Σ -Prikry forcings and their iterations

Alejandro Poveda

Departament de Matemàtiques i Informàtica

Joint Set Theory seminar of the BIU and the HUJI 6th May - 2020 Partially supported by MECD Grant no FPU15/00026. Joint work with A. Rinot & D. Sinapova

- Sigma-Prikry forcing I: The axioms, Submitted to Canadian Journal of Mathematics (2019).
- Sigma-Prikry forcing II: Iteration Scheme, Submitted to Journal of Mathematical Logic (2019).

The subject matter of this talk is Prikry-type forcings

Main role: Generally devised to change cofinalities and blow up the power set of a singular cardinal

Due to foundational reasons this needs Very Large Cardinals (Jensen)

- Have found several connections/applications in central areas of Set Theory
 - The Singular Cardinals Problem (Prikry, Magidor, Gitik...)
 - Identity crises phenomena (Magidor, Apter...)
 - Inner Model Theory (Mitchell, Cummings & Schimerling...)

Motivating goal

Theorem

Assume that $\langle \kappa_n \mid n < \omega \rangle$ is an increasing sequence of supercompact cardinals. Then there is a cofinality-preserving extension where

- $\kappa = \sup_{n < \omega} \kappa_n$ is a strong limit cardinal;
- $\bigcirc \neg SCH_{\kappa};$
- Refl $(<\omega, \kappa^+)$ holds.
- Around the same time, it was also proved by Ben-Neria-Hayut-Unger and soon after by Gitik.
- Their proof avoids iterated forcing and extends to uncountable cofinality. The novelty in our approach is the iteration scheme for Σ-Prikry forcings.
- Announced by A. Sharon in 2005.

Prikry-type forcings

The first representative of this family is the so-called **Prikry forcing**:

- Let κ be a measurable cardinal.
- Let U be a non-principal, normal and κ-complete ultrafilter over it (measure).

Definition (Prikry 1970)

Prikry forcing $\mathbb{P}_{\mathcal{U}}$ is the poset whose conditions are pairs (s, A) where

- $s \in [\kappa]^{<\omega}$ strictly increasing;
- $A \in \mathcal{U} \text{ with } \max(s) < \min(A).$

We will write $(s, A) \leq (t, B)$ iff s end-extends t, $s \setminus t \subseteq B$ and $A \subseteq B$. We consider an additional ordering $\leq^* \subseteq \leq$ defined as $(s, A) \leq^* (t, B)$ iff $(s, A) \leq (t, B)$ and s = t. For each n < ω, let ℙ_n be the subposet of ℙ whose conditions (s, A) have |s| = n joint with the trivial condition 1.

Properties of $\mathbb P$

1 \mathbb{P} is κ -centered, hence cardinals $\geq \kappa^+$ are preserved;

2
$$\mathbb{P}$$
 forces $cof(\kappa) = \omega$.

IP does not add bounded subsets to κ. In particular, cardinals ≤κ are preserved.

(1) and (2) of above are easy to prove but (3) is not so immediate:

- for each $n < \omega$, (\mathbb{P}_n, \leq) is κ -closed;
- ${f 2}$ ${f P}$ satisfies the Prikry property.

Prikry property

For each $p \in \mathbb{P}$ and each sentence φ in the language of forcing, there is $q \leq^* p$ such that q decides φ .

In other words, the set $D_{\varphi} = \{ p \in \mathbb{P} \mid p \parallel \varphi \}$ is \leq^* -dense.

Lemma (Prikry)

Prikry forcing has the Prikry property.

Theorem (Prikry)

If there is a measurable cardinal then there is a cardinal-preserving generic extension where the measurable becomes a singular strong limit cardinal of countable cofinality.

Some Examples

- Prikry forcing (Prikry).
- Supercompact Prikry forcing (Magidor).
- Gitik-Sharon forcing.
- Magidor forcing.
- S Radin forcing (Radin & Woodin)
- O Diagonal Supercompact Magidor forcing (Sinapova)
- Extender Based Prikry forcing (EBPF) (Gitik & Magidor)
- Extender Based Radin forcing (Merimovich)

The aim of our project

Our project has two goals:

- Provide an abstract framework which allows a systematic study of Prikry-type forcings
- Oevise a viable iteration scheme for these forcings

What characterize Prikry-type posets?

• There is always involved a notion of length.

What characterize Prikry-type posets?

- There is always involved a notion of length.

What characterizes a Prikry-type forcing?

- There is always involved a notion of length.
- **②** For all length n, $\mathbb{P}_n := \{p \mid \ell(p) = n\}$ is "closed enough".
- There is a notion of *minimal extension*.

What characterizes a Prikry-type forcing?

- There is always involved a notion of length ℓ .
- **2** For all length n, $\mathbb{P}_n := \{p \mid \ell(p) = n\}$ is "closed enough".
- There is a notion of minimal extension
- Occision by pure extensions (e.g. the Prikry property).

What characterizes a Prikry-type forcing?

- There is always involved a notion of length ℓ .
- **2** For all length n, $\mathbb{P}_n := \{p \mid \ell(p) = n\}$ is "closed enough".
- There is a notion of minimal extension
- Oecision by pure extensions (e.g. the Prikry property).

We want to be able to iterate, so we will in addition require a quite prevalent feature

(*) \mathbb{P} has some good chain condition

Σ -Prikry forcings

Definition (Graded poset)

We say that (\mathbb{P}, ℓ) is a graded poset if $\mathbb{P} = (P, \leq)$ is a poset, $\ell : P \to \omega$ is a surjection, and, for all $p \in P$, the following are true:

For every
$$q \leq p$$
, $\ell(q) \geq \ell(p)$;

• There exists
$$q \leq p$$
 with $\ell(q) = \ell(p) + 1$.

Notation

For a graded poset as above we write

$$P_n := \{ p \in P \mid \ell(p) = n \}.$$

2
$$P_n^p := \{q \in P \mid q \le p \& \ell(q) = \ell(p) + n\}.$$

For ease of notation we sometimes write $q \leq^n p$ rather than $q \in P_n^p$.

The Σ -Prikry framework

- **9** $\mathbb{P} = (P, \leq)$ is a notion of forcing with a greatest element $\mathbb{1}$;
- ② Σ = ⟨κ_n | n < ω⟩ is a non-decreasing sequence of regular uncountable cardinals with κ := sup_{n<ω} κ_n;
- **③** μ is a cardinal such that $\mathbb{1} \Vdash_{\mathbb{P}} \check{\mu} = \kappa^+$;

$${ullet} \ \ell:P o\omega$$
 and $c:P o\mu$ are functions;

Definition (Σ -Prikry forcing)

We say that (\mathbb{P}, ℓ, c) is Σ -Prikry iff all of the following hold:

- **(** \mathbb{P}, ℓ) is a graded poset;
- Solution For all $n < \omega$, $\mathbb{P}_n := (P_n \cup \{\mathbb{1}\}, \leq)$ is κ_n -directed-closed;
- **③** For all $p,q \in P$, if c(p) = c(q), then $P_0^p \cap P_0^q$ is non-empty;
- For all p ∈ P, n, m < ω and q ≤^{n+m} p, the set {r ≤ⁿ p | q ≤^m r} contains a ≤-largest condition m(p,q). In the particular case that m = 0, we write w(p,q) instead of m(p,q);

Definition (Σ -Prikry forcing)

We say that (\mathbb{P}, ℓ, c) is Σ -Prikry iff all of the following hold:

- (\mathbb{P}, ℓ) is a graded poset;
- So For all $n < \omega$, $\mathbb{P}_n := (P_n \cup \{\mathbb{1}\}, \leq)$ is κ_n -directed-closed;
- Solution For all $p, q \in P$, if c(p) = c(q), then $P_0^p \cap P_0^q$ is non-empty;
- For all p ∈ P, n, m < ω and q ≤^{n+m} p, the set {r ≤ⁿ p | q ≤^m r} contains a ≤-largest condition m(p,q). In the particular case that m = 0, we write w(p,q) instead of m(p,q);
- So For all $p \in P$, the set $W(p) := \{w(p,q) \mid q \leq p\}$ has size $<\mu$;
- For all $p' \leq p$ in P, $q \mapsto w(p,q)$ forms an order-preserving map from W(p') to W(p);
- Suppose that $U \subseteq P$ is a 0-open set, i.e., $r \in U$ iff $P_0^r \subseteq U$. Then, for all $p \in P$ and $n < \omega$, there is $q \in P_0^p$, such that, either $P_n^q \cap U = \emptyset$ or $P_n^q \subseteq U$.

Some clarifications

How m(p,q) and w(p,q) look like?

For simplicity let us assume that \mathbb{P} is Prikry forcing. Say p = (s, A) and $q = (s^{\wedge} \langle \alpha, \beta \rangle, B)$. Let $m \leq \ell(q) - \ell(p)$.

- ▶ Intuitively, w(p,q) is the ≤-greatest interpolation between p and q with length $\ell(q)$. In this case, $w(p,q) = (s^{\wedge} \langle \alpha, \beta \rangle, A \setminus \beta + 1)$.
- ▶ In general, m(p,q) is the ≤-greatest interpolation between p and q with length $\ell(q) m$. In this case, $1(p,q) = (s^{\land}\langle \alpha \rangle, A \setminus \alpha + 1)$ and 2(p,q) = (s,A) = p.

Convention

For each $n < \omega$ and $p \in P$, we write $W_n(p) := \{w(p,q) \mid q \leq^n p\}$. Hence, $W(p) = \bigcup_{n < \omega} W_n(p)$.

Novelties of the Σ -Prikry framework

μ^+ -Linked₀-property

For all $p,q \in P$, if c(p) = c(q), then $P_0^p \cap P_0^q$ is non-empty.

Complete Prikry Property

Suppose that $U \subseteq P$ is a 0-open set, i.e., $r \in U$ iff $P_0^r \subseteq U$. Then, for all $p \in P$ and $n < \omega$, there is $q \in P_0^p$, such that, either $P_n^q \cap U = \emptyset$ or $P_n^q \subseteq U$.

- The first one is a strong form of µ⁺-2-Linkedness, hence a strengthening of the µ⁺-cc.
- The second one is inspired by the Complete Ramsey Property. Captures two features of Prikry-type forcings: the **Prikry Property** and the **Strong Prikry Property** (see next slide)
- Both are crucial to define viable iterations of Σ-Prikry forcings

CPP yiels the SPP and the PP

Proposition

Let \mathbb{P} be some Σ -Prikry forcing. Then the following are true:

- **1** \mathbb{P} has the Prikry property.
- ② **P** has the Strong Prikry property; namely, for each dense open set $D \subseteq P$ and each $p \in P$, there is $q ≤^0 p$ and $n < \omega$ such that $P_m^q \subseteq D$, for each $m \ge n$.

For the proof we use the key concept of 0-open coloring:

Definition

Let (\mathbb{P}, ℓ, c) be a Σ -Prikry triple. A 0-open coloring $d: P \to \theta$ is a map such that for each pair $p' \leq^0 p$ of conditions in P, $d(p) \in \{0, d(p')\}$. We say that $H \subseteq P$ is a set of indiscernibles for d if for each $p, q \in H$, d(p) = d(q), provided $\ell(p) = \ell(q)$.

CPP yiels the SPP and the PP

Lemma

Let (\mathbb{P}, ℓ, c) be a Σ -Prikry triple. For each $p \in P$, $n \geq 2$ and each 0-open coloring $d: P \to n$, there is $q \leq^0 p$ such that the set of conditions of P below q is a set of indiscernibles for d.

The CPP yields the PP

Let $p\in P$ and φ a sentence in the language of forcing. Define $d:P\rightarrow 3$ as

$$d(r) := \begin{cases} 1, & \text{if } r \Vdash_{\mathbb{P}} \varphi; \\ 2, & \text{if } r \Vdash_{\mathbb{P}} \neg \varphi; \\ 0, & \text{otherwise.} \end{cases}$$

Appeal to the above lemma to find $q \leq^0 p$ such that P^q is a set of indescirnibles for d. It is not hard to check that q already decides φ .

CPP yiels the SPP and the PP

Lemma

Let (\mathbb{P}, ℓ, c) be a Σ -Prikry triple. For each $p \in P$, $n \geq 2$ and each 0-open coloring $d: P \to n$, there is $q \leq^0 p$ such that the set of conditions of P below q is a set of indiscernibles for d.

The CPP yields the SPP

Let $p \in P$ and D be an open dense set. Define $d: P \to 2$ as d(r) := 1 iff $r \in D$. Appealing to the lemma we get $q \leq^0 p$ such that P^q is a set of indescirnibles for d. Since D is dense, there is $n < \omega$ and $r \leq^n q$ such that $r \in D$. By definition of d, d(r) = 1, hence $P_n^q \subseteq D$. Finally the opennes of D yields the desired result; that is, $P_m^q \subseteq D$, for each $m \geq n$.

Other properties of Σ -Prikry forcings

Proposition

Let $\mathbb{P} := (P, \leq)$ be some Σ -Prikry forcing and $p \in P$. Then, the following are true:

- **1** P does not add bounded subsets of κ ;
- So For each ν ≥ κ regular, and each p ∈ P, if p $\Vdash_{\mathbb{P}} cof(ν) < κ$ then there is p' ≤ p such that |W(p')| ≥ ν.
- Same 1 ⊨_P "κ is singular". Then, μ = κ⁺ iff |W(p)| ≤ κ, for each p ∈ P.
- So For each $n < \omega$, $W_n(p)$ is a maximal antichain below p.
- Any two compatible elements of W(p) are comparable. Thus, (W(p),≥) is a tree (the p-tree)
- $c \upharpoonright W(p)$ is injective.

Some examples: Prikry forcing

Definition (Prikry 1970)

Prikry forcing \mathbb{P} is the poset whose conditions are pairs (s, A) where

- $s \in [\kappa]^{<\omega}$ strictly increasing;
- **2** $A \in \mathcal{U}$ with $\max(s) < \min(A)$.
- $(s,A) \leq (t,B)$ iff s end-extends t, $s \setminus t \subseteq B$ and $A \subseteq B$.

Prikry forcing is Σ -Prikry

- **①** Σ is the constant ω -sequence with value κ and $\mu = \kappa^+$;
- (s,A) := |s|;
- **3** c(s, A) := s;

Some examples: Gitik-Sharon forcing

Let $\langle \kappa_n \mid n < \omega \rangle$ be an increasing sequence of regular cardinals. Suppose that \mathcal{U} is a supercompact measure on $\mathcal{P}_{\kappa_0}(\mu^+)$, and let \mathcal{U}_n be its projection onto $\mathcal{P}_{\kappa_0}(\kappa_n)$.

Definition (Gitik & Sharon 2008)

Conditions in \mathbb{P} are sequences $p = \langle x_0^p, \dots, x_{n-1}^p A_n^p, A_{n+1}^p, \dots \rangle$ such that the following holds:

 $x_i \in \mathcal{P}_{\kappa_0}(\kappa_i).$

$$x_i \prec x_{i+1} \text{ (i.e. } \operatorname{otp}(x_i) < \operatorname{otp}(x_{i+1} \cap \kappa_0) \text{)}.$$

The order is the usual: we extend the stems by picking elements from the measure one sets, and then shrink the measure one sets.

Some examples: Gitik-Sharon forcing

Definition (Gitik & Sharon 2008)

Conditions in \mathbb{P} are sequences $p = \langle x_0^p, \dots, x_{n-1}^p A_n^p, A_{n+1}^p, \dots \rangle$ such that the following holds:

$$x_i \in \mathcal{P}_{\kappa_0}(\kappa_i).$$

$$a x_i \prec x_{i+1} \text{ (i.e. } \operatorname{otp}(x_i) < \operatorname{otp}(x_{i+1} \cap \kappa_0) \text{)}.$$

 $A_k \in \mathcal{U}_k \text{ and } \{x \in A_k \mid x_{n-1}^p \prec x\} \subseteq A_k.$

The order is the usual: we extend the stems by picking elements from the measure one sets, and then shrink the measure one sets.

GS-poset is Σ -Prikry

Σ is the constant ω-sequence with value κ₀ and μ = (sup_{n<ω} κ_n)⁺.
ℓ(p) := |⟨x₀^p,...,x_{n-1}^p⟩|.
c(p) := ⟨x₀^p,...,x_{n-1}⟩.

Some examples: The Extender-Based Prikry forcing

The set-up

• $\langle \kappa_n \mid n < \omega \rangle$ be a strictly increasing sequence of cardinals;

•
$$\kappa := \sup_{n < \omega} \kappa_n$$
, $\mu := \kappa^+$ and $\lambda := 2^{\mu}$;

$$\blacktriangleright \ \mu^{<\mu} = \mu \text{ and } \lambda^{<\lambda} = \lambda;$$

• for each $n < \omega$, κ_n carries a $(\kappa_n, \lambda + 1)$ -extender E_n .

In particular, for each $n < \omega$, we are assuming that there is an elementary embedding $j_n : V \to M_n$ with $\operatorname{crit}(j) = \kappa_n$ such that M_n is a transitive class, $\kappa_n M_n \subseteq M_n$, $V_{\lambda+1} \subseteq M_n$ and $j_n(\kappa_n) > \lambda$.

Definition

For each $n < \omega$, and each $\alpha < \lambda$, define $E_{n,\alpha} := \{X \subseteq \kappa_n \mid \alpha \in j_n(X)\}$. For each $\alpha, \beta < \lambda$ write $\alpha \leq_{E_n} \beta$ iff $\alpha \leq \beta$ and there is $\pi_{\beta,\alpha} : \kappa_n \to \kappa_n$ such that $j_n(\pi_{\beta,\alpha})(\beta) = \alpha$.

Definition

For $n < \omega$, \mathbb{Q}_{n0} is defined as follows:

(0)_n Q_{n0} := (Q_{n0}, ≤_{n0}), where elements of Q_{n0} are triples p = (a^p, A^p, f^p) meeting the following requirements: **a**^p ∈ [a]^{<κ_n}, and a^p contains a ≤_{E_n}-maximal element, which hereafter is denoted by mc(a^p); **a**^m(f^p) ∩ a^p = Ø;

•
$$A^p \in E_{n,\mathrm{mc}(a^p)};$$

 $\textbf{ if } \beta < \alpha \text{ is a pair in } a \text{, for all } \nu \in A \text{, } \pi_{\mathrm{mc}(a^p)\beta}(\nu) < \pi_{\mathrm{mc}(a^p)\alpha}(\nu) \text{;}$

• if $\alpha, \beta, \gamma \in a$ with $\gamma \leq_{E_n} \beta \leq_{E_n} \alpha$, then, for all $\nu \in \pi_{\mathrm{mc}(a^p)\alpha}$ "A, $\pi_{\alpha\gamma}(\nu) = \pi_{\beta\gamma}(\pi_{\alpha\beta}(\nu))$.

The ordering \leq_{n0} is defined as follows: $(a^p, A^p, f^p) \leq_{n0} (b^q, B^q, g^q)$ iff the following are satisfied:

(i)
$$f^p \supseteq g^q$$
,
(ii) $a^p \supseteq b^q$,
(iii) $\pi_{\mathrm{mc}(a^p)\mathrm{mc}(b^q)}$ " $A^p \subseteq B^q$.

Definition

For $n < \omega$, \mathbb{Q}_{n1} is defined as follows:

$$(1)_n \quad \mathbb{Q}_{n1} := (Q_{n1}, \leq_{n1})$$
, where $Q_{n1} := \bigcup \{ x \kappa_n \mid x \in [\lambda]^{\leq \kappa} \}$ and $\leq_{n1} := \supseteq$.

Essentially \mathbb{Q}_{n1} is Cohen forcing $\operatorname{Add}(\kappa^+, \lambda)$.

Definition

For $n < \omega$, \mathbb{Q}_n is defined as

$$(2)_n \ \mathbb{Q}_n := (Q_{n0} \cup Q_{n1}, \leq_n).$$

The ordering \leq_n is defined as follows: for each $p, q \in Q_n$, $p \leq_n q$ iff

- either $p,q \in Q_{ni}$ for some $i \in 2$ and $p \leq_{ni} q$, or
- 2 $p \in Q_{n1}$, $q \in Q_{n0}$ and, for some $\nu \in A$, $p \leq_{n1} q^{\frown} \langle \nu \rangle$, where

$$q^{\sim} \langle \nu \rangle := f^q \cup \{ (\beta, \pi_{\mathrm{mc}(a^q),\beta}(\nu)) \mid \beta \in a^q \}.$$

Some examples: The Extender-Based Prikry forcing

Definition

The Extender Based Prikry Forcing is the poset $\mathbb{P} := (P, \leq)$ defined by the following clauses:

- Conditions in P are sequences $p = \langle p_n \mid n < \omega \rangle \in \prod_{n < \omega} Q_n$.
- For all $p, q \in P$, $p \leq q$ iff $p_n \leq_n q_n$ for every $n < \omega$.
- For all $p \in P$:
 - There is $n < \omega$ such that $p_n \in Q_{n0}$;
 - For every $n < \omega$, if $p_n \in Q_{n0}$, then $p_{n+1} \in Q_{n0}$ and $a^{p_n} \subseteq a^{p_{n+1}}$.

The Extender-Based Prikry forcing is Σ -Prikry

$$\bullet \ \Sigma := \langle \kappa_n \mid n < \omega \rangle \text{ and } \mu := (\sup_n \kappa_n)^+.$$

$$2 \ \ell(p) := \min\{n < \omega \mid p_n \in Q_{n0}\}.$$

 \bullet c is more elaborated than in the previous cases.

Since we are assuming $\mu^{\kappa} = \mu$ and $2^{\mu} = \lambda$, let us fix a sequence $\langle e^i \mid i < \mu \rangle$ of functions from λ to μ with the property that, for every function $e : x \to \mu$ with $x \in [\lambda]^{\leq \kappa}$, there exists $i < \mu$ with $e \subseteq e^i$.

Definition

For every
$$f \in \bigcup_{n < \omega} Q_{n1}$$
, let $i(f) := \min\{i < \mu \mid f \subseteq e^i\}$.
For every $p = (a, A, f) \in \bigcup_{n < \omega} Q_{n0}$, let $i(p)$ be the least $i < \mu$ such that:
• for all $\alpha \in a$, $e^i(\alpha) = 0$;
• for all $\alpha \in \operatorname{dom}(f)$, $e^i(\alpha) = f(\alpha) + 1$.
Finally, for every condition $p = \langle p_n \mid n < \omega \rangle$ in P , let
 $c(p) := \ell(p)^{\wedge} \langle i(p_n) \mid n < \omega \rangle$.

The function c for the EBPF

The Extender Based Prikry forcing has the μ^+ -Linked₀-property

Let p, q be two conditions in the EBPF with c(p) = c(q). The goal is to show that p and q are compatible as witnessed by a 0-extension of both conditions. More precisely, we want to prove $P_0^p \cap P_0^q \neq \emptyset$.

Set *i* be this common value of the *c* function. By definition, *p* and *q* have the same length, say ℓ . Now let $n \ge \ell$. To prove $P_0^p \cap P_0^q \ne \emptyset$ it suffices to check that $a_n^p \cap \operatorname{dom}(f_n^q) = a_n^q \cap \operatorname{dom}(f_n^p) = \emptyset$. Let us just check that $a_n^p \cap \operatorname{dom}(f_n^q) = \emptyset$ as the other equality can be proved similarly. Indeed, since c(p) = i it follows that $e^i \upharpoonright a_n^p = 0$. On the other hand, as $c(q) = i, e^i \upharpoonright \operatorname{dom}(f_n^q) \ne 0$. Both equalities combined finally yield $a_n^p \cap \operatorname{dom}(f_n^q) = \emptyset$, as desired.

More examples

- Supercompact Prikry forcing (Magidor);
- AIM forcing (Cummings et al.);

Other candidates to be Σ -Prikry

- Tree Prikry forcing;
- Strongly Compact Gitik-Sharon forcing;
- Extender Based Prikry forcing with a single extender;

An interlude on iterations of forcing

(I) The \ll_{0} -support iteration of ccc forcing is also ccc \Rightarrow Consistency of $FA_{2^{\aleph_{0}}}(ccc) = MA$ (Solovay-Tennembaum)

Observation

The above result does not extend to larger supports. Namely, even under the CH, there are countable support iterations of \aleph_2 -cc + \aleph_1 -closed forcing which are not \aleph_2 -cc (Mitchell).

- (1) The \ll_0 -support iteration of ccc forcing is also ccc \Rightarrow **Consistency** of $FA_{2^{\aleph_0}}(ccc) = MA$ (Solovay-Tennembaum).
- (II) Let Γ be the family of well-met, \aleph_1 -linked and \aleph_1 -closed forcings. Under the CH, the $\langle \aleph_1$ -support iteration of forcings in Γ is \aleph_2 -cc \Rightarrow **Consistency of** $FA_{2^{\aleph_1}}(\Gamma) := BA$ (**Baumgartner**)

- (I) The \ll_{0} -support iteration of ccc forcing is also ccc \Rightarrow Consistency of $FA_{2^{\aleph_{0}}}(ccc) = MA$ (Solovay-Tennembaum).
- (II) Let Γ be the family of well-met, \aleph_1 -linked and \aleph_1 -closed forcings. Under the CH, the $\langle \aleph_1$ -support iteration of forcings in Γ is \aleph_2 -cc \Rightarrow **Consistency of** FA_{2 \aleph_1}(Γ) := BA **(Baumgartner)**
- (III) Let Γ be the family of well-met, \aleph_2 -stationary-cc and \aleph_1 -closed forcings with exact upper bounds. Under the CH, the $<\aleph_1$ -support iteration of members of Γ is \aleph_2 -stationary-cc \Rightarrow **Consistency of** $FA_{2^{\aleph_1}}(\Gamma)$ (Shelah)

- (I) The \ll_{0} -support iteration of ccc forcing is also ccc \Rightarrow **Consistency** of $FA_{2^{\aleph_{0}}}(ccc) = MA$ (Solovay-Tennembaum).
- (II) Let Γ be the family of well-met, \aleph_1 -linked and \aleph_1 -closed forcings. Under the CH, the $\langle \aleph_1$ -support iteration of forcings in Γ is \aleph_2 -cc \Rightarrow **Consistency of** $FA_{2^{\aleph_1}}(\Gamma) := BA$ **(Baumgartner)**
- (III) Let Γ be the family of well-met, \aleph_2 -stationary-cc and \aleph_1 -closed forcings with exact upper bounds. Under the CH, the $<\aleph_1$ -support iteration of members of Γ is \aleph_2 -stationary-cc \Rightarrow **Consistency of** $FA_{2^{\aleph_1}}(\Gamma)$ (Shelah)
- (IV) Let Γ be the family of well-met, κ⁺-stationary-cc, κ-closed and countably parallel closed forcing. Under κ^{<κ} = κ, the iteration of <κ-supported iteration of members of Γ is κ⁺-stationary-cc
 Consistency of FA_{2^κ}(Γ) (Cummings et. al)

Goal

Solve problems about singular cardinals and their successors.

Strategy

Find an analogous iteration theorem for κ being a successor of a singular cardinal.

To be continued in the next lecture