Transformations of the transfinite plane

Oberwolfach webinar on Set Theory
April, 2020
Assaf Rinot, Bar-Ilan University

The results presented here are from a joint work with Jing Zhang.

Conventions

- κ denotes a regular uncountable cardinal;
- θ is some cardinal, $2 \leq \theta \leq \kappa$;
- $E_{\theta}^{\kappa}:=\{\alpha<\kappa \mid \operatorname{cf}(\alpha)=\theta\} ; E_{\neq \theta}^{\kappa}$ and $E_{\geq \theta}^{\kappa}$ are defined similarly;
- $[\kappa]^{2}:=\{(\alpha, \beta) \mid \alpha<\beta<\kappa\}$.

For sets of ordinals X, Y, we consider the half-graph

$$
X \circledast Y:=\{(x, y) \in X \times Y \mid x<y\}
$$

Coloring countable infinite sets

Theorem (Ramsey, 1930)

For every partition of a complete infinite graph into two cells, there exists an infinite set of vertices on which the induced subgraph is either complete or empty.
Equivalently: Any coloring $c:[\omega]^{2} \rightarrow 2$ admits an infinite homogeneous.
X is homogeneous for c iff $c \upharpoonright[X]^{2}$ is constant.
Notation
$\omega \rightarrow(\omega)_{2}^{2}$.
Alternative notation: infinite $\rightarrow(\text { infinite })_{2}^{2}$.

Applications of Ramsey's theorem

Corollary (1)

Any infinite partial order $\mathbb{P}=(P, \leq)$ either admits an infinite chain or an infinite (weak) antichain.

Proof

Define a coloring $c:[P]^{2} \rightarrow 2$ via $c(x, y):=0$ iff x and y are comparable.

- A 0-homogeneous set is a chain.
- A 1-homogeneous set is a weak antichain.

Applications of Ramsey's theorem, cont.

Corollary (2)

For partial orders \mathbb{P} and \mathbb{Q} each admitting no infinite antichain, the product poset $\mathbb{P} \times \mathbb{Q}$ admits no infinite antichain.

In the product, $\left(p^{\prime}, q^{\prime}\right)$ extends (p, q) iff p^{\prime} extends p and q^{\prime} extends q.

Proof

Otherwise, take an infinite antichain in the product $\left\{\left(p_{n}, q_{n}\right) \mid n<\omega\right\}$. Define $c:[\omega]^{2} \rightarrow 2$ via $c(n, m):=0$ iff p_{n} is incomparable with p_{m}.

- A 0-homogeneous set gives rise to an infinite antichain in \mathbb{P}.
- A 1-homogeneous set gives rise to an infinite antichain in \mathbb{Q}.

Applications of Ramsey's theorem, cont.

Corollary (3)

For every infinite Abelian group $\mathbb{G}=(G,+)$ and a coloring d : $G \rightarrow 2$, there exist an infinite $X \subseteq G$ and $i<2$ such that, for all $x \neq y$ from X, $d(x+y)=i$.

Proof

Define a coloring of pairs $c:[G]^{2} \rightarrow 2$ via $c(x, y):=d(x+y)$.

Notation

$\mathbb{G} \rightarrow$ (infinite) ${ }_{2}^{\mathrm{FS}_{2}}$.
I.e., there is an infinite $X \subseteq G$ such that $d \upharpoonright \mathrm{FS}_{2}(X)$ is constant.

$$
\mathrm{FS}_{n}(X):=\left\{\sum A|A \subseteq X,|A|=n\}, \mathrm{FS}(X):=\left\{\sum A|A \subseteq X,|A|<\infty\} .\right.\right.
$$

Coloring countable structures

Theorem (Hindman, 1974)

$\mathbb{N} \rightarrow(\text { infinite })_{2}^{\mathrm{FS}}$. For any coloring $d: \mathbb{N} \rightarrow 2$, there exists $\left\{x_{n}\right\}_{n=0}^{\infty} \subseteq \mathbb{N}$ which is homogeneous with respect to finite sums. That is,

$$
d\left(x_{i_{1}}+\cdots+x_{i_{n}}\right)=d\left(x_{j_{1}}+\cdots+x_{j_{m}}\right)
$$

for all $i_{1}<\ldots<i_{n}$ and $j_{1}<\ldots<j_{m}$.

Generalized Hindman theorem

For all Abelian groups \mathbb{G} and positive integers $k, \mathbb{G} \rightarrow(\text { infinite })_{k}^{\mathrm{FS}}$.
May replace Abelian groups by commutative cancellative semigroups.

Up to the uncountable

Ramsey statements at uncountable cardinals

Theorem (Sierpiński, 1933)

There is a weakening of the real ordering with no uncountable chains or uncountable (weak) antichains. So, $\mathbb{R} \nrightarrow\left(\omega_{1}\right)_{2}^{2}$. In particular, $\omega_{1} \nrightarrow\left(\omega_{1}\right)_{2}^{2}$.

Theorem (Kurepa, 1952)

A Souslin tree is a poset \mathbb{P} with no uncountable antichains, yet, $\mathbb{P} \times \mathbb{P}$ does admit an uncountable antichain.

Theorem (Galvin, 1980. Todorčević, 1986)

Assuming CH (in fact, $\mathfrak{b}=\omega_{1}$), for every $n>0$, there is a poset \mathbb{P} such that \mathbb{P}^{n} has no uncountable antichains, but \mathbb{P}^{n+1} does have.

Hindman statements for the real line
Quickly after a preprint of Hindman, Leader and Strauss was circulated:

Theorem (Komjáth, 2016. Soukup-Weiss, 2016)

$\mathbb{R} \nrightarrow\left(\omega_{1}\right)_{2}^{\mathrm{FS}_{2}}$. I.e., \exists coloring $d: \mathbb{R} \rightarrow 2$ such that for every uncountable set of reals X and every $i<2$, there are $x \neq y$ in X with $d(x+y)=i$.

Improving upon a result of Galvin and Shelah from 1973:

Theorem (with Fernández-Bretón, 2017)

$\mathbb{R} \nrightarrow[c]_{\omega}^{\mathrm{FS}_{2}}$. I.e., \exists coloring $d: \mathbb{R} \rightarrow \omega$ such that for every $X \subseteq \mathbb{R}$ with $|X|=|\mathbb{R}|$ and every $i<\omega$, there are $x \neq y$ in X with $d(x+y)=i$.

Improving upon Komjáth-Leader-Russell-Shelah-Soukup-Vidnyánszky:

Theorem (Zhang, 2020)

For every coloring $d: \mathbb{R} \rightarrow 2$, there exists an infinite set of reals X such that, for all $x \neq y$ in $X, d(x+y)=d(x+x)$.

Hindman statements for general uncountable groups

Theorem (with Fernández-Bretón, 2017)

For class many regular cardinals κ (including $\aleph_{1}, \aleph_{2}, \ldots$), for every Abelian group \mathbb{G} of size $\kappa, \mathbb{G} \nrightarrow[\kappa]_{\kappa}^{\mathrm{FS}_{2}}$.

In [Sh:69], Shelah proved that there exists a group of size \aleph_{1} having no proper uncountable subgroups.
It follows from our theorem that for any Abelian group $\langle G,+\rangle$ of size \aleph_{1}, there is an unary function $d: G \rightarrow G$ such that $\langle G,+, d\rangle$ has no proper uncountable substructures.

Ramsey vs. Hindman

Definition

- $\kappa \nrightarrow[\kappa]_{\theta}^{2}$ asserts that there exists a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for any $X \subseteq \kappa$ of size $\kappa, c^{\prime \prime}[X]^{2}=\theta$;
- $\mathbb{G} \nrightarrow[k]_{\theta}^{\mathrm{FS}_{2}}$ asserts that there exists a coloring $d: G \rightarrow \theta$ such that for any $X \subseteq G$ of size $\kappa, d^{\prime}{ }^{\prime} \mathrm{FS}_{2}(X)=\theta$;
By the trick of letting $c(x, y):=d(x+y)$, we infer that $\mathbb{G} \nrightarrow[k]_{\theta}^{\mathrm{FS}_{2}}$ for an Abelian group \mathbb{G} of size κ implies $\kappa \nrightarrow[\kappa]_{\theta}^{2}$.
It would have been great if we could reverse the arrows and reduce the additive problem into the classic problem.

Question

Does $\kappa \nrightarrow[\kappa]_{\theta}^{2}$ imply that for any Abelian group \mathbb{G} of size $\kappa, \mathbb{G} \nrightarrow[\kappa]_{\theta}^{\mathrm{FS}_{2}}$?

Ramsey vs. Hindman, cont.

Theorem (with Fernández-Bretón, 2017, rephrased)

The following are equivalent:

- $\kappa \nrightarrow[\kappa]_{\theta}^{2}$;
- $\mathbb{G} \nrightarrow[\kappa]_{\theta}^{\mathrm{FS}_{2}}$ for any commutative cancellative semigroup \mathbb{G} of size κ, provided that there exists a transformation $\mathbf{t}:[\kappa]^{2} \rightarrow[\kappa]^{2}$ with the property that for every family \mathcal{A} consisting of κ-many pairwise disjoint finite subsets of κ, there is a cofinal $A \subseteq \kappa$ such that for all $\alpha<\beta$ from A, there are $a<b$ from \mathcal{A} with $\mathbf{t}[a \times b]=\{(\alpha, \beta)\}$.

In [Rinot, 2012], by extending works of Eisworth, such a transformation was shown to exist for any κ which is the successor of a singular cardinal.

Transformations of $[\kappa]^{2}$

Definition (with Zhang, 2020)

$\mathrm{P} \ell_{1}(\kappa)$ asserts the existence of a transformation $\mathbf{t}:[\kappa]^{2} \rightarrow[\kappa]^{2}$ satisfying:
(1) for every $(\alpha, \beta) \in[\kappa]^{2}$, if $\mathbf{t}(\alpha, \beta)=\left(\alpha^{*}, \beta^{*}\right)$, then $\alpha^{*} \leq \alpha<\beta^{*} \leq \beta$;
(2) for every family \mathcal{A} consisting of κ-many pairwise disjoint finite subsets of κ, there is a stationary $S \subseteq \kappa$ such that, for every $\alpha^{*}<\beta^{*}$ from S, there are $a<b$ from \mathcal{A} with $\mathbf{t}[a \times b]=\left\{\left(\alpha^{*}, \beta^{*}\right)\right\}$.

The yellow requirements are not needed for the problem stated before, but are useful in studying the problem of productivity of the chain condition:

Theorem (with Zhang, 2020)

If $\mathrm{P} \ell_{1}(\kappa)$ holds, then, for every $n>0$, there is a poset \mathbb{P} such that \mathbb{P}^{n} has no antichains of size κ, but \mathbb{P}^{n+1} does.
$\mathrm{P} \ell_{1}(\kappa)$
(i)

for every $(\alpha, \beta) \in[\kappa]^{2}$, if $\mathbf{t}(\alpha, \beta)=\left(\alpha^{*}, \beta^{*}\right)$, then $\alpha^{*} \leq \alpha<\beta^{*} \leq \beta$;

there exists a stationary $S \subseteq \kappa$ such that, for every pair $\alpha^{*}<\beta^{*}$ of elements of S,
(ii)

for every family \mathcal{A} consisting of κ many pairwise disjoint finite subsets of κ,

there exists a pair $a<b$ of elements of \mathcal{A} with $\mathbf{t}[a \times b]=\left\{\left(\alpha^{*}, \beta^{*}\right)\right\}$.

Baby case: Squares vs. Rectangles

Definition

- $\kappa \nrightarrow[\operatorname{Stat}(\kappa)]_{\theta}^{2}$ asserts that there is a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for any stationary $S \subseteq \kappa, c^{\prime \prime}[S]^{2}=\theta$;
- $\kappa \nrightarrow[\kappa ; \kappa]_{\theta}^{2}$ asserts that there is a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for any cofinal $X, Y \subseteq \kappa, c " X \circledast Y=\theta$.

Theorem

- (Sierpiński, 1933) $\omega_{1} \nrightarrow\left[\omega_{1}\right]_{2}^{2}$
- (Erdős-Hajnal-Rado, 1965) $\omega_{1} \nrightarrow\left[\omega_{1} ; \omega_{1}\right]_{\omega_{1}}^{2}$, assuming CH
- (Galvin-Shelah, 1973) $\omega_{1} \rightarrow\left[\omega_{1}\right]_{4}^{2}$
- (Todorčević, 1981) $\omega_{1} \nrightarrow\left[\operatorname{Stat}\left(\omega_{1}\right) ; \operatorname{Stat}\left(\omega_{1}\right)\right]_{\omega_{1}}^{2}$
- (Todorčević, 1987) $\omega_{1} \nrightarrow\left[\omega_{1}\right]_{\omega_{1}}^{2}$
- (Moore, 2006) $\omega_{1} \nrightarrow\left[\omega_{1} ; \omega_{1}\right]_{\omega_{1}}^{2}$

Transformations to the rescue

Proposition

Assuming $\mathrm{P} \ell_{1}(\kappa)$, the following are equivalent:
(1) $\kappa \nrightarrow[\operatorname{Stat}(\kappa)]_{\theta}^{2}$;
(2) $\kappa \nrightarrow[\kappa ; \kappa]_{\theta}^{2}$.

Proof

Take \mathbf{t} witnessing $\mathrm{P} \ell_{1}(\kappa)$ and c witnessing $\kappa \nrightarrow[\operatorname{Stat}(\kappa)]_{\theta}^{2}$.
Define $d:[\kappa]^{2} \rightarrow \theta$ via $d:=c \circ \mathbf{t}$.
Given cofinal $X, Y \subseteq \kappa$, find $\left\{x_{i} \mid i<\kappa\right\} \subseteq X$ and $\left\{y_{i} \mid i<\kappa\right\} \subseteq Y$ such that $x_{i}<y_{i}<x_{j}$ for all $i<j<\kappa$.
Then $\mathcal{A}=\left\{\left\{x_{i}, y_{i}\right\} \mid i<\kappa\right\}$ consists of κ-many pwd finite subsets of κ.
By the choice of \mathbf{t}, find a stationary $S \subseteq \kappa$ such that for all $\alpha<\beta$ from S, there are $a<b$ from \mathcal{A} with $\mathbf{t}[a \times b]=\{(\alpha, \beta)\}$.
Given a prescribed color $\tau<\theta$, find $\alpha<\beta$ in S such that $c(\alpha, \beta)=\tau$. Find $a<b$ from \mathcal{A} with $\mathbf{t}[a \times b]=\{(\alpha, \beta)\}$, so that $a=\left\{x_{i}, y_{i}\right\}$, $b=\left\{x_{j}, y_{j}\right\}$ with $i<j$. Then $\left(x_{i}, y_{j}\right) \in X \circledast Y$ and $d\left(x_{i}, y_{j}\right)=\tau$.

Main results (joint with Zhang)

Definition

$\mathrm{P} \ell_{1}(\kappa, \chi)$ asserts the existence of a function $\mathbf{t}:[\kappa]^{2} \rightarrow[\kappa]^{2}$ satisfying:

- for all $(\alpha, \beta) \in[\kappa]^{2}$, if $\mathbf{t}(\alpha, \beta)=\left(\alpha^{*}, \beta^{*}\right)$, then $\alpha^{*} \leq \alpha<\beta^{*} \leq \beta$;
- for all $\sigma<\chi$ and a family $\mathcal{A} \subseteq[\kappa]^{\sigma}$ consisting of κ many pairwise disjoint sets, there exists a stationary $S \subseteq \kappa$ such that, for every $\alpha^{*}<\beta^{*}$ from S, there are $a<b$ from \mathcal{A} with $\mathbf{t}[a \times b]=\left\{\left(\alpha^{*}, \beta^{*}\right)\right\}$.

Theorem

For a regular cardinal $\chi \leq \kappa, \mathrm{P} \ell_{1}(\kappa, \chi)$ holds in any of the following cases:
(1) $\chi^{+}<\kappa$ and $\square(\kappa)$ holds;
(2) $\chi^{+}=\kappa$ and $\square(\kappa)$ and GCH both hold;
(3) $\chi=\omega, \kappa=\omega_{1}$ and there is a free Souslin tree;
(9) $\chi^{+}<\kappa$ and $E_{\geq \chi}^{\kappa}$ admits a stationary set that does not reflect;
(0) κ is inaccessible, and $E_{\geq \chi}^{\kappa}$ admits a stationary set that does not reflect at inaccessibles;
(0) $\chi=\kappa$ and \diamond holds over a nonreflecting stationary subset of $\operatorname{Reg}(\kappa)$.

Walks on ordinals

Walk along a C-sequence

Fix a sequence $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ such that each C_{α} is a closed subset of α with $\sup \left(C_{\alpha}\right)=\sup (\alpha)$. In the next definitions, we assume $\alpha<\beta<\kappa$.

Definition (Todorčević, 1987)

- $\operatorname{Tr}(\alpha, \beta) \in{ }^{\omega} \kappa$ is defined by recursion on $n<\omega$:
$\operatorname{Tr}(\alpha, \beta)(n):= \begin{cases}\beta & n=0 \\ \min \left(C_{\operatorname{Tr}(\alpha, \beta)(n-1)} \backslash \alpha\right) & n>0 \& \operatorname{Tr}(\alpha, \beta)(n-1)>\alpha \\ \alpha & \text { otherwise }\end{cases}$
- $\rho_{2}(\alpha, \beta):=\min \{n<\omega \mid \operatorname{Tr}(\alpha, \beta)(n)=\alpha\}$;
- $\lambda(\alpha, \beta):=\sup \left\{\sup \left(C_{\operatorname{Tr}(\alpha, \beta)(i)} \cap \alpha\right) \mid i<\rho_{2}(\alpha, \beta)\right\}$.

Definition

For $\eta<\kappa$, let $\eta_{\alpha, \beta}:=\min \left\{m<\omega \mid \eta \in C_{\operatorname{Tr}(\alpha, \beta)(m)}\right.$ or $\left.m=\rho_{2}(\alpha, \beta)\right\}+1$.

Defining the transformations

To define a transformation $\mathbf{t}:[\kappa]^{2} \rightarrow[\kappa]^{2}$, first:
(9) Make an educated choice of the sequence $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$. club-guessing/swallowing club-guessing/coherent/avoiding a stationary set/witnessing a Brodsky-Rinot proxy principle.
(1) Fix a wild oscillation map $0:[\kappa]^{2} \rightarrow \omega$.

Then, given $(\alpha, \beta) \in[\kappa]^{2}$:
(1) Let $n:=o(\alpha, \beta)$;
(2) Walk from β down to α, and stop at $\beta^{*}:=\operatorname{Tr}(\alpha, \beta)(n)$;
(3) Compute the lower trace $\eta:=\lambda\left(\beta^{*}, \beta\right)$ and let $\varepsilon:=\eta+1$;
(9) Let $m:=\eta_{\varepsilon, \alpha}$;

$$
\eta_{\varepsilon, \alpha}:=\min \left\{m<\omega \mid \eta \in C_{\operatorname{Tr}(\varepsilon, \alpha)(m)} \text { or } m=\rho_{2}(\varepsilon, \alpha)\right\}+1 .
$$

(5) Walk from α down to ε, and stop at $\alpha^{*}:=\operatorname{Tr}(\varepsilon, \alpha)(m)$.

If nothing broke down, let $\mathbf{t}(\alpha, \beta):=\left(\alpha^{*}, \beta^{*}\right)$; o.w., $\mathbf{t}(\alpha, \beta):=(\alpha, \beta)$.

Example: Inferring $\mathrm{P} \ell_{1}(\kappa, \chi)$ from square

Suppose $\chi<\kappa$ regular with $\chi^{+}<\kappa$, and $\square(\kappa)$ holds.

Lemma

There is a sequence $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ satisfying the following:
(1) $C_{\alpha+1}=\{0, \alpha\}$ for every $\alpha<\kappa$;
(2) for every $\alpha \in \operatorname{acc}(\kappa)$ and $\bar{\alpha} \in \operatorname{acc}\left(C_{\alpha}\right), C_{\bar{\alpha}}=C_{\alpha} \cap \bar{\alpha}$;
(3) for every $\gamma \geq \chi^{+},\left\{\delta \in E_{\chi}^{\kappa} \mid \min \left(C_{\delta}\right)=\gamma\right\}$ is empty;
(9) for every $\gamma<\chi^{+},\left\{\delta \in E_{\chi}^{\kappa} \mid \min \left(C_{\delta}\right)=\gamma\right\}$ is stationary;
(0) for every club $D \subseteq \kappa$, there exists $\delta \in E_{\chi}^{\kappa}$ with $\sup \left(\operatorname{nacc}\left(C_{\delta}\right) \cap D\right)=\delta$.

$$
\operatorname{acc}(C):=\{\alpha \in C \mid \sup (C \cap \alpha)=\alpha>0\} . \operatorname{nacc}(C):=C \backslash \operatorname{acc}(C)
$$

To simplify

We shall hereafter assume that $\chi=\omega$, so that $\chi^{+}=\omega_{1}$.

Example: Inferring $\mathrm{P} \ell_{1}(\kappa, \chi)$ from square, cont.

We have already made our choice of the sequence $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$, so we now need to find an oscillation map $0:[\kappa]^{2} \rightarrow \omega$.

Projected walk
For $(\alpha, \beta) \in[\kappa]^{2}$, define $\tau(\alpha, \beta) \in{ }^{<\omega} \omega_{1}$ via

$$
\tau(\alpha, \beta):=\left\langle\min \left(C_{\operatorname{Tr}(\alpha, \beta)(n)}\right) \mid n<\rho_{2}(\alpha, \beta)\right\rangle
$$

We shall use a wild $d:{ }^{<\omega} \omega_{1} \rightarrow \omega$, and let $o(\alpha, \beta):=d(\tau(\alpha, \beta))$.

Lemma (2014)

There is a map $d:{ }^{<\omega} \omega_{1} \rightarrow \omega$, such that, for every $\left\langle\left(u_{i}, v_{i}, \sigma_{i}\right) \mid i \in I\right\rangle$:
(1) I is a cofinal subset of ω_{1},
(2) u_{i} and v_{i} are finite subsets of ${ }^{<\omega} \omega_{1}$,
(3) $i \in \operatorname{Im}(\varrho)$ for all $\varrho \in u_{i}$, and $\sigma_{i}{ }^{\wedge}\langle i\rangle \sqsubseteq \sigma$ for all $\sigma \in v_{i}$, there are $i<j$ in A such that, for all $\varrho \in u_{i}$ and $\sigma \in v_{j}, d\left(\varrho^{\wedge} \sigma\right)=\ell(\varrho)$.

Verifying this works

Given a family \mathcal{A} consisting of κ many pairwise disjoint finite subsets of κ, fix $\left\{x_{\beta} \mid \beta<\kappa\right\} \subseteq \mathcal{A}$ with $\min \left(x_{\beta}\right)>\beta$.

Lemma

There are a stationary $S \subseteq \kappa$ and some $\eta<\kappa$ such that, for every $\epsilon \in S$ and every $\varsigma<\kappa$, there is a cofinal $I \subseteq \omega_{1}$ and a sequence $\left\langle\beta_{i} \mid i \in I\right\rangle \in \prod_{i \in I} \kappa \backslash \varsigma$, such that, for all $i \in I$ and $\beta \in x_{\beta_{i}}$:
(i) $i \in \operatorname{Im}(\tau(\epsilon, \beta))$;
(ii) $\lambda(\epsilon, \beta)=\eta$;
(iii) $\rho_{2}(\epsilon, \beta)=\eta_{\epsilon, \beta}$.

Fix such η and S. Let $S^{*}:=S \cap E$ for some sparse enough club E.

Lemma

For every $\alpha^{*}<\beta^{*}$ in S^{*}, there are $a<b$ in \mathcal{A} with $\mathbf{t}[a \times b]=\left\{\left(\alpha^{*}, \beta^{*}\right)\right\}$.

