A tutorial on Club-Guessing Part II

Assaf Rinot, Bar-Ilan University

Winter School in Abstract Analysis 2023 January 2023, Štěkeň, Czech Republic

Conventions

Throughout this series of talks:

- $\theta < \kappa$ is a pair of infinite regular cardinals;
- E_{θ}^{κ} stands for $\{\alpha < \kappa \mid \mathsf{cf}(\alpha) = \theta\};$
- S denotes a stationary subset of κ.
 Typically, S consists of limits ordinals;

► For
$$D \subseteq \kappa$$
, $\operatorname{acc}(D) := \{\delta \in D \mid \sup(D \cap \delta) = \delta > 0\}$,
and $\operatorname{nacc}(D) := D \setminus \operatorname{acc}(D)$.

 $\begin{array}{l} \text{Some variations:} \ E_{<\theta}^{\kappa}, E_{\leq\theta}^{\kappa}, E_{>\theta}^{\kappa}, E_{\geq\theta}^{\kappa}, E_{\geq\theta}^{\kappa} \text{ and} \\ \texttt{acc}^{+}(X) := \{\delta < \sup(X) \mid \sup(X \cap \delta) = \delta > 0\}. \end{array}$

Recall I

Definition ([29])

 $\Phi: \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ is a postprocessing function if for all $x \in \mathcal{K}(\kappa)$:

- 1. $\Phi(x)$ is a club in sup(x);
- 2. $\operatorname{acc}(\Phi(x)) \subseteq \operatorname{acc}(x)$;
- 3. $\Phi(x) \cap \overline{\alpha} = \Phi(x \cap \overline{\alpha})$ for every $\overline{\alpha} \in \operatorname{acc}(\Phi(x))$.

It is conservative if $\Phi(x) \subseteq x$ for all x.

Recall II

Definition (Shelah, 1990's)

CG(S) asserts the existence of a sequence $\vec{C} = \langle C_{\delta} \mid \delta \in S \rangle$ s.t.:

- 1. for every $\delta \in S$, C_{δ} is a club in δ ;
- 2. for every club $D \subseteq \kappa$, the set $\{\delta \in S \mid C_{\delta} \subseteq D \cap \delta\}$ is stationary in κ .

Theorem (Shelah)

 $CG(E_{\theta}^{\kappa})$ holds, in any of the following cases:

$$\blacktriangleright \aleph_0 < \theta < \theta^+ < \kappa;$$

 \triangleright $\aleph_0 = \theta$ and $\kappa = \lambda^+$ for some uncountable cardinal λ .

Sierpiński-type colorings

Definition ([47])

Onto $(\lambda, \kappa, \theta)$ asserts the existence of a coloring $c : \lambda \times \kappa \to \theta$ such that, for every $B \in [\kappa]^{\kappa}$, for some $\eta < \lambda$, $c[\{\eta\} \times B] = \theta$.

Sierpiński-type colorings

Definition ([47])

Onto $(\lambda, \kappa, \theta)$ asserts the existence of a coloring $c : \lambda \times \kappa \to \theta$ such that, for every $B \in [\kappa]^{\kappa}$, for some $\eta < \lambda$, $c[\{\eta\} \times B] = \theta$.

Fact ([53])

If $Onto(\lambda, \kappa, \theta)$ holds, then there is a λ -sized universal family of decompositions of κ into θ many sets, $\{\langle U_{\eta,\tau} | \tau < \theta \rangle | \eta < \lambda\}$. This means that for every λ^+ -complete ideal J extending $[\kappa]^{<\kappa}$, for every $B \in J^+$, for some $\eta < \lambda$,

$$\langle U_{\eta,\tau} \cap B \mid \tau < \theta \rangle$$

is a decomposition of B into θ many J^+ -sets.

This is actually an equivalency in the non-degenerate case.

Sierpiński-type colorings

Definition ([47])

Onto $(\lambda, \kappa, \theta)$ asserts the existence of a coloring $c : \lambda \times \kappa \to \theta$ such that, for every $B \in [\kappa]^{\kappa}$, for some $\eta < \lambda$, $c[\{\eta\} \times B] = \theta$.

Sierpiński proved that $Onto(\lambda, \lambda^+, \lambda^+)$ follows from $2^{\lambda} = \lambda^+$, and we mentioned yesterday that $Onto(\lambda, \lambda^+, \lambda)$ may consistently fail. This leaves open the case $Onto(\lambda, \lambda^+, \theta)$ for $\theta < \lambda$.

A Sierpiński theorem in ZFC

Theorem ([53])

Suppose that λ is a singular cardinal. For every cardinal $\theta < \lambda$, there is a coloring $c : \lambda \times \lambda^+ \to \theta$ such that, for every $B \in [\lambda^+]^{\lambda^+}$, for some $\eta < \lambda$, $c[\{\eta\} \circledast B] = \theta$. *l.e.*, $Onto(\lambda, \lambda^+, \theta)$ holds.

For the proof, we need Shelah's theorem on the existence of scales. Fact (Shelah)

For every singular cardinal λ , there is a sequence $\langle f_{\beta} \mid \beta < \lambda^+ \rangle$:

- All f_β's are elements of some product Π_{i<cf(λ)} λ_i of regular cardinals, with sup{λ_i | i < cf(λ)} = λ;</p>
- For all α < β < λ⁺, f_α <* f_β, that is, f_α(i) < f_β(i) for a tail of i < cf(λ);</p>
- For every $g \in \prod_{i < cf(\lambda)} \lambda_i$, there is $\beta < \lambda^+$ such that $g <^* f_{\beta}$.

A Sierpiński-type theorem in ZFC

Theorem ([53])

Suppose that λ is a singular cardinal. For every cardinal $\theta < \lambda$, there is a coloring $c : \lambda \times \lambda^+ \to \theta$ such that, for every $B \in [\lambda^+]^{\lambda^+}$, for some $\eta < \lambda$, $c[\{\eta\} \times B] = \theta$.

Proof. Fix a scale $\langle f_{\beta} \mid \beta < \lambda^+ \rangle$ in some product $\prod_{i < cf(\lambda)} \lambda_i$. By increasing θ and λ_0 , may assume $cf(\lambda) < cf(\theta) = \theta < \theta^+ < \lambda_0$. For $i < cf(\lambda)$, fix a θ -bounded witness $\langle C_{\delta}^i \mid \delta \in E_{\theta}^{\lambda_i} \rangle$ to $CG(E_{\theta}^{\lambda_i})$. Fix a bijection $\pi : \lambda \leftrightarrow \bigcup_{i < cf(\lambda)} (\{i\} \times E_{\theta}^{\lambda_i})$. Pick $c : \lambda \times \lambda^+ \to \theta$ such that, for all $\eta < \lambda$ and $\beta < \lambda^+$, if $\pi(\eta) = (i, \delta)$, then

 $c(\eta,\beta) := \sup(\operatorname{otp}(C^i_{\delta} \cap f_{\beta}(i))).$

To see this works, let $B \in [\lambda^+]^{\lambda^+}$. Then $\langle f_\beta \mid \beta \in B \rangle$ is a scale, so there must exist an $i < cf(\lambda)$ such that $\sup\{f_\beta(i) \mid \beta \in B\} = \lambda_i$. As $D := acc^+(\{f_\beta(i) \mid \beta \in B\})$ is a club in λ_i , we may fix some $\delta \in E_{\theta}^{\lambda_i}$ such that $C_{\delta}^i \subseteq D$. Set $\eta := \pi^{-1}(i, \delta)$. In between any two elements of C_{δ}^i , there is one the form $f_{\beta}(i)$ for some $\beta \in B$. So $c[\{\eta\} \circledast B] = \theta$, as sought!

7/18

The critical cofinality

Theorem (Abraham-Shelah, [AbSh:182])

Assume GCH and $\kappa = \theta^+$. (recall that θ is assumed to be regular) Then there is a GCH-preserving forcing extension, adding no new θ -sequences, not collapsing cardinals, in which $CG(E_{\theta}^{\theta^+})$ fails. Furthermore, in this model, there is a family $\langle D_i | i < \kappa^+ \rangle$ of clubs in κ such that $|\bigcap_{i \in I} D_i| < \theta$ for every $I \in [\kappa^+]^{\kappa}$.

The analogous question for successors of singulars is open. To focus on the contrapositive:

Question

Suppose that λ is a singular cardinal. Must there exist a *C*-sequence $\langle C_{\delta} \mid \delta \in E_{cf(\lambda)}^{\lambda^+} \rangle$ such that for every club $D \subseteq \lambda^+$, the set $\{\delta \in E_{cf(\lambda)}^{\lambda^+} \mid C_{\delta} \subseteq D \& \operatorname{otp}(C_{\delta}) = \lambda\}$ is stationary?

The second theorem

Theorem (Shelah)

For every regular uncountable cardinal θ , there exists a θ -bounded *C*-sequence $\langle C_{\delta} | \delta \in E_{\theta}^{\theta^+} \rangle$ such that, for every club $D \subseteq \theta^+$, the following set is stationary:

$$\{\delta \in E_{\theta}^{\theta^+} \mid \sup(\operatorname{nacc}(C_{\delta}) \cap D) = \delta\}.$$

Equivalently: for every club $D \subseteq \theta^+$, the next set is nonempty:

$$\{\delta \in E_{\theta}^{\theta^+} \mid \sup\{\beta < \delta \mid \min(C_{\delta} \setminus (\beta + 1)) \in D\} = \delta\}.$$

The invasion of ideals

Suppose $\vec{J} = \langle J_{\delta} | \delta \in S \rangle$ is a sequence such that each J_{δ} is some ideal over δ , extending $J^{bd}[\delta]$ (the ideal of bounded subsets of δ).

Definition ([46])

 $CG(S, \vec{J})$ asserts the existence of a *C*-sequence $\langle C_{\delta} | \delta \in S \rangle$ such that for every club $D \subseteq \kappa$, there exists a $\delta \in S$ for which

$$\{eta < \delta \mid \min(C_{\delta} \setminus (eta + 1)) \in D\} \in J^+_{\delta}.$$

Remark

So far we obtained instances of CG(S) by starting with some C-sequence $\langle C_{\delta} | \delta \in S \rangle$ for which $\sup_{\delta \in S} |C_{\delta}|$ is relatively small, and then rectifying errors using a postprocessing function. In the context in which $\sup_{\delta \in S} |C_{\delta}|$ cannot be small, we need a more relaxed concept...

Amenable C-sequences

Definition ([29])

A *C*-sequence $\langle C_{\delta} | \delta \in S \rangle$ is amenable iff for every club $D \subseteq \kappa$, the set $\{\delta \in S | \sup(D \cap \delta \setminus C_{\delta}) < \delta\}$ is nonstationary (in κ).

Lemma

Every successor cardinal admits an amenable C-sequence.

Proof. Let $\kappa = \lambda^+$ be some successor cardinal. Pick a *C*-sequence $\vec{C} = \langle C_{\delta} \mid \delta < \kappa \rangle$ such that $\operatorname{otp}(C_{\delta}) \leq \lambda$ for all $\delta < \kappa$. For every club $D \subseteq \kappa$, the set $\{\delta < \kappa \mid \operatorname{otp}(D \cap \delta) = \delta > \lambda\}$ is a club in κ disjoint from $\{\delta \in S \mid \operatorname{sup}(D \cap \delta \setminus C_{\delta}) < \delta\}$.

More generally, if almost all ordinals in S are singular, then S admits an amenable C-sequence.

Exercise: $\langle C_{\delta} | \delta \in S \rangle$ is amenable iff for every club $D \subseteq \kappa$, the set $\{\delta \in S | D \cap \delta \subseteq C_{\delta}\}$ is nonstationary iff for every club $D \subseteq \kappa$ and every conservative Φ , $\{\delta \in S | D \cap \delta = \Phi(C_{\delta})\}$ is nonstationary.

Amenable C-sequences

Definition

A C-sequence $\langle C_{\delta} \mid \delta \in S \rangle$ is amenable iff for every club $D \subseteq \kappa$, the set $\{\delta \in S \mid D \cap \delta \subseteq C_{\delta}\}$ is nonstationary in κ .

Lemma

For every stationary $S \subseteq \kappa$, there exists a stationary $S' \subseteq S$ such that S' carries an amenable C-sequence.

Proof. If $S \cap E_{\omega}^{\kappa}$ is stationary, then $S' := S \cap E_{\omega}^{\kappa}$ carries an ω -bounded *C*-sequence, which is clearly amenable. So, we may assume that $S \cap E_{\omega}^{\kappa}$ is empty, and let $S' := S \setminus \text{Tr}(S)$, where:

 $\mathsf{Tr}(S) := \{ \alpha \in \mathsf{E}_{>\omega}^{\kappa} \mid S \cap \alpha \text{ is stationary in } \alpha \},\$

▶ To see that S' is stationary, let $D \subseteq \kappa$ be a club. Then $\alpha := \min(\operatorname{acc}(D) \cap S)$ belongs to $D \cap S$ and $\operatorname{acc}(D) \cap \alpha$ is a club in α disjoint from S, so that $\alpha \notin \operatorname{Tr}(S)$. Altogether, $\alpha \in S' \cap D$. Fix a C-sequence $\langle C_{\delta} | \delta \in S' \rangle$ such that $C_{\delta} \cap S = \emptyset$ for all $\delta \in S'$. If there is a club $D \subseteq \kappa$ such that $\{\delta \in S' | D \cap \delta \subseteq C_{\delta}\}$ is cofinal in κ , then that set must contain a $\delta \in S'$ above min $(D \cap S)$.

Amenable C-sequences and club-guessing

We have seen that for every stationary $S \subseteq \kappa$, there exists a stationary $S' \subseteq S$ such that S' carries an amenable *C*-sequence. The next step is to come up with a postprocessing function that can take advantage of amenability. For a club $D \subseteq \kappa$, let

$$\Phi_D^{\mathsf{drop}}(x) := \begin{cases} \{ \sup(D \cap \gamma) \mid \gamma \in x, \gamma > \min(D) \}, & \sup(x) \in \operatorname{acc}(D); \\ x \setminus \sup(D \cap \sup(x)), & \text{otherwise.} \end{cases}$$

Note: Φ is not conservative! $\sup(x) \in \operatorname{acc}(D) \implies \Phi_D^{\mathsf{drop}}(x) \subseteq D$.

Lemma

Suppose that $\vec{C} = \langle C_{\delta} | \delta \in S \rangle$ is an amenable C-sequence. If $\kappa \geq \aleph_2$, then there exists a club $D \subseteq \kappa$ for which $\langle \Phi_D^{drop}(C_{\delta}) | \delta \in S \rangle$ witnesses $CG(S, \langle J^{bd}[\delta] | \delta \in S \rangle)$. Amenable *C*-sequences and club-guessing (cont.)

Proof. Suppose not. So, for every club $D \subseteq \kappa$, there is a club $F^D \subseteq \kappa$ such that, for every $\delta \in S$,

$$\sup(\mathsf{nacc}(\Phi_D^{\mathsf{drop}}(C_\delta))\cap F^D)<\delta.$$

Construct a descending sequence $\langle D_i | i < \omega_1 \rangle$ of clubs in κ via:

1.
$$D_0 := \kappa;$$

2.
$$D_{i+1} := D_i \cap F^{D_i};$$

3. for $i \in \operatorname{acc}(\omega_1)$, $D_i := \bigcap_{i' < i} D_{i'}$.

As $D^* := \bigcap_{i < \omega_1} D_i$ is a club in $\kappa \ge \aleph_2$ and \vec{C} is amenable, we may pick some $\delta \in S$ such that $\sup(D^* \cap \delta \setminus C_{\delta}) = \delta$. For each $i < \omega_1$, since $D_i \cap \delta$ is a closed unbounded subset of δ , it is the case that

$$\Phi^{\mathsf{drop}}_{D_i}(\mathcal{C}_{\delta}) = \{ \mathsf{sup}(D_i \cap \gamma) \mid \gamma \in \mathcal{C}_{\delta}, \gamma > \mathsf{min}(D_i) \}.$$

So $\Phi_{D_i}^{drop}(C_{\delta}) \subseteq D_i$ and $\operatorname{acc}(\Phi_{D_i}^{drop}(C_{\delta})) \subseteq \operatorname{acc}(D_i) \cap \operatorname{acc}(C_{\delta})$. In addition, for each $i < \omega_1$, since $D_{i+1} \subseteq F^{D_i}$,

$$\varepsilon_i := \sup(\operatorname{nacc}(\Phi_{D_i}^{\operatorname{drop}}(C_{\delta})) \cap D_{i+1})$$
 is smaller than δ .

Amenable C-sequences and club-guessing (cont.)

Claim

There exists $I \subseteq \omega_1$ of ordertype ω such that $\sup\{\varepsilon_i \mid i \in I\} < \delta$. Proof. \blacktriangleright If $cf(\delta) > \omega$, then just let $I := \omega$. \blacktriangleright If $cf(\delta) = \omega$, then pick a countable cofinal subset e of δ and for each $i \in \omega_1$, find the least $\varepsilon \in e$ such $\varepsilon_i \le \varepsilon$. By the pigeonhole principle, there is an $\varepsilon \in e$ for which $\{i \in I \mid \varepsilon_i \le \varepsilon\}$ is uncountable. In particular, this set contains a subset of type ω .

Amenable *C*-sequences and club-guessing (cont.)

Fix $I \subseteq \omega_1$ of ordertype ω such that sup $\{\varepsilon_i \mid i \in I\} < \delta$, and then pick $\alpha \in D^* \cap \delta \setminus C_{\delta}$ above sup{ $\varepsilon_i \mid i \in I$ }. As $\alpha \notin C_{\delta}$, $\gamma := \min(C_{\delta} \setminus \alpha)$ is in $\operatorname{nacc}(C_{\delta})$. As $(\sup(D_i \cap \gamma) \mid i \in I)$ is a weakly decreasing sequence of ordinals, by well-foundedness there must be a pair of ordinals i < jin I such that $\beta_i := \sup(D_i \cap \gamma)$ is equal to $\beta_i := \sup(D_i \cap \gamma)$. As $\alpha \in D_i \cap \gamma$, $\varepsilon_i < \alpha \leq \beta_i \leq \gamma$, so $\beta_i \in \Phi_{D_i}^{\mathsf{drop}}(\mathcal{C}_{\delta}) \cap (\varepsilon_i, \gamma]$. Likewise, $\beta_j \in \Phi_{D_i}^{drop}(C_{\delta}) \cap (\varepsilon_j, \gamma].$ Recalling that $\beta_i = \beta_i \in D_i \subseteq D_{i+1}$, it follows that β_i is an element of $\Phi_{D_i}^{\mathsf{drop}}(C_{\delta}) \cap D_{i+1}$ above ε_i and hence $\beta_i \in \operatorname{acc}(\Phi_{D_i}^{\mathsf{drop}}(C_{\delta}))$. Recalling that $\operatorname{acc}(\Phi_{D}^{\operatorname{drop}}(C_{\delta})) \subseteq \operatorname{acc}(D_{i}) \cap \operatorname{acc}(C_{\delta})$, we infer that $\beta_i \in \operatorname{acc}(C_{\delta})$. But $\alpha \leq \beta_i \leq \gamma$ and $C_{\delta} \cap [\alpha, \gamma] = \{\gamma\}$, and hence $\beta_i = \gamma$, contradicting the fact that $\gamma \in \operatorname{nacc}(C_{\delta})$.

Amenability FTW

Corollary

If $\kappa \geq \aleph_2$, then for every stationary $S \subseteq \kappa$, $CG(S, \langle J^{bd}[\delta] | \delta \in S \rangle)$ holds.

Proof. Given a stationary set S, find a stationary $S' \subseteq S$ and an amenable C-sequence $\langle C_{\delta} \mid \delta \in S' \rangle$. Now, find a club $D \subseteq \kappa$ such that $\langle \Phi_D^{drop}(C_{\delta}) \mid \delta \in S' \rangle$ witnesses $CG(S', \langle J^{bd}[\delta] \mid \delta \in S' \rangle)$. In particular, $CG(S, \langle J^{bd}[\delta] \mid \delta \in S \rangle)$ holds.

Corollary

 $\mathsf{CG}(\mathsf{Reg}(\kappa), \langle J^{\mathsf{bd}}[\delta] \mid \delta \in \mathsf{Reg}(\kappa) \rangle)$ holds for every Mahlo κ .

A bonus

Corollary

If $\theta^+ < \kappa$, then CG(S) holds for every stationary $S \subseteq E_{\theta}^{\kappa}$.

Proof. Yesterday we took care of the case $\aleph_0 < \theta$, so suppose $S \subseteq E_{\omega}^{\kappa}$. Since postprocessing functions do not increase order-types, the result from the previous slide yields an ω -bounded witness to $CG(S, \langle J^{bd}[\delta] | \delta \in S \rangle)$. So, by the so-called *familiar argument*, we may find a club $D \subseteq \kappa$

such that $\langle \Phi_D(\mathcal{C}_\delta) \mid \delta \in S
angle$ witnesses $\mathsf{CG}(S)$.