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Plan for today

I’ll be reporting on joint works with my graduate students at BIU:

[RS20] A.R. and Roy Shalev, A guessing principle from a Souslin tree,
with applications to topology, accepted to Topology Appl.

[GR22] Shira Greenstein and A.R., in preparation.
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Motivation

1. A Dowker space is a normal topological space whose product
with the unit interval is not normal. Whether such a space
exists was asked by C. H. Dowker in a paper from 1951.

2. The first consistent example was soon given by Rudin in 1955,
who constructed a Dowker space of size ℵ1, assuming the
existence of a Souslin tree.

3. The existence of a Souslin tree was shown to be consistent
only at the late 1960’s: Tennenbaum using finite forcing,
Jech using countable forcing, and Jensen (first, assuming
V = L, and then) using ♦.
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Motivation (cont.)

By now, there are a few constructions of Dowker spaces in ZFC:
A space of size (ℵω)ℵ0 (Rudin, 1972), of size continuum (Balogh,
1996), and of size ℵω+1 (Kojman and Shelah, 1998).

The following problem is still standing:

Question
Is there a Dowker space of size ℵ1?

The list of known sufficient conditions include CH (Juhász, Kunen
and Rudin, 1976), ♣ (de Caux, 1977), a Luzin set (Todorčević,
1989), and a certain tailored instance of a strong club-guessing
principle (Hernńdez-Hernńdez and Szeptycki, 2009).
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Juhász’ question and its dual

Fact
• Jensen: ♦ implies the existence of a Souslin tree;

• Devlin: ♦ is equivalent to CH + ♣;

• Jensen: CH does not imply the existence of a Souslin tree;

• Juhász: Does ♣ imply the existence of a Souslin tree?
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Fact
• Jensen: ♦ implies the existence of a Souslin tree;

• Devlin: ♦ is equivalent to CH + ♣;

• Jensen: CH does not imply the existence of a Souslin tree;

• Juhász: Does ♣ imply the existence of a Souslin tree?

Juhász’ question remains open for 35 years now.
Here, we propose to look at its dual:

Question
Does the existence of a Souslin tree imply ♣?

Answer
No. Just add one Cohen real to any model of CH + ¬♦ (such as
Jensen’s model from above).
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Juhász’ question and its dual

Fact
• Jensen: ♦ implies the existence of a Souslin tree;

• Devlin: ♦ is equivalent to CH + ♣;

• Jensen: CH does not imply the existence of a Souslin tree;

• Juhász: Does ♣ imply the existence of a Souslin tree?

Juhász’ question remains open for 35 years now.
Here, we propose to look at its dual:

Question
Does the existence of a Souslin tree imply ♣?

Corrected question

Does the existence of a Souslin tree imply a weak form of ♣,
strong enough to entail the existence of a Dowker space of size ℵ1?
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Combinatorial principles

Let S denote a stationary set of a regular uncountable cardinal κ.

Definition (Jensen, 1972)

♦(S) asserts the existence of a sequence 〈Aα | α ∈ S〉 such that:
1. Aα is a subset of α;

2. For every B ⊆ κ, there are stationarily many α ∈ S with
Aα = B ∩ α.
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♣−(S) asserts the existence of a sequence 〈Aα | α ∈ S〉 such that:
1. Aα is a cofinal subset of α;

2. For every B ∈ [κ]κ, there are stationarily many α ∈ S with
sup(Aα ∩ B) = α.

Definition ([RS20])

♣AD(S) asserts the existence of a sequence 〈Aα | α ∈ S〉 s.t.:
1. Aα is a cofinal subset of α;

2. For every B ∈ [κ]κ, there are stationarily many α ∈ S with
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3. For all α 6= α′ from S , sup(Aα ∩ Aα′) < α.
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Combinatorial principles

Let S denote a stationary set of a regular uncountable cardinal κ.

Theorem ([RS20])
I PFA refutes ♣AD(S) for any stationary S ⊆ ω1;
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I If κ is weakly compact, then ♣AD(S) fails for every S such
that Reg(κ) ⊆ S ⊆ κ. So ♦(Reg(κ)) 6=⇒ ♣AD(Reg(κ)).

Compare with the fact that ♦(Eκλ ) =⇒ ♣(Eκλ ) =⇒ ♣AD(Eκλ ).
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Combinatorial principles

Let S denote a stationary set of a regular uncountable cardinal κ.

Strengthening in a different axis

♣AD(S , µ) asserts the existence of a sequence 〈Aα | α ∈ S〉 s.t.:
1. Aα is a pairwise disjoint family of µ many cofinal subsets of α;

2. For every B ∈ [κ]κ, there are stationarily many α ∈ S with
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⋃
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Combinatorial principles

Let S denote a stationary set of a regular uncountable cardinal κ.

Strengthening in a different axis

♣AD(S , µ, θ) asserts the existence of a sequence 〈Aα | α ∈ S〉 s.t.:
1. Aα is a pairwise disjoint family of µ many cofinal subsets of α;

2. For every B ⊆ [κ]κ of size θ, there are stat. many α ∈ S with
sup(A ∩ B) = α for all A ∈ Aα and B ∈ B;

3. For all A 6= A′ from
⋃
α∈S Aα, sup(A ∩ A′) < sup(A).
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In full generality

Let S denote a nonempty collection of stationary subsets of a
regular uncountable cardinal κ.

Definition ([RS20])

♣AD(S, µ, θ) asserts there is a sequence 〈Aα | α ∈
⋃
S〉 s.t.:

1. Aα is a pairwise disjoint family of µ many cofinal subsets of α;

2. For every B ⊆ [κ]κ of size θ and every S ∈ S, there are
stat. many α ∈ S with sup(A∩B) = α for all A ∈ Aα, B ∈ B;

3. For all A 6= A′ from
⋃

S∈S
⋃
α∈S Aα, sup(A ∩ A′) < sup(A).
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Back to the Dowker space problem

Theorem ([RS20])

For a regular uncountable κ, assume any of the following:

1. ♣AD(S, 1, 2) holds for some infinite partition S of a
nonreflecting stationary subset of κ;

2. ♣AD({Eκλ }, λ, 1) holds, where κ = λ+, λ is regular.

Then there exists a Dowker space of size κ.
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A new invariant of trees

Recall that a κ-Souslin tree is a poset T = (T , <) such that:

I |T | = κ;

I T has no chains or antichains of size κ;

I For every x ∈ T , x↓ := {y ∈ T | y < x} is well-ordered by <,
and we write ht(x) := otp(x↓, <).

Definition
• B ⊆ T is an α-branch iff it is a chain and {ht(x) | x ∈ B} = α.
• An α-branch is vanishing iff it has no upper bound in T .

Definition (The vanishing levels of the tree)

V (T ) stands for the set of α ∈ acc(κ) such that, for every x ∈ T
with ht(x) < α, there exists a vanishing α-branch containing x .
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A new invariant of trees

The vanishing levels is an invariant of κ-Souslin trees:
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The vanishing levels is an invariant of κ-Souslin trees:
T ∼=T ′ =⇒ V (T ) = V (T ′). T ∼=cubT ′ =⇒ V (T ) ≡cub V (T ′).

I If T is a λ-complete λ+-Souslin tree, then V (T ) = Eλ
+

λ ;

I If T is a uniformly coherent κ-Souslin tree, V (T ) ≡cub Eκω .

Definition
• B ⊆ T is an α-branch iff it is a chain and {ht(x) | x ∈ B} = α.
• An α-branch is vanishing iff it has no upper bound in T .
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Deriving ♣AD from a Souslin tree

Main Theorem ([RS20])

Suppose that T is a κ-Souslin tree for a regular uncountable κ.
Then ♣AD(S) holds for some S ≡cub V (T ).
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Main Theorem ([RS20])
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Then ♣AD(S, µ,<θ) holds, provided that µ < κ = κ<θ, and S is
any partition of V (T ) ∩ Eκ≥θ (modulo a club) into stationary sets.

Recall
♣AD(S, µ,<θ) asserts there is a sequence 〈Aα | α ∈

⋃
S〉:

1. Aα is a pairwise disjoint family of µ many cofinal subsets of α;

2. For every B ⊆ [κ]κ of size < θ and every S ∈ S, there are
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Deriving ♣AD from a Souslin tree

Main Theorem ([RS20])

Suppose that T is a κ-Souslin tree for a regular uncountable κ.
Then ♣AD(S, µ,<θ) holds, provided that µ < κ = κ<θ, and S is
any partition of V (T ) ∩ Eκ≥θ (modulo a club) into stationary sets.

Whenever V (T ) has uniform cofinality, we can waive the club, e.g.:

Corollary ([RS20])

If there exists a Souslin tree, then for every partition S of acc(ω1)
into stationary sets, ♣AD(S, ω,<ω) holds.

The Dowker space we construct from ♣AD({acc(ω1)}, ω, 1) is an
hereditary separable refinement of the order topology on ω1, hence,
we altogether obtained a new proof of Rudin’s 1974 result that a
Souslin tree yields an S-space which is Dowker.

10 / 12



Deriving ♣AD from a Souslin tree

A problem arises

In 1999, answering a question of Kunen, Shelah gave a forcing
construction over a strongly inaccessible Mahlo cardinal κ of a full
κ-Souslin tree T . ‘Full’ means that for every α ∈ acc(κ), the set of
vanishing α-branches through T is no more than a singleton!
In particular, V (T ) ≡cub ∅.
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Deriving ♣AD from a Souslin tree

Theorem (unpublished)

Suppose there is a κ-Souslin tree for a regular uncountable κ.
Then ♣AD(S, 1, 1) holds for some κ-sized collection S of pairwise
disjoint stationary subsets of κ.

A problem arises

In 1999, answering a question of Kunen, Shelah gave a forcing
construction over a strongly inaccessible Mahlo cardinal κ of a full
κ-Souslin tree T . ‘Full’ means that for every α ∈ acc(κ), the set of
vanishing α-branches through T is no more than a singleton!
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The spectrum of V (T )

A full κ-Souslin tree is a rather bizarre object. Could there be more
than one (up to, say, club-isomorphism)?
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The spectrum of V (T )

A full κ-Souslin tree is a rather bizarre object. Could there be more
than one (up to, say, club-isomorphism)?
In a joint work with Greenstein, we found a proof of Shelah’s result
that is based on the Brodsky-Rinot microscopic approach to Souslin-
tree constructions.

A construction á la microscopic approach

#include <NormalTree.h>
#include <SealAntichain.h>
#include <SealAutomorphism.h>
//#include <Specialize.h>
//#include <SealProductTree.h>
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The spectrum of V (T )

A full κ-Souslin tree is a rather bizarre object. Could there be more
than one (up to, say, club-isomorphism)?
In a joint work with Greenstein, we found a proof of Shelah’s result
that is based on the Brodsky-Rinot microscopic approach to Souslin-
tree constructions. By the modular nature of this approach and by
plugging in one of the already existing modules, we get:

Theorem ([GR22])

Work in L, and suppose that κ is a Mahlo cardinal that is not
weakly compact.
Then there exists a family of 2κ many full κ-Souslin trees such
that the product of any finitely many of them is again κ-Souslin.
In particular, the trees are pairwise not club-isomorphic.
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The spectrum of V (T )

Denote Vspec(κ) = {V (T ) | T is a κ-Souslin tree}.

Theorem ([GR22])

Work in L, and suppose that κ is an inaccessible cardinal that is
not weakly compact.
Then Vspec(κ) is dense in (NSκ)+, and every stationary S ⊆ κ of
uniform cofinality is ≡cub to some set in Vspec(κ).

Theorem ([GR22])

Work in L, and suppose that κ is a Mahlo cardinal that is not
weakly compact.
Then there exists a family of 2κ many full κ-Souslin trees such
that the product of any finitely many of them is again κ-Souslin.
In particular, the trees are pairwise not club-isomorphic.

11 / 12



Open problems

1. We have seen that PFA kills ♣AD(ω1). What about MAℵ1?
* It is open whether MA + ¬CH is compatible with existence
of a Dowker space of size ℵ1.

2. Are there any (e.g., topological) applications of ♣AD(S, 1, 1)?

3. Is ♣AD(Reg(κ)) refuted by κ being a generic large cardinal?

4. In 1977, Shelah proved the consistency of ♦(S) + ¬♦(ω1 \ S)
for some stationary co-stationary S ⊆ ω1.
Is the analogous statement for ♣AD(ω1) consistent?
* It follows from our main result that the consistency of
♣(S) + ¬♣AD(ω1 \ S) for some stationary co-stationary
S ⊆ ω1 would provide a negative answer to Juhász’ question.
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