A dual of Juhász' question

Oberwolfach conference on Set Theory 10-Jan-2022

Assaf Rinot, Bar-Ilan University

I'll be reporting on joint works with my graduate students at BIU:[RS20] A.R. and Roy Shalev, A guessing principle from a Souslin tree, with applications to topology, accepted to Topology Appl.[GR22] Shira Greenstein and A.R., in preparation.

Motivation

- 1. A Dowker space is a normal topological space whose product with the unit interval is not normal. Whether such a space exists was asked by C. H. Dowker in a paper from 1951.
- The first consistent example was soon given by Rudin in 1955, who constructed a Dowker space of size ℵ₁, assuming the existence of a Souslin tree.
- The existence of a Souslin tree was shown to be consistent only at the late 1960's: Tennenbaum using finite forcing, Jech using countable forcing, and Jensen (first, assuming V = L, and then) using ◊.

Motivation (cont.)

By now, there are a few constructions of Dowker spaces in ZFC: A space of size $(\aleph_{\omega})^{\aleph_0}$ (Rudin, 1972), of size continuum (Balogh, 1996), and of size $\aleph_{\omega+1}$ (Kojman and Shelah, 1998).

The following problem is still standing:

Question

Is there a Dowker space of size \aleph_1 ?

The list of known sufficient conditions include CH (Juhász, Kunen and Rudin, 1976), & (de Caux, 1977), a Luzin set (Todorčević, 1989), and a certain tailored instance of a strong club-guessing principle (Hernńdez-Hernńdez and Szeptycki, 2009).

Fact

- Jensen: ◊ implies the existence of a Souslin tree;
- Devlin: \diamondsuit is equivalent to CH + \clubsuit ;
- Jensen: CH does not imply the existence of a Souslin tree;
- Juhász: Does & imply the existence of a Souslin tree?

Fact

- Jensen: ♦ implies the existence of a Souslin tree;
- Devlin: \diamondsuit is equivalent to CH + \clubsuit ;
- Jensen: CH does not imply the existence of a Souslin tree;
- Juhász: Does & imply the existence of a Souslin tree?

Juhász' question remains open for 35 years now. Here, we propose to look at its dual:

Question

Does the existence of a Souslin tree imply \$?

Fact

- Jensen: ◊ implies the existence of a Souslin tree;
- Devlin: \diamondsuit is equivalent to CH + \clubsuit ;
- Jensen: CH does not imply the existence of a Souslin tree;
- Juhász: Does 🜲 imply the existence of a Souslin tree?

Juhász' question remains open for 35 years now. Here, we propose to look at its dual:

Question

Does the existence of a Souslin tree imply \$?

Answer

No. Just add one Cohen real to any model of CH $+ \neg \diamondsuit$ (such as Jensen's model from above).

Fact

- Jensen: ♦ implies the existence of a Souslin tree;
- Devlin: \diamond is equivalent to CH + \clubsuit ;
- Jensen: CH does not imply the existence of a Souslin tree;
- Juhász: Does **&** imply the existence of a Souslin tree?

Juhász' question remains open for 35 years now. Here, we propose to look at its dual:

Question

Does the existence of a Souslin tree imply \clubsuit ?

Corrected question

Does the existence of a Souslin tree imply a weak form of \clubsuit , strong enough to entail the existence of a Dowker space of size \aleph_1 ?

Let S denote a stationary set of a regular uncountable cardinal κ .

Definition (Jensen, 1972)

 $\Diamond(S)$ asserts the existence of a sequence $\langle A_{\alpha} \mid \alpha \in S \rangle$ such that: 1. A_{α} is a subset of α ;

2. For every $B \subseteq \kappa$, there are stationarily many $\alpha \in S$ with $A_{\alpha} = B \cap \alpha$.

Let S denote a stationary set of a regular uncountable cardinal κ .

Definition (Jensen, 1972)

 $\Diamond(S)$ asserts the existence of a sequence $\langle A_{\alpha} \mid \alpha \in S \rangle$ such that: 1. A_{α} is a subset of α ;

2. For every $B \subseteq \kappa$, there are stationarily many $\alpha \in S$ with $A_{\alpha} = B \cap \alpha$.

Definition (Ostaszewski, 1976)

- **♣**(S) asserts the existence of a sequence $(A_{\alpha} | \alpha \in S)$ such that: 1. A_α is a cofinal subset of α;
 - 2. For every $B \in [\kappa]^{\kappa}$, there are stationarily many $\alpha \in S$ with $A_{\alpha} \subseteq B \cap \alpha$.

Let S denote a stationary set of a regular uncountable cardinal κ .

A trivial weakening

- **♣**_−(*S*) asserts the existence of a sequence $\langle A_{\alpha} | \alpha \in S \rangle$ such that: 1. *A*_α is a cofinal subset of *α*;
 - 2. For every $B \in [\kappa]^{\kappa}$, there are stationarily many $\alpha \in S$ with $\sup(A_{\alpha} \cap B) = \alpha$.

Definition (Ostaszewski, 1976)

- **♣**(*S*) asserts the existence of a sequence $\langle A_{\alpha} | \alpha \in S \rangle$ such that: 1. *A*_α is a cofinal subset of *α*;
 - 2. For every $B \in [\kappa]^{\kappa}$, there are stationarily many $\alpha \in S$ with $A_{\alpha} \subseteq B \cap \alpha$.

Let S denote a stationary set of a regular uncountable cardinal κ .

A trivial weakening

- ♣_(S) asserts the existence of a sequence $\langle A_{\alpha} | \alpha \in S \rangle$ such that: 1. A_{α} is a cofinal subset of α ;
 - 2. For every $B \in [\kappa]^{\kappa}$, there are stationarily many $\alpha \in S$ with $\sup(A_{\alpha} \cap B) = \alpha$.

Definition ([RS20])

- 1. A_{α} is a cofinal subset of α ;
- 2. For every $B \in [\kappa]^{\kappa}$, there are stationarily many $\alpha \in S$ with $\sup(A_{\alpha} \cap B) = \alpha$;
- 3. For all $\alpha \neq \alpha'$ from *S*, $\sup(A_{\alpha} \cap A_{\alpha'}) < \alpha$.

Let S denote a stationary set of a regular uncountable cardinal κ .

Theorem ([RS20])

- ▶ PFA refutes $A_{AD}(S)$ for any stationary $S \subseteq \omega_1$;
- ▶ If κ is weakly compact, then $\clubsuit_{AD}(S)$ fails for every S such that $\operatorname{Reg}(\kappa) \subseteq S \subseteq \kappa$. So $\Diamond(\operatorname{Reg}(\kappa)) \implies \clubsuit_{AD}(\operatorname{Reg}(\kappa))$.

Definition ([RS20])

- 1. A_{α} is a cofinal subset of α ;
- 2. For every $B \in [\kappa]^{\kappa}$, there are stationarily many $\alpha \in S$ with $\sup(A_{\alpha} \cap B) = \alpha$;
- 3. For all $\alpha \neq \alpha'$ from *S*, $\sup(A_{\alpha} \cap A_{\alpha'}) < \alpha$.

Let S denote a stationary set of a regular uncountable cardinal κ .

Theorem ([RS20])

▶ PFA refutes $A_{AD}(S)$ for any stationary $S \subseteq \omega_1$;

▶ If κ is weakly compact, then $\clubsuit_{AD}(S)$ fails for every S such that $\operatorname{Reg}(\kappa) \subseteq S \subseteq \kappa$. So $\Diamond(\operatorname{Reg}(\kappa)) \implies \clubsuit_{AD}(\operatorname{Reg}(\kappa))$.

Compare with the fact that $\Diamond(E_{\lambda}^{\kappa}) \implies \clubsuit(E_{\lambda}^{\kappa}) \implies \clubsuit_{AD}(E_{\lambda}^{\kappa})$.

Definition ([RS20])

- 1. A_{α} is a cofinal subset of α ;
- 2. For every $B \in [\kappa]^{\kappa}$, there are stationarily many $\alpha \in S$ with $\sup(A_{\alpha} \cap B) = \alpha$;
- 3. For all $\alpha \neq \alpha'$ from *S*, $\sup(A_{\alpha} \cap A_{\alpha'}) < \alpha$.

Let S denote a stationary set of a regular uncountable cardinal κ .

Strengthening in a different axis

 $A_{AD}(S, \mu)$ asserts the existence of a sequence $\langle A_{\alpha} \mid \alpha \in S \rangle$ s.t.: 1. A_{α} is a pairwise disjoint family of μ many cofinal subsets of α ;

- 2. For every $B \in [\kappa]^{\kappa}$, there are stationarily many $\alpha \in S$ with $\sup(A \cap B) = \alpha$ for every $A \in \mathcal{A}_{\alpha}$;
- 3. For all $A \neq A'$ from $\bigcup_{\alpha \in S} \mathcal{A}_{\alpha}$, $\sup(A \cap A') < \sup(A)$.

Definition ([RS20])

- 1. A_{α} is a cofinal subset of α ;
- 2. For every $B \in [\kappa]^{\kappa}$, there are stationarily many $\alpha \in S$ with $\sup(A_{\alpha} \cap B) = \alpha$;
- **3**. For all $\alpha \neq \alpha'$ from *S*, $\sup(A_{\alpha} \cap A_{\alpha'}) < \alpha$.

Let S denote a stationary set of a regular uncountable cardinal κ .

Strengthening in a different axis

♣_{AD}(*S*, *μ*, *θ*) asserts the existence of a sequence $\langle A_{\alpha} | \alpha \in S \rangle$ s.t.: 1. A_{α} is a pairwise disjoint family of *μ* many cofinal subsets of *α*;

- 2. For every $\mathcal{B} \subseteq [\kappa]^{\kappa}$ of size θ , there are stat. many $\alpha \in S$ with $\sup(A \cap B) = \alpha$ for all $A \in \mathcal{A}_{\alpha}$ and $B \in \mathcal{B}$;
- 3. For all $A \neq A'$ from $\bigcup_{\alpha \in S} \mathcal{A}_{\alpha}$, $\sup(A \cap A') < \sup(A)$.

Definition ([RS20])

- 1. A_{α} is a cofinal subset of α ;
- 2. For every $B \in [\kappa]^{\kappa}$, there are stationarily many $\alpha \in S$ with $\sup(A_{\alpha} \cap B) = \alpha$;
- 3. For all $\alpha \neq \alpha'$ from *S*, $\sup(A_{\alpha} \cap A_{\alpha'}) < \alpha$.

In full generality

Let S denote a nonempty <u>collection</u> of stationary subsets of a regular uncountable cardinal κ .

Definition ([RS20])

 $A_{AD}(S, \mu, \theta)$ asserts there is a sequence $\langle A_{\alpha} \mid \alpha \in \bigcup S \rangle$ s.t.:

- 1. \mathcal{A}_{α} is a pairwise disjoint family of μ many cofinal subsets of α ;
- 2. For every $\mathcal{B} \subseteq [\kappa]^{\kappa}$ of size θ and every $S \in S$, there are stat. many $\alpha \in S$ with sup $(A \cap B) = \alpha$ for all $A \in \mathcal{A}_{\alpha}$, $B \in \mathcal{B}$;
- 3. For all $A \neq A'$ from $\bigcup_{S \in S} \bigcup_{\alpha \in S} A_{\alpha}$, $\sup(A \cap A') < \sup(A)$.

Back to the Dowker space problem

Theorem ([RS20])

For a regular uncountable κ , assume any of the following:

- 1. $A_{AD}(S, 1, 2)$ holds for some infinite partition S of a nonreflecting stationary subset of κ ;
- 2. $A_{AD}(\{E_{\lambda}^{\kappa}\}, \lambda, 1)$ holds, where $\kappa = \lambda^{+}$, λ is regular.

Then there exists a Dowker space of size κ .

Recall that a κ -Souslin tree is a poset $\mathcal{T} = (T, <)$ such that:

$$\blacktriangleright |T| = \kappa;$$

- \mathcal{T} has no chains or antichains of size κ ;
- ▶ For every $x \in T$, $x_{\downarrow} := \{y \in T \mid y < x\}$ is well-ordered by <, and we write $ht(x) := otp(x_{\downarrow}, <)$.

Recall that a κ -Souslin tree is a poset $\mathcal{T} = (T, <)$ such that:

$$|T| = \kappa;$$

- \mathcal{T} has no chains or antichains of size κ ;
- ▶ For every $x \in T$, $x_{\downarrow} := \{y \in T \mid y < x\}$ is well-ordered by <, and we write $ht(x) := otp(x_{\downarrow}, <)$.

Definition

- $B \subseteq T$ is an α -branch iff it is a chain and $\{ht(x) \mid x \in B\} = \alpha$.
- An α -branch is vanishing iff it has no upper bound in \mathcal{T} .

Definition

- $B \subseteq T$ is an α -branch iff it is a chain and $\{ht(x) \mid x \in B\} = \alpha$.
- An α -branch is vanishing iff it has no upper bound in \mathcal{T} .

Definition (The vanishing levels of the tree)

 $V(\mathcal{T})$ stands for the set of $\alpha \in \operatorname{acc}(\kappa)$ such that, for every $x \in \mathcal{T}$ with $\operatorname{ht}(x) < \alpha$, there exists a vanishing α -branch containing x.

The vanishing levels is an invariant of κ -Souslin trees: $\mathcal{T} \cong \mathcal{T}' \implies V(\mathcal{T}) = V(\mathcal{T}'). \quad \mathcal{T} \cong_{cub} \mathcal{T}' \implies V(\mathcal{T}) \equiv_{cub} V(\mathcal{T}').$

Definition

- $B \subseteq T$ is an α -branch iff it is a chain and $\{ht(x) \mid x \in B\} = \alpha$.
- An α -branch is vanishing iff it has no upper bound in \mathcal{T} .

Definition (The vanishing levels of the tree)

 $V(\mathcal{T})$ stands for the set of $\alpha \in \operatorname{acc}(\kappa)$ such that, for every $x \in \mathcal{T}$ with $\operatorname{ht}(x) < \alpha$, there exists a vanishing α -branch containing x.

The vanishing levels is an invariant of κ -Souslin trees: $\mathcal{T} \cong \mathcal{T}' \implies V(\mathcal{T}) = V(\mathcal{T}'). \quad \mathcal{T} \cong_{cub} \mathcal{T}' \implies V(\mathcal{T}) \equiv_{cub} V(\mathcal{T}').$ \blacktriangleright If \mathcal{T} is a λ -complete λ^+ -Souslin tree, then $V(\mathcal{T}) = E_{\lambda}^{\lambda^+}$;

• If \mathcal{T} is a uniformly coherent κ -Souslin tree, $V(\mathcal{T}) \equiv_{cub} E_{\omega}^{\kappa}$.

Definition

- $B \subseteq T$ is an α -branch iff it is a chain and $\{ht(x) \mid x \in B\} = \alpha$.
- An α -branch is vanishing iff it has no upper bound in \mathcal{T} .

Definition (The vanishing levels of the tree)

 $V(\mathcal{T})$ stands for the set of $\alpha \in \operatorname{acc}(\kappa)$ such that, for every $x \in \mathcal{T}$ with $\operatorname{ht}(x) < \alpha$, there exists a vanishing α -branch containing x.

Main Theorem ([RS20])

Suppose that \mathcal{T} is a κ -Souslin tree for a regular uncountable κ . Then $A_{AD}(S)$ holds for some $S \equiv_{cub} V(\mathcal{T})$.

Main Theorem ([RS20])

Suppose that \mathcal{T} is a κ -Souslin tree for a regular uncountable κ . Then $\mathbf{A}_{AD}(S, \mu, <\theta)$ holds, provided that $\mu < \kappa = \kappa^{<\theta}$, and S is any partition of $V(\mathcal{T}) \cap E_{>\theta}^{\kappa}$ (modulo a club) into stationary sets.

Recall

 $A_{AD}(S, \mu, <\theta)$ asserts there is a sequence $\langle A_{\alpha} \mid \alpha \in \bigcup S \rangle$:

- 1. \mathcal{A}_{α} is a pairwise disjoint family of μ many cofinal subsets of α ;
- 2. For every $\mathcal{B} \subseteq [\kappa]^{\kappa}$ of size $\langle \theta \rangle$ and every $S \in S$, there are stat. many $\alpha \in S$ with $\sup(A \cap B) = \alpha$ for all $A \in \mathcal{A}_{\alpha}$, $B \in \mathcal{B}$;
- **3.** For all $A \neq A'$ from $\bigcup_{S \in S} \bigcup_{\alpha \in S} A_{\alpha}$, $\sup(A \cap A') < \sup(A)$.

Main Theorem ([RS20])

Suppose that \mathcal{T} is a κ -Souslin tree for a regular uncountable κ . Then $\mathbf{A}_{AD}(S, \mu, <\theta)$ holds, provided that $\mu < \kappa = \kappa^{<\theta}$, and S is any partition of $V(\mathcal{T}) \cap E_{\geq \theta}^{\kappa}$ (modulo a club) into stationary sets.

Whenever $V(\mathcal{T})$ has uniform cofinality, we can waive the club, e.g.: Corollary ([RS20])

If there exists a Souslin tree, then for every partition S of $acc(\omega_1)$ into stationary sets, $AD(S, \omega, <\omega)$ holds.

The Dowker space we construct from $A_{AD}(\{acc(\omega_1)\}, \omega, 1\})$ is an hereditary separable refinement of the order topology on ω_1 , hence, we altogether obtained a new proof of Rudin's 1974 result that a Souslin tree yields an *S*-space which is Dowker.

A problem arises

In 1999, answering a question of Kunen, Shelah gave a forcing construction over a strongly inaccessible Mahlo cardinal κ of a full κ -Souslin tree \mathcal{T} . 'Full' means that for every $\alpha \in \operatorname{acc}(\kappa)$, the set of vanishing α -branches through \mathcal{T} is no more than a singleton! In particular, $V(\mathcal{T}) \equiv_{cub} \emptyset$.

Theorem (unpublished)

Suppose there is a κ -Souslin tree for a regular uncountable κ . Then $A_{AD}(S, 1, 1)$ holds for some κ -sized collection S of pairwise disjoint stationary subsets of κ .

A problem arises

In 1999, answering a question of Kunen, Shelah gave a forcing construction over a strongly inaccessible Mahlo cardinal κ of a full κ -Souslin tree \mathcal{T} . 'Full' means that for every $\alpha \in \operatorname{acc}(\kappa)$, the set of vanishing α -branches through \mathcal{T} is no more than a singleton! In particular, $V(\mathcal{T}) \equiv_{cub} \emptyset$.

A full κ -Souslin tree is a rather bizarre object. Could there be more than one (up to, say, club-isomorphism)?

A full κ -Souslin tree is a rather bizarre object. Could there be more than one (up to, say, club-isomorphism)? In a joint work with Greenstein, we found a proof of Shelah's result that is based on the Brodsky-Rinot *microscopic approach to Souslintree constructions*.

A construction á la microscopic approach #include <NormalTree.h> #include <SealAntichain.h> #include <SealAutomorphism.h> //#include <Specialize.h> //#include <SealProductTree.h>

A full κ -Souslin tree is a rather bizarre object. Could there be more than one (up to, say, club-isomorphism)? In a joint work with Greenstein, we found a proof of Shelah's result that is based on the Brodsky-Rinot *microscopic approach to Souslintree constructions*. By the modular nature of this approach and by plugging in one of the already existing modules, we get:

Theorem ([GR22])

Work in L, and suppose that κ is a Mahlo cardinal that is not weakly compact.

Then there exists a family of 2^{κ} many full κ -Souslin trees such that the product of any finitely many of them is again κ -Souslin. In particular, the trees are pairwise not club-isomorphic.

Denote Vspec(κ) = { $V(\mathcal{T}) \mid \mathcal{T}$ is a κ -Souslin tree}.

Theorem ([GR22])

Work in L, and suppose that κ is an inaccessible cardinal that is not weakly compact.

Then $Vspec(\kappa)$ is dense in $(NS_{\kappa})^+$, and every stationary $S \subseteq \kappa$ of uniform cofinality is \equiv_{cub} to some set in $Vspec(\kappa)$.

Theorem ([GR22])

Work in L, and suppose that κ is a Mahlo cardinal that is not weakly compact.

Then there exists a family of 2^{κ} many full κ -Souslin trees such that the product of any finitely many of them is again κ -Souslin. In particular, the trees are pairwise not club-isomorphic.

Open problems

- We have seen that PFA kills ♣_{AD}(ω₁). What about MA_{ℵ1}?
 * It is open whether MA + ¬ CH is compatible with existence of a Dowker space of size ℵ₁.
- 2. Are there any (e.g., topological) applications of $A_{AD}(S, 1, 1)$?
- 3. Is $A_{AD}(Reg(\kappa))$ refuted by κ being a generic large cardinal?
- 4. In 1977, Shelah proved the consistency of ◊(S) + ¬◊(ω₁ \ S) for some stationary co-stationary S ⊆ ω₁. Is the analogous statement for ♣_{AD}(ω₁) consistent?
 * It follows from our main result that the consistency of ♣(S) + ¬♣_{AD}(ω₁ \ S) for some stationary co-stationary S ⊆ ω₁ would provide a negative answer to Juhász' question.