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Plan for today

I'll be reporting on joint works with my graduate students at BlU:

[RS20] A.R. and Roy Shalev, A guessing principle from a Souslin tree,
with applications to topology, accepted to Topology Appl.

[GR22] Shira Greenstein and A.R., in preparation.
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Motivation

1. A Dowker space is a normal topological space whose product
with the unit interval is not normal. Whether such a space
exists was asked by C. H. Dowker in a paper from 1951.

2. The first consistent example was soon given by Rudin in 1955,
who constructed a Dowker space of size X1, assuming the
existence of a Souslin tree.

3. The existence of a Souslin tree was shown to be consistent
only at the late 1960's: Tennenbaum using finite forcing,
Jech using countable forcing, and Jensen (first, assuming
V =L, and then) using <.
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Motivation (cont.)

By now, there are a few constructions of Dowker spaces in ZFC:
A space of size (R, )" (Rudin, 1972), of size continuum (Balogh,
1996), and of size R,,+1 (Kojman and Shelah, 1998).

The following problem is still standing:

Question
Is there a Dowker space of size N;7

The list of known sufficient conditions include CH (Juhdsz, Kunen
and Rudin, 1976), & (de Caux, 1977), a Luzin set (Todorcevi¢,
1989), and a certain tailored instance of a strong club-guessing
principle (Hernridez-Hernridez and Szeptycki, 2009).
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Juhasz’ question and its dual

Fact
e Jensen: { implies the existence of a Souslin tree;

e Devlin: < is equivalent to CH + &;

e Jensen: CH does not imply the existence of a Souslin tree;

Juhdsz: Does & imply the existence of a Souslin tree?
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Juhasz’ question and its dual

Fact
e Jensen: {» implies the existence of a Souslin tree;

Devlin: <) is equivalent to CH + &;

Jensen: CH does not imply the existence of a Souslin tree;

Juhdsz: Does & imply the existence of a Souslin tree?

Juhasz' question remains open for 35 years now.
Here, we propose to look at its dual:

Question

Does the existence of a Souslin tree imply &?

Answer
No. Just add one Cohen real to any model of CH + —=<{ (such as
Jensen’s model from above).
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Juhasz’ question and its dual

Fact
e Jensen: {» implies the existence of a Souslin tree;

Devlin: <) is equivalent to CH + &;

Jensen: CH does not imply the existence of a Souslin tree;

Juhdsz: Does & imply the existence of a Souslin tree?
Juhdsz' question remains open for 35 years now.

Here, we propose to look at its dual:

Question

Does the existence of a Souslin tree imply &?

Corrected question

Does the existence of a Souslin tree imply a weak form of &,
strong enough to entail the existence of a Dowker space of size N7
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Combinatorial principles
Let S denote a stationary set of a regular uncountable cardinal .

Definition (Jensen, 1972)

O(S) asserts the existence of a sequence (A, | « € S) such that:
1. A, is a subset of «;

2. For every B C k, there are stationarily many « € S with
A, =BnNa.

6/12



Combinatorial principles

Let S denote a stationary set of a regular uncountable cardinal .

Definition (Jensen, 1972)

O(S) asserts the existence of a sequence (A, | « € S) such that:
1. A, is a subset of «;

2. For every B C k, there are stationarily many « € S with
A, =BnNa.

Definition (Ostaszewski, 1976)

&(S) asserts the existence of a sequence (A, | @ € S) such that:
1. A, is a cofinal subset of «;

2. For every B € [k]", there are stationarily many o € S with
A, € BNa.

6/12



Combinatorial principles

Let S denote a stationary set of a regular uncountable cardinal .

A trivial weakening

& _(S) asserts the existence of a sequence (A, | @ € S) such that:

1. A, is a cofinal subset of «;

2. For every B € [k]", there are stationarily many a € S with
sup(A, N B) = a.

Definition (Ostaszewski, 1976)

&(S) asserts the existence of a sequence (A, | @ € S) such that:
1. A, is a cofinal subset of «;

2. For every B € [k]", there are stationarily many o € S with
A, C BNna.

6/12



Combinatorial principles
Let S denote a stationary set of a regular uncountable cardinal .

A trivial weakening
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Let S denote a stationary set of a regular uncountable cardinal .

Theorem ([RS20])
» PFA refutes dap(S) for any stationary S C wi;

» If k is weakly compact, then &ap(S) fails for every S such
that Reg(x) C S C k. So {(Reg(k)) == ap(Reg(k)).
Compare with the fact that O(Ef) = &(Ef) = &ap(EY).

Definition ([RS20])
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Combinatorial principles

Let S denote a stationary set of a regular uncountable cardinal .

Strengthening in a different axis

&ap(S, 1) asserts the existence of a sequence (A, | @ € S) s.t.:
1. A, is a pairwise disjoint family of u many cofinal subsets of «;

2. For every B € [k]", there are stationarily many a € S with
sup(AN B) = « for every A € Ay;

3. Forall A# A’ from J,c5 Aa, sup(AN A") < sup(A).
Definition ([RS20])

& (S) asserts the existence of a sequence (A, | @ € S) s.t.:
1. A, is a cofinal subset of «;

2. For every B € [k]", there are stationarily many o € S with
sup(Ay N B) = «;

3. Forall a # o/ from S, sup(An NAy) < .

6/12



Combinatorial principles

Let S denote a stationary set of a regular uncountable cardinal .

Strengthening in a different axis

&ap(S, 11, 0) asserts the existence of a sequence (A, | « € S) s.t.:
1. A, is a pairwise disjoint family of u many cofinal subsets of «;

2. For every B C [k]" of size 0, there are stat. many o € S with
sup(ANB) =« forall Ae A, and B € B;

3. Forall A# A’ from (J,c5 Aa, sup(AN A") < sup(A).
Definition ([RS20])

& (S) asserts the existence of a sequence (A, | @ € S) s.t.:
1. A, is a cofinal subset of «;

2. For every B € [k]", there are stationarily many o € S with
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In full generality

Let S denote a nonempty collection of stationary subsets of a
regular uncountable cardinal k.

Definition ([RS20])
& (S, 1, 0) asserts there is a sequence (A, | € |JS) s.t.:
1. A, is a pairwise disjoint family of u many cofinal subsets of «;

2. For every B C [k]" of size 0 and every S € S, there are
stat. many a € S with sup(ANB) =« forall A€ A,, B € B;

3. Forall A# A from Uscs Unes Aa, sup(ANA") < sup(A).
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Back to the Dowker space problem

Theorem ([RS20])
For a regular uncountable k, assume any of the following:

1. &ap(S,1,2) holds for some infinite partition S of a
nonreflecting stationary subset of k;

2. &ap({ES}, A, 1) holds, where k = AT, X is regular.

Then there exists a Dowker space of size k.
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A new invariant of trees

Recall that a x-Souslin tree is a poset 7 = (T, <) such that:
| 2 ‘T| = K;
» 7 has no chains or antichains of size x;

> Forevery x € T, x, :={y € T |y < x} is well-ordered by <,
and we write ht(x) := otp(x|, <).
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A new invariant of trees

The vanishing levels is an invariant of k-Souslin trees:

T=T = V(T)=V(T"). T=ZuwT = V(T) = V(T).
» If T is a A-complete A"-Souslin tree, then V(7T) = EA”;
» If 7 is a uniformly coherent k-Souslin tree, V(T) =cup EL.
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e B C T is an a-branch iff it is a chain and {ht(x) | x € B} = a.
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Deriving deap from a Souslin tree

Main Theorem ([RS20])

Suppose that T is a k-Souslin tree for a regular uncountable k.
Then &ap(S) holds for some S =¢,p, V(T).
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Deriving deap from a Souslin tree

Main Theorem ([RS20])

Suppose that T is a k-Souslin tree for a regular uncountable k.
Then &ap(S, i1, <0) holds, provided that i < k = k<%, and S is
any partition of V(T) N EL, (modulo a club) into stationary sets.

Recall
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Deriving deap from a Souslin tree

Main Theorem ([RS20])

Suppose that T is a k-Souslin tree for a regular uncountable k.
Then &ap(S, i1, <0) holds, provided that i < k = k<%, and S is
any partition of V(T) N EL, (modulo a club) into stationary sets.

Whenever V(7)) has uniform cofinality, we can waive the club, e.g.:

Corollary ([RS20])

If there exists a Souslin tree, then for every partition S of acc(wi)
into stationary sets, &ap(S,w, <w) holds.

The Dowker space we construct from &ap({acc(wi)},w,1) is an
hereditary separable refinement of the order topology on ws, hence,
we altogether obtained a new proof of Rudin's 1974 result that a
Souslin tree yields an S-space which is Dowker.
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Deriving deap from a Souslin tree

A problem arises

In 1999, answering a question of Kunen, Shelah gave a forcing
construction over a strongly inaccessible Mahlo cardinal k of a full
k-Souslin tree 7. ‘Full’ means that for every o € acc(k), the set of
vanishing a-branches through 7 is no more than a singleton!

In particular, V(T) =cub 0.
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Deriving deap from a Souslin tree

Theorem (unpublished)

Suppose there is a k-Souslin tree for a regular uncountable k.
Then &ap(S,1,1) holds for some k-sized collection S of pairwise
disjoint stationary subsets of k.

A problem arises

In 1999, answering a question of Kunen, Shelah gave a forcing
construction over a strongly inaccessible Mahlo cardinal k of a full
k-Souslin tree 7. ‘Full’ means that for every o € acc(k), the set of
vanishing a-branches through 7 is no more than a singleton!

In particular, V(T) =cub 0.
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The spectrum of V/(T)

A full xk-Souslin tree is a rather bizarre object. Could there be more
than one (up to, say, club-isomorphism)?
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The spectrum of V/(T)

A full xk-Souslin tree is a rather bizarre object. Could there be more
than one (up to, say, club-isomorphism)?

In a joint work with Greenstein, we found a proof of Shelah's result
that is based on the Brodsky-Rinot microscopic approach to Souslin-
tree constructions.

A construction 4 la microscopic approach
#include <NormalTree.h>

#include <SealAntichain.h>

#include <SealAutomorphism.h>
//#include <Specialize.h>

//#include <SealProductTree.h>

11/12



The spectrum of V/(T)

A full xk-Souslin tree is a rather bizarre object. Could there be more
than one (up to, say, club-isomorphism)?

In a joint work with Greenstein, we found a proof of Shelah's result
that is based on the Brodsky-Rinot microscopic approach to Souslin-
tree constructions. By the modular nature of this approach and by
plugging in one of the already existing modules, we get:

Theorem ([GR22])

Work in L, and suppose that k is a Mahlo cardinal that is not
weakly compact.

Then there exists a family of 2% many full k-Souslin trees such
that the product of any finitely many of them is again k-Souslin.
In particular, the trees are pairwise not club-isomorphic.
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The spectrum of V/(T)

Denote Vspec(k) = {V(T) | T is a x-Souslin tree}.
Theorem ([GR22])

Work in L, and suppose that k is an inaccessible cardinal that is
not weakly compact.

Then Vspec(k) is dense in (NS,)", and every stationary S C k of
uniform cofinality is =, to some set in Vspec(k).

Theorem ([GR22])

Work in L, and suppose that k is a Mahlo cardinal that is not
weakly compact.

Then there exists a family of 2% many full k-Souslin trees such
that the product of any finitely many of them is again k-Souslin.
In particular, the trees are pairwise not club-isomorphic.
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Open problems

1. We have seen that PFA kills &ap(w1). What about MAy,?
* It is open whether MA + — CH is compatible with existence
of a Dowker space of size Ny.

2. Are there any (e.g., topological) applications of dap(S,1,1)?
3. Is &ap(Reg(k)) refuted by k being a generic large cardinal?
4. In 1977, Shelah proved the consistency of {(S) + = (w1 \ S)
for some stationary co-stationary S C wy.
Is the analogous statement for &ap(w1) consistent?
* It follows from our main result that the consistency of
&(S) + ~dap(wi1 \ S) for some stationary co-stationary
S C wy would provide a negative answer to Juhdsz' question.
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