Analytic quasi-orders and two forms of diamond

13-May-2019 50 Years of Set Theory in Toronto Fields Institute for Research in Mathematical Sciences

> Assaf Rinot Bar-Ilan University

This is a joint work with Gabriel Fernandes and Miguel Moreno at BIU

Throughout, κ denotes a regular uncountable cardinal satisfying $\kappa^{<\kappa} = \kappa$.

Throughout, κ denotes a regular uncountable cardinal satisfying $\kappa^{<\kappa} = \kappa$.

The generalized Baire space

 κ^{κ} consists of functions from κ to $\kappa,$ and a basic open set takes the form

$$N_{\eta} := \{ f \in \kappa^{\kappa} \mid \eta \subseteq f \},\$$

where $\eta \in {}^{<\kappa}\kappa$, i.e., η is a function from an ordinal $<\kappa$ to κ .

Throughout, κ denotes a regular uncountable cardinal satisfying $\kappa^{<\kappa} = \kappa$.

The generalized Baire space

 κ^{κ} consists of functions from κ to $\kappa,$ and a basic open set takes the form

$$N_{\eta} := \{ f \in \kappa^{\kappa} \mid \eta \subseteq f \},\$$

where $\eta \in {}^{<\kappa}\kappa$, i.e., η is a function from an ordinal $<\kappa$ to κ .

The generalized Cantor space

 2^{κ} is the topological subspace of κ^{κ} consisting of all functions from κ to 2.

Throughout, κ denotes a regular uncountable cardinal satisfying $\kappa^{<\kappa} = \kappa$.

The generalized Baire space

 κ^{κ} consists of functions from κ to $\kappa,$ and a basic open set takes the form

$$N_{\eta} := \{ f \in \kappa^{\kappa} \mid \eta \subseteq f \},\$$

where $\eta \in {}^{<\kappa}\kappa$, i.e., η is a function from an ordinal $<\kappa$ to κ .

The generalized Cantor space (The κ -antor space)

 2^{κ} is the topological subspace of κ^{κ} consisting of all functions from κ to 2.

Throughout, κ denotes a regular uncountable cardinal satisfying $\kappa^{<\kappa} = \kappa$.

The generalized Baire space (The κ -aire space)

 κ^{κ} consists of functions from κ to $\kappa,$ and a basic open set takes the form

$$N_{\eta} := \{ f \in \kappa^{\kappa} \mid \eta \subseteq f \},\$$

where $\eta \in {}^{<\kappa}\kappa$, i.e., η is a function from an ordinal $<\kappa$ to κ .

The generalized Cantor space (The κ -antor space)

 2^{κ} is the topological subspace of κ^{κ} consisting of all functions from κ to 2.

The class of κ -Borel sets

The least collection of sets in κ^{κ} (resp., 2^{κ}) containing all open sets that is closed under unions and intersections of length $\leq \kappa$, and complements.

The class of κ -Borel sets

The least collection of sets in κ^{κ} (resp., 2^{κ}) containing all open sets that is closed under unions and intersections of length $\leq \kappa$, and complements.

$\kappa\text{-}\mathsf{Borel}$ functions

Let $X_1, X_2 \in \{2^{\kappa}, \kappa^{\kappa}\}$. A function $f : X_1 \to X_2$ is κ -Borel iff for every open set $U \subseteq X_2$, the inverse image f^{-1} "U is a κ -Borel subset of X_1 .

The class of κ -Borel sets

The least collection of sets in κ^{κ} (resp., 2^{κ}) containing all open sets that is closed under unions and intersections of length $\leq \kappa$, and complements.

κ -Borel functions

Let $X_1, X_2 \in \{2^{\kappa}, \kappa^{\kappa}\}$. A function $f : X_1 \to X_2$ is κ -Borel iff for every open set $U \subseteq X_2$, the inverse image f^{-1} "U is a κ -Borel subset of X_1 .

Borel reductions and continuous reductions

Let E_1 and E_2 be equivalence relations on $X_1, X_2 \in \{2^{\kappa}, \kappa^{\kappa}\}$, respectively.

• We say that E_1 is κ -Borel reducible to E_2 and denote this by $E_1 \hookrightarrow_B E_2$ iff there is a κ -Borel function $f : X_1 \to X_2$ s.t. $\forall \eta, \xi \in X_1$, $(\eta, \xi) \in E_1 \iff (f(\eta), f(\xi)) \in E_2$.

The class of κ -Borel sets

The least collection of sets in κ^{κ} (resp., 2^{κ}) containing all open sets that is closed under unions and intersections of length $\leq \kappa$, and complements.

κ -Borel functions

Let $X_1, X_2 \in \{2^{\kappa}, \kappa^{\kappa}\}$. A function $f : X_1 \to X_2$ is κ -Borel iff for every open set $U \subseteq X_2$, the inverse image f^{-1} "U is a κ -Borel subset of X_1 .

Borel reductions and continuous reductions

Let E_1 and E_2 be equivalence relations on $X_1, X_2 \in \{2^{\kappa}, \kappa^{\kappa}\}$, respectively.

▶ We say that E_1 is κ -Borel reducible to E_2 and denote this by $E_1 \hookrightarrow_B E_2$ iff there is a κ -Borel function $f : X_1 \to X_2$ s.t. $\forall \eta, \xi \in X_1$, $(\eta, \xi) \in E_1 \iff (f(\eta), f(\xi)) \in E_2$. We call f a reduction of E_1 to E_2 .

The class of κ -Borel sets

The least collection of sets in κ^{κ} (resp., 2^{κ}) containing all open sets that is closed under unions and intersections of length $\leq \kappa$, and complements.

κ -Borel functions

Let $X_1, X_2 \in \{2^{\kappa}, \kappa^{\kappa}\}$. A function $f : X_1 \to X_2$ is κ -Borel iff for every open set $U \subseteq X_2$, the inverse image f^{-1} "U is a κ -Borel subset of X_1 .

Borel reductions and continuous reductions

Let E_1 and E_2 be equivalence relations on $X_1, X_2 \in \{2^{\kappa}, \kappa^{\kappa}\}$, respectively.

- ▶ We say that E_1 is κ -Borel reducible to E_2 and denote this by $E_1 \hookrightarrow_B E_2$ iff there is a κ -Borel function $f : X_1 \to X_2$ s.t. $\forall \eta, \xi \in X_1$, $(\eta, \xi) \in E_1 \iff (f(\eta), f(\xi)) \in E_2$. We call f a reduction of E_1 to E_2 .
- ▶ If f is moreover continuous, then we say that E_1 is continuously reducible to E_2 and denote it by $E_1 \hookrightarrow_c E_2$.

Comparing theories

Let T, T' denote complete theories over a countable first-order language.

Counting number of non-isomorphic models of cardinality κ

Say that T' is more complex than T iff $I(T', \kappa)$ is bigger than $I(T, \kappa)$.

Comparing theories

Let T, T' denote complete theories over a countable first-order language.

Counting number of non-isomorphic models of cardinality κ

Say that T' is more complex than T iff $I(T', \kappa)$ is bigger than $I(T, \kappa)$.

Shelah's Main Gap Theorem implies that this notion is not very informative.

Theorem (Shelah, 1990)

One of the following holds:

- $I(T, \aleph_{\alpha}) < \beth_{\omega_1}(|\alpha|)$ for every nonzero ordinal α .
- 2 $I(T,\kappa) = 2^{\kappa}$ for every uncountable cardinal κ .

Comparing theories

Let T, T' denote complete theories over a countable first-order language.

Counting number of non-isomorphic models of cardinality κ

Say that T' is more complex than T iff $I(T', \kappa)$ is bigger than $I(T, \kappa)$.

Shelah's Main Gap Theorem implies that this notion is not very informative.

Theorem (Shelah, 1990)

One of the following holds:

- T is shallow superstable without DOP and without OTOP. In this case, I(T, ℵ_α) < □_{ω1}(|α|) for every nonzero ordinal α.
- **2** *T* is not superstable, or superstable and deep or with DOP or with OTOP. In this case, $I(T, \kappa) = 2^{\kappa}$ for every uncountable cardinal κ .

At the outset, fix a bijection $\pi: \kappa^{<\omega} \leftrightarrow \kappa$.

At the outset, fix a bijection $\pi : \kappa^{<\omega} \leftrightarrow \kappa$. Consider a countable first-order relational language $\mathcal{L} = \{P_m \mid m < \omega\}$. For each *m*, let n_m denote the arity of P_m .

At the outset, fix a bijection $\pi: \kappa^{<\omega} \leftrightarrow \kappa$.

Consider a countable first-order relational language $\mathcal{L} = \{P_m \mid m < \omega\}$. For each *m*, let *n_m* denote the arity of *P_m*.

Every element ξ of 2^{κ} gives rise to a model $\mathfrak{M}_{\xi} = (\kappa, \ldots)$ over \mathcal{L} via:

$$(\mathsf{a}_1,\ldots,\mathsf{a}_n)\in \mathsf{P}_m^{\mathfrak{M}_\xi}$$
 iff $n=n_m$ & $\xi(\pi(m,\mathsf{a}_1,\ldots,\mathsf{a}_n))=1.$

At the outset, fix a bijection $\pi: \kappa^{<\omega} \leftrightarrow \kappa$.

Consider a countable first-order relational language $\mathcal{L} = \{P_m \mid m < \omega\}$. For each *m*, let *n_m* denote the arity of *P_m*.

Every element ξ of 2^{κ} gives rise to a model $\mathfrak{M}_{\xi} = (\kappa, \ldots)$ over $\mathcal L$ via:

$$(\mathsf{a}_1,\ldots,\mathsf{a}_n)\in P^{\mathfrak{M}_\xi}_m$$
 iff $n=n_m$ & $\xi(\pi(m,\mathsf{a}_1,\ldots,\mathsf{a}_n))=1.$

Conversely, for every model $\mathfrak{M} = (\kappa, \ldots)$ over \mathcal{L} , there is $\xi \in 2^{\kappa}$ such that $\mathfrak{M} = \mathfrak{M}_{\xi}$.

At the outset, fix a bijection $\pi: \kappa^{<\omega} \leftrightarrow \kappa$.

Consider a countable first-order relational language $\mathcal{L} = \{P_m \mid m < \omega\}$. For each *m*, let *n_m* denote the arity of *P_m*.

Every element ξ of 2^{κ} gives rise to a model $\mathfrak{M}_{\xi} = (\kappa, \ldots)$ over \mathcal{L} via:

$$(a_1,\ldots,a_n)\in P_m^{\mathfrak{M}_\xi}$$
 iff $n=n_m$ & $\xi(\pi(m,a_1,\ldots,a_n))=1.$

Conversely, for every model $\mathfrak{M} = (\kappa, ...)$ over \mathcal{L} , there is $\xi \in 2^{\kappa}$ such that $\mathfrak{M} = \mathfrak{M}_{\xi}$.

Every theory determines an equivalence relation on 2^{κ}

For a theory T over \mathcal{L} , and $\eta, \xi \in 2^{\kappa}$, let $\eta \cong_{\mathcal{T}} \xi$ iff one of the two holds:

At the outset, fix a bijection $\pi: \kappa^{<\omega} \leftrightarrow \kappa$.

Consider a countable first-order relational language $\mathcal{L} = \{P_m \mid m < \omega\}$. For each *m*, let *n_m* denote the arity of *P_m*.

Every element ξ of 2^{κ} gives rise to a model $\mathfrak{M}_{\xi} = (\kappa, \ldots)$ over \mathcal{L} via:

$$(a_1,\ldots,a_n)\in P_m^{\mathfrak{M}_\xi}$$
 iff $n=n_m$ & $\xi(\pi(m,a_1,\ldots,a_n))=1.$

Conversely, for every model $\mathfrak{M} = (\kappa, \ldots)$ over \mathcal{L} , there is $\xi \in 2^{\kappa}$ such that $\mathfrak{M} = \mathfrak{M}_{\xi}$.

Every theory determines an equivalence relation on 2^{κ}

For a theory T over \mathcal{L} , and $\eta, \xi \in 2^{\kappa}$, let $\eta \cong_{\mathcal{T}} \xi$ iff one of the two holds:

•
$$\mathfrak{M}_\eta \models T$$
 and $\mathfrak{M}_\xi \models T$ and $\mathfrak{M}_\xi \cong \mathfrak{M}_\eta$, or

At the outset, fix a bijection $\pi: \kappa^{<\omega} \leftrightarrow \kappa$.

Consider a countable first-order relational language $\mathcal{L} = \{P_m \mid m < \omega\}$. For each *m*, let *n_m* denote the arity of *P_m*.

Every element ξ of 2^{κ} gives rise to a model $\mathfrak{M}_{\xi} = (\kappa, \ldots)$ over \mathcal{L} via:

$$(a_1,\ldots,a_n)\in P_m^{\mathfrak{M}_\xi}$$
 iff $n=n_m$ & $\xi(\pi(m,a_1,\ldots,a_n))=1.$

Conversely, for every model $\mathfrak{M} = (\kappa, \ldots)$ over \mathcal{L} , there is $\xi \in 2^{\kappa}$ such that $\mathfrak{M} = \mathfrak{M}_{\xi}$.

Every theory determines an equivalence relation on 2^{κ}

For a theory T over \mathcal{L} , and $\eta, \xi \in 2^{\kappa}$, let $\eta \cong_{\mathcal{T}} \xi$ iff one of the two holds:

•
$$\mathfrak{M}_\eta \models T$$
 and $\mathfrak{M}_\xi \models T$ and $\mathfrak{M}_\xi \cong \mathfrak{M}_\eta$, or

•
$$\mathfrak{M}_{\eta} \not\models T$$
 and $\mathfrak{M}_{\xi} \not\models T$.

Comparing theories via GDST (cont.)

Recall

For a countable first-order relational T and $\eta, \xi \in 2^{\kappa}$, let $\eta \cong_{T} \xi$ iff:

•
$$\mathfrak{M}_n\models \mathsf{T}$$
 and $\mathfrak{M}_{\mathcal{E}}\models \mathsf{T}$ and $\mathfrak{M}_{\mathcal{E}}\cong \mathfrak{M}_n$, or

•
$$\mathfrak{M}_{\eta} \not\models T$$
 and $\mathfrak{M}_{\xi} \not\models T$.

Define a quasi-order \leq_{κ} on complete countable relational theories, letting

$$T \leq_{\kappa} T'$$
 iff $\cong_T \hookrightarrow_B \cong_{T'}$.

Comparing theories via GDST (cont.)

Recall

For a countable first-order relational T and $\eta, \xi \in 2^{\kappa}$, let $\eta \cong_T \xi$ iff:

•
$$\mathfrak{M}_\eta\models \mathsf{T}$$
 and $\mathfrak{M}_\xi\models \mathsf{T}$ and $\mathfrak{M}_\xi\cong\mathfrak{M}_\eta,$ or

•
$$\mathfrak{M}_{\eta} \not\models T$$
 and $\mathfrak{M}_{\xi} \not\models T$.

Define a quasi-order \leq_{κ} on complete countable relational theories, letting

$$T \leq_{\kappa} T'$$
 iff $\cong_T \hookrightarrow_B \cong_{T'}$.

A successful approach

- (Friedman-Hyttinen-Kulikov, 2014) If T is unstable and T' is classifiable, then $T \not\leq_{\kappa} T'$.
- (Hyttinen-Kulikov-Moreno, 2017) Consistently (e.g., under V = L), if T is classifiable but T' is not, then $T \leq_{\kappa} T'$ and $T' \not\leq_{\kappa} T$.
- (Asperó-Hyttinen-Kulikov-Moreno, 2019) If κ is Π_2^1 -indescribable, for every theory T, $T \leq_{\kappa} DLO$ (dense lin. orders without endpoints).

Let S denote an arbitrary stationary subset of κ .

An equivalence relation on κ^{κ}

For $\eta, \xi \in \kappa^{\kappa}$, let $\eta =_{S} \xi$ iff $\{\alpha \in S \mid \eta(\alpha) \neq \xi(\alpha)\}$ is nonstationary.

Let S denote an arbitrary stationary subset of κ .

An equivalence relation on κ^{κ}

For $\eta, \xi \in \kappa^{\kappa}$, let $\eta =_{S} \xi$ iff $\{\alpha \in S \mid \eta(\alpha) \neq \xi(\alpha)\}$ is nonstationary.

An equivalence relation on 2^{κ}

For $\eta, \xi \in 2^{\kappa}$, let $\eta = \frac{2}{5} \xi$ iff $\{\alpha \in S \mid \eta(\alpha) \neq \xi(\alpha)\}$ is nonstationary.

Let S denote an arbitrary stationary subset of κ .

An equivalence relation on κ^{κ}

For $\eta, \xi \in \kappa^{\kappa}$, let $\eta =_{S} \xi$ iff $\{\alpha \in S \mid \eta(\alpha) \neq \xi(\alpha)\}$ is nonstationary.

Theorem (Hyttinen-Moreno, 2017)

If T is a complete classifiable theory, then $\cong_T \hookrightarrow_c =_S$.

An equivalence relation on 2^{κ}

For $\eta, \xi \in 2^{\kappa}$, let $\eta = \frac{2}{S} \xi$ iff $\{\alpha \in S \mid \eta(\alpha) \neq \xi(\alpha)\}$ is nonstationary.

Theorem (Friedman-Hyttinen-Kulikov, 2014)

If T is a complete classifiable theory, then $=^2_S \nleftrightarrow_B \cong_T$.

8/18

Let S denote an arbitrary stationary subset of κ .

An equivalence relation on κ^{κ}

For $\eta, \xi \in \kappa^{\kappa}$, let $\eta =_{S} \xi$ iff $\{\alpha \in S \mid \eta(\alpha) \neq \xi(\alpha)\}$ is nonstationary.

Theorem (Hyttinen-Moreno, 2017)

If T is a complete classifiable theory, then $\cong_T \hookrightarrow_c =_S$.

Theorem (Friedman-Hyttinen-Kulikov, 2014)

Consistently, if T is a complete non-classifiable theory, then there exists a stationary $S \subseteq \kappa$ for which $=_S^2 \hookrightarrow_B \cong_T$.

Theorem (Friedman-Hyttinen-Kulikov, 2014)

If T is a complete classifiable theory, then $=_{S}^{2} \nleftrightarrow_{B} \cong_{T}$.

Let S denote an arbitrary stationary subset of κ .

An equivalence relation on κ^{κ}

For $\eta, \xi \in \kappa^{\kappa}$, let $\eta =_{S} \xi$ iff $\{\alpha \in S \mid \eta(\alpha) \neq \xi(\alpha)\}$ is nonstationary.

Theorem (Hyttinen-Moreno, 2017)

If T is a complete classifiable theory, then $\cong_T \hookrightarrow_c =_S$.

Theorem (Friedman-Hyttinen-Kulikov, 2014)

Consistently, if T is a complete non-classifiable theory, then there exists a stationary $S \subseteq \kappa$ for which $=_S^2 \hookrightarrow_B \cong_T$.

Problem

 $\mathsf{Does} =_{\mathcal{S}} \hookrightarrow_{\mathcal{B}} =_{\mathcal{S}}^{2}?$

Let S denote an arbitrary stationary subset of κ .

An equivalence relation on κ^{κ}

For $\eta, \xi \in \kappa^{\kappa}$, let $\eta =_{S} \xi$ iff $\{\alpha \in S \mid \eta(\alpha) \neq \xi(\alpha)\}$ is nonstationary.

Theorem (Hyttinen-Kulikov-Moreno, 2018)

If T is a complete classifiable theory and \diamondsuit_S , then $\cong_T \hookrightarrow_c =_S^2$.

Theorem (Friedman-Hyttinen-Kulikov, 2014)

Consistently, if T is a complete non-classifiable theory, then there exists a stationary $S \subseteq \kappa$ for which $=_S^2 \hookrightarrow_B \cong_T$.

Problem

 $\mathsf{Does} =_{\mathcal{S}} \hookrightarrow_{\mathcal{B}} =_{\mathcal{S}}^{2}?$

An equivalence relation on κ^{κ}

For $\eta, \xi \in \kappa^{\kappa}$, let $\eta =_{S} \xi$ iff $\{\alpha \in S \mid \eta(\alpha) \neq \xi(\alpha)\}$ is nonstationary.

Theorem (Hyttinen-Kulikov-Moreno, 2018)

If T is a complete classifiable theory and \diamondsuit_S , then $\cong_T \hookrightarrow_c =_S^2$.

Theorem (Friedman-Hyttinen-Kulikov, 2014)

Consistently, if T is a complete non-classifiable theory, then there exists a stationary $S \subseteq \kappa$ for which $=_S^2 \hookrightarrow_B \cong_T$.

So, consistently, for T classifiable and T' non-classifiable, for some $S \subseteq \kappa$:

$$\cong_T \hookrightarrow_c =^2_S \hookrightarrow_B \cong_{T'}$$

A large antichain (Friedman-Hyttinen-Kulikov, 2014)

Consistently, there exists a collection S of 2^{κ} many stationary subsets of κ such that, for all $S \neq S'$ from S, $=_{S}^{2} \nleftrightarrow_{B} =_{S'}^{2}$.

A large antichain (Friedman-Hyttinen-Kulikov, 2014)

Consistently, there exists a collection S of 2^{κ} many stationary subsets of κ such that, for all $S \neq S'$ from S, $=_{S}^{2} \nleftrightarrow_{B} =_{S'}^{2}$.

Comparability is possible as well

If V = L, then for all two stationary $S, S' \subseteq \kappa$, $=_S \hookrightarrow_c =_{S'}^2$.

A large antichain (Friedman-Hyttinen-Kulikov, 2014)

Consistently, there exists a collection S of 2^{κ} many stationary subsets of κ such that, for all $S \neq S'$ from S, $=_{S}^{2} \nleftrightarrow_{B} =_{S'}^{2}$.

Comparability is possible as well

If V = L, then for all two stationary $S, S' \subseteq \kappa, =_S \hookrightarrow_c =_{S'}^2$.

This improves a result from [Hyttinen-Kulikov-Moreno, 2018]. Also, the proof is different.

• The proof works locally as an application of two strong diamond principles at level κ . In particular, it is not limited to *L*.

A large antichain (Friedman-Hyttinen-Kulikov, 2014)

Consistently, there exists a collection S of 2^{κ} many stationary subsets of κ such that, for all $S \neq S'$ from S, $=_{S}^{2} \nleftrightarrow_{B} =_{S'}^{2}$.

Comparability is possible as well

If V = L, then for all two stationary $S, S' \subseteq \kappa, =_S \hookrightarrow_c =_{S'}^2$.

This improves a result from [Hyttinen-Kulikov-Moreno, 2018]. Also, the proof is different.

- The proof works locally as an application of two strong diamond principles at level κ . In particular, it is not limited to *L*.
- Why two? One for ineffable sets and one for stationary non-ineffable.

A large antichain (Friedman-Hyttinen-Kulikov, 2014)

Consistently, there exists a collection S of 2^{κ} many stationary subsets of κ such that, for all $S \neq S'$ from S, $=_{S}^{2} \nleftrightarrow_{B} =_{S'}^{2}$.

Comparability is possible as well

If V = L, then for all two stationary $S, S' \subseteq \kappa, =_S \hookrightarrow_c =_{S'}^2$.

This improves a result from [Hyttinen-Kulikov-Moreno, 2018]. Also, the proof is different.

• The proof works locally as an application of two strong diamond principles at level κ . In particular, it is not limited to *L*.

• Why two? One for ineffable sets and one for stationary non-ineffable. We'll say more about this later on.
Let
$$S_0^2 := \{ \alpha < \omega_2 \mid \mathsf{cf}(\alpha) = \omega \}$$

and $S_1^2 := \{ \alpha < \omega_2 \mid \mathsf{cf}(\alpha) = \omega_1 \}.$

Let
$$S_0^2 := \{ \alpha < \omega_2 \mid \mathsf{cf}(\alpha) = \omega \}$$

and $S_1^2 := \{ \alpha < \omega_2 \mid \mathsf{cf}(\alpha) = \omega_1 \}.$

$$\bullet =_{S_0^2} \hookrightarrow_B =_{S_1^2}$$

Let
$$S_0^2 := \{ \alpha < \omega_2 \mid \mathsf{cf}(\alpha) = \omega \}$$

and $S_1^2 := \{ \alpha < \omega_2 \mid \mathsf{cf}(\alpha) = \omega_1 \}.$

Let
$$S_0^2 := \{ \alpha < \omega_2 \mid \mathsf{cf}(\alpha) = \omega \}$$

and $S_1^2 := \{ \alpha < \omega_2 \mid \mathsf{cf}(\alpha) = \omega_1 \}.$

$$= S_0^2 \hookrightarrow_B = S_1^2 = S_1^2 \hookrightarrow_B = S_0^2 = S_1^2 \hookrightarrow_B = S_0^2 = S_0^2 \hookrightarrow_B = S_1^2 = S_0^2 \hookrightarrow_B = S_0^2 = S_0^2 \hookrightarrow_B = S_0^2$$

Let
$$S_0^2 := \{ \alpha < \omega_2 \mid \mathsf{cf}(\alpha) = \omega \}$$

and $S_1^2 := \{ \alpha < \omega_2 \mid \mathsf{cf}(\alpha) = \omega_1 \}.$

$$\begin{array}{l} \bullet =_{S_0^2} \hookrightarrow_B =_{S_1^2} \\ \bullet =_{S_1^2} \hookrightarrow_B =_{S_0^2} \\ \bullet =_{S_0^2}^2 \hookrightarrow_B =_{S_1^2}^2 \\ \bullet =_{S_0^2}^2 \hookrightarrow_B =_{S_0^2}^2 \\ \bullet =_{S_0^2}^2 \hookrightarrow_B =_{S_0^2}^2 \\ \bullet =_{S_0^2}^2 \hookrightarrow_B =_{S_1^2}^2 \\ \bullet =_{S_1^2}^2 \hookrightarrow_B =_{S_0^2}^2 \end{array}$$

Theorem (Friedman-Hyttinen-Kulikov, 2014)

There is a model of ZFC in which clauses (3) and (4) fail.

$$\begin{array}{l} \bullet =_{S_0^2} \hookrightarrow_B =_{S_1^2} \\ \bullet =_{S_1^2} \hookrightarrow_B =_{S_0^2} \\ \bullet =_{S_1^2}^2 \hookrightarrow_B =_{S_1^2}^2 \\ \bullet =_{S_0^2}^2 \hookrightarrow_B =_{S_1^2}^2 \\ \bullet =_{S_1^2}^2 \hookrightarrow_B =_{S_0^2}^2 \\ \bullet =_{S_0^2}^2 \hookrightarrow_B =_{S_1^2}^2 \\ \bullet =_{S_1^2}^2 \hookrightarrow_B =_{S_0^2}^2 \end{aligned}$$

Theorem (Friedman-Hyttinen-Kulikov, 2014)

There is a model of ZFC in which clauses (3) and (4) fail.

What can be said about the following statements?

$$\begin{array}{l} \bullet =_{S_0^2} \hookrightarrow_B =_{S_1^2} \\ \bullet =_{S_1^2} \hookrightarrow_B =_{S_0^2} \\ \bullet =_{S_0^2}^2 \hookrightarrow_B =_{S_1^2}^2 \\ \bullet =_{S_0^2}^2 \hookrightarrow_B =_{S_0^2}^2 \\ \bullet =_{S_0^2}^2 \hookrightarrow_B =_{S_1^2}^2 \\ \bullet =_{S_0^2}^2 \hookrightarrow_B =_{S_1^2}^2 \\ \bullet =_{S_1^2}^2 \hookrightarrow_B =_{S_0^2}^2 \end{aligned}$$

Note that if Clause (1) holds in the F-H-K model, then $=_{S_1^2} \nleftrightarrow_B =_{S_2^2}^2$.

Friedman's problem

For every stationary $S \subseteq \kappa \cap cof(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \to S$.

Friedman's problem

For every stationary $S \subseteq \kappa \cap cof(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \to S$.

Observation

Friedman's problem implies $=^2_{S^2_0} \hookrightarrow_c =^2_{S^2_1}$.

Proof. Define a reduction $f: 2^{\omega_2} \to 2^{\omega_2}$, as follows.

Friedman's problem

For every stationary $S \subseteq \kappa \cap cof(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \to S$.

Observation

Friedman's problem implies $=^2_{S^2_0} \hookrightarrow_c =^2_{S^2_1}$.

Proof. Define a reduction $f: 2^{\omega_2} \to 2^{\omega_2}$, as follows. Given $\xi: \omega_2 \to 2$ and $\delta < \omega_2$, we let $f(\xi)(\delta) = 1$ iff $\delta \in S_1^2$ and $\{\alpha < \delta \mid \xi(\alpha) = 0\}$ is nonstationary in δ .

Friedman's problem

For every stationary $S \subseteq \kappa \cap cof(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \to S$.

Observation

Friedman's problem implies $=^2_{S^2_0} \hookrightarrow_c =^2_{S^2_1}$.

Proof. Define a reduction $f : 2^{\omega_2} \to 2^{\omega_2}$, as follows. Given $\xi : \omega_2 \to 2$ and $\delta < \omega_2$, we let $f(\xi)(\delta) = 1$ iff $\delta \in S_1^2$ and $\{\alpha < \delta \mid \xi(\alpha) = 0\}$ is nonstationary in δ . Note that $f(\xi)(\delta)$ depends only on $\xi \upharpoonright \delta$, so that f is continuous.

Friedman's problem

For every stationary $S \subseteq \kappa \cap cof(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \to S$.

Observation

Friedman's problem implies $=^2_{S^2_0} \hookrightarrow_c =^2_{S^2_1}$.

Proof. Define a reduction $f : 2^{\omega_2} \to 2^{\omega_2}$, as follows. Given $\xi : \omega_2 \to 2$ and $\delta < \omega_2$, we let $f(\xi)(\delta) = 1$ iff $\delta \in S_1^2$ and $\{\alpha < \delta \mid \xi(\alpha) = 0\}$ is nonstationary in δ . Note that $f(\xi)(\delta)$ depends only on $\xi \upharpoonright \delta$, so that f is continuous. \blacktriangleright Suppose $\xi = \frac{2}{S_0^2} \eta$. Pick a club $C \subseteq \omega_2$ s.t. $\forall \alpha \in C \cap S_0^2[\xi(\alpha) = \eta(\alpha)]$.

Friedman's problem

For every stationary $S \subseteq \kappa \cap cof(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \to S$.

Observation

Friedman's problem implies $=^2_{S^2_0} \hookrightarrow_c =^2_{S^2_1}$.

Proof. Define a reduction $f : 2^{\omega_2} \to 2^{\omega_2}$, as follows. Given $\xi : \omega_2 \to 2$ and $\delta < \omega_2$, we let $f(\xi)(\delta) = 1$ iff $\delta \in S_1^2$ and $\{\alpha < \delta \mid \xi(\alpha) = 0\}$ is nonstationary in δ . Note that $f(\xi)(\delta)$ depends only on $\xi \upharpoonright \delta$, so that f is continuous. Suppose $\xi = \frac{2}{S_0^2} \eta$. Pick a club $C \subseteq \omega_2$ s.t. $\forall \alpha \in C \cap S_0^2[\xi(\alpha) = \eta(\alpha)]$. Consider the club D of accumulation points of C. For any $\delta \in D \cap S_1^2$:

Friedman's problem

For every stationary $S \subseteq \kappa \cap cof(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \to S$.

Observation

Friedman's problem implies $=^2_{S^2_n} \hookrightarrow_c =^2_{S^2_1}$.

Proof. Define a reduction $f : 2^{\omega_2} \to 2^{\omega_2}$, as follows. Given $\xi : \omega_2 \to 2$ and $\delta < \omega_2$, we let $f(\xi)(\delta) = 1$ iff $\delta \in S_1^2$ and $\{\alpha < \delta \mid \xi(\alpha) = 0\}$ is nonstationary in δ . Note that $f(\xi)(\delta)$ depends only on $\xi \upharpoonright \delta$, so that f is continuous. Suppose $\xi = {}^2_{S_0^2} \eta$. Pick a club $C \subseteq \omega_2$ s.t. $\forall \alpha \in C \cap S_0^2[\xi(\alpha) = \eta(\alpha)]$. Consider the club D of accumulation points of C. For any $\delta \in D \cap S_1^2$: $f(\xi)(\delta) = 1$ iff $\{\alpha \in C \cap \delta \mid \xi(\alpha) = 0\}$ is nonstationary in δ iff $\{\alpha \in C \cap \delta \mid \eta(\alpha) = 0\}$ is nonstationary in δ iff $f(\eta)(\delta) = 1$

Friedman's problem

For every stationary $S \subseteq \kappa \cap cof(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \to S$.

Observation

Friedman's problem implies $=^2_{S^2_n} \hookrightarrow_c =^2_{S^2_1}$.

Proof. Define a reduction $f : 2^{\omega_2} \to 2^{\omega_2}$, as follows. Given $\xi : \omega_2 \to 2$ and $\delta < \omega_2$, we let $f(\xi)(\delta) = 1$ iff $\delta \in S_1^2$ and $\{\alpha < \delta \mid \xi(\alpha) = 0\}$ is nonstationary in δ . Note that $f(\xi)(\delta)$ depends only on $\xi \upharpoonright \delta$, so that f is continuous. Suppose $\xi = \frac{2}{S_0^2} \eta$. Pick a club $C \subseteq \omega_2$ s.t. $\forall \alpha \in C \cap S_0^2[\xi(\alpha) = \eta(\alpha)]$. Consider the club D of accumulation points of C. For any $\delta \in D \cap S_1^2$: $f(\xi)(\delta) = 1$ iff $\{\alpha \in C \cap \delta \mid \xi(\alpha) = 0\}$ is nonstationary in δ iff $\{\alpha \in C \cap \delta \mid \eta(\alpha) = 0\}$ is nonstationary in δ iff $f(\eta)(\delta) = 1$ Consequently, $f(\xi) = \frac{2}{S_1^2} f(\eta)$.

Friedman's problem

For every stationary $S \subseteq \kappa \cap cof(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \to S$.

Observation

Friedman's problem implies $=^2_{S^2_0} \hookrightarrow_c =^2_{S^2_1}$.

Proof. Define a reduction $f : 2^{\omega_2} \to 2^{\omega_2}$, as follows. Given $\xi : \omega_2 \to 2$ and $\delta < \omega_2$, we let $f(\xi)(\delta) = 1$ iff $\delta \in S_1^2$ and $\{\alpha < \delta \mid \xi(\alpha) = 0\}$ is nonstationary in δ . Note that $f(\xi)(\delta)$ depends only on $\xi \upharpoonright \delta$, so that f is continuous. \blacktriangleright Suppose $\xi \neq_{S_0^2}^2 \eta$. Say, $S := \{\alpha \in S_0^2 \mid \xi(\alpha) = 1 \& \eta(\alpha) = 0\}$ is stationary.

Friedman's problem

For every stationary $S \subseteq \kappa \cap cof(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \to S$.

Observation

Friedman's problem implies $=^2_{S^2_0} \hookrightarrow_c =^2_{S^2_1}$.

Proof. Define a reduction $f: 2^{\omega_2} \to 2^{\omega_2}$, as follows. Given $\xi: \omega_2 \to 2$ and $\delta < \omega_2$, we let $f(\xi)(\delta) = 1$ iff $\delta \in S_1^2$ and $\{\alpha < \delta \mid \xi(\alpha) = 0\}$ is nonstationary in δ . Note that $f(\xi)(\delta)$ depends only on $\xi \upharpoonright \delta$, so that f is continuous. \blacktriangleright Suppose $\xi \neq_{S_0^2}^2 \eta$. Say, $S := \{\alpha \in S_0^2 \mid \xi(\alpha) = 1 \& \eta(\alpha) = 0\}$ is stationary. Let D be an arbitrary club in ω_2 .

Friedman's problem

For every stationary $S \subseteq \kappa \cap cof(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \to S$.

Observation

Friedman's problem implies $=^2_{S^2_n} \hookrightarrow_c =^2_{S^2_1}$.

Proof. Define a reduction $f : 2^{\omega_2} \to 2^{\omega_2}$, as follows. Given $\xi : \omega_2 \to 2$ and $\delta < \omega_2$, we let $f(\xi)(\delta) = 1$ iff $\delta \in S_1^2$ and $\{\alpha < \delta \mid \xi(\alpha) = 0\}$ is nonstationary in δ . Note that $f(\xi)(\delta)$ depends only on $\xi \upharpoonright \delta$, so that f is continuous. \blacktriangleright Suppose $\xi \neq_{S_0^2}^2 \eta$. Say, $S := \{\alpha \in S_0^2 \mid \xi(\alpha) = 1 \& \eta(\alpha) = 0\}$ is stationary. Let D be an arbitrary club in ω_2 . Fix a strictly increasing and continuous map $\varphi : \omega_1 \to S \cap D$.

Friedman's problem

For every stationary $S \subseteq \kappa \cap cof(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \to S$.

Observation

Friedman's problem implies $=^2_{S^2_n} \hookrightarrow_c =^2_{S^2_1}$.

Proof. Define a reduction $f : 2^{\omega_2} \to 2^{\omega_2}$, as follows. Given $\xi : \omega_2 \to 2$ and $\delta < \omega_2$, we let $f(\xi)(\delta) = 1$ iff $\delta \in S_1^2$ and $\{\alpha < \delta \mid \xi(\alpha) = 0\}$ is nonstationary in δ . Note that $f(\xi)(\delta)$ depends only on $\xi \upharpoonright \delta$, so that f is continuous. \blacktriangleright Suppose $\xi \neq_{S_0^2}^2 \eta$. Say, $S := \{\alpha \in S_0^2 \mid \xi(\alpha) = 1 \& \eta(\alpha) = 0\}$ is stationary. Let D be an arbitrary club in ω_2 . Fix a strictly increasing and continuous map $\varphi : \omega_1 \to S \cap D$. Set $d := \operatorname{Im}(\varphi)$, noting that $\delta := \sup(d)$ is in $D \cap S_1^2$.

Friedman's problem

For every stationary $S \subseteq \kappa \cap cof(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \to S$.

Observation

Friedman's problem implies $=^2_{S^2_n} \hookrightarrow_c =^2_{S^2_1}$.

Proof. Define a reduction $f : 2^{\omega_2} \to 2^{\omega_2}$, as follows. Given $\xi : \omega_2 \to 2$ and $\delta < \omega_2$, we let $f(\xi)(\delta) = 1$ iff $\delta \in S_1^2$ and $\{\alpha < \delta \mid \xi(\alpha) = 0\}$ is nonstationary in δ . Note that $f(\xi)(\delta)$ depends only on $\xi \upharpoonright \delta$, so that f is continuous. \blacktriangleright Suppose $\xi \neq_{S_0^2}^2 \eta$. Say, $S := \{\alpha \in S_0^2 \mid \xi(\alpha) = 1 \& \eta(\alpha) = 0\}$ is stationary. Let D be an arbitrary club in ω_2 . Fix a strictly increasing and continuous map $\varphi : \omega_1 \to S \cap D$. Set $d := \operatorname{Im}(\varphi)$, noting that $\delta := \sup(d)$ is in $D \cap S_1^2$. Then d is a club in δ disjoint from $\{\alpha < \delta \mid \xi(\alpha) = 0\}$, so that $f(\xi)(\delta) = 1$.

Friedman's problem

For every stationary $S \subseteq \kappa \cap cof(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \to S$.

Observation

Friedman's problem implies $=^2_{S^2_n} \hookrightarrow_c =^2_{S^2_1}$.

Proof. Define a reduction $f : 2^{\omega_2} \to 2^{\omega_2}$, as follows. Given $\xi : \omega_2 \to 2$ and $\delta < \omega_2$, we let $f(\xi)(\delta) = 1$ iff $\delta \in S_1^2$ and $\{\alpha < \delta \mid \xi(\alpha) = 0\}$ is nonstationary in δ . Note that $f(\xi)(\delta)$ depends only on $\xi \upharpoonright \delta$, so that f is continuous. Suppose $\xi \neq_{S_0^2}^2 \eta$. Say, $S := \{\alpha \in S_0^2 \mid \xi(\alpha) = 1 \& \eta(\alpha) = 0\}$ is stationary. Let D be an arbitrary club in ω_2 . Fix a strictly increasing and continuous map $\varphi : \omega_1 \to S \cap D$. Set $d := \operatorname{Im}(\varphi)$, noting that $\delta := \sup(d)$ is in $D \cap S_1^2$. Then d is a club in δ disjoint from $\{\alpha < \delta \mid \xi(\alpha) = 0\}$, so that $f(\xi)(\delta) = 1$. In contrast, $\{\alpha < \delta \mid \eta(\alpha) = 0\}$ contains the club d, so that $f(\eta)(\delta) = 0$.

Friedman's problem yields a reduction on the κ -antor space, 2^{κ} . Moreno proved that, for κ accessible, $=_{S}^{2} \hookrightarrow_{c} =_{S'}^{2}$ entails $=_{S} \hookrightarrow_{c} =_{S'}$. The latter (i.e., reduction in κ^{κ}) already follows from vanilla reflection:

Friedman's problem yields a reduction on the κ -antor space, 2^{κ} . Moreno proved that, for κ accessible, $=_{S}^{2} \hookrightarrow_{c} =_{S'}^{2}$ entails $=_{S} \hookrightarrow_{c} =_{S'}$. The latter (i.e., reduction in κ^{κ}) already follows from vanilla reflection:

If every stationary subset of S_0^2 reflects in S_1^2 , then $=_{S_0^2} \hookrightarrow_c =_{S_1^2}$.

Friedman's problem yields a reduction on the κ -antor space, 2^{κ} . Moreno proved that, for κ accessible, $=_{S}^{2} \hookrightarrow_{c} =_{S'}^{2}$ entails $=_{S} \hookrightarrow_{c} =_{S'}$. The latter (i.e., reduction in κ^{κ}) already follows from vanilla reflection:

If every stationary subset of S_0^2 reflects in S_1^2 , then $=_{S_0^2} \hookrightarrow_c =_{S_1^2}$.

More generally:

Theorem (Asperó-Hyttinen-Kulikov-Moreno, 2019)

Suppose X, S are stationary subsets of κ , with $S \subseteq cof(>\omega)$. If every stationary subset of X reflects in S, then $=_X \hookrightarrow_c =_S$.

Friedman's problem yields a reduction on the κ -antor space, 2^{κ} . Moreno proved that, for κ accessible, $=_{S}^{2} \hookrightarrow_{c} =_{S'}^{2}$ entails $=_{S} \hookrightarrow_{c} =_{S'}$. The latter (i.e., reduction in κ^{κ}) already follows from vanilla reflection:

If every stationary subset of S_0^2 reflects in S_1^2 , then $=_{S_0^2} \hookrightarrow_c =_{S_1^2}$.

More generally:

Theorem (Asperó-Hyttinen-Kulikov-Moreno, 2019)

Suppose X, S are stationary subsets of κ , with $S \subseteq cof(>\omega)$. If every stationary subset of X reflects in S, then $=_X \hookrightarrow_c =_S$.

Bear with me, as I overcomplicate their proof...

Suppose X, S are stationary subsets of κ , with $S \subseteq cof(>\omega)$. For any ordinal δ , let \mathcal{F}_{δ} denote the club filter on δ .

Suppose X, S are stationary subsets of κ , with $S \subseteq cof(>\omega)$. For any ordinal δ , let \mathcal{F}_{δ} denote the club filter on δ .

The following are equivalent

• Every stationary subset of X reflects in S.

Suppose X, S are stationary subsets of κ , with $S \subseteq cof(>\omega)$. For any ordinal δ , let \mathcal{F}_{δ} denote the club filter on δ .

The following are equivalent

- Every stationary subset of X reflects in S.
- ▶ For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_{\delta}^+$

Suppose X, S are stationary subsets of κ , with $S \subseteq cof(>\omega)$. For any ordinal δ , let \mathcal{F}_{δ} denote the club filter on δ .

The following are equivalent

- Every stationary subset of X reflects in S.
- ▶ For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_{\delta}^+$ and, for every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_{\delta}$.

Suppose X, S are stationary subsets of κ , and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\delta} \mid \delta \in S \rangle$ is a sequence such that each \mathcal{F}_{δ} is a filter on δ .

Filter reflection (aka, Fake reflection)

We say that $X \vec{\mathcal{F}}$ -reflects to S iff the two hold:

- **(**) For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_{\delta}^+$;
- **2** For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_{\delta}$.

Suppose X, S are stationary subsets of κ , and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\delta} \mid \delta \in S \rangle$ is a sequence such that each \mathcal{F}_{δ} is a filter on δ .

Filter reflection (aka, Fake reflection)

We say that $X \vec{\mathcal{F}}$ -reflects to S iff the two hold:

- **(**) For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_{\delta}^+$;
- **2** For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_{\delta}$.

Proposition

If there exists $\vec{\mathcal{F}}$ such that $X \vec{\mathcal{F}}$ -reflects to S, then $=_X \hookrightarrow_c =_S$.

Suppose X, S are stationary subsets of κ , and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\delta} \mid \delta \in S \rangle$ is a sequence such that each \mathcal{F}_{δ} is a filter on δ .

Filter reflection (aka, Fake reflection)

We say that $X \vec{\mathcal{F}}$ -reflects to S iff the two hold:

- **(**) For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_{\delta}^+$;
- **2** For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_{\delta}$.

Proposition

If there exists $\vec{\mathcal{F}}$ such that $X \vec{\mathcal{F}}$ -reflects to S, then $=_X \hookrightarrow_c =_S$.

Proof. For $\delta \in S$ and $\eta, \xi \in {}^{\delta}\kappa$, let $\eta \sim_{\delta} \xi$ iff $\{\alpha < \delta \mid \eta(\alpha) = \xi(\alpha)\} \in \mathcal{F}_{\delta}$.

Suppose X, S are stationary subsets of κ , and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\delta} \mid \delta \in S \rangle$ is a sequence such that each \mathcal{F}_{δ} is a filter on δ .

Filter reflection (aka, Fake reflection)

We say that $X \vec{\mathcal{F}}$ -reflects to S iff the two hold:

- **(**) For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_{\delta}^+$;
- **2** For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_{\delta}$.

Proposition

If there exists $\vec{\mathcal{F}}$ such that $X \vec{\mathcal{F}}$ -reflects to S, then $=_X \hookrightarrow_c =_S$.

Proof. For $\delta \in S$ and $\eta, \xi \in {}^{\delta}\kappa$, let $\eta \sim_{\delta} \xi$ iff $\{\alpha < \delta \mid \eta(\alpha) = \xi(\alpha)\} \in \mathcal{F}_{\delta}$. Evidently, $|{}^{\delta}\kappa/\sim_{\delta}| \le \kappa^{<\kappa} = \kappa$, so we may identify $\bigcup_{\delta \in S} {}^{\delta}\kappa/\sim_{\delta}$ with κ .

Suppose X, S are stationary subsets of κ , and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\delta} \mid \delta \in S \rangle$ is a sequence such that each \mathcal{F}_{δ} is a filter on δ .

Filter reflection (aka, Fake reflection)

We say that $X \vec{\mathcal{F}}$ -reflects to S iff the two hold:

- **(**) For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_{\delta}^+$;
- **2** For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_{\delta}$.

Proposition

If there exists $\vec{\mathcal{F}}$ such that $X \vec{\mathcal{F}}$ -reflects to S, then $=_X \hookrightarrow_c =_S$.

Proof. For $\delta \in S$ and $\eta, \xi \in {}^{\delta}\kappa$, let $\eta \sim_{\delta} \xi$ iff $\{\alpha < \delta \mid \eta(\alpha) = \xi(\alpha)\} \in \mathcal{F}_{\delta}$. Evidently, $|{}^{\delta}\kappa/\sim_{\delta}| \le \kappa^{<\kappa} = \kappa$, so we may identify $\bigcup_{\delta \in S} {}^{\delta}\kappa/\sim_{\delta}$ with κ . Define a continuous map $f : \kappa^{\kappa} \to \kappa^{\kappa}$ by letting $f(\xi)(\delta) = [\xi \upharpoonright \delta]_{\sim_{\delta}}$.

Suppose X, S are stationary subsets of κ , and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\delta} \mid \delta \in S \rangle$ is a sequence such that each \mathcal{F}_{δ} is a filter on δ .

Filter reflection (aka, Fake reflection)

We say that $X \vec{\mathcal{F}}$ -reflects to S iff the two hold:

- **(**) For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_{\delta}^+$;
- **2** For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_{\delta}$.

Proposition

If there exists $\vec{\mathcal{F}}$ such that $X \vec{\mathcal{F}}$ -reflects to S, then $=_X \hookrightarrow_c =_S$.

Proof. For $\delta \in S$ and $\eta, \xi \in {}^{\delta}\kappa$, let $\eta \sim_{\delta} \xi$ iff $\{\alpha < \delta \mid \eta(\alpha) = \xi(\alpha)\} \in \mathcal{F}_{\delta}$. Evidently, $|{}^{\delta}\kappa/\sim_{\delta}| \le \kappa^{<\kappa} = \kappa$, so we may identify $\bigcup_{\delta \in S} {}^{\delta}\kappa/\sim_{\delta}$ with κ . Define a continuous map $f : \kappa^{\kappa} \to \kappa^{\kappa}$ by letting $f(\xi)(\delta) = [\xi \upharpoonright \delta]_{\sim_{\delta}}$. \blacktriangleright If $\xi =_X \eta$, then, by Clause (2), $f(\xi) =_S f(\eta)$.

Suppose X, S are stationary subsets of κ , and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\delta} \mid \delta \in S \rangle$ is a sequence such that each \mathcal{F}_{δ} is a filter on δ .

Filter reflection (aka, Fake reflection)

We say that $X \vec{\mathcal{F}}$ -reflects to S iff the two hold:

- **(**) For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_{\delta}^+$;
- **2** For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_{\delta}$.

Proposition

If there exists $\vec{\mathcal{F}}$ such that $X \vec{\mathcal{F}}$ -reflects to S, then $=_X \hookrightarrow_c =_S$.

Proof. For $\delta \in S$ and $\eta, \xi \in {}^{\delta}\kappa$, let $\eta \sim_{\delta} \xi$ iff $\{\alpha < \delta \mid \eta(\alpha) = \xi(\alpha)\} \in \mathcal{F}_{\delta}$. Evidently, $|{}^{\delta}\kappa/\sim_{\delta}| \le \kappa^{<\kappa} = \kappa$, so we may identify $\bigcup_{\delta \in S} {}^{\delta}\kappa/\sim_{\delta}$ with κ . Define a continuous map $f : \kappa^{\kappa} \to \kappa^{\kappa}$ by letting $f(\xi)(\delta) = [\xi \upharpoonright \delta]_{\sim_{\delta}}$. \blacktriangleright If $\xi \neq_X \eta$, then, by Clause (1), $f(\xi) \neq_S f(\eta)$.
Filter reflection (aka, Fake reflection)

We say that $X \vec{\mathcal{F}}$ -reflects to S iff the two hold:

- **(**) For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_{\delta}^+$;
- **2** For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_{\delta}$.

Consistency strength

Filter reflection (aka, Fake reflection)

We say that $X \vec{\mathcal{F}}$ -reflects to S iff the two hold:

- **(**) For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_{\delta}^+$;
- **2** For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_{\delta}$.

Just force it

Unlike stationary reflection, fake reflection at the levels of successor cardinals $\kappa = \lambda^+$ may be forced without appealing to large cardinals! Furthermore, forcing over models of GCH preserves the cardinals structure.

Filter reflection (aka, Fake reflection)

We say that $X \vec{\mathcal{F}}$ -reflects to S iff the two hold:

- **(**) For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_{\delta}^+$;
- **2** For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_{\delta}$.

Just force it

Unlike stationary reflection, fake reflection at the levels of successor cardinals $\kappa = \lambda^+$ may be forced without appealing to large cardinals! Furthermore, forcing over models of GCH preserves the cardinals structure.

Let us take a closer look at this principle...

Filter reflection (aka, Fake reflection)

We say that $X \vec{\mathcal{F}}$ -reflects to S iff the two hold:

- **(**) For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_{\delta}^+$;
- **2** For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_{\delta}$.

About Clause (1):

• Sequences $\vec{\mathcal{F}}$ satisfying just Clause (1) exist in ZFC, where each \mathcal{F}_{δ} is principal.

Filter reflection (aka, Fake reflection)

We say that $X \vec{\mathcal{F}}$ -reflects to S iff the two hold:

- **(**) For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_{\delta}^+$;
- **2** For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_{\delta}$.

About Clause (1):

- Sequences $\vec{\mathcal{F}}$ satisfying just Clause (1) exist in ZFC, where each \mathcal{F}_{δ} is principal.
- A consistent non-principal example is given by Moore's work on *trace reflection* in models of MRP.

Filter reflection (aka, Fake reflection)

We say that $X \vec{\mathcal{F}}$ -reflects to S iff the two hold:

- **(**) For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_{\delta}^+$;
- **2** For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_{\delta}$.

About Clause (2):

 Sequences *F* satisfying just Clause (2) exist in ZFC, letting *F_δ* := CUB(δ).

Filter reflection (aka, Fake reflection)

We say that $X \vec{\mathcal{F}}$ -reflects to S iff the two hold:

- **(**) For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_{\delta}^+$;
- **2** For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_{\delta}$.

About Clause (2):

- Sequences $\vec{\mathcal{F}}$ satisfying just Clause (2) exist in ZFC, letting $\mathcal{F}_{\delta} := \text{CUB}(\delta)$.
- If S is ineffable and Clause (2) holds, then $\mathcal{F}_{\delta} \supseteq \text{CUB}(\delta)$.

Filter reflection (aka, Fake reflection)

We say that $X \vec{\mathcal{F}}$ -reflects to S iff the two hold:

- **(**) For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_{\delta}^+$;
- **2** For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_{\delta}$.

About Clause (2):

- Sequences $\vec{\mathcal{F}}$ satisfying just Clause (2) exist in ZFC, letting $\mathcal{F}_{\delta} := \text{CUB}(\delta)$.
- If S is ineffable and Clause (2) holds, then $\mathcal{F}_{\delta} \supseteq \text{CUB}(\delta)$.
- If each \mathcal{F}_{δ} has a small base, then Clause (2) is a strong club guessing principle.

Filter reflection (aka, Fake reflection)

We say that $X \vec{\mathcal{F}}$ -reflects to S iff the two hold:

- **(**) For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_{\delta}^+$;
- **2** For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_{\delta}$.

About Clause (2):

- Sequences $\vec{\mathcal{F}}$ satisfying just Clause (2) exist in ZFC, letting $\mathcal{F}_{\delta} := \text{CUB}(\delta)$.
- If S is ineffable and Clause (2) holds, then $\mathcal{F}_{\delta} \supseteq \text{CUB}(\delta)$.
- If each *F_δ* has a small base, then Clause (2) is a strong club guessing principle. Such a sequence is easily derivable from *◊*^{*}_S.

Filter reflection with diamond

We say that $X \not\in F$ -reflects to S with \diamondsuit iff there is $\langle Y_{\delta} \mid \delta \in S
angle$ such that:

- **9** For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$, $Y_{\delta} = Y \cap \delta \in \mathcal{F}_{\delta}^+$;
- **2** For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_{\delta}$.

Filter reflection with diamond

We say that $X \not\in F$ -reflects to S with \diamondsuit iff there is $\langle Y_{\delta} | \delta \in S \rangle$ such that: • For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$, $Y_{\delta} = Y \cap \delta \in \mathcal{F}_{\delta}^+$;

2 For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_{\delta}$.

Proposition

If
$$X \vec{\mathcal{F}}$$
-reflects to S with \diamondsuit , then $=_X \hookrightarrow_c =_S^2$.

Filter reflection with diamond

We say that X $\vec{\mathcal{F}}$ -reflects to S with \diamondsuit iff there is $\langle Y_{\delta} | \delta \in S \rangle$ such that: **1** For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$, $Y_{\delta} = Y \cap \delta \in \mathcal{F}_{\delta}^+$; **2** For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_{\delta}$.

Proposition

If X
$$\vec{\mathcal{F}}$$
-reflects to S with \diamondsuit , then $=_X \hookrightarrow_c =_S^2$.

Fake it till you make it

Fake reflection makes sense even for S that concentrates on points of countable cofinality, so we consistently get a complete cycle of reductions:

$$=_{S_1^2} \hookrightarrow_c =_{S_0^2}^2 \hookrightarrow_c =_{S_0^2} \hookrightarrow_c =_{S_1^2}^2 \hookrightarrow_c =_{S_1^2} \cdot$$

The special case X CUB-reflects to S with \diamond appears in the work of [Friedman-Hyttinen-Kulikov, 2014] under the name X \diamond -reflects to S.

The special case X CUB-reflects to S with \diamond appears in the work of [Friedman-Hyttinen-Kulikov, 2014] under the name X \diamond -reflects to S. They proved it implies $=_X^2 \hookrightarrow_c =_S^2$, but we now know that it furthermore implies $=_X \hookrightarrow_c =_S^2$.

The special case X CUB-reflects to S with \diamond appears in the work of [Friedman-Hyttinen-Kulikov, 2014] under the name X \diamond -reflects to S. They proved it implies $=_X^2 \hookrightarrow_c =_S^2$, but we now know that it furthermore implies $=_X \hookrightarrow_c =_S^2$.

Theorem (Sun, 1993)

If κ is ineffable, then \Diamond_{κ}^{1} holds. I.e., there is a sequence $\langle Y_{\delta} | \delta < \kappa \rangle$ s.t., for every $Y \subseteq \kappa$, $\{\delta < \kappa | Y_{\delta} = Y \cap \delta\}$ is a Π_{1}^{1} -indescribable set.

The special case X CUB-reflects to S with \diamond appears in the work of [Friedman-Hyttinen-Kulikov, 2014] under the name X \diamond -reflects to S. They proved it implies $=_X^2 \hookrightarrow_c =_S^2$, but we now know that it furthermore implies $=_X \hookrightarrow_c =_S^2$.

Theorem (Sun, 1993)

If κ is ineffable, then $\diamondsuit_{\kappa}^{1}$ holds. I.e., there is a sequence $\langle Y_{\delta} | \delta < \kappa \rangle$ s.t., for every $Y \subseteq \kappa$, $\{\delta < \kappa | Y_{\delta} = Y \cap \delta\}$ is a Π_{1}^{1} -indescribable set. In particular, $\kappa \diamondsuit$ -reflects to κ .

The special case X CUB-reflects to S with \diamond appears in the work of [Friedman-Hyttinen-Kulikov, 2014] under the name X \diamond -reflects to S. They proved it implies $=_X^2 \hookrightarrow_c =_S^2$, but we now know that it furthermore implies $=_X \hookrightarrow_c =_S^2$.

Theorem (Sun, 1993)

If S is ineffable, then \Diamond_{S}^{1} holds. In particular, $\kappa \diamond$ -reflects to S.

The special case X CUB-reflects to S with \diamond appears in the work of [Friedman-Hyttinen-Kulikov, 2014] under the name X \diamond -reflects to S. They proved it implies $=_X^2 \hookrightarrow_c =_S^2$, but we now know that it furthermore implies $=_X \hookrightarrow_c =_S^2$.

Theorem (Sun, 1993)

If S is ineffable, then \Diamond_{S}^{1} holds. In particular, $\kappa \diamond$ -reflects to S.

Theorem

• If S is weakly compact and \diamondsuit_{S}^{*} holds, then so does \diamondsuit_{S}^{1} .

The special case X CUB-reflects to S with \diamond appears in the work of [Friedman-Hyttinen-Kulikov, 2014] under the name X \diamond -reflects to S. They proved it implies $=_X^2 \hookrightarrow_c =_S^2$, but we now know that it furthermore implies $=_X \hookrightarrow_c =_S^2$.

Theorem (Sun, 1993)

If S is ineffable, then \Diamond_{S}^{1} holds. In particular, $\kappa \diamond$ -reflects to S.

Theorem

- If S is weakly compact and \diamondsuit_{S}^{*} holds, then so does \diamondsuit_{S}^{1} .
- If κ is weakly compact, λ ∈ Reg(κ) and GCH holds, then after forcing with Col(λ, <κ), λ⁺ ∩ cof(<λ) ◊-reflects to λ⁺ ∩ cof(λ).

The special case $X \ CUB$ -reflects to S with \diamond appears in the work of [Friedman-Hyttinen-Kulikov, 2014] under the name $X \diamond$ -reflects to S. They proved it implies $=_X^2 \hookrightarrow_c =_S^2$, but we now know that it furthermore implies $=_X \hookrightarrow_c =_S^2$.

Theorem (Sun, 1993)

If S is ineffable, then \Diamond_{S}^{1} holds. In particular, $\kappa \diamond$ -reflects to S.

Theorem

- If S is weakly compact and \diamondsuit_{S}^{*} holds, then so does \diamondsuit_{S}^{1} .
- If κ is weakly compact, λ ∈ Reg(κ) and GCH holds, then after forcing with Col(λ, <κ), λ⁺ ∩ cof(<λ) ◊-reflects to λ⁺ ∩ cof(λ).
- Assuming MM (Martin's Maximum), if ◊_{κ∩cof(ω)} holds, then κ ∩ cof(ω) ◊-reflects to κ ∩ cof(ω₁).

The special case X CUB-reflects to S with \diamond appears in the work of [Friedman-Hyttinen-Kulikov, 2014] under the name X \diamond -reflects to S. They proved it implies $=_X^2 \hookrightarrow_c =_S^2$, but we now know that it furthermore implies $=_X \hookrightarrow_c =_S^2$.

Theorem (Sun, 1993)

If S is ineffable, then \Diamond_{S}^{1} holds. In particular, $\kappa \diamond$ -reflects to S.

Theorem

- If S is weakly compact and \diamondsuit_{S}^{*} holds, then so does \diamondsuit_{S}^{1} .
- If κ is weakly compact, λ ∈ Reg(κ) and GCH holds, then after forcing with Col(λ, <κ), λ⁺ ∩ cof(<λ) ◊-reflects to λ⁺ ∩ cof(λ).
- Assuming MM (Martin's Maximum), if ◊_{κ∩cof(ω)} holds, then κ ∩ cof(ω) ◊-reflects to κ ∩ cof(ω₁).
- Whenever Add(κ, 1) forces that every stationary subset of X reflects in S, it moreover forces that X ◊-reflects to S.

Definition (Devlin, 1982)

- \Diamond_{S}^{\sharp} asserts the existence of a sequence $\langle N_{\delta} \mid \delta \in S \rangle$ satisfying (1)–(3):
 - each N_{δ} is a p.r.-closed transitive set of size $|\delta| + \aleph_0 \& \delta + 1 \subseteq N_{\delta}$;

Definition (Devlin, 1982)

- $\diamondsuit_{S}^{\sharp}$ asserts the existence of a sequence $\langle N_{\delta} \mid \delta \in S \rangle$ satisfying (1)–(3):
 - each N_{δ} is a p.r.-closed transitive set of size $|\delta| + \aleph_0 \& \delta + 1 \subseteq N_{\delta}$;
 - Solution for every Y ⊆ κ, there is a club D ⊆ κ such that, for all δ ∈ D ∩ S, Y ∩ δ, D ∩ δ ∈ N_δ;

Definition (Devlin, 1982)

- $\diamondsuit_{S}^{\sharp}$ asserts the existence of a sequence $\langle N_{\delta} \mid \delta \in S \rangle$ satisfying (1)–(3):
 - each N_{δ} is a p.r.-closed transitive set of size $|\delta| + \aleph_0 \& \delta + 1 \subseteq N_{\delta}$;
 - ② for every Y ⊆ κ, there is a club D ⊆ κ such that, for all $\delta \in D \cap S$, Y ∩ δ, D ∩ δ ∈ N_δ;
 - **③** whenever $\langle \kappa, \in, (A_n)_{n \in \omega} \rangle \models_{H(\kappa^+)} \phi$, with ϕ a Π¹₂-sentence, there are stationarily many $\delta \in S$ such that $\langle \delta, \in, (A_n \upharpoonright \delta)_{n \in \omega} \rangle \models_{N_\delta} \phi$.

Definition (Devlin, 1982)

- $\diamondsuit_{S}^{\sharp}$ asserts the existence of a sequence $\langle N_{\delta} \mid \delta \in S \rangle$ satisfying (1)–(3):
 - each N_{δ} is a p.r.-closed transitive set of size $|\delta| + \aleph_0 \& \delta + 1 \subseteq N_{\delta}$;
 - ② for every Y ⊆ κ, there is a club D ⊆ κ such that, for all δ ∈ D ∩ S, Y ∩ δ, D ∩ δ ∈ N_δ;
 - So whenever (κ, ∈, (A_n)_{n∈ω}) ⊨_{H(κ⁺)} φ, with φ a Π¹₂-sentence, there are stationarily many δ ∈ S such that (δ, ∈, (A_n ↾ δ)_{n∈ω}) ⊨_{N_δ} φ.

Note: Clauses (1) and (2) amount to \diamondsuit_{S}^{+} . Unlike \diamondsuit_{S}^{+} , for every \vec{N} witnessing $\diamondsuit_{S}^{\sharp}$, there is a stationary $T \subseteq S$ such that $\vec{N} \upharpoonright T$ fails to witness $\diamondsuit_{T}^{\sharp}$.

Definition (Devlin, 1982)

- $\diamondsuit_{S}^{\sharp}$ asserts the existence of a sequence $\langle N_{\delta} \mid \delta \in S \rangle$ satisfying (1)–(3):
 - each N_{δ} is a p.r.-closed transitive set of size $|\delta| + \aleph_0 \& \delta + 1 \subseteq N_{\delta}$;
 - Solution for every Y ⊆ κ, there is a club D ⊆ κ such that, for all $\delta \in D \cap S$, Y ∩ δ, D ∩ δ ∈ N_δ;
 - **③** whenever $\langle \kappa, \in, (A_n)_{n \in \omega} \rangle \models_{H(\kappa^+)} \phi$, with ϕ a Π¹₂-sentence, there are stationarily many $\delta \in S$ such that $\langle \delta, \in, (A_n \upharpoonright \delta)_{n \in \omega} \rangle \models_{N_\delta} \phi$.

Theorem (Devlin, 1982)

If V = L, then for every regular uncountable cardinal κ , $\diamondsuit_{\kappa}^{\sharp}$ holds iff κ is not ineffable.

Definition (Devlin, 1982)

- $\diamondsuit_{S}^{\sharp}$ asserts the existence of a sequence $\langle N_{\delta} \mid \delta \in S \rangle$ satisfying (1)–(3):
 - each N_{δ} is a p.r.-closed transitive set of size $|\delta| + \aleph_0 \& \delta + 1 \subseteq N_{\delta}$;
 - ② for every Y ⊆ κ, there is a club D ⊆ κ such that, for all $\delta \in D \cap S$, Y ∩ δ, D ∩ δ ∈ N_δ;
 - **③** whenever $\langle \kappa, \in, (A_n)_{n \in \omega} \rangle \models_{H(\kappa^+)} \phi$, with ϕ a Π¹₂-sentence, there are stationarily many $\delta \in S$ such that $\langle \delta, \in, (A_n \upharpoonright \delta)_{n \in \omega} \rangle \models_{N_\delta} \phi$.

Theorem (Devlin, 1982)

If V = L, then for every regular uncountable cardinal κ , $\diamondsuit_{\kappa}^{\sharp}$ holds iff κ is not ineffable. In fact, for every stationary subset S of a regular uncountable cardinal, $\diamondsuit_{S}^{\sharp}$ holds iff S is not ineffable.

Definition (Devlin, 1982)

- $\diamondsuit_{S}^{\sharp}$ asserts the existence of a sequence $\langle N_{\delta} \mid \delta \in S \rangle$ satisfying (1)–(3):
 - each N_{δ} is a p.r.-closed transitive set of size $|\delta| + \aleph_0 \& \delta + 1 \subseteq N_{\delta}$;
 - Solution for every Y ⊆ κ, there is a club D ⊆ κ such that, for all $\delta \in D \cap S$, Y ∩ δ, D ∩ δ ∈ N_δ;
 - **③** whenever $\langle \kappa, \in, (A_n)_{n \in \omega} \rangle \models_{H(\kappa^+)} \phi$, with ϕ a Π¹₂-sentence, there are stationarily many $\delta \in S$ such that $\langle \delta, \in, (A_n \upharpoonright \delta)_{n \in \omega} \rangle \models_{N_\delta} \phi$.

Proposition

If $\diamondsuit_{S}^{\sharp}$ holds, then, $\kappa \vec{\mathcal{F}}$ -reflects to S with \diamondsuit (for some choice of $\vec{\mathcal{F}}$).

Definition (Devlin, 1982)

- $\diamondsuit_{S}^{\sharp}$ asserts the existence of a sequence $\langle N_{\delta} \mid \delta \in S \rangle$ satisfying (1)–(3):
 - each N_{δ} is a p.r.-closed transitive set of size $|\delta| + \aleph_0 \& \delta + 1 \subseteq N_{\delta}$;
 - ② for every Y ⊆ κ, there is a club D ⊆ κ such that, for all $\delta \in D \cap S$, Y ∩ δ, D ∩ δ ∈ N_δ;
 - **③** whenever $\langle \kappa, \in, (A_n)_{n \in \omega} \rangle \models_{H(\kappa^+)} \phi$, with ϕ a Π¹₂-sentence, there are stationarily many $\delta \in S$ such that $\langle \delta, \in, (A_n \upharpoonright \delta)_{n \in \omega} \rangle \models_{N_\delta} \phi$.

Proposition

If $\diamondsuit_{S}^{\sharp}$ holds, then, $\kappa \vec{\mathcal{F}}$ -reflects to S with \diamondsuit (for some choice of $\vec{\mathcal{F}}$).

Recalling Sun's theorem about ineffable sets, we infer:

In *L*, for every regular uncountable cardinal κ , and every stationary $S \subseteq \kappa$, there is a sequence of filters $\vec{\mathcal{F}}_S$ for which $\kappa \vec{\mathcal{F}}_S$ -reflects to *S* with \Diamond .

Definition (Devlin, 1982)

- $\diamondsuit_{S}^{\sharp}$ asserts the existence of a sequence $\langle N_{\delta} \mid \delta \in S \rangle$ satisfying (1)–(3):
 - each N_{δ} is a p.r.-closed transitive set of size $|\delta| + \aleph_0 \& \delta + 1 \subseteq N_{\delta}$;
 - ② for every Y ⊆ κ, there is a club D ⊆ κ such that, for all $\delta \in D \cap S$, Y ∩ δ, D ∩ δ ∈ N_δ;
 - **③** whenever $\langle \kappa, \in, (A_n)_{n \in \omega} \rangle \models_{H(\kappa^+)} \phi$, with ϕ a Π¹₂-sentence, there are stationarily many $\delta \in S$ such that $\langle \delta, \in, (A_n \upharpoonright \delta)_{n \in \omega} \rangle \models_{N_\delta} \phi$.

Corollary

In L, for all two stationary $S, S' \subseteq \kappa, =_S \hookrightarrow_c =_{S'}^2$.

Recalling Sun's theorem about ineffable sets, we infer:

In *L*, for every regular uncountable cardinal κ , and every stationary $S \subseteq \kappa$, there is a sequence of filters $\vec{\mathcal{F}}_S$ for which $\kappa \vec{\mathcal{F}}_S$ -reflects to *S* with \diamond .

It takes more work, yet, all of the above generalize to arbitrary Σ_1^1 -equivalence relations (projections of closed sets in $(\kappa^{\kappa})^3$ or $(2^{\kappa})^3$), and to Σ_1^1 -quasi-orders (reflexive+transitive).

It takes more work, yet, all of the above generalize to arbitrary Σ_1^1 -equivalence relations (projections of closed sets in $(\kappa^{\kappa})^3$ or $(2^{\kappa})^3$), and to Σ_1^1 -quasi-orders (reflexive+transitive).

Natural quasi-orders on κ^{κ} and 2^{κ}

For $\eta, \xi \in \kappa^{\kappa}$, let $\eta \leq_{S} \xi$ iff $\{\alpha \in S \mid \eta(\alpha) > \xi(\alpha)\}$ is nonstationary.

It takes more work, yet, all of the above generalize to arbitrary Σ_1^1 -equivalence relations (projections of closed sets in $(\kappa^{\kappa})^3$ or $(2^{\kappa})^3$), and to Σ_1^1 -quasi-orders (reflexive+transitive).

Natural quasi-orders on κ^{κ} and 2^{κ}

- ▶ For $\eta, \xi \in \kappa^{\kappa}$, let $\eta \leq_{S} \xi$ iff $\{\alpha \in S \mid \eta(\alpha) > \xi(\alpha)\}$ is nonstationary.
- ▶ For $\eta, \xi \in 2^{\kappa}$, let $\eta \subseteq_{S} \xi$ iff $\{\alpha \in S \mid \eta(\alpha) > \xi(\alpha)\}$ is nonstationary.

It takes more work, yet, all of the above generalize to arbitrary Σ_1^1 -equivalence relations (projections of closed sets in $(\kappa^{\kappa})^3$ or $(2^{\kappa})^3$), and to Σ_1^1 -quasi-orders (reflexive+transitive).

Natural quasi-orders on κ^{κ} and 2^{κ}

- ▶ For $\eta, \xi \in \kappa^{\kappa}$, let $\eta \leq_{S} \xi$ iff $\{\alpha \in S \mid \eta(\alpha) > \xi(\alpha)\}$ is nonstationary.
- ▶ For $\eta, \xi \in 2^{\kappa}$, let $\eta \subseteq_{S} \xi$ iff $\{\alpha \in S \mid \eta(\alpha) > \xi(\alpha)\}$ is nonstationary.

Theorem

 \Diamond_{S}^{\sharp} implies that $Q \hookrightarrow_{c} \subseteq_{S}$ for every Σ_{1}^{1} -quasi-order Q on κ^{κ} . In particular, \Diamond_{S}^{\sharp} implies that $=_{S}^{2}$ is a Σ_{1}^{1} -complete equivalence relation.

It takes more work, yet, all of the above generalize to arbitrary Σ_1^1 -equivalence relations (projections of closed sets in $(\kappa^{\kappa})^3$ or $(2^{\kappa})^3$), and to Σ_1^1 -quasi-orders (reflexive+transitive).

Natural quasi-orders on κ^{κ} and 2^{κ}

- ▶ For $\eta, \xi \in \kappa^{\kappa}$, let $\eta \leq_{S} \xi$ iff $\{\alpha \in S \mid \eta(\alpha) > \xi(\alpha)\}$ is nonstationary.
- ▶ For $\eta, \xi \in 2^{\kappa}$, let $\eta \subseteq_{S} \xi$ iff $\{\alpha \in S \mid \eta(\alpha) > \xi(\alpha)\}$ is nonstationary.

Theorem

 \Diamond_{S}^{\sharp} implies that $Q \hookrightarrow_{c} \subseteq_{S}$ for every Σ_{1}^{1} -quasi-order Q on κ^{κ} . In particular, \Diamond_{S}^{\sharp} implies that $=_{S}^{2}$ is a Σ_{1}^{1} -complete equivalence relation.

By [Friedman-Wu-Zdomskyy, 2015], it is consistent with GCH that for a successor cardinal κ , for all stationary $S \subseteq \kappa$, $=_S^2$ is Δ_1^1 .

It takes more work, yet, all of the above generalize to arbitrary Σ_1^1 -equivalence relations (projections of closed sets in $(\kappa^{\kappa})^3$ or $(2^{\kappa})^3$), and to Σ_1^1 -quasi-orders (reflexive+transitive).

Natural quasi-orders on κ^{κ} and 2^{κ}

- ▶ For $\eta, \xi \in \kappa^{\kappa}$, let $\eta \leq_{S} \xi$ iff $\{\alpha \in S \mid \eta(\alpha) > \xi(\alpha)\}$ is nonstationary.
- ▶ For $\eta, \xi \in 2^{\kappa}$, let $\eta \subseteq_{S} \xi$ iff $\{\alpha \in S \mid \eta(\alpha) > \xi(\alpha)\}$ is nonstationary.

Theorem

 \Diamond_{S}^{\sharp} implies that $Q \hookrightarrow_{c} \subseteq_{S}$ for every Σ_{1}^{1} -quasi-order Q on κ^{κ} . In particular, \Diamond_{S}^{\sharp} implies that $=_{S}^{2}$ is a Σ_{1}^{1} -complete equivalence relation, while \Diamond_{S}^{+} does not.

By [Friedman-Wu-Zdomskyy, 2015], it is consistent with GCH that for a successor cardinal κ , for all stationary $S \subseteq \kappa$, $=_{S}^{2}$ is Δ_{1}^{1} .
Comparing theories, revisited

Devlin's $\diamondsuit_{S}^{\sharp}$ may become an essential tool for the model theorist...

Theorem

Let T be a complete first-order countable relational theory. In any of the following cases, \cong_T is Σ_1^1 -complete:

- $\kappa = \lambda^+$, $\lambda^{<\lambda} = \lambda$, $\diamondsuit_{\kappa \cap cof(\lambda)}^{\sharp}$ holds and T is unstable;
- κ is inaccessible, $\diamondsuit_{\kappa\cap\operatorname{cof}((2^{\aleph_0})^+)}^{\sharp}$ and T is superstable with S-DOP;
- κ is \aleph_0 -inaccessible, $\diamondsuit_{\kappa\cap\operatorname{cof}(\aleph_0)}^{\sharp}$ holds, and T is stable unsuperstable.