Splitting a stationary set: Is there another way?

Arctic Set Theory Workshop 4, Kilpisjärvi, 22-Jan-2019

Assaf Rinot Bar-Ilan University, Israel This talk is based on a joint work with Maxwell Levine.

Conventions

- \blacktriangleright κ denotes a regular uncountable cardinal;
- \blacktriangleright λ denotes an infinite cardinal;

•
$$\operatorname{Reg}(\kappa) := \{\lambda < \kappa \mid \aleph_0 \leq \operatorname{cf}(\lambda) = \lambda\};$$

$$\blacktriangleright \ E_{\lambda}^{\kappa} := \{ \alpha < \kappa \mid \mathsf{cf}(\alpha) = \lambda \};$$

►
$$E_{\neq\lambda}^{\kappa}$$
, $E_{\geq\lambda}^{\kappa}$ and $E_{>\lambda}^{\kappa}$ are defined analogously;

►
$$\operatorname{acc}^+(A) := \{ \alpha < \sup(A) \mid \sup(A \cap \alpha) = \alpha > 0 \}.$$

Partitioning a stationary set

Theorem (Solovay, 1971) For every stationary $S \subseteq \kappa$, there exists a partition $\langle S_i | i < \kappa \rangle$ of *S* into stationary sets.

Partitioning a stationary set

Theorem (Solovay, 1971)

For every stationary $S \subseteq \kappa$, there exists a partition $\langle S_i \mid i < \kappa \rangle$ of S into stationary sets.

Solovay's theorem has countless applications in Set Theory. For instance, it plays a role in the proof of strong negative partition relations of the form $\kappa \not\rightarrow [\kappa]_{\kappa}^2$, and variations of it are missing for the sought proof that successors of a singular cardinals cannot be Jónsson.

Variation I (Brodsky-Rinot, 2019)

For every $\theta \leq \kappa$ and a sequence $\langle S_i | i < \theta \rangle$ of stationary subsets of κ , there exists a cofinal $I \subseteq \theta$ and pairwise disjoint stationary sets $\langle T_i | i \in I \rangle$ such that $T_i \subseteq S_i$ for all $i \in I$.

Variation I (Brodsky-Rinot, 2019)

For every $\theta \leq \kappa$ and a sequence $\langle S_i \mid i < \theta \rangle$ of stationary subsets of κ , there exists a cofinal $I \subseteq \theta$ and pairwise disjoint stationary sets $\langle T_i \mid i \in I \rangle$ such that $T_i \subseteq S_i$ for all $i \in I$.

Variation II (Magidor?, 1970's)

If \Box_{λ} holds, then for every stationary $S \subseteq \lambda^+$, there is a partition $\langle S_i \mid i < \lambda^+ \rangle$ of S into stationary sets such that, for all $i < \lambda^+$, S_i does not reflect.

Definition For $S \subseteq \kappa$, let $Tr(S) := \{\beta \in E_{>\omega}^{\kappa} \mid S \cap \beta \text{ is stationary in } \beta\}.$

Variation II (Magidor?, 1970's)

If \Box_{λ} holds, then for every stationary $S \subseteq \lambda^+$, there is a partition $\langle S_i \mid i < \lambda^+ \rangle$ of S into stationary sets such that, for all $i < \lambda^+$, S_i does not reflect (i.e., $\text{Tr}(S_i) = \emptyset$).

Variation II (Magidor?, 1970's)

If \Box_{λ} holds, then for every stationary $S \subseteq \lambda^+$, there is a partition $\langle S_i \mid i < \lambda^+ \rangle$ of S into stationary sets such that, for all $i < \lambda^+$, S_i does not reflect (i.e., $\text{Tr}(S_i) = \emptyset$).

 \hookrightarrow Nonreflecting stationary sets are very useful. To exemplify:

Variation II (Magidor?, 1970's)

If \Box_{λ} holds, then for every stationary $S \subseteq \lambda^{+}$, there is a partition $\langle S_{i} | i < \lambda^{+} \rangle$ of S into stationary sets such that, for all $i < \lambda^{+}$, S_{i} does not reflect (i.e., $\operatorname{Tr}(S_{i}) = \emptyset$).

 \hookrightarrow Nonreflecting stationary sets are very useful. To exemplify:

Theorem (Shelah, 1991)

If $\kappa > \aleph_2$, and $E_{\geq \aleph_2}^{\kappa}$ admits a nonreflecting stationary set, then there exists a κ -cc poset whose square is not κ -cc.

Variation III (Brodsky-Rinot, 2019)

If $\Box(\kappa)$ holds, then for every fat $F \subseteq \kappa$, there is a partition $\langle F_i \mid i < \kappa \rangle$ of F into fat sets such that, for all $i < j < \kappa$, $\operatorname{Tr}(F_i) \cap \operatorname{Tr}(F_j) = \emptyset$.

Variation II (Magidor?, 1970's)

If \Box_{λ} holds, then for every stationary $S \subseteq \lambda^+$, there is a partition $\langle S_i \mid i < \lambda^+ \rangle$ of S into stationary sets such that, for all $i < \lambda^+$, S_i does not reflect (i.e., $\text{Tr}(S_i) = \emptyset$).

 \hookrightarrow Nonreflecting stationary sets are very useful. To exemplify:

Theorem (Shelah, 1991)

If $\kappa > \aleph_2$, and $E_{\geq \aleph_2}^{\kappa}$ admits a nonreflecting stationary set, then there exists a κ -cc poset whose square is not κ -cc.

Variation III (Brodsky-Rinot, 2019)

If $\Box(\kappa)$ holds, then for every fat $F \subseteq \kappa$, there is a partition $\langle F_i \mid i < \kappa \rangle$ of F into fat sets such that, for all $i < j < \kappa$, $\operatorname{Tr}(F_i) \cap \operatorname{Tr}(F_j) = \emptyset$.

 \hookrightarrow Partitions as above are sometime enough:

Theorem (Rinot, 2014)

If $\kappa \geq \aleph_2$, and $\Box(\kappa)$ holds,

then there exists a κ -cc poset whose square is not κ -cc.

 \hookrightarrow Nonreflecting stationary sets are very useful. To exemplify:

Theorem (Shelah, 1991)

If $\kappa > \aleph_2$, and $E_{\geq \aleph_2}^{\kappa}$ admits a nonreflecting stationary set, then there exists a κ -cc poset whose square is not κ -cc.

As said, partitioning κ into stationary sets that pairwise do not simultaneously reflect is very useful, but is also somewhat wired into the standard procedure of the partition.

As said, partitioning κ into stationary sets that pairwise do not simultaneously reflect is very useful, but is also somewhat wired into the standard procedure of the partition.

Questions

ls it possible to partition κ into two reflecting stationary sets?

As said, partitioning κ into stationary sets that pairwise do not simultaneously reflect is very useful, but is also somewhat wired into the standard procedure of the partition.

Questions

- ls it possible to partition κ into two reflecting stationary sets?
- ls it possible to partition κ into κ reflecting stationary sets?

As said, partitioning κ into stationary sets that pairwise do not simultaneously reflect is very useful, but is also somewhat wired into the standard procedure of the partition.

Questions

- ls it possible to partition κ into two reflecting stationary sets?
- ls it possible to partition κ into κ reflecting stationary sets?
- ▶ Is it possible to partition κ into $\langle S_i | i < \kappa \rangle$ such that, for all $i < j < \kappa$, $Tr(S_i) \cap Tr(S_j)$ be stationary?

As said, partitioning κ into stationary sets that pairwise do not simultaneously reflect is very useful, but is also somewhat wired into the standard procedure of the partition.

Questions

- ls it possible to partition κ into two reflecting stationary sets?
- ls it possible to partition κ into κ reflecting stationary sets?
- ▶ Is it possible to partition κ into $\langle S_i | i < \kappa \rangle$ such that, for all $i < j < \kappa$, $Tr(S_i) \cap Tr(S_j)$ be stationary?
- ▶ Is it possible to partition κ into $\langle S_i | i < \kappa \rangle$ such that $\bigcap_{i < \kappa} \operatorname{Tr}(S_i)$ be stationary?

As said, partitioning κ into stationary sets that pairwise do not simultaneously reflect is very useful, but is also somewhat wired into the standard procedure of the partition.

Questions

- Is it possible to partition κ into two reflecting stationary sets?
- ls it possible to partition κ into κ reflecting stationary sets?
- Is it possible to partition κ into (S_i | i < κ) such that, for all i < j < κ, Tr(S_i) ∩ Tr(S_j) be stationary?
- Is it possible to partition κ into (S_i | i < κ) such that ∩_{i<κ} Tr(S_i) be stationary?

Definition

 $\Pi(S, \theta)$ asserts the existence of a partition $\langle S_i \mid i < \theta \rangle$ of S such that $\bigcap_{i < \theta} \operatorname{Tr}(S_i)$ is stationary.

As said, partitioning κ into stationary sets that pairwise do not simultaneously reflect is very useful, but is also somewhat wired into the standard procedure of the partition.

Questions

- ls it possible to partition κ into two reflecting stationary sets?
- ls it possible to partition κ into κ reflecting stationary sets?
- Is it possible to partition κ into (S_i | i < κ) such that, for all i < j < κ, Tr(S_i) ∩ Tr(S_j) be stationary?
- Is it possible to partition κ into (S_i | i < κ) such that ∩_{i<κ} Tr(S_i) be stationary?

Definition

 $\Pi(S, \theta, T)$ asserts the existence of a partition $\langle S_i \mid i < \theta \rangle$ of S such that $\bigcap_{i < \theta} \operatorname{Tr}(S_i) \cap T$ is stationary.

Singular cardinals combinatorics

Definition

Suppose that λ is a singular cardinal, and $\vec{\lambda} = \langle \lambda_i \mid i < cf(\lambda) \rangle$ is a strictly increasing sequence of regular cardinals, converging to λ . For any two functions $f, g \in \prod \vec{\lambda}$ and $i < cf(\lambda)$, we write $f <^i g$ to express that f(j) < g(j) whenever $i \leq j < cf(\lambda)$.

Definition

Suppose that λ is a singular cardinal, and $\vec{\lambda} = \langle \lambda_i \mid i < cf(\lambda) \rangle$ is a strictly increasing sequence of regular cardinals, converging to λ . For any two functions $f, g \in \prod \vec{\lambda}$ and $i < cf(\lambda)$, we write $f <^i g$ to express that f(j) < g(j) whenever $i \le j < cf(\lambda)$. We write $f <^* g$ to express that $f <^i g$ for some $i < cf(\lambda)$.

Definition

Suppose that λ is a singular cardinal, and $\vec{\lambda} = \langle \lambda_i \mid i < cf(\lambda) \rangle$ is a strictly increasing sequence of regular cardinals, converging to λ . For any two functions $f, g \in \prod \vec{\lambda}$ and $i < cf(\lambda)$, we write $f <^i g$ to express that f(j) < g(j) whenever $i \le j < cf(\lambda)$. We write $f <^* g$ to express that $f <^i g$ for some $i < cf(\lambda)$.

Definition

Suppose that λ is a singular cardinal; $\vec{f} = \langle f_{\beta} \mid \beta < \lambda^+ \rangle$ is said to be a scale for λ iff there exists a sequence $\vec{\lambda}$ as above, such that:

- for every $\beta < \lambda^+$, $f_{\beta} \in \prod \vec{\lambda}$;
- for every $\beta < \alpha < \lambda^+$, $f_{\beta} <^* f_{\alpha}$;
- for every $g \in \prod \vec{\lambda}$, there exists $\beta < \lambda^+$ such that $g <^* f_{\beta}$.

Theorem (Shelah, 1990's)

Every singular cardinal λ admits a scale.

Definition

Suppose that λ is a singular cardinal; $\vec{f} = \langle f_{\beta} \mid \beta < \lambda^+ \rangle$ is said to be a scale for λ iff there exists a sequence $\vec{\lambda}$ as above, such that:

• for every
$$\beta < \lambda^+$$
, $f_{\beta} \in \prod \vec{\lambda}$;

• for every
$$\beta < \alpha < \lambda^+$$
, $f_{\beta} <^* f_{\alpha}$;

• for every $g \in \prod \vec{\lambda}$, there exists $\beta < \lambda^+$ such that $g <^* f_{\beta}$.

Theorem (Shelah, 1990's)

Every singular cardinal λ admits a scale.

Suppose \vec{f} is a scale in $\prod \vec{\lambda}$. An ordinal $\alpha \in E_{>cf(\lambda)}^{\lambda^+}$ is said to be good if there exist $i < cf(\lambda)$ and a cofinal $A \subseteq \alpha$ such that, for all $\delta < \gamma$ from A, $f_{\delta} <^i f_{\gamma}$.

Definition

Suppose that λ is a singular cardinal; $\vec{f} = \langle f_{\beta} \mid \beta < \lambda^+ \rangle$ is said to be a scale for λ iff there exists a sequence $\vec{\lambda}$ as above, such that:

- for every $\beta < \lambda^+$, $f_{\beta} \in \prod \vec{\lambda}$;
- for every $\beta < \alpha < \lambda^+$, $f_{\beta} <^* f_{\alpha}$;
- for every $g \in \prod \vec{\lambda}$, there exists $\beta < \lambda^+$ such that $g <^* f_{\beta}$.

Theorem (Shelah, 1990's)

Every singular cardinal λ admits a scale.

Suppose \vec{f} is a scale in $\prod \vec{\lambda}$. An ordinal $\alpha \in E_{>cf(\lambda)}^{\lambda^+}$ is said to be <u>good</u> if there exist $i < cf(\lambda)$ and a cofinal $A \subseteq \alpha$ such that, for all $\delta < \gamma$ from A, $f_{\delta} <^i f_{\gamma}$. We let $G(\vec{f})$ denote the set of good points with respect to \vec{f} .

Definition

Suppose that λ is a singular cardinal; $\vec{f} = \langle f_{\beta} \mid \beta < \lambda^+ \rangle$ is said to be a scale for λ iff there exists a sequence $\vec{\lambda}$ as above, such that:

• for every
$$\beta < \lambda^+$$
, $f_{\beta} \in \prod \vec{\lambda}$;

• for every
$$\beta < \alpha < \lambda^+$$
, $f_{\beta} <^* f_{\alpha}$;

• for every $g \in \prod \vec{\lambda}$, there exists $\beta < \lambda^+$ such that $g <^* f_{\beta}$.

Theorem (Shelah, 1990's)

Every singular cardinal λ admits a scale.

Suppose \vec{f} is a scale in $\prod \vec{\lambda}$. An ordinal $\alpha \in E_{>cf(\lambda)}^{\lambda^+}$ is said to be <u>good</u> if there exist $i < cf(\lambda)$ and a cofinal $A \subseteq \alpha$ such that, for all $\delta < \gamma$ from A, $f_{\delta} <^i f_{\gamma}$. We let $G(\vec{f})$ denote the set of good points with respect to \vec{f} . The set of good points is stationary (Shelah, 1990's) For every regular θ with $cf(\lambda) < \theta < \lambda$, $G(\vec{f}) \cap E_{\theta}^{\lambda^+}$ is stationary.

Theorem (Shelah, 1990's)

Every singular cardinal λ admits a scale.

Suppose \vec{f} is a scale in $\prod \vec{\lambda}$. An ordinal $\alpha \in E_{> cf(\lambda)}^{\lambda^+}$ is said to be good if there exist $i < cf(\lambda)$ and a cofinal $A \subseteq \alpha$ such that, for all $\delta < \gamma$ from A, $f_{\delta} <^i f_{\gamma}$. We let $G(\vec{f})$ denote the set of good points with respect to \vec{f} . The set of good points is stationary (Shelah, 1990's) For every regular θ with $cf(\lambda) < \theta < \lambda$, $G(\vec{f}) \cap E_{\theta}^{\lambda^+}$ is stationary.

The set of good points is robust If \vec{f}, \vec{g} are scales in $\prod \vec{\lambda}$, then $G(\vec{f}) \bigtriangleup G(\vec{g})$ is nonstationary.

Theorem (Shelah, 1990's)

Every singular cardinal λ admits a scale.

Suppose \vec{f} is a scale in $\prod \vec{\lambda}$. An ordinal $\alpha \in E_{>cf(\lambda)}^{\lambda^+}$ is said to be very good if there exist $i < cf(\lambda)$ and a cofinal club $A \subseteq \alpha$ such that, for all $\delta < \gamma$ from A, $f_{\delta} <^i f_{\gamma}$.

Theorem (Shelah, 1990's)

Every singular cardinal λ admits a scale.

Suppose \vec{f} is a scale in $\prod \vec{\lambda}$. An ordinal $\alpha \in E_{>cf(\lambda)}^{\lambda^+}$ is said to be very good if there exist $i < cf(\lambda)$ and a cofinal club $A \subseteq \alpha$ such that, for all $\delta < \gamma$ from A, $f_{\delta} <^i f_{\gamma}$. We let $V(\vec{f})$ denote the set of very good points with respect to \vec{f} .

Theorem (Shelah, 1990's)

Every singular cardinal λ admits a scale.

Suppose \vec{f} is a scale in $\prod \vec{\lambda}$. An ordinal $\alpha \in E_{>cf(\lambda)}^{\lambda^+}$ is said to be very good if there exist $i < cf(\lambda)$ and a cofinal club $A \subseteq \alpha$ such that, for all $\delta < \gamma$ from A, $f_{\delta} <^i f_{\gamma}$. We let $V(\vec{f})$ denote the set of very good points with respect to \vec{f} . Recall If \vec{f}, \vec{g} are scales in $\prod \vec{\lambda}$, then $G(\vec{f}) \bigtriangleup G(\vec{g})$ is nonstationary.

Theorem (Shelah, 1990's)

Every singular cardinal λ admits a scale.

Suppose \vec{f} is a scale in $\prod \vec{\lambda}$. An ordinal $\alpha \in E_{>cf(\lambda)}^{\lambda^+}$ is said to be very good if there exist $i < cf(\lambda)$ and a cofinal club $A \subseteq \alpha$ such that, for all $\delta < \gamma$ from A, $f_{\delta} <^i f_{\gamma}$. We let $V(\vec{f})$ denote the set of very good points with respect to \vec{f} . Recall If \vec{f}, \vec{g} are scales in $\prod \vec{\lambda}$, then $G(\vec{f}) \bigtriangleup G(\vec{g})$ is nonstationary.

Theorem (Cummings-Foreman, 2010) If V = L, then there are scales \vec{f}, \vec{g} in $\prod_{n < \omega} \aleph_n$ for which $V(\vec{f}) = E_{>\omega}^{\aleph_{\omega+1}}$ and $V(\vec{g}) = \emptyset$.

Very good points are not robust

The following is implicit in the proof of the above-mentioned theorem of Cummings-Foreman concerning V = L:

Proposition

Suppose λ is singular, $T \subseteq \lambda^+$ is stationary and $\Pi(\lambda^+, cf(\lambda), T)$. Suppose \vec{f} is a scale for λ , living in some product $\prod_{i < cf(\lambda)} \lambda_i$. Then $T \setminus V(\vec{g})$ is stationary for some scale \vec{g} in $\prod_{i < cf(\lambda)} \lambda_i$.

Proof.

Fix a partition $\langle S_i \mid i < cf(\lambda) \rangle$ of λ^+ , with $T' := T \cap \bigcap_{i < cf(\lambda)} Tr(S_i)$ stationary. Define $\langle g_\beta \mid \beta < \lambda^+ \rangle$ by letting $g_\beta(i) := 0$ for $\beta \in S_i$, and $g_\beta(i) := f_\beta(i)$, otherwise. Let $\alpha \in T'$ be arbitrary. To see that $\alpha \notin V(\vec{g})$, fix an arbitrary club $C \subseteq \alpha$ and an index $i < cf(\lambda)$. Let $\delta := \min(C \cap S_i)$ and $\gamma := \min(C \cap S_i \setminus (\delta + 1))$. Then $\delta < \gamma$ is a pair of elements of C, while $g_\delta(i) = 0 = g_\gamma(i)$. \Box

Very good scales

Definition

A scale \vec{f} for a singular cardinal λ is said to be very good iff club many $\alpha \in E^{\lambda^+}_{> cf(\lambda)}$ are very good for \vec{f} .

Very good scales

Definition

A scale \vec{f} for a singular cardinal λ is said to be very good iff club many $\alpha \in E^{\lambda^+}_{> cf(\lambda)}$ are very good for \vec{f} .

Conclusion

Suppose λ is a singular cardinal and $\Pi(\lambda^+, cf(\lambda), E_{>cf(\lambda)}^{\lambda^+})$ holds. Then any product $\prod_{i < cf(\lambda)} \lambda_i$ admitting a scale for λ , admits yet another scale which is not very good.

Very good scales

Definition

A scale \vec{f} for a singular cardinal λ is said to be very good iff club many $\alpha \in E^{\lambda^+}_{> cf(\lambda)}$ are very good for \vec{f} .

Conclusion

Suppose λ is a singular cardinal and $\Pi(\lambda^+, cf(\lambda), E_{>cf(\lambda)}^{\lambda^+})$ holds. Then any product $\prod_{i < cf(\lambda)} \lambda_i$ admitting a scale for λ , admits yet another scale which is not very good.

Note

There are numerous ways to consistently get instances of $\Pi(S, \theta, T)$. For instance, in a model of Magidor (1982), $\Pi(S, \aleph_1, T)$ holds for all stationary $S \subseteq E_{\aleph_0}^{\aleph_2}$ and $T \subseteq E_{\aleph_1}^{\aleph_2}$. The main point here is to prove instances of $\Pi(S, \theta, T)$ in ZFC.

ZFC results

Theorem Suppose that $\mu < \theta$ are infinite regular cardinals $< \lambda$.

1. If λ is inaccessible, then $\Pi(\lambda, \theta, \lambda)$ and $\Pi(\lambda^+, \lambda, \lambda^+)$ hold;

This is trivial Simply take $\langle E_{\mu}^{\lambda} \mid \mu \in \operatorname{Reg}(\aleph_{\theta+1}) \rangle$ and $\langle E_{\mu}^{\lambda^+} \mid \mu \in \operatorname{Reg}(\lambda) \rangle$.

Theorem

Suppose that $\mu < \theta$ are infinite regular cardinals $< \lambda$.

- 1. If λ is inaccessible, then $\Pi(\lambda, \theta, \lambda)$ and $\Pi(\lambda^+, \lambda, \lambda^+)$ hold;
- 2. If λ is regular, then $\Pi(E_{\mu}^{\lambda^{+}}, \theta, E_{\theta}^{\lambda^{+}})$ holds;

This is optimal If $\Pi(S, \theta, T)$ holds, then $\{\alpha \in T \mid cf(\alpha) \ge \theta\}$ must be stationary.

Theorem

Suppose that $\mu < \theta$ are infinite regular cardinals $< \lambda$.

- 1. If λ is inaccessible, then $\Pi(\lambda, \theta, \lambda)$ and $\Pi(\lambda^+, \lambda, \lambda^+)$ hold;
- 2. If λ is regular, then $\Pi(E_{\mu}^{\lambda^{+}}, \theta, E_{\theta}^{\lambda^{+}})$ holds;
- 3. If $2^{\theta} \leq \lambda$ and $\theta \neq cf(\lambda)$, then $\Pi(E_{\mu}^{\lambda^{+}}, \theta, E_{\theta}^{\lambda^{+}})$ holds;

Theorem

Suppose that $\mu < \theta$ are infinite regular cardinals $< \lambda$.

- 1. If λ is inaccessible, then $\Pi(\lambda, \theta, \lambda)$ and $\Pi(\lambda^+, \lambda, \lambda^+)$ hold;
- 2. If λ is regular, then $\Pi(E_{\mu}^{\lambda^{+}}, \theta, E_{\theta}^{\lambda^{+}})$ holds;
- 3. If $2^{\theta} \leq \lambda$ and $\theta \neq cf(\lambda)$, then $\Pi(E_{\mu}^{\lambda^{+}}, \theta, E_{\theta}^{\lambda^{+}})$ holds;
- 4. If λ is singular and $\theta^{++} \neq cf(\lambda)$, then $\Pi(E_{\mu}^{\lambda^{+}}, \theta, E_{\theta^{++}}^{\lambda^{+}})$ holds;

Theorem

Suppose that $\mu < \theta$ are infinite regular cardinals $< \lambda$.

- 1. If λ is inaccessible, then $\Pi(\lambda, \theta, \lambda)$ and $\Pi(\lambda^+, \lambda, \lambda^+)$ hold;
- 2. If λ is regular, then $\Pi(E_{\mu}^{\lambda^{+}}, \theta, E_{\theta}^{\lambda^{+}})$ holds;
- 3. If $2^{\theta} \leq \lambda$ and $\theta \neq cf(\lambda)$, then $\Pi(E_{\mu}^{\lambda^{+}}, \theta, E_{\theta}^{\lambda^{+}})$ holds;
- 4. If λ is singular and $\theta^{++} \neq cf(\lambda)$, then $\Pi(E_{\mu}^{\lambda^{+}}, \theta, E_{\theta^{++}}^{\lambda^{+}})$ holds;
- 5. If λ is singular and $\theta^{++} = cf(\lambda)$, then $\Pi(E^{\lambda^+}_{\mu}, \theta, E^{\lambda^+}_{\theta^{+3}})$ holds.

Remark This follows from Clause (4).

Theorem

Suppose that $\mu < \theta$ are infinite regular cardinals $< \lambda$.

- 1. If λ is inaccessible, then $\Pi(\lambda, \theta, \lambda)$ and $\Pi(\lambda^+, \lambda, \lambda^+)$ hold;
- 2. If λ is regular, then $\Pi(E_{\mu}^{\lambda^{+}}, \theta, E_{\theta}^{\lambda^{+}})$ holds;
- 3. If $2^{\theta} \leq \lambda$ and $\theta \neq cf(\lambda)$, then $\Pi(E_{\mu}^{\lambda^{+}}, \theta, E_{\theta}^{\lambda^{+}})$ holds;
- 4. If λ is singular and $\theta^{++} \neq cf(\lambda)$, then $\Pi(E_{\mu}^{\lambda^{+}}, \theta, E_{\theta^{++}}^{\lambda^{+}})$ holds;
- 5. If λ is singular and $\theta^{++} = cf(\lambda)$, then $\Pi(E^{\lambda^+}_{\mu}, \theta, E^{\lambda^+}_{\theta^{+3}})$ holds.

Remark

Our proof at the level of successors of singulars is indeed different from the standard proofs for partitioning a stationary set. We build on the fact that any singular cardinal admits a scale and that the set of good points of a scale is stationary relative to any cofinality; we also use a combination of Ulam matrices with club-guessing to avoid any cardinal arithmetic hypotheses (Clauses (4) and (5)).

A special case with a simplified proof

Theorem

Let λ be a singular cardinal. Let $\mu < \theta$ be regular cardinals with $cf(\lambda) < \mu < \theta < \lambda$. Then $\Pi(E_{\mu}^{\lambda^+}, \theta, E_{\theta^{++}}^{\lambda^+})$ holds.

A special case with a simplified proof

Theorem

Let λ be a singular cardinal. Let $\mu < \theta$ be regular cardinals with $cf(\lambda) < \mu < \theta < \lambda$. Then $\Pi(E_{\mu}^{\lambda^+}, \theta, E_{\theta^{++}}^{\lambda^+})$ holds.

Proof. Fix a scale \vec{f} for λ in some product $\prod_{i < cf(\lambda)} \lambda_i$. By Shelah's theorem, $T_0 := E_{a++}^{\lambda^+} \cap G(\vec{f})$ is stationary.

Claim 1

There exist $i < cf(\lambda)$, $\zeta \in E_{\theta^{++}}^{\lambda}$, a stationary $T_1 \subseteq T_0$, and a sequence $\langle S_{\alpha}^1 | \alpha \in T_1 \rangle$ such that, for all $\alpha \in T_1$:

• $\langle f_{\beta}(i) \mid \beta \in S^{1}_{\alpha} \rangle$ is strictly increasing and converging to ζ .

Proof. By Fodor's lemma, it suffices to prove that for each $\alpha \in T_0$, there is $i < cf(\lambda)$ and a stationary $S \subseteq E^{\alpha}_{\mu}$ on which $\beta \mapsto f_{\beta}(i)$ is strictly increasing.

Proof of Claim 1

Let $\alpha \in T_0$ be arbitrary. We shall find $i < cf(\lambda)$ and a stationary $S \subseteq E^{\alpha}_{\mu}$ on which $\beta \mapsto f_{\beta}(i)$ is strictly increasing. For each $\gamma < \beta < \alpha$, pick $i_{\gamma,\beta} < cf(\lambda)$ such that $f_{\gamma} <^{i_{\gamma,\beta}} f_{\beta}$. As $\alpha \in T_0$ is a good point, let us also fix $i' < cf(\lambda)$ and a cofinal $A \subseteq \alpha$ such that, for all $\delta < \gamma$ from A, $f_{\delta} < i' f_{\gamma}$. Consider $S' := \operatorname{acc}^+(A) \cap E^{\alpha}_{\mu}$, which is a stationary subset of E^{α}_{μ} . As $\mu > cf(\lambda)$, for each $\beta \in S'$, we may pick a cofinal $a_{\beta} \subseteq A \cap \beta$ and $i_{\beta} < cf(\lambda)$ such that, for all $\gamma \in a_{\beta}$, $i_{\gamma,\beta} = i_{\beta}$. As $\theta^{++} > cf(\lambda)$, we may pick a stationary $S \subseteq S'$ and $i < cf(\lambda)$ such that, for all $\beta \in S$, max $\{i_{\beta}, i', i_{\beta,\min(A \setminus \beta + 1)}\} = i$. To see that *i* and *S* are as sought, let $\epsilon < \beta$ be arbitrary elements of S. Consider $\delta := \min(A \setminus \epsilon + 1)$ and $\gamma := \min(a_{\beta} \setminus \delta + 1)$. Clearly, $\epsilon < \delta < \gamma < \beta$ and $f_{\epsilon} <^{i_{\epsilon,\min(A \setminus \epsilon+1)}} f_{\delta} <^{i'} f_{\gamma} <^{i_{\beta}} f_{\beta}$. In particular, $f_{\epsilon} <^{i} f_{\beta}$, so that $f_{\epsilon}(i) < f_{\beta}(i)$, as sought. Fix *i*, ζ , and $\langle S_{\alpha}^{1} | \alpha \in T_{1} \rangle$ as in Claim 1.

Step 2: Find a function g

Claim 2

There are $g : E_{\mu}^{\lambda^+} \to \theta^{++}$ and a sequence $\langle S_{\alpha}^2 | \alpha \in T_1 \rangle$ such that, for all $\alpha \in T_1$:

• S_{α}^2 is a stationary subset of S_{α}^1 (hence, of E_{μ}^{α});

• $\langle g(\beta) | \beta \in S^2_{\alpha} \rangle$ is strictly increasing (hence, cofinal in θ^{++}).

Proof. Fix a club z in ζ with $otp(z) = \theta^{++}$. Define $g: E_{ii}^{\lambda^+} \to \theta^{++}$ by letting $g(\beta) := \operatorname{otp}(f_{\beta}(i) \cap z)$ if $f_{\beta}(i) < \zeta$ and $g(\beta) := 0$, o.w.; To see that g is as sought, let $\alpha \in T_1$ be arbitrary. Let $\pi: \theta^{++} \to \alpha$ be the inverse collapse of some club in α . Clearly, $\bar{S} := \{\bar{\beta} < \theta^{++} \mid \pi(\bar{\beta}) \in S^1_{\alpha} \& (g \circ \pi) \ "\bar{\beta} \subseteq \bar{\beta}\}$ is stationary. Let $\overline{B} := \{\overline{\beta} \in \overline{S} \mid (g \circ \pi)(\overline{\beta}) < \overline{\beta}\}$. For all $\overline{\epsilon} < \overline{\beta}$ from $\overline{S} \setminus \overline{B}$, we have $g(\pi(\bar{\epsilon})) < \bar{\beta} \leq g(\pi(\bar{\beta}))$. Thus, it suffices to show that $S^2_{\alpha} := \pi[\bar{S} \setminus \bar{B}]$ (which is a subset of S^1_{α}) is stationary. Suppose not. In particular, \overline{B} is stationary. But then, Fodor's lemma entails a stationary $\hat{B} \subseteq \bar{B}$ on which $g \circ \pi$ is constant, contradicting the fact that $\langle f_{\pi(\bar{\beta})}(i) | \bar{\beta} \in \hat{B} \rangle$ converges to ζ .

Step 3: An Ulam Matrix

Let $g: E_{\mu}^{\lambda^+} \to \theta^{++}$ and $\langle S_{\alpha}^2 \mid \alpha \in T_1 \rangle$ be given by Claim 2. Now, fix an Ulam matrix $\langle A_{\xi,\eta} \mid \xi < \theta^{++}, \eta < \theta^+ \rangle$ over θ^{++} , i.e.,

▶ for all
$$\xi < \theta^{++}$$
, $|\theta^{++} \setminus \bigcup_{\eta < \theta^+} A_{\xi,\eta}| \le \theta^+$;

▶ for all
$$\eta < \theta^+$$
 and $\xi < \xi' < \theta^{++}$, $A_{\xi,\eta} \cap A_{\xi',\eta} = \emptyset$.

Claim 3

For every $\alpha \in T_1$, there are $\eta < \theta^+$ and $x \in [\theta^{++}]^{\theta^{++}}$ such that, for all $\xi \in x$, $g^{-1}[A_{\xi,\eta}] \cap \alpha$ is stationary in α .

Proof. Suppose not. Then, for all $\eta < \theta^+$, the set $x_\eta := \{\xi < \theta^{++} \mid g^{-1}[A_{\xi,\eta}] \cap \alpha$ is stationary in $\alpha\}$ has size $\leq \theta^+$. So $X := \bigcup_{\eta < \theta^+} x_\eta$ has size $\leq \theta^+$, and we may fix $\xi \in \theta^{++} \setminus X$. It follows that for all $\eta < \theta^+$, $g^{-1}[A_{\xi,\eta}] \cap \alpha$ is nonstationary in α . Consequently, $g^{-1}[\bigcup_{\eta < \theta^+} A_{\xi,\eta}] \cap \alpha$ is nonstationary in α . However, $\bigcup_{\eta < \theta^+} A_{\xi,\eta}$ contains a tail of θ^{++} , contradicting the fact that $\langle g(\beta) \mid \beta \in S^2_{\alpha} \rangle$ is strictly increasing and cofinal in θ^{++} .

Step 4: Club-guessing

By Shelah's club-guessing theorem, we now fix a sequence $\langle C_{\iota} | \iota \in E_{\theta}^{\theta^{++}} \rangle$ such that, for every club $C \subseteq \theta^{++}$, there exists $\iota \in E_{\theta}^{\theta^{++}}$ such that $C_{\iota} \subseteq C \cap \iota$ and $otp(C_{\iota}) = \theta$.

By Claim 3, for every $\alpha \in T_1$, let us fix $\eta_\alpha < \theta^+$ and $x_\alpha \in [\theta^{++}]^{\theta^{++}}$ such that, for all $\xi \in x_\alpha$, $g^{-1}[A_{\xi,\eta_\alpha}] \cap \alpha$ is stationary in α . Then, fix $\iota_\alpha \in E_{\theta}^{\theta^{++}}$ such that $C_{\iota_\alpha} \subseteq \operatorname{acc}^+(x_\alpha) \cap \iota_\alpha$ and $\operatorname{otp}(C_{\iota_\alpha}) = \theta$. By Fodor's lemma, fix a stationary $T_2 \subseteq T_1$, $\eta < \theta^+$ and $\iota \in E_{\theta}^{\theta^{++}}$ such that, for all $\alpha \in T_2$, $\eta_\alpha = \eta$ and $\iota_\alpha = \iota$. As the elements of $\langle A_{\xi,\eta} \mid \xi < \theta^{++} \rangle$ are pairwise disjoint, we may fix a function $h : E_{\mu}^{\lambda^+} \to \theta$ such that, for all $\beta < \lambda^+$:

$$(g(\beta) \in A_{\xi,\eta} \& \xi < \iota) \implies h(\delta) = \sup(otp(C_{\iota} \cap \xi)).$$

Step 5: Verification

For each $i < \theta$, let $S_i := h^{-1}\{i\}$. We claim that $\langle S_i | i < \theta \rangle$ witnesses $\Pi(E_{\mu}^{\lambda^+}, \theta, E_{\theta^{++}}^{\lambda^+})$. Furthermore: Claim 4 $\bigcap_{i < \theta} \operatorname{Tr}(S_i) \cap E_{\theta^{++}}^{\lambda^+}$ covers the stationary set T_2 . **Proof.** Fix arbitrary $\alpha \in T_2$ and $i < \theta$. We shall find a stationary subset $S' \subseteq E_{\mu}^{\alpha}$ such that $h[S'] = \{i\}$. As $i < \theta = \operatorname{otp}(C_{\iota})$, let ξ' denote the unique element of C_{ι} such that $\operatorname{otp}(C_{\iota} \cap \xi') = i$. Then, put $\xi := \min(x_{\alpha} \setminus (\xi' + 1))$. As $C_i \subseteq \operatorname{acc}^+(x_\alpha)$, we have that $[\xi',\xi) \cap C_i = \{\xi'\}$. Consequently, $otp(C_i \cap \xi) = otp(C_i \cap (\xi' + 1)) = i + 1$. As $\eta = \eta_{\alpha}$ and $\xi \in x_{\alpha}$, the set $S' := g^{-1}[A_{\xi,n}] \cap \alpha$ is a stationary subset of E^{α}_{μ} . Finally, for each $\beta \in S'$, we have $g(\beta) \in A_{\xi,\eta}$, meaning that $h(\beta) = \sup(otp(C_i \cap \xi)) = \sup(i+1) = i$, as sought.

qed

A finer result

We also have a finer result that apply for arbitrary stationary $S \subseteq \lambda^+$ (rather than $S = E_\mu^{\lambda^+}$).

Theorem

Suppose $\theta < \lambda$ are infinite cardinals with $\theta \neq cf(\lambda)$ and $2^{\theta} \leq \lambda$. For all subsets S, T of λ^+ with a stationary $Tr(S) \cap T \cap E_{\theta}^{\lambda^+}$, any of the following implies that $\Pi(S, \theta, T)$ holds:

- 1. λ is regular;
- 2. λ is a singular cardinal admitting a good scale.

Good scale

A scale \vec{f} for λ such that club many $\alpha \in E^{\lambda^+}_{>cf(\lambda)}$ are good for \vec{f} .