals, and put κ := supn<ω κn. Then, in any generic extension by the EBPF

Refl(κ+ ∩ cfV (>ω)) holds.



Dr
aft

Tension between ¬SCHκ and Refl(κ+)

Suggestion to get ¬SCHκ + Refl(κ+)

Start with a cardinal κ for which Refl(κ+) holds in the ground model: e.g., a cardinal κ
that is the limit of an increasing sequence ⟨κn | n < ω⟩ of supercompact cardinals.

▶ There are Prirkry-type forcings that allow to violate SCHκ - even when κ is singular
(e.g., the Extender Based Prikry Forcing (Gitik-Magidor))

▶ What is the reflection pattern in the EBPF-extensions?

Lemma (Sharon) (2005)
Assume ⟨κn | n < ω⟩ is an increasing sequence of Laver-indestructible supercompact
cardinals, and put κ := supn<ω κn. Then, in any generic extension by the EBPF

Refl(κ+ ∩ cfV (>ω)) holds.



Dr
aft

Tension between ¬SCHκ and Refl(κ+)

Lemma (Sharon) (2005)
Assume ⟨κn | n < ω⟩ is an increasing sequence of Laver-indestructible supercompact
cardinals, and put κ := supn<ω κn. Then, in any generic extension by the EBPF

Refl(κ+ ∩ cfV (>ω)) holds.

Proof sketch: Mimic Cummings, Foreman and Magidor:

▶ Assume Ṫ is a P-name for a stationary subset of S := κ+ ∩ cfV (> ω).
▶ For each n < ω, define Pn := {p ∈ P | ℓ(p) = n} and put

Ṫn := {(α̌, p) | (α, p) ∈ S × Pn ∧ (p ⊩P α̌ ∈ Ṫ )}.

▶ Show that p ⊩Pℓ(p)
“Ṫℓ(p) is stationary” for densely many p ∈ P.

▶ If κn is Laver-indestructible, V Pn |= Refl(κ+ ∩ cf(<κn)), hence Ṫn reflects in V Pn .
▶ As before, argue that some condition q forces “Ṫ reflects”.



Dr
aft

Tension between ¬SCHκ and Refl(κ+)

Lemma (Sharon) (2005)
Assume ⟨κn | n < ω⟩ is an increasing sequence of Laver-indestructible supercompact
cardinals, and put κ := supn<ω κn. Then, in any generic extension by the EBPF

Refl(κ+ ∩ cfV (>ω)) holds.

Proof sketch: Mimic Cummings, Foreman and Magidor:
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Ṫn := {(α̌, p) | (α, p) ∈ S × Pn ∧ (p ⊩P α̌ ∈ Ṫ )}.
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“Ṫℓ(p) is stationary” for densely many p ∈ P.

▶ If κn is Laver-indestructible, V Pn |= Refl(κ+ ∩ cf(<κn)), hence Ṫn reflects in V Pn .
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Tension between ¬SCHκ and Refl(κ+)

Yet again, the tension prevails:

Theorem (Sharon) (2005)
In the EBPF-models there is a stationary set S ⊆ κ+ ∩ cfV (ω) that fails to reflect.

▶ Getting Refl(κ+) will require to (iterative) kill all the non-reflecting stationary sets.
▶ Note that such iteration may introduce new counterexamples for Refl(κ+ ∩ cfV (>ω)).

Our strategy
1 Isolate a general class of Prikry-type forcings (Σ-Prikry) that encompasses both the

EBPF and all the stages of the eventual iteration;
2 Prove that any such forcing yields the very same reflection pattern as the EBPF did;
3 Prove an iteration theorem for the class of Σ-Prikry forcings and devise an iteration

aimed to kill all non-reflecting stationary sets S ⊆ κ+ ∩ cfV (ω).
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Σ-Prikry forcings in a nutshell

Σ = ⟨κn | n < ω⟩ is non-decreasing seq. of regular uncountable cardinals. Set κ := sup(Σ).

A Σ-Prikry poset is a triple (P, ℓ, c) such that:

1 ℓ : P → ω is a “canonical notion of length”;
2 c : P → µ witnesses a strong form of µ+-Linkedness, where 1l ⊩P µ̌ = κ̌+.

c(p) = c(q) =⇒ ∃r ∈ P (r ≤0 p, q).
3 P is a forcing poset such that:

▶ For each n < ω, Pn (contains a dense subforcing that) is κn-directed-closed;
▶ P has the Complete Prikry Property.

Complete Prikry property
For each p ∈ P, n < ω and a 0-open set D ⊆ P there is a condition q ≤0 p such that
either P q

n ⊆ D or P q
n ∩D = ∅ (Here, P q

n := {r ≤ q | ℓ(r) = ℓ(q) + n}).
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An example: Prikry forcing

Prikry forcing P(U) can be regarded as a Σ-Prikry triple (P(U), ℓ, c):

1 There is a natural notion of length associated to each condition (s,A) ∈ P(U):

ℓ(s,A) := |s|.

2 Let c : P(U) → κ+ be the map defined by c(s,A) := s.

c(s,A) = c(t,B) =⇒ (s,A∩B) ≤0 (s,A), (t,B).

3 Set Σ := ⟨κ | n < ω⟩. Then, Pn = {(s,A) ∈ P(U) | |s| = n} is κ-directed-closed.
4 P(U) has the CPP.
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Some other (more sophisticated) examples

1 Diagonal Prikry forcing;
2 Supercompact Prikry forcing;
3 Gitik-Sharon forcing;
4 AIM forcing;
5 Extender Based Prikry forcing;
6 Extender Based Prikry forcing with a single extender;
7 Supercompact Extender Based Prikry forcing;
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Iterating Σ-Prikry forcings

The philosophy of the Σ-Prikry iterations
Let Q be a Σ-Prikry forcing along with a problem σ ∈ V Q. Want to find a Σ-Prikry forcing
A that projects onto Q and settles the problem raised by σ. Instead of A := Q ∗ Ṗ(σ) for
a notion of forcing Ṗ(σ) that solves σ, we will be doing something different.

The above is achieved by invoking a solving-problem functor A(·, ·) such that
0 A := A(Q,σ), “solves the problem raised by σ”

and for which there is a pair of maps (⋔,π) such that:
1 π defines a projection from A to Q

2 ⋔ is a canonical operation to move from Q back to A, which coheres with π

Upshot
Provided (1) & (2) of the above hold then A is not so far from being Σ-Prikry.



Dr
aft

Iterating Σ-Prikry forcings

The philosophy of the Σ-Prikry iterations
Let Q be a Σ-Prikry forcing along with a problem σ ∈ V Q. Want to find a Σ-Prikry forcing
A that projects onto Q and settles the problem raised by σ. Instead of A := Q ∗ Ṗ(σ) for
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Why A is Σ-Prikry?

Upshot
Provided (1) & (2) of the above hold then A is not so far from being Σ-Prikry.

The two main concerns are the Chain Condition and the Complete Prikry property:

▶ A has a good chain condition: This is a consequence of the following:
cA(a) = cA(a′) =⇒ ∃p ≤ π(a),π(a′) (⋔(a)(p) = ⋔(a′)(p)).

▶ A has the CPP: The crux of the matter is Diagonalizability:
For all a ∈ A and D ⊆ A dense open there is a∗ ⊴0 a that “diagonalizes” D:

(D) If some b⊴ a∗ is in D then w(a∗, b) ∈ D, as well

This is achieved by:
1 Assuming that P enjoys Diagonalizability;
2 Showing that the forking projection (⋔,π) has the Mixing Property;

(Allows to lift diagonalizability witnesses from P to A)
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Towards a model of ¬SCHκ+ Refl(<ω, κ+)

Set up
1 Let Σ := ⟨κn | n < ω⟩ be a strictly increasing sequence of Laver-indestructible

supercompact cardinals κn. Put κ := sup(Σ);
2 Let P be the Extender-Based Prikry forcing associated to Σ;
3 Assuming 22κ

= κ++, we fix a bookkeeping function ψ : κ++ → Hκ++ .
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The first step: What stationary sets do reflect?

Proposition (P., Rinot & Sinapova) ([PRS1])
Let Q be a Σ-Prikry forcing not collapsing κ+. Then V Q |= Refl(<ω,κ+ ∩ cfV (> ω)).

Strategy
Define a Σ-Prikry forcing iteration Pκ++ such that

1 Pκ++ is Σ-Prikry and does not collapse κ+,
2 V Pκ++ |= Refl(κ+ ∩ cfV (ω)),
3 Pκ++ projects to P.

If Pκ++ fulfills the above conditions it will yield the desired generic extension.
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An iteration to get Refl(κ+) + ¬SCHκ

1 Set P0 := ({∅}, ≤) and P1 := 1P;

2 Pα+1: If ψ(α) = (β, r,σ) with β < α, r ∈ Pβ, σ ∈ V Pβ and

r ⊩Pβ
σ is a non-reflecting stationary set of κ+ ∩ cfV (ω),

then Pα+1 := A(Pα,σ), where A(·, ·) is a functor that destroys the stationarity of σ.
(Sharon’s functor)

3 Pα is the ≤ κ-supported inverse limit of ⟨Pβ | β < α⟩.
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The above iteration scheme is successful

Fact
1 Pκ++ is Σ-Prikry and does not collapse κ+.

2 V Pκ++ |= Refl(κ+ ∩ cfV (ω)).
3 Pκ++ projects to P.

Proof
1 Corollary of our iteration theorem.

2 By the κ++-cc of Pκ++ and the usual “catch our tail” argument.
3 Essentially, by our assumption over the functors.
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Failure of the SCH and reflection at the first singular cardinal

Two classical results of Magidor:

Theorem (Magidor) (Ann. Math, 1977) (ℵω may be non-compact)
Assuming strong enough large cardinals there is a generic extension of the set-theoretic
universe where GCH<ℵω holds but SCHℵω fails.

Theorem (Magidor) (JSL, 1982) (ℵω may be compact)
Assuming strong enough large cardinals there is a generic extension of the set-theoretic
universe where Refl(ℵω+1) holds.

Question
Is it possible to combine these two rather contradictory features of ℵω? (Yes)
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The theorem

Theorem (P., Rinot & Sinapova) ([PRS3])
Assuming the consistency of infinitely many supercompact cardinals, there is a generic
extension where GCH<ℵω holds, SCHℵω fails and Refl(ℵω+1) holds.

New components of the proof:
1 Need to generalize the Σ-Prikry class to the broader one of (Σ, S⃗)-Prikry.

(Necessary to enable interleaved collapses)
2 Verify that Gitik’s EBPFC falls into the (Σ, S⃗)-Prikry framework;
3 Generalize the iteration scheme to the more general setting of (Σ, S⃗)-Prikry forcings.
4 Generalize Sharon’s functor A(·, ·) into a (Σ, S⃗)-Prikry functor for killing “fragile”

stationary sets;
5 Find a scenario in which the iteration to kill all fragile stationary sets moreover

produces a model of Refl(ℵω+1).
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The theorem

Theorem (P., Rinot & Sinapova) ([PRS3])
Assuming the consistency of infinitely many supercompact cardinals, there is a generic
extension where GCH<ℵω holds, SCHℵω fails and Refl(ℵω+1) holds.

Proof skecth:
1 Start with GCH and ω-many supercompact cardinals ⟨κn | n < ω⟩.

2 Make each κn indestructible under κn-directed-closed forcing that preserve the GCH.
3 Define a (Σ, S⃗)-Prikry-style iteration ⟨Pα | α ≤ κ++⟩ with ≤ κ support such that:

▶ P1 is Gitik’s EBPFC, which makes κ = ℵω and 2ℵω = ℵω+2, and preserves GCH<ℵω .
▶ Pα+1 := A(Pα, Ṫ ) is the generalization of Sharon’s functor killing the stationarity of Ṫ .

4 Show that this is successful: to wit, Pκ++ preserves all cardinals, is κ++-cc and kills
all non-reflecting stationary subsets of κ+.
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A glimpse to the main issues

Disclaimer
Now our posets Pα fail to satisfy that its layers (Pα)n contain a sufficiently closed dense
subforcing (because of the interleaved collapses).

▶ It turns out that the former Σ-Prikry machinery can be naturally adapted to handle
the preservation of cardinals and the chain condition calculations;

▶ The main issue is to secure that all non-reflecting stationary sets are killed:

Key lemma in the non-collapsing scenario
Assume Σ := ⟨κn | n < ω⟩ is a sequence of Laver-indestructible supercompact cardinals. If
P is a Σ-Prikry forcing and Ṫ is a P-name for a non-reflecting stationary set then Ṫ is
fragile (hence, it can be killed in a Σ-Prikry fashion).

A key ingredient: For each n < ω, V Pn |= Refl(κ+ ∩ cf(<κn)).

(But now V Pn does not contain large cardinals!)
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How to get reflection in V Pn:

Let P be some stage of the iteration and Ṫ be a Pn-name for a stationary:

1 Qn := P′
n × Sn projects to Pn, where

▶ P′
n is κ+n−1-directed closed and GCH-preserving (hence preserve supercomp. of κn−1);

▶ Sn is the product of the first n-many Lévy collapses in Gitik’s EBPFC;
2 To prove reflection in V Pn we need:

▶ An outer elementary embedding j : V Qn → N ⊆ V Qn∗Ṙn ;
▶ A stationary-preservation lemma between V Qn and V Qn∗Ṙn ;
▶ A further stationary-preservation lemma between V Pn and V Qn .
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▶ A further stationary-preservation lemma between V Pn and V Qn .



Dr
aftThank you very much for your attention!


