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Conventions

x and A\ denote infinite cardinals;

Reg(k) := {0 < k| cf(0) =6 > No};

ES ={a<k|cf(a) > x} and EL, = {a <k |cf(a) > x};
[A¥ :={a S A|lal = x} and [A]™*:={a C A[la| <x}:

For a, b, nonempty sets of ordinals, a < b means that sup(a) < min(b).
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Chain conditions

Let P := (P, <) denote a poset.

Definition
For a subset X C P, we write A X :={z € P|Vx e X(z <x)}.
We say that x,y € P are compatible iff A{x,y} # 0.

Definition
e P satisfies the s-cc iff VA € [P]® 3X € [A]2 A X # 0;
e Pis k-Knaster iff VA € [P]* 3B € [A]" VX € [B]> AX # 0;
e P has precaliber « iff VA € [P]* 3B € [A]" VX € [B]<* AX #0.

e P is k-stationarily layered iff {Q € [P]<" | (Q, <) is a regular suborder of P} is
stationary in [P]<".
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The product order (aka, coordinatewise order)

Given posets (P1, <1), (P2, <5), consider their product (P; x P>, <), where
(x,y) Q(X,y") iff x <1 x and y <5 y'. (Longer products are defined analogously.)

Question
Suppose that (P1,<1), (P2, <p) satisfy the k-cc. Must their product satisfy the x-cc?

Sufficient condition
If one of the posets is moreover k-Knaster, then “yes".

Definition
Let C, denote the assertion that the product of any two x-cc posets is again k-cc.

Note: It suffices to consider squares
C,. iff P? is k-cc for every r-cc poset P.

5/24



Basic facts

Fact 1. C, holds for Kk = N,.

We moreover show that every k-cc poset (P, <) is k-Knaster.

Given A € [P]*, define a coloring ¢ : [A]2 — 2 via c(x,y) = 1 iff A{x,y} # 0.

By Ramsey's theorem, there exists B € [A]” which is c-homogeneous.

As |B| = k and (P, <) satisfies the s-cc, there exists X € [B]? with A X # (). But B is
c-homogeneous, and hence, for every X € [B]?, A X # (), so that B is as sought. [

Fact 2. C, holds for x weakly compact.

K is weakly compact iff k > Ng and for every c : [k]? — 2, there exists B € [x]* which
is homogeneous for c. O

Fact 3. C, holds for k singular strong limit.

e Erdés and Tarski (1943): If x is a singular cardinal and a poset P satisfies the x-cc,
then P satisfies the A-cc for some A < k.
e Kurepa (1963): If P satisfies the AT-cc, then P? satisfies the (2*)*-cc. O
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The case k = V.

Question (Marczewski, 1947)
Is Cx, (aka, “productivity of the ccc”) true?

Answers

» (Kurepa, 1952): Cy, entails Souslin's hypothesis.

» (Kunen;Rowbottom;Solovay;Hajnal-Juhdsz;Juhdsz, 1970's) MAy, entails Cy,;

<« (Todorcevic-Velickovic, 1987) MAy, iff every ccc poset has precaliber Ny;

» (Roitman, 1979): After adding random/Cohen real, Cy, fails;

» (Fleissner, 1978): After adding x many Cohen reals, there exists a ccc poset P,
such that P2 has antichain of size k:

» (Galvin, 1980) after (Laver, unpublished): ¢ = X; refutes Cy,.

» (Todorcevic, 1988): b = R; refutes Cy,.

Open problem

i ?
Is MAy, equivalent to Cy,? o



The case k > N;. Counterexamples in ZFC

Theorem (Todorcevic, 1985)

Cef(2n4,) fails for every limit ordinal a.
Moreover, if \ is a cardinal for which there exists a linear order of size 2* with a dense
subset of size A, then C,, fails, for kK = cf(2A).

Theorem (Todorcevic, 1986)
Cy+ fails whenever X singular, and 0<F(") < X for all 6§ < \.

Theorem (Todorcevic, 1989)
Cy+ fails whenever X singular, and 2¢F(%) < X,

Theorem (Shelah, 1994)
Cy+ fails whenever A singular.
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More counterexamples in ZFC
Theorem (Shelah, 1990-1997)

Cy+ fails whenever X is a regular cardinal > N;. Specifically:
> [Sh:280]: A > 2%o;
> [Sh:327]: A > Ny;
» [Sh:572]: A = Ny.

Corollary
C, fails for every successor cardinal k > Nj.

Conjecture (Todorcevic, 1980's)

For every regular cardinal k > RNy, Cy iff k is weakly compact.

Theorem (2014)

For every regular cardinal x > Ry, C, entails (k is weakly compact)*.
In fact, C,; entails -0J(x) and that every stationary subset of & reflects.
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Longer products and stronger chain conditions

Shortly after our work on Todorcevic's conjecture, Liicke and his colleagues addressed
analogous questions involving stronger variations of the x-cc. We mention three results:
Characterization theorem (Cox and Liicke, 2016)

For every regular uncountable cardinal k:
K is weakly compact iff every k-cc poset is moreover rk-stationarily layered.

Non-characterization theorem (Cox and Liicke, 2016)

Suppose k is weakly compact. In some cofinality-preserving forcing extension:

For every 0 < k, the class of k-Knaster posets is closed under 0-support products, yet,
K is not weakly compact.

Theorem (Lambie-Hanson and Liicke, 2018)

Suppose 0 < k are infinite and regular. If the class of k-Knaster posets is closed under
6-support products, then —[J(k), so that (x is weakly comapct)t.
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How to cook up a counterexample

Hereafter, x denotes a regular uncountable cardinal.

Galvin (1980) gave a consistent construction of an anti-Ramsey coloring ¢ : [x]? — 2
from which he derived a k-cc poset whose square is not x-cc.
In 1997, Shelah constructed a ZFC example of such a coloring for kK = N,.

Lambie-Hanson and Liicke (2018) gave a consistent construction of non-special x-tree
from which they derived a k-Knaster poset whose infinite power is not k-cc.
They proved that such a tree exists, assuming (k).

We would like to obtain the conclusions of Lambie-Hanson and Liicke from ZFC, e.g.,
getting a ZFC example of an No-Knaster poset whose wt-power is not Ro-cc.

For this, let us revisit Galvin's approach.
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Colorings

From a coloring c : [k]*> — 6 with 6 € Reg(x), we derive posets:
o Pi={(x,i) | x € [5]*, c"x]* € {i}};
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Colorings

From a coloring c : [k]*> — 6 with 6 € Reg(x), we derive posets:
o Pi={(x,i) | x € [5]*, c"x]* € {i}};
o Q:={(x1) | x €[]~ c"x*ni=0}.

12/24



Colorings

From a coloring c : [k]*> — 6 with 6 € Reg(x), we derive posets:
o P {(x,) | x € [K]<¢, ¢ <2 € {i}};
o Q= {(x1) | x € [1]<, "X i = 0},

Ordering: (x, i) extends (y,j) iff x 2 y and i =.
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Colorings

From a coloring c : [k]*> — 6 with 6 € Reg(x), we derive posets:

o Pi={(x,i) | x € [8], c"[x]* C {i}};

o Q={(x,1) [ x€[x]<, c" x> Ni=0}.
Ordering: (x, i) extends (y,j) iff x 2 y and i =.
Key feature

e P2 fails to have the k-cc:

o QY fails to have the r-cc.
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Colorings
From a coloring c : [k]*> — 6 with 6 € Reg(x), we derive posets:
o Pi={(x,i) [ x € [5]**, c"[x]* C {i}};
e Q:={(x,i) | x €[k, c“[x]*Ni=0}.
Ordering: (x, i) extends (y,j) iff x 2 y and i =.
Key feature

e P2 fails to have the k-cc, e.g., {{({a},0),({a},1)) | a < K}.
e QY fails to have the r-cc.

About P?.
Fora < f <k andi:=c(a,p), {a},1—1i)and ({8},1— i) are P-incompatible. [
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Colorings

From a coloring c : [k]*> — 6 with 6 € Reg(x), we derive posets:
o Pi={(x,i) | x € [5]*, c"x]* € {i}};
o Q:={(x,i) | x € [5]<“, c"[x]* i =0}.

Ordering: (x, i) extends (y,j) iff x 2 y and i =.

Key feature
e P2 fails to have the k-cc, e.g., {{({a},i)|i<2)|a <k}
e Q7 fails to have the k-cc, e.g., {{({a},i)|i<8)|a <k}

About P2.
Fora < g <k and i:=c(a,p), ({a},1—1i)and ({8},1— i) are P-incompatible. [

About QF.
Fora < f <k andi:=c(a,fB), {a},i+1)and ({B},i+ 1) are Q-incompatible. [
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Colorings
From a coloring c : [k]*> — 6 with 6 € Reg(x), we derive posets:
o Pi={(x,i) [ x € [5]**, c"[x]* C {i}};
e Q:={(x,i) | x €[k, c“[x]*Ni=0}.
Ordering: (x, i) extends (y,j) iff x 2 y and i =.
Key feature

e P2 fails to have the k-cc:

o QY fails to have the r-cc.

The heart of the matter is to construct ¢ for which the corresponding IP be xk-cc, or Q7
be x-Knaster for all 7 < 6.
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Colorings

From a coloring c : [k]*> — 6 with 6 € Reg(x), we derive posets:
o Pi={(x,i) [ x € [5]**, c"[x]* C {i}};
e Q:={(x,i) | x €[k, c“[x]*Ni=0}.

Ordering: (x, i) extends (y,j) iff x 2 y and i =.

Key feature

e P2 fails to have the k-cc:

o QY fails to have the r-cc.

The heart of the matter is to construct ¢ for which the corresponding IP be xk-cc, or Q7
be x-Knaster for all 7 < 6.

By a simple reverse-engineering process, one arrives at a reformulation of these features
in the language of the coloring c.
The poset P was analyzed by Galvin. Today, we shall focus on the poset Q.
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Unbounded functions

Suppose Q := {(x, 1) | x € [k]<¥, c"[x]?> Ni = 0} is derived from c : [k]*> — 6.
Assuming 6 € Reg(k), Q is k-Knaster iff it has precaliber x iff ¢ witnesses U(k, 6):
Definition

U(k, 0) asserts that there exists a coloring ¢ : [k]?> — 6 such that for every

family A C [k]<“ consisting of k-many pairwise disjoint sets, and every i < 6,
there is B € [A]" such that min(c[a x b]) > i for every pair a < b from B.

There is also a x-closed variation: {(x,i) | x € [k]<X, c"[x]> Ni = (}. For this, we
need:

Definition

U(k, 8, x) asserts there is a coloring ¢ : [k]?> — @ such that for every x’ < ¥, every
family A C [/@]X’ consisting of k-many pairwise disjoint sets, and every i < 6,
there is B € [A]" such that min(c[a x b]) > i for every pair a < b from B.
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The coloring axiom
Definition
U(k, i, 0, x) asserts there is a coloring ¢ : [k]?> — 6 such that for every X' < x, every

family A C [x]X" consisting of x-many pairwise disjoint sets, and every i < 6,
there is B € [A]* such that min(c[a x b]) > i for every pair a < b from 5.

Note that Pri(k, &, 0, x) entails U(k, 2,0, x).
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The coloring axiom

Definition

U(k, i, 0, x) asserts there is a coloring ¢ : [k]?> — 6 such that for every X' < x, every
family A C [x]X" consisting of x-many pairwise disjoint sets, and every i < 6,

there is B € [A]* such that min(c[a x b]) > i for every pair a < b from 5.

Proposition

Suppose X, 0 € Reg(r) and that  is (<x)-inaccessible. For every coloring c : [k]*> — 0
witnessing U(k, i1, 0, x), the corresponding poset Q satisfies the following:
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The coloring axiom

Definition

U(k, i, 0, x) asserts there is a coloring ¢ : [k]?> — 6 such that for every X' < x, every
family A C [x]X" consisting of x-many pairwise disjoint sets, and every i < 6,

there is B € [A]* such that min(c[a x b]) > i for every pair a < b from 5.

Proposition
Suppose X, 0 € Reg(r) and that  is (<x)-inaccessible. For every coloring c : [k]*> — 0
witnessing U(k, i1, 0, x), the corresponding poset Q satisfies the following:

» QY is not k-cc;

» if u =2, then Q7 is k-cc for all T < min{x, 0},

» if u =K, then Q" has precaliber k for all T < min{x, 0},

> Q is well-met and x-directed-closed with greatest lower bounds.
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The coloring axiom

Definition

U(k, i, 0, x) asserts there is a coloring ¢ : [k]?> — 6 such that for every X' < x, every
family A C [x]X" consisting of x-many pairwise disjoint sets, and every i < 6,

there is B € [A]* such that min(c[a x b]) > i for every pair a < b from 5.

Conjecture
For k regular uncountable,  is weakly compact iff U(k, 2, w, 2) fails.

14 /24



The coloring axiom

Definition

U(k, i, 0, x) asserts there is a coloring ¢ : [k]?> — 6 such that for every X' < x, every
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For k regular uncountable,  is weakly compact iff U(k, 2, w, 2) fails.
In other words, we ask whether the existence of a k-Aronszajn tree gives rise to a
coloring ¢ : [k]?> — w with the property that sup(c“[A]?) = w for every A € [k]".
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In other words, we ask whether the existence of a k-Aronszajn tree gives rise to a
coloring ¢ : [k]?> — w with the property that sup(c“[A]?) = w for every A € [k]".

Partial answer 1
The existence of a k-Aronszajn tree with an w-ascent path entails U(k, 2, w, w).
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The coloring axiom
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U(k, i, 0, x) asserts there is a coloring ¢ : [k]?> — 6 such that for every X' < x, every
family A C [x]X" consisting of x-many pairwise disjoint sets, and every i < 6,

there is B € [A]* such that min(c[a x b]) > i for every pair a < b from 5.

Conjecture

For k regular uncountable,  is weakly compact iff U(k, 2, w, 2) fails.
In other words, we ask whether the existence of a k-Aronszajn tree gives rise to a
coloring ¢ : [k]?> — w with the property that sup(c“[A]?) = w for every A € [k]".

Partial answer 1
The existence of a k-Aronszajn tree with an w-ascent path entails U(k, 2, w, w).

Partial answer 2 (with Todorcevic)
The existence of a coherent k-Aronszajn tree entails U(k, 2, w,w) but not U(k, k, w,w).
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Inspecting the parameters

Definition

U(k, i, 0, x) asserts there is a coloring ¢ : [k]?> — 6 such that for every X' < x, every
family A C [k]X" consisting of k-many pairwise disjoint sets, and every i < 6,

there is B € [A]* such that min(c[a x b]) > i for every pair a < b from .

About the second parameter
> U(k,2,0,x) iff U(k,w,0,x);
» Suppose ¢ = U(k, 2,0, x). If cis closed, then ¢ = U(k, &, 0, x).

Definition
c:[Kk]?> = 0 is closed iff {a < B | c(a, 3) < i} is closed below 3 for all 8 < k, i < 6.
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Inspecting the parameters

Definition

U(k, i, 0, x) asserts there is a coloring ¢ : [k]?> — 6 such that for every X' < x, every
family A C [k]X" consisting of k-many pairwise disjoint sets, and every i < 6,

there is B € [A]* such that min(c[a x b]) > i for every pair a < b from .

About the third parameter
» U(k, K, k, k) holds;
> U(k, 1, 0, x) iff U(k, p, cf(6), x);

Therefore, hereafter, we shall focus on 6 € Reg(k).
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Inspecting the parameters

Definition
U(k, i, 0, x) asserts there is a coloring ¢ : [k]?> — 6 such that for every X' < x, every

family A C [k]X consisting of k-many pairwise disjoint sets, and every i < 6,
there is B € [A]* such that min(c[a x b]) > i for every pair a < b from .

About the third parameter
» U(k, K, k, k) holds;
> U(k, u, 0, x) iff U(k, u, cf(0), x);
» Lack of monotonicity: If A is the singular limit of strongly compact cardinals,
then, for every 0 < X, UAT, AT, 0, X) iff cf(0) = cf()).
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Inspecting the parameters

Definition

U(k, i, 0, x) asserts there is a coloring ¢ : [k]?> — 6 such that for every X' < x, every
family A C [k]X consisting of k-many pairwise disjoint sets, and every i < 6,

there is B € [A]* such that min(c[a x b]) > i for every pair a < b from .

About the fourth parameter
» U(k, k,0,3) iff U(k, k, 0,w);
> U(NT,2,0,2) iff UNT, 2,0, cf(N));

The above is optimal: If A is the limit of strongly compact cardinals, § € Reg(\) with
6 # cf()\), then U(AT, 2,0, x) holds for x := cf()), but fails for x := cf(A\)".
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Inspecting the parameters

Definition

U(k, i, 0, x) asserts there is a coloring ¢ : [k]?> — 6 such that for every X' < x, every
family A C [k]X consisting of k-many pairwise disjoint sets, and every i < 6,

there is B € [A]* such that min(c[a x b]) > i for every pair a < b from .

About the fourth parameter
» U(k, k,0,3) iff U(k, k, 0,w);
> U(NT,2,0,2) iff UNT, 2,0, cf(N));
» There are k, 6 and colorings ¢, ¢ = U(k, k,0,2), but ¢ |~ U(k,2,0,3);
» If there is a closed witness to U(AT, AT, 6,2), then there is for UAT, AT, 6, cf(N)).
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Further findings

Theorem
For every regular X and 6 € Reg(\1), there is ¢ : [\*]?> — 6 witnessing UAT, AT, 0, \)
which is moreover closed.
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Further findings

Theorem
For every regular \ and 6 € Reg(\"), there is ¢ : [\*]? — 6 witnessing UAT, AT, 0, \)
which is moreover closed.

In case you wondered

The corresponding tree 7 (c) := {c(-,7) | B ] B < v < AT} may consistently be
special AT-Aronszajn tree / almost Souslin AT-Aronszajn tree.
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Further findings

Theorem

For every regular \ and 6 € Reg(\"), there is ¢ : [\*]? — 6 witnessing UAT, AT, 0, \)
which is moreover closed.

Corollary

There exists an Ro-Knaster poset whose wtf-power is not Ro-cc.
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Further findings

Theorem

For every regular \ and 6 € Reg(\"), there is ¢ : [\*]? — 6 witnessing UAT, AT, 0, \)
which is moreover closed.

Corollary

There exists an Ro-Knaster poset whose wtf-power is not Ro-cc.

More generally

Suppose that 0 < x < X are regular, with \X = \. Then Jx-directed-closed poset Q:
» Q7 has precaliber \* for all T < 0;

» QY is not \*-cc.
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Further findings

Theorem

For every regular \ and 6 € Reg(\"), there is ¢ : [\*]? — 6 witnessing UAT, AT, 0, \)
which is moreover closed.

Corollary

There exists an Ro-Knaster poset whose wtf-power is not Ro-cc.
CH entails a o-directed-closed Ro-Knaster poset whose wth-power is not Ro-cc.
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Further findings

Theorem

For every regular \ and 6 € Reg(\"), there is ¢ : [\*]? — 6 witnessing UAT, AT, 0, \)
which is moreover closed.

Corollary

There exists an Ro-Knaster poset whose wtf-power is not Ro-cc.
CH entails a o-directed-closed Ro-Knaster poset whose wth-power is not Ro-cc.

Open problem

Does CH entail a o-closed Ny-cc poset whose square is not Np-cc?
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Further findings (cont.)

Theorem
For every singular A and 6 € Reg()\), any of the following entail the existence of a
closed witness to UAT, AT, 6, cf(N)):

> 2)\ — )\Jr,.

> Refl(< cf(N),A\T) fails;

> 0 =worf=cf(N),

> 0 <v<vt=cf());

> 0 < cf(A) and cf(NSgf(n), C) < A
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Further findings (cont.)

Theorem
For every singular A and 6 € Reg()\), any of the following entail the existence of a
closed witness to UAT, AT, 6, cf(N)):

> 2)\ — )\Jr,.

> Refl(< cf(N),A\T) fails;

> 0 =worf=cf(N),

> 0 <v<vt=cf());

> 0 < cf(A) and cf(NSgf(n), C) < A

Corollary
If the class of k-Knaster posets is closed under w powers, then k is inaccessible.
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Further findings (cont.)

Theorem
For every singular A and 6 € Reg()\), any of the following entail the existence of a

closed witness to UAT, AT, 6, cf(N)):
> 2A = )\t
> Refl(< cf(N),A\T) fails;
> 0 =worf=cf(N),
> 0 <v<vt=cf());
> 0 < cf(A) and cf(NSgf(n), C) < A
Theorem
For every 0, x € Reg(k), any of the following entails a closed witness to U(k, k, 0, x):
> O(k, <w) or OM(k,0);
» dstationary S C EZ, with S N« nonstationary for all o € EZ,,;
» dstationary S C ng with S N « nonstationary for all o« € Reg(k), and k is inacc.

17/24



A new cardinal invariant

Theorem (Todorcevic, 1987)

For every strongly inaccessible cardinal , the following are equivalent:
1. k is weakly compact;
2. For every C-sequence (Cs | B < k), there exist A € [k]" and b: kK — & such that
ANa= Cyqy Na forevery a < k.

Recall
(Cs | B < k) is a C-sequence iff each Cg is closed subset of 5 with sup(Cg) = sup(f).
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A new cardinal invariant

Theorem (Todorcevic, 1987)
For every strongly inaccessible cardinal , the following are equivalent:

1. k is weakly compact;

2. For every C-sequence (Cs | B < k), there exist A € [k]" and b: kK — & such that
ANa= Cyqy Na forevery a < k.

The cardinal invariant that we introduce suggests a way to measure how far an inacces-
sible cardinal k is from being weakly compact, though, as we will see, it is of interest
for successor cardinals as well.
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sible cardinal k is from being weakly compact, though, as we will see, it is of interest
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Definition (The C-sequence number of k)
If k is weakly compact, then let x(k) := 0.
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A new cardinal invariant

Todorcevic's analysis of the number of steps function readily establishes the following.

The C-sequence number and yoU
U(k, k,w, x(k)) holds, as witnessed by the closed function ps.

However, it is consistent that U(k, k,w, x) holds with x > x(k).
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A new cardinal invariant

Questions
e Is “y(k) < w" a large cardinal property?
e How about “x(x) < sup(Reg(k))"?
e Could x(k) be singular?

Corollary

If the class of k-Knaster posets is closed under taking w powers, then x(k) < w.

Definition (The C-sequence number of k)

If k is weakly compact, then let x(k) := 0.
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there exist A € []™ and b: k — [k]X with AN a C Ugep(q) Cs for all o < k.
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Increasing the C-sequence number

Kunen (1978) showed that by forcing over a model with a weakly compact cardinal &,
one obtains a model V having a k-Souslin tree S such that V° = & is weakly compact.

Proposition

In Kunen's model, x(r) = 1.

Proof. The k-Souslin tree witnesses that  is not weakly compact, so x(x) # 0.

Now, let C = (Cs | B < k) be an arbitrary C-sequence.

In VS Cis a C-sequence over a weakly compact cardinal k, and hence there is

A € [k]" and b: k — k such that AN a = Cyq) Na for each a < k.

Clearly, A is a club. As S is k-cc, thereis a club D C k in V, with D C A.

Then DNa C Cyo) Na for each a < k. O

Theorem
Suppose x(r) = 0. For every 0 € Reg(x™), there is a cofinality-preserving forcing
extension in which k remains strongly inaccessible, and x(k) = 6.
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Increasing the C-sequence number (cont.)

Observation
cf(A) < x(AT) < A

Theorem
If X is a singular limit of supercompact cardinals, then x(AT) = cf(}\).

Theorem
If X is a singular limit of supercompact cardinals, and 6 € Reg(\) with 6 > cf()),
then, in some cofinality-preserving forcing extension, x(A\T) = 0.

Theorem

x(Ro11) = R, is consistent, and so is x(N,41) = w.*

1The latter assumes the consistency of a supercompact.
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How large

Theorem

1. Refl(<w, E’;X(R));

2. If x(k) < w, then x(r) € {0,1};

3. If k is inaccessible and x(k) < kK, then k is w-Mahlo;

4. If x(k) =1, then O(k, <p) fails for all pu < k;

5. If x(k) =1, then, for every sequence (S; | i < k) of stationary subsets of k,

there exists an inaccessible 3 < k such that S; N (3 is stationary in 3 for all i < 3.

Corollary

» In L, either x(rx) = 0 or x(k) = sup(Reg(k));
» O(k, <w) entails x(r) = sup(Reg(x));
» If x(k) =1, then k is greatly Mahlo.

» [f the class of k-Knaster posets is closed under w powers, then k is greatly Mahlo.
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The C-sequence spectrum

Definition

For a C-sequence C = (Cg | B < k), let x(C) denote the least cardinal x < & such
that there exist A € [k]” and b: k — [k]¥ with AN a C Ugep(q) Cp for every a < k.
Definition

Cspec(k) := {x(C) | Cis a C-sequence over k} \ w.

Theorem

1. If Cspec(k) # 0, then min(Cspec(k)) = w and x(x) = max(Cspec(k));
2. x € Cspec(k) = cf(x) € Cspec(k), but not <.

Open problem

Is Cspec(r) an interval? Is it a closed set?
Is every limit uncountable cardinal in Cspec(x) an accumulation point of Cspec(k)?
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Unexpected equivalency

Theorem
For every § € Reg(k), the following are equivalent:

o 0 € Cspec(k);

e There exists a closed witness to U(k, k,0,0).
The forward implication also works for 6 singular; the backward does not.
Corollary

e If Kk is a successor of a regular cardinal, then Reg(r) C Cspec(k);

e If k is a non-Mahlo inaccessible, then Reg(r) C Cspec(k);

e [fO(k, <w) holds, then Reg(r) C Cspec(k),

e If EX, admits a non-reflecting stationary subset, then Reg(x™) C Cspec(k).
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Conjectures

If k is inaccessible and 1 < x(k) < k, Jk-Aronszajn tree with a x(k)-ascent path.
Any instance U(k, K, ...) may be witnessed by a closed coloring.

If x(k) =1, then, there exists a coherent k-Aronszajn tree.

If x(k) =1, then, in some set-forcing extension, x(x) = 0.

If x(k) is singular, then cf(x(x)) = cf(sup(Reg(x))).

Reg(cf(\)™) C Cspec(AT) for every singular \.

For all 8, x € Cspec(k), U(k, &, 0, x) holds.

No o s b=
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