Transformations of the transfinite plane

Oberwolfach webinar on Set Theory April, 2020

Assaf Rinot, Bar-Ilan University

The results presented here are from a joint work with Jing Zhang.

Conventions

- κ denotes a regular uncountable cardinal;
- θ is some cardinal, $2 \le \theta \le \kappa$;

•
$$E_{\theta}^{\kappa} := \{ \alpha < \kappa \mid \mathsf{cf}(\alpha) = \theta \}; E_{\neq \theta}^{\kappa} \text{ and } E_{\geq \theta}^{\kappa} \text{ are defined similarly;} \}$$

•
$$[\kappa]^2 := \{(\alpha, \beta) \mid \alpha < \beta < \kappa\}.$$

For sets of ordinals X, Y, we consider the half-graph

$$X \circledast Y := \{(x, y) \in X \times Y \mid x < y\}.$$

Coloring countable infinite sets

Theorem (Ramsey, 1930)

For every partition of a complete infinite graph into two cells, there exists an infinite set of vertices on which the induced subgraph is either complete or empty.

Equivalently: Any coloring $c : [\omega]^2 \to 2$ admits an infinite homogeneous.

X is homogeneous for c iff $c \upharpoonright [X]^2$ is constant.

Notation

 $\omega \to (\omega)_2^2$.

Alternative notation: infinite \rightarrow (infinite)²₂.

Applications of Ramsey's theorem

Corollary (1)

Any infinite partial order $\mathbb{P} = (P, \leq)$ either admits an infinite chain or an infinite (weak) antichain.

Proof

Define a coloring $c : [P]^2 \to 2$ via c(x, y) := 0 iff x and y are comparable.

- ► A 0-homogeneous set is a chain.
- ► A 1-homogeneous set is a weak antichain.

Applications of Ramsey's theorem, cont.

Corollary (2)

For partial orders \mathbb{P} and \mathbb{Q} each admitting no infinite antichain, the product poset $\mathbb{P} \times \mathbb{Q}$ admits no infinite antichain.

In the product, (p', q') extends (p, q) iff p' extends p and q' extends q.

Proof

Otherwise, take an infinite antichain in the product $\{(p_n, q_n) \mid n < \omega\}$. Define $c : [\omega]^2 \to 2$ via c(n, m) := 0 iff p_n is incomparable with p_m . \blacktriangleright A 0-homogeneous set gives rise to an infinite antichain in \mathbb{P} . \blacktriangleright A 1-homogeneous set gives rise to an infinite antichain in \mathbb{O} .

Applications of Ramsey's theorem, cont.

Corollary (3)

For every infinite Abelian group $\mathbb{G} = (G, +)$ and a coloring $d : G \to 2$, there exist an infinite $X \subseteq G$ and i < 2 such that, for all $x \neq y$ from X, d(x + y) = i.

Proof

Define a coloring of pairs
$$c : [G]^2 \to 2$$
 via $c(x, y) := d(x + y)$.

Notation

 $\mathbb{G} \to (\text{infinite})_2^{\mathsf{FS}_2}.$

I.e., there is an infinite $X \subseteq G$ such that $d \upharpoonright FS_2(X)$ is constant. $FS_n(X) := \{ \sum A \mid A \subseteq X, |A| = n \}$, $FS(X) := \{ \sum A \mid A \subseteq X, |A| < \infty \}$.

Coloring countable structures

Theorem (Hindman, 1974)

 $\mathbb{N} \to (infinite)_2^{\mathsf{FS}}$. For any coloring $d : \mathbb{N} \to 2$, there exists $\{x_n\}_{n=0}^{\infty} \subseteq \mathbb{N}$ which is homogeneous with respect to finite sums. That is,

$$d(x_{i_1}+\cdots+x_{i_n})=d(x_{j_1}+\cdots+x_{j_m})$$

for all
$$i_1 < ... < i_n$$
 and $j_1 < ... < j_m$.

Generalized Hindman theorem

For all Abelian groups \mathbb{G} and positive integers k, $\mathbb{G} \to (infinite)_k^{\mathsf{FS}}$.

May replace Abelian groups by commutative cancellative semigroups.

Up to the uncountable

Ramsey statements at uncountable cardinals

Theorem (Sierpiński, 1933)

There is a weakening of the real ordering with no uncountable chains or uncountable (weak) antichains. So, $\mathbb{R} \nrightarrow (\omega_1)_2^2$. In particular, $\omega_1 \nrightarrow (\omega_1)_2^2$.

Theorem (Kurepa, 1952)

A Souslin tree is a poset \mathbb{P} with no uncountable antichains, yet, $\mathbb{P} \times \mathbb{P}$ does admit an uncountable antichain.

Theorem (Galvin, 1980. Todorčević, 1986)

Assuming CH (in fact, $\mathfrak{b} = \omega_1$), for every n > 0, there is a poset \mathbb{P} such that \mathbb{P}^n has no uncountable antichains, but \mathbb{P}^{n+1} does have.

Hindman statements for the real line

Quickly after a preprint of Hindman, Leader and Strauss was circulated:

Theorem (Komjáth, 2016. Soukup-Weiss, 2016)

 $\mathbb{R} \rightarrow (\omega_1)_2^{\mathsf{FS}_2}$. I.e., \exists coloring $d : \mathbb{R} \rightarrow 2$ such that for every uncountable set of reals X and every i < 2, there are $x \neq y$ in X with d(x + y) = i.

Improving upon a result of Galvin and Shelah from 1973:

Theorem (with Fernández-Bretón, 2017)

 $\mathbb{R} \nleftrightarrow [\mathfrak{c}]^{FS_2}_{\omega}$. I.e., \exists coloring $d : \mathbb{R} \to \omega$ such that for every $X \subseteq \mathbb{R}$ with $|X| = |\mathbb{R}|$ and every $i < \omega$, there are $x \neq y$ in X with d(x + y) = i.

Improving upon Komjáth-Leader-Russell-Shelah-Soukup-Vidnyánszky:

Theorem (Zhang, 2020)

For every coloring $d : \mathbb{R} \to 2$, there exists an infinite set of reals X such that, for all $x \neq y$ in X, d(x + y) = d(x + x).

Theorem (with Fernández-Bretón, 2017)

For class many regular cardinals κ (including $\aleph_1, \aleph_2, \ldots$), for every Abelian group \mathbb{G} of size κ , $\mathbb{G} \not\rightarrow [\kappa]_{\kappa}^{\mathsf{FS}_2}$.

In [Sh:69], Shelah proved that there exists a group of size \aleph_1 having no proper uncountable subgroups.

It follows from our theorem that for any Abelian group $\langle G, + \rangle$ of size \aleph_1 , there is an unary function $d : G \to G$ such that $\langle G, +, d \rangle$ has no proper uncountable substructures.

Ramsey vs. Hindman

Definition

- κ → [κ]²_θ asserts that there exists a coloring c : [κ]² → θ such that
 for any X ⊆ κ of size κ, c"[X]² = θ;
- $\mathbb{G} \not\rightarrow [\kappa]_{\theta}^{\mathsf{FS}_2}$ asserts that there exists a coloring $d : G \rightarrow \theta$ such that for any $X \subseteq G$ of size κ , d "FS₂(X) = θ ;

By the trick of letting c(x, y) := d(x + y), we infer that $\mathbb{G} \to [\kappa]^{\mathsf{FS}_2}_{\theta}$ for an Abelian group \mathbb{G} of size κ implies $\kappa \to [\kappa]^2_{\theta}$.

It would have been great if we could reverse the arrows and reduce the additive problem into the classic problem.

Question

Does $\kappa \not\rightarrow [\kappa]^2_{\theta}$ imply that for any Abelian group \mathbb{G} of size κ , $\mathbb{G} \not\rightarrow [\kappa]^{\mathsf{FS}_2}_{\theta}$?

Ramsey vs. Hindman, cont.

Theorem (with Fernández-Bretón, 2017, rephrased)

The following are equivalent:

• $\kappa \not\rightarrow [\kappa]^2_{\theta}$;

• $\mathbb{G} \rightarrow [\kappa]^{\mathsf{FS}_2}_{\theta}$ for any commutative cancellative semigroup \mathbb{G} of size κ , provided that there exists a transformation $\mathbf{t} : [\kappa]^2 \rightarrow [\kappa]^2$ with the property that for every family \mathcal{A} consisting of κ -many pairwise disjoint finite subsets of κ , there is a cofinal $\mathcal{A} \subseteq \kappa$ such that for all $\alpha < \beta$ from \mathcal{A} , there are a < b from \mathcal{A} with $\mathbf{t}[a \times b] = \{(\alpha, \beta)\}$.

In [Rinot, 2012], by extending works of Eisworth, such a transformation was shown to exist for any κ which is the successor of a singular cardinal.

Transformations of $[\kappa]^2$

Definition (with Zhang, 2020)

 $\mathsf{P}\ell_1(\kappa)$ asserts the existence of a transformation $\mathbf{t}: [\kappa]^2 \to [\kappa]^2$ satisfying:

- for every $(\alpha, \beta) \in [\kappa]^2$, if $\mathbf{t}(\alpha, \beta) = (\alpha^*, \beta^*)$, then $\alpha^* \le \alpha < \beta^* \le \beta$;
- Of revery family A consisting of κ-many pairwise disjoint finite subsets of κ, there is a stationary S ⊆ κ such that, for every α* < β* from S, there are a < b from A with t[a × b] = {(α*, β*)}.</p>

The yellow requirements are not needed for the problem stated before, but are useful in studying the problem of productivity of the chain condition:

Theorem (with Zhang, 2020)

If $P\ell_1(\kappa)$ holds, then, for every n > 0, there is a poset \mathbb{P} such that \mathbb{P}^n has no antichains of size κ , but \mathbb{P}^{n+1} does.

 $\mathsf{P}\ell_1(\kappa)$

Baby case: Squares vs. Rectangles

Definition

- $\kappa \not\rightarrow [\text{Stat}(\kappa)]^2_{\theta}$ asserts that there is a coloring $c : [\kappa]^2 \rightarrow \theta$ such that for any stationary $S \subseteq \kappa$, $c''[S]^2 = \theta$;
- $\kappa \not\rightarrow [\kappa; \kappa]^2_{\theta}$ asserts that there is a coloring $c : [\kappa]^2 \rightarrow \theta$ such that for any cofinal $X, Y \subseteq \kappa, c : X \circledast Y = \theta$.

Theorem

- (Sierpiński, 1933) $\omega_1 \rightarrow [\omega_1]_2^2$
- (Erdős-Hajnal-Rado, 1965) $\omega_1 \not\rightarrow [\omega_1; \omega_1]^2_{\omega_1}$, assuming CH
- ► (Galvin-Shelah, 1973) $\omega_1 \rightarrow [\omega_1]_4^2$
- (Todorčević, 1981) $\omega_1 \not\rightarrow [\text{Stat}(\omega_1); \text{Stat}(\omega_1)]^2_{\omega_1}$
- (Todorčević, 1987) $\omega_1 \not\rightarrow [\omega_1]^2_{\omega_1}$
- (Moore, 2006) $\omega_1 \not\rightarrow [\omega_1; \omega_1]^2_{\omega_1}$

Transformations to the rescue

Proposition

Assuming $P\ell_1(\kappa)$, the following are equivalent:

$$\bullet \kappa \not\rightarrow [\mathsf{Stat}(\kappa)]^2_{\theta}$$

 $\ 2 \ \ \kappa \not\rightarrow [\kappa;\kappa]_{\theta}^2.$

Proof

Take **t** witnessing $P\ell_1(\kappa)$ and *c* witnessing $\kappa \not\rightarrow [Stat(\kappa)]_{\theta}^2$. Define $d : [\kappa]^2 \to \theta$ via $d := c \circ \mathbf{t}$. Given cofinal X, $Y \subseteq \kappa$, find $\{x_i \mid i < \kappa\} \subseteq X$ and $\{y_i \mid i < \kappa\} \subseteq Y$ such that $x_i < y_i < x_i$ for all $i < j < \kappa$. Then $\mathcal{A} = \{\{x_i, y_i\} \mid i < \kappa\}$ consists of κ -many pwd finite subsets of κ . By the choice of **t**, find a stationary $S \subseteq \kappa$ such that for all $\alpha < \beta$ from S, there are a < b from \mathcal{A} with $\mathbf{t}[a \times b] = \{(\alpha, \beta)\}.$ Given a prescribed color $\tau < \theta$, find $\alpha < \beta$ in S such that $c(\alpha, \beta) = \tau$. Find a < b from \mathcal{A} with $\mathbf{t}[a \times b] = \{(\alpha, \beta)\}$, so that $a = \{x_i, y_i\}$, $b = \{x_i, y_i\}$ with i < j. Then $(x_i, y_i) \in X \circledast Y$ and $d(x_i, y_i) = \tau$.

Main results (joint with Zhang)

Definition

 $\mathsf{P}\ell_1(\kappa,\chi)$ asserts the existence of a function $\mathbf{t}: [\kappa]^2 \to [\kappa]^2$ satisfying:

- ▶ for all $(\alpha, \beta) \in [\kappa]^2$, if $\mathbf{t}(\alpha, \beta) = (\alpha^*, \beta^*)$, then $\alpha^* \le \alpha < \beta^* \le \beta$;
- ▶ for all $\sigma < \chi$ and a family $\mathcal{A} \subseteq [\kappa]^{\sigma}$ consisting of κ many pairwise disjoint sets, there exists a stationary $S \subseteq \kappa$ such that, for every $\alpha^* < \beta^*$ from S, there are a < b from \mathcal{A} with $\mathbf{t}[a \times b] = \{(\alpha^*, \beta^*)\}$.

Theorem

For a regular cardinal $\chi \leq \kappa$, $P\ell_1(\kappa, \chi)$ holds in any of the following cases:

• $\chi^+ < \kappa$ and $\Box(\kappa)$ holds;

2
$$\chi^+ = \kappa$$
 and $\Box(\kappa)$ and GCH both hold;

- **③** $\chi = \omega$, $\kappa = \omega_1$ and there is a free Souslin tree;
- $\chi^+ < \kappa$ and $E^{\kappa}_{>\chi}$ admits a stationary set that does not reflect;
- *κ* is inaccessible, and *E*^κ_{≥χ} admits a stationary set that does not reflect at inaccessibles;

• $\chi = \kappa$ and \Diamond holds over a nonreflecting stationary subset of $\text{Reg}(\kappa)$.

Walks on ordinals

Walk along a C-sequence

Fix a sequence $\vec{C} = \langle C_{\alpha} \mid \alpha < \kappa \rangle$ such that each C_{α} is a closed subset of α with sup $(C_{\alpha}) = \sup(\alpha)$. In the next definitions, we assume $\alpha < \beta < \kappa$.

Definition (Todorčević, 1987)

▶ $Tr(\alpha, \beta) \in {}^{\omega}\kappa$ is defined by recursion on $n < \omega$:

$$\mathsf{Tr}(\alpha,\beta)(n) := \begin{cases} \beta & n = 0\\ \min(C_{\mathsf{Tr}(\alpha,\beta)(n-1)} \setminus \alpha) & n > 0 \& \mathsf{Tr}(\alpha,\beta)(n-1) > \alpha\\ \alpha & \text{otherwise} \end{cases}$$

▶
$$\rho_2(\alpha, \beta) := \min\{n < \omega \mid \operatorname{Tr}(\alpha, \beta)(n) = \alpha\};$$

▶ $\lambda(\alpha, \beta) := \sup\{\sup(C_{\operatorname{Tr}(\alpha, \beta)(i)} \cap \alpha) \mid i < \rho_2(\alpha, \beta)\}.$

Definition

For $\eta < \kappa$, let $\eta_{\alpha,\beta} := \min\{m < \omega \mid \eta \in C_{\mathsf{Tr}(\alpha,\beta)(m)} \text{ or } m = \rho_2(\alpha,\beta)\} + 1.$

Defining the transformations

To define a transformation $\mathbf{t}: [\kappa]^2 \rightarrow [\kappa]^2$, first:

- Make an educated choice of the sequence C

 (Comparison of the sequence C
- Fix a wild oscillation map $o : [\kappa]^2 \to \omega$.
- Then, given $(\alpha, \beta) \in [\kappa]^2$:
 - 1 Let $n := o(\alpha, \beta)$;
 - **2** Walk from β down to α , and stop at $\beta^* := \text{Tr}(\alpha, \beta)(n)$;
 - Sompute the lower trace $\eta := \lambda(\beta^*, \beta)$ and let $\varepsilon := \eta + 1$;
 - Let $m := \eta_{\varepsilon,\alpha}$; $\eta_{\varepsilon,\alpha} := \min\{m < \omega \mid \eta \in C_{\operatorname{Tr}(\varepsilon,\alpha)(m)} \text{ or } m = \rho_2(\varepsilon,\alpha)\} + 1.$
- Solution Walk from α down to ε , and stop at $\alpha^* := \text{Tr}(\varepsilon, \alpha)(m)$. If nothing broke down, let $\mathbf{t}(\alpha, \beta) := (\alpha^*, \beta^*)$; o.w., $\mathbf{t}(\alpha, \beta) := (\alpha, \beta)$.

Example: Inferring $P\ell_1(\kappa, \chi)$ from square

Suppose $\chi < \kappa$ regular with $\chi^+ < \kappa$, and $\Box(\kappa)$ holds.

Lemma

There is a sequence $\vec{C} = \langle C_{\alpha} \mid \alpha < \kappa \rangle$ satisfying the following:

•
$$C_{\alpha+1} = \{0, \alpha\}$$
 for every $\alpha < \kappa$;

3 for every $\alpha \in \operatorname{acc}(\kappa)$ and $\bar{\alpha} \in \operatorname{acc}(\mathcal{C}_{\alpha})$, $\mathcal{C}_{\bar{\alpha}} = \mathcal{C}_{\alpha} \cap \bar{\alpha}$;

- 3 for every $\gamma \ge \chi^+$, $\{\delta \in E_{\chi}^{\kappa} \mid \min(C_{\delta}) = \gamma\}$ is empty;
- for every $\gamma < \chi^+$, $\{\delta \in E_{\chi}^{\kappa} \mid \min(C_{\delta}) = \gamma\}$ is stationary;

§ for every club $D \subseteq \kappa$, there exists $\delta \in E_{\chi}^{\kappa}$ with $\sup(\operatorname{nacc}(C_{\delta}) \cap D) = \delta$.

$$\operatorname{acc}(C) := \{ \alpha \in C \mid \sup(C \cap \alpha) = \alpha > 0 \}. \operatorname{nacc}(C) := C \setminus \operatorname{acc}(C).$$

To simplify

We shall hereafter assume that $\chi = \omega$, so that $\chi^+ = \omega_1$.

Example: Inferring $P\ell_1(\kappa, \chi)$ from square, cont.

We have already made our choice of the sequence $\vec{C} = \langle C_{\alpha} \mid \alpha < \kappa \rangle$, so we now need to find an oscillation map $o : [\kappa]^2 \to \omega$.

Projected walk

For
$$(lpha,eta)\in [\kappa]^2$$
, define $au(lpha,eta)\in {}^{<\omega}\omega_1$ via

 $\tau(\alpha,\beta) := \langle \min(C_{\mathsf{Tr}(\alpha,\beta)(n)}) \mid n < \rho_2(\alpha,\beta) \rangle.$

We shall use a wild $d: {}^{<\omega}\omega_1 \to \omega$, and let $o(\alpha, \beta) := d(\tau(\alpha, \beta))$.

Lemma (2014)

There is a map $d : {}^{<\omega}\omega_1 \to \omega$, such that, for every $\langle (u_i, v_i, \sigma_i) | i \in I \rangle$:

• I is a cofinal subset of ω_1 ,

2 u_i and v_i are finite subsets of ${}^{<\omega}\omega_1$,

• $i \in Im(\varrho)$ for all $\varrho \in u_i$, and $\sigma_i^{\frown} \langle i \rangle \sqsubseteq \sigma$ for all $\sigma \in v_i$,

there are i < j in A such that, for all $\varrho \in u_i$ and $\sigma \in v_j$, $d(\varrho^{\frown}\sigma) = \ell(\varrho)$.

Verifying this works

Given a family \mathcal{A} consisting of κ many pairwise disjoint finite subsets of κ , fix $\{x_{\beta} \mid \beta < \kappa\} \subseteq \mathcal{A}$ with min $(x_{\beta}) > \beta$.

Lemma

There are a stationary $S \subseteq \kappa$ and some $\eta < \kappa$ such that, for every $\epsilon \in S$ and every $\varsigma < \kappa$, there is a cofinal $I \subseteq \omega_1$ and a sequence $\langle \beta_i \mid i \in I \rangle \in \prod_{i \in I} \kappa \setminus \varsigma$, such that, for all $i \in I$ and $\beta \in x_{\beta_i}$: (i) $i \in \text{Im}(\tau(\epsilon, \beta))$; (ii) $\lambda(\epsilon, \beta) = \eta$; (iii) $\rho_2(\epsilon, \beta) = \eta_{\epsilon,\beta}$.

Fix such η and S. Let $S^* := S \cap E$ for some sparse enough club E.

Lemma

For every $\alpha^* < \beta^*$ in S^* , there are a < b in A with $\mathbf{t}[a \times b] = \{(\alpha^*, \beta^*)\}$.

Assaf Rinot (Bar-Ilan University)