A tutorial on Club-Guessing Part III

Assaf Rinot, Bar-Ilan University

Winter School in Abstract Analysis 2023 January 2023, Štěkeň, Czech Republic

Conventions

Throughout this series of talks:

- $\theta < \kappa$ is a pair of infinite regular cardinals;
- E_{θ}^{κ} stands for $\{\alpha < \kappa \mid \mathsf{cf}(\alpha) = \theta\}$;
- S and T denote stationary subset of κ.
 Typically, they consist of limits ordinals;

► For
$$D \subseteq \kappa$$
, $\operatorname{acc}(D) := \{\delta \in D \mid \sup(D \cap \delta) = \delta > 0\}$,
and $\operatorname{nacc}(D) := D \setminus \operatorname{acc}(D)$.

 $\begin{array}{l} \text{Some variations:} \ E_{<\theta}^{\kappa}, E_{\leq\theta}^{\kappa}, E_{>\theta}^{\kappa}, E_{\geq\theta}^{\kappa}, E_{\geq\theta}^{\kappa} \text{ and} \\ \texttt{acc}^+(X) := \{\delta < \sup(X) \mid \sup(X \cap \delta) = \delta > 0\}. \end{array} \end{array}$

Definition

CG(S) asserts the existence of a C-sequence $\langle C_{\delta} | \delta \in S \rangle$ such that for every club $D \subseteq \kappa$, there a exists a $\delta \in S$ such that $C_{\delta} \subseteq D$. Equivalently, $\{\delta \in S | C_{\delta} \subseteq D \cap \delta\}$ is stationary in κ .

Definition

```
CG(S) asserts the existence of a C-sequence \langle C_{\delta} | \delta \in S \rangle such that for every club D \subseteq \kappa, there a exists a \delta \in S such that C_{\delta} \subseteq D.
```

```
Theorem (Shelah)
CG(E_{\theta}^{\kappa}) holds, provided that \theta^+ < \kappa.
```

```
Theorem (Abraham-Shelah) CG(E_{\theta}^{\theta^+}) may consistently fail.
```

Definition

CG(S) asserts the existence of a *C*-sequence $\langle C_{\delta} | \delta \in S \rangle$ such that for every club $D \subseteq \kappa$, there a exists a $\delta \in S$ such that $C_{\delta} \subseteq D$.

The invasion of ideals Suppose $\vec{J} = \langle J_{\delta} \mid \delta \in S \rangle$ is a sequence such that each J_{δ} is some ideal over δ , extending $J^{\text{bd}}[\delta]$ (the ideal of bounded subsets of δ). CG(S, \vec{J}) asserts the existence of a C-sequence $\langle C_{\delta} \mid \delta \in S \rangle$ such that for every club $D \subseteq \kappa$, there exists a $\delta \in S$ for which

$$\{eta < \delta \mid \min(\mathit{C}_{\delta} \setminus (eta + 1)) \in D\} \in \mathit{J}_{\delta}^+.$$

Theorem (Shelah)

If $\kappa \geq \aleph_2$, then for every stationary $S \subseteq \kappa$, $CG(S, \langle J^{bd}[\delta] | \delta \in S \rangle)$ holds.

The invasion of ideals

Suppose $\vec{J} = \langle J_{\delta} \mid \delta \in S \rangle$ is a sequence such that each J_{δ} is some ideal over δ , extending $J^{bd}[\delta]$ (the ideal of bounded subsets of δ). CG(S, \vec{J}) asserts the existence of a C-sequence $\langle C_{\delta} \mid \delta \in S \rangle$ such that for every club $D \subseteq \kappa$, there exists a $\delta \in S$ for which

$$\{eta < \delta \mid \min(\mathit{C}_{\delta} \setminus (eta + 1)) \in D\} \in \mathit{J}_{\delta}^+.$$

Theorem (Shelah)

If $\kappa \geq \aleph_2$, then for every stationary $S \subseteq \kappa$, $CG(S, \langle J^{bd}[\delta] | \delta \in S \rangle)$ holds.

Incorporating with relative club-guessing

Suppose $\vec{J} = \langle J_{\delta} | \delta \in S \rangle$ is a sequence such that each J_{δ} is some ideal over δ , extending $J^{bd}[\delta]$ (the ideal of bounded subsets of δ). CG (S, T, \vec{J}) asserts the existence of a *C*-sequence $\langle C_{\delta} | \delta \in S \rangle$ such that for every club $D \subseteq \kappa$, there exists a $\delta \in S$ for which

$$\{\beta < \delta \mid \min(C_{\delta} \setminus (\beta + 1)) \in D \cap T\} \in J_{\delta}^+.$$

Using weaker forms of club-guessing

In our ZFC Sierpiński-type theorem for singular cardinals, we used the fact that $CG(E_{\theta}^{\kappa})$ allows to generate whole of θ upon any cofinal subset of κ . Is it possible to obtain a similar effect from the idealized form of guessing $CG(E_{\theta}^{\kappa}, T, \langle J^{bd}[\delta] | \delta \in S \rangle)$?

A related concept may be found in Moore's 2008 construction of an Aronszajn line with no Countryman suborders from the principle \Im .

Definition (Moore)

 \mho asserts the existence of a sequence $\langle h_{\delta} | \delta < \omega_1 \rangle$ such that each h_{δ} is a continuous map from δ to ω , and for every club $D \subseteq \omega_1$, there is a $\delta \in D$ such that $h_{\delta}[D] = \omega$.

In other words, there exists a colored ω -bounded *C*-sequence $\langle h_{\delta} : C_{\delta} \to \omega \mid \delta \in E_{\omega}^{\omega_1} \rangle$ such that, for every club $D \subseteq \omega_1$, there exists a $\delta \in E_{\omega}^{\omega_1}$ for which $\{h_{\delta}(\min(C_{\delta} \setminus \alpha)) \mid \alpha \in D\} = \omega$.

Partitioned club-guessing

Suppose that a *C*-sequence $\langle C_{\delta} | \delta \in S \rangle$ witnesses CG(*S*, *T*, *J*), i.e., for every club $D \subseteq \kappa$, there exists a $\delta \in S$ such that

$$\{eta < \delta \mid \mathsf{min}(\mathit{C}_{\delta} \setminus (eta + 1)) \in \mathit{D} \cap \mathit{T}\} \in \mathit{J}_{\delta}^+.$$

We would like to find colorings $\langle h_{\delta} : \delta \to \mu \mid \delta \in S \rangle$ such that for every club $D \subseteq \kappa$, there exists a $\delta \in S$ such that

$$\bigwedge_{ au < \mu} \{eta < \delta \mid h_{\delta}(eta) = au \ \& \ \min(\mathit{C}_{\delta} \setminus (eta + 1)) \in \mathit{D} \cap \mathit{T}\} \in \mathit{J}_{\delta}^+.$$

Theorem ([46])

Suppose that $\langle C_{\delta} | \delta \in E_{\theta}^{\kappa} \rangle$ witnesses $CG(S, T, \langle J^{bd}[\delta] | \delta \in S \rangle)$. If $\theta \ge 2^{\aleph_0}$ is not weakly compact, then there exist colorings h_{δ} 's such that for every club $D \subseteq \kappa$, there exists a $\delta \in S$ such that

$$\bigwedge_{n<\omega}\sup\{\beta<\delta\mid h_{\delta}(\beta)=n\ \&\ \min(C_{\delta}\setminus(\beta+1))\in D\cap T\}=\delta.$$

Theorem ([46])

Suppose that $\langle C_{\delta} | \delta \in E_{\theta}^{\kappa} \rangle$ witnesses $CG(S, T, \langle J^{bd}[\delta] | \delta \in S \rangle)$. If $\theta \ge 2^{\aleph_0}$ is not weakly compact, then there exist colorings h_{δ} 's such that for every club $D \subseteq \kappa$, there exists a $\delta \in S$ such that

$$\bigwedge_{n<\omega}\sup\{\beta<\delta\mid h_{\delta}(\beta)=n\ \&\ \min(C_{\delta}\setminus(\beta+1))\in D\cap T\}=\delta.$$

Theorem ([46])

Suppose that $\langle C_{\delta} | \delta \in E_{\theta}^{\kappa} \rangle$ witnesses $CG(S, T, \langle NS_{\delta} | \delta \in S \rangle)$. If $\theta \ge 2^{\aleph_0}$ is not ineffable, then there exist colorings h_{δ} 's such that for every club $D \subseteq \kappa$, there exists a $\delta \in S$ such that

$$\bigwedge_{n<\omega} \{\beta < \delta \mid h_{\delta}(\beta) = n \& \min(C_{\delta} \setminus (\beta+1)) \in D \cap T\} \in \mathsf{NS}^+_{\delta}.$$

Theorem ([46]) Suppose that $\langle C_{\delta} | \delta \in E_{\theta}^{\kappa} \rangle$ witnesses $CG(S, T, \langle NS_{\delta} | \delta \in S \rangle)$. If $\Diamond^*(\theta)$ holds, then there exist colorings h_{δ} 's such that for every club $D \subseteq \kappa$, there exists a $\delta \in S$ such that

$$\bigwedge_{\tau < \theta} \{\beta < \delta \mid h_{\delta}(\beta) = \tau \& \min(C_{\delta} \setminus (\beta + 1)) \in D \cap T\} \in \mathsf{NS}^+_{\delta}.$$

Theorem ([46])

Suppose that $\langle C_{\delta} | \delta \in E_{\theta}^{\kappa} \rangle$ witnesses $CG(S, T, \langle NS_{\delta} | \delta \in S \rangle)$. If $\theta \ge 2^{\aleph_0}$ is not ineffable, then there exist colorings h_{δ} 's such that for every club $D \subseteq \kappa$, there exists a $\delta \in S$ such that

$$\bigwedge_{n<\omega} \{\beta<\delta\mid h_{\delta}(\beta)=n \ \& \ \min(C_{\delta}\setminus(\beta+1))\in D\cap T\}\in\mathsf{NS}^+_{\delta}.$$

Theorem ([46]) Suppose that $\langle C_{\delta} | \delta \in E_{\theta}^{\kappa} \rangle$ witnesses $CG(S, T, \langle NS_{\delta} | \delta \in S \rangle)$. If $\Diamond^*(\theta)$ holds, then there exist colorings h_{δ} 's such that for every club $D \subseteq \kappa$, there exists a $\delta \in S$ such that

$$\bigwedge_{\tau < \theta} \{\beta < \delta \mid h_{\delta}(\beta) = \tau \And \min(C_{\delta} \setminus (\beta + 1)) \in D \cap T\} \in \mathsf{NS}^+_{\delta}.$$

Often times, we can get by with hypotheses considerably weaker than \Diamond^* , using a bulk of results from [47,53].

Theorem ([46]) Suppose that $\langle C_{\delta} | \delta \in E_{\theta}^{\kappa} \rangle$ witnesses $CG(S, T, \langle NS_{\delta} | \delta \in S \rangle)$. If $\Diamond^*(\theta)$ holds, then there exist colorings h_{δ} 's such that for every club $D \subseteq \kappa$, there exists a $\delta \in S$ such that

$$\bigwedge_{\tau < \theta} \{\beta < \delta \mid h_{\delta}(\beta) = \tau \& \min(C_{\delta} \setminus (\beta + 1)) \in D \cap T\} \in \mathsf{NS}^+_{\delta}.$$

Often times, we can get by with hypotheses considerably weaker than \Diamond^* , using a bulk of results from [47,53].

And sometimes it will be the combinatorial nature of κ (instead of θ) to be saving our day...:

Applications of abstract nonsense

Suppose θ is regular and uncountable, and $S \subseteq E_{\theta}^{\theta^+}$. Given a witness \vec{C} to $CG(S, T, \langle J^{bd}[\delta] \mid \delta \in S \rangle)$, the collection $\mathcal{I} := \{X \subseteq \theta^+ \mid \vec{C} \text{ does not witness } CG(S, X \cap T, \langle J^{bd}[\delta] \mid \delta \in S \rangle)\}$ is a θ -additive ideal on θ^+ extending NS_{θ^+} .

Lemma ([52]) If $\Box(\theta^+, <\theta)$ holds, then every θ -additive ideal on θ^+ extending $J^{bd}[\theta^+]$ is not weakly θ -saturated.

Corollary

If $\Box(\theta^+, <\theta)$ holds, then there is a decomposition $T = \biguplus_{i < \theta} T_i$ such that \vec{C} witnesses $CG(S, T_i, \langle J^{bd}[\delta] | \delta \in S \rangle)$ for all $i < \theta$. Now, define $h_{\delta} : \delta \to \theta$ by letting $h_{\delta}(\beta) := i$ for the unique $i < \theta$ such that $\min(C_{\delta} \setminus \beta) \in T_i$. (if $\min(C_{\delta} \setminus \beta) \notin T$, let $h_{\delta}(\beta) := 0$)

Conclusions

▶ Relaxing CG(S) to CG(S, \vec{J}) is unavoidable (e.g., $S = E_{\theta}^{\theta^+}$);

 One can compensate for this relaxation by having a partitioned form of CG(S, J);

- Partitioned form of guessing can easily be deduced from the gallery of colorings obtained in [47,53], and the "better" the sequence of ideals is, the more colors one gets... The J_δ's being J^{bd}[δ] is OK; being NS_δ is better; all the J_δ's being a copy of NS_θ + Reg(θ) is ideal (pun intended);
- This calls for moving between ideals.

Moving between ideals

Suppose θ is regular and uncountable.

Theorem (Shelah) For $S \subseteq E_{\theta}^{\theta^+}$ and $T := E_{\theta}^{\theta^+}$: 1. $CG(S, T, \langle J^{bd}[\delta] | \delta \in S \rangle)$ holds; 2. $CG(S, \theta^+, \langle NS_{\delta} | \delta \in S \rangle)$ holds.

In [46], we found a way to move between ideals while maintaining relative club-guessing.

Corollary ([46]) For $S \subseteq E_{\theta}^{\theta^+}$ and $T := E_{\theta}^{\theta^+}$, $CG(S, T, \langle NS_{\delta} | \delta \in S \rangle)$ holds.

In case moving between ideals is not satisfactory, we can do a Solovay-type decomposition theorem for club guessing.

Some more abstract nonsense

Theorem (Devlin, 1978)

If $\Diamond(S)$ holds, then there is a decomposition $S = \biguplus_{i < \kappa} S_i$ such that $\Diamond(S_i)$ holds for all $i < \kappa$.

Theorem ([23])

If $\clubsuit(S)$ holds, then there is a decomposition $S = \biguplus_{i < \kappa} S_i$ such that $\clubsuit(S_i)$ holds for all $i < \kappa$.

Theorem ([46]) If $\vec{C} = \langle C_{\delta} \mid \delta \in S \rangle$ witnesses $CG(S, T, \vec{J})$, there is $S = \biguplus_{i < \kappa} S_i$ such that $\vec{C} \upharpoonright S_i$ witnesses $CG(S_i, T, \vec{J})$ for all $i < \kappa$.

This means that we may settle for maps $h_{\delta} : \delta \to i$ for $\delta \in S_i$ that will gradually generate all colors.

Some more abstract nonsense (cont.)

Theorem [46]

If $\vec{C} = \langle C_{\delta} \mid \delta \in S \rangle$ witnesses $CG(S, T, \vec{J})$, there is $S = \biguplus_{i < \kappa} S_i$ such that $\vec{C} \upharpoonright S_i$ witnesses $CG(S_i, T, \vec{J})$ for all $i < \kappa$.

Proof. Denote $S_i^{\beta} := \{\delta \in S \cap \operatorname{acc}(\kappa \setminus \beta) \mid \min(C_{\delta} \setminus (\beta + 1)) = i\}$. It suffices to prove there is a $\beta < \kappa$ s.t. the following set has size κ :

$$I_{\beta} := \{ i \in (\beta, \kappa) \mid \vec{C} \upharpoonright S_i^{\beta} \text{ witnesses } \mathsf{CG}_{\xi}(S_i^{\beta}, T, \vec{J}) \}.$$

So, suppose that this is not the case, and fix a sparse enough club $E \subseteq \kappa$ such that, for every $\epsilon \in E$, for every $\beta < \epsilon$, $\sup(I_{\beta}) < \epsilon$. In addition, fix a triangular matrix $\langle D_i^{\beta} | \beta < i < \kappa \rangle$ of clubs in κ such that, for all $\beta < i < \kappa$, if $i \notin I_{\beta}$, then for every $\delta \in S_i^{\beta}$,

$$\{\beta < \delta \mid \min(C_{\delta} \setminus (\beta + 1)) \in D_i^{\beta} \cap T\} \in J_{\delta}.$$

Some more abstract nonsense (cont.)

Consider the club $D := \{\delta \in E \mid \forall i < \delta \forall \beta < i(\delta \in D_i^{\beta})\}.$ By the choice of \vec{C} , pick $\delta \in S$ such that the following set is in J_{δ}^+ :

$$B := \{\beta < \delta \mid \min(C_{\delta} \setminus (\beta + 1)) \in D \cap T\}.$$

Claim

For every $\beta < \delta$, $\min(C_{\delta} \setminus (\beta + 1)) \in I_{\beta}$. Proof. Given $\beta < \delta$, if we let $i := \min(C_{\delta} \setminus (\beta + 1))$, then $\delta \in S_{i}^{\beta}$, and since $D \cap \delta$ is almost included in $D_{i}^{\beta} \cap \delta$, it is the case that

$$\{\beta < \delta \mid \min(C_{\delta} \setminus (\beta + 1)) \in D_i^{\beta} \cap T\} \in J_{\delta}^+,$$

so that $i \in I_{\beta}$.

Pick $\beta \in B$ and set $\epsilon := \min(C_{\delta} \setminus (\beta + 1))$. As $\epsilon \in D \cap T \subseteq E$ and $\beta < \epsilon$, $\sup(I_{\beta}) < \epsilon$, contradicting the preceding claim.

Moving the S

Definition

A C-sequence $\vec{C} = \langle C_{\delta} \mid \delta < \kappa \rangle$ is coherent if for all $\bar{\alpha} < \alpha < \kappa$,

 $\bar{\alpha} \in \operatorname{acc}(\mathcal{C}_{\alpha}) \text{ iff } \mathcal{C}_{\bar{\alpha}} = \mathcal{C}_{\alpha} \cap \bar{\alpha}.$

Moving the S

Definition

A C-sequence $\vec{C} = \langle C_{\delta} \mid \delta < \kappa \rangle$ is coherent if for all $\bar{\alpha} < \alpha < \kappa$,

$$\bar{\alpha} \in \operatorname{acc}(\mathcal{C}_{\alpha}) \text{ iff } \mathcal{C}_{\bar{\alpha}} = \mathcal{C}_{\alpha} \cap \bar{\alpha}.$$

Recall

- $\begin{aligned} \Phi : \mathcal{K}(\kappa) \to \mathcal{K}(\kappa) \text{ is a postprocessing function if for all } x \in \mathcal{K}(\kappa): \\ 1. \ \Phi(x) \text{ is a club in sup}(x); \end{aligned}$
 - 2. $\operatorname{acc}(\Phi(x)) \subseteq \operatorname{acc}(x);$
 - 3. $\Phi(x) \cap \overline{\alpha} = \Phi(x \cap \overline{\alpha})$ for every $\overline{\alpha} \in \operatorname{acc}(\Phi(x))$.

Clause (3) implies that if \vec{C} is coherent, then so is $\langle \Phi(C_{\delta}) | \delta < \kappa \rangle$.

Moving the S

Definition

A C-sequence $\vec{C} = \langle C_{\delta} \mid \delta < \kappa \rangle$ is coherent if for all $\bar{\alpha} < \alpha < \kappa$,

$$\bar{\alpha} \in \operatorname{acc}(C_{\alpha}) \text{ iff } C_{\bar{\alpha}} = C_{\alpha} \cap \bar{\alpha}.$$

Theorem ([46])

Suppose that $\kappa \geq \aleph_2$. If there exists a coherent witness to $CG(\kappa, T, \langle J^{bd}[\delta] | \delta < \kappa \rangle)$, then $CG(S, T, \langle J^{bd}[\delta] | \delta \in S \rangle)$ holds for every stationary $S \subseteq \kappa$.

Moving the T

The regressive functions ideal ([24])

 $J[\kappa]$ stands for the collection of all subsets $S \subseteq \kappa$ for which there exist a club $D \subseteq \kappa$ and a sequence of functions $\langle f_i : \kappa \to \kappa \mid i < \kappa \rangle$ with the property that for every $\delta \in S \cap D$, every regressive map $f : \delta \to \delta$, and every cofinal subset $\Gamma \subseteq \delta$, there is an $i < \delta$ s.t.

$$\sup\{\gamma\in \mathsf{\Gamma}\mid f(\gamma)=f_i(\gamma)\}=\delta.$$

Theorem ([46])

Suppose that $CG(S, \kappa, \vec{J})$ holds, and $S \in J[\kappa]$. Then $CG(S, T, \vec{J})$ holds for every stationary $T \subseteq \kappa$. The proof takes a witness to $CG(S, \kappa, \vec{J})$ and applies a postprocessing function to get $CG(S, T, \vec{J})$.

Moving the T

The regressive functions ideal ([24])

 $J[\kappa]$ stands for the collection of all subsets $S \subseteq \kappa$ for which there exist a club $D \subseteq \kappa$ and a sequence of functions $\langle f_i : \kappa \to \kappa \mid i < \kappa \rangle$ with the property that for every $\delta \in S \cap D$, every regressive map $f : \delta \to \delta$, and every cofinal subset $\Gamma \subseteq \delta$, there is an $i < \delta$ s.t.

$$\sup\{\gamma\in \mathsf{\Gamma}\mid f(\gamma)=f_i(\gamma)\}=\delta.$$

Theorem ([46])

Suppose that $CG(S, \kappa, \vec{J})$ holds, and $S \in J[\kappa]$. Then $CG(S, T, \vec{J})$ holds for every stationary $T \subseteq \kappa$. The proof takes a witness to $CG(S, \kappa, \vec{J})$ and applies a postprocessing function to get $CG(S, T, \vec{J})$.

Moving the T

Theorem ([51])

- 1. $J[\omega_1]$ contains no stationary sets;
- J[ω₂] contains a stationary set iff there is a nonmeager set of reals of size ℵ₁;
- 3. $J[\lambda^+]$ contains a stationary set for every $\lambda > 2^{\aleph_1}$ provided that Shelah's Strong Hypothesis holds;
- 4. $J[\lambda^+]$ contains a stationary set for every $\lambda \geq \beth_{\omega}$.

Theorem ([46])

Suppose that $CG(S, \kappa, \vec{J})$ holds, and $S \in J[\kappa]$. Then $CG(S, T, \vec{J})$ holds for every stationary $T \subseteq \kappa$.

The proof takes a witness to $CG(S, \kappa, \vec{J})$ and applies a postprocessing function to get $CG(S, T, \vec{J})$.

Putting it all together

Corollary ([46])

Suppose $\lambda \geq \beth_{\omega}$ is such that $\Box(\lambda^+)$ holds, and S, T are stationary subsets of λ^+ . Then CG(*S*, *T*, $\langle J^{bd}[\delta] | \delta \in S \rangle$) holds. **Proof.** (1) As $\lambda \geq \beth_{\omega}$, we may fix a stationary set $R \in J[\lambda^+]$. (2) By [29], a witness to $\Box(\lambda^+)$ is an amenable *C*-sequence, so by invoking the postprocessing Φ_D^{drop} from vesterday, we obtain a coherent witness to $CG(R, \kappa, \langle J^{bd}[\delta] | \delta \in R \rangle)$. (3) It now follows from the result of the previous slide (moving the T) that there is a coherent witness to $CG(R, T, \langle J^{bd}[\delta] | \delta \in R \rangle)$. In fact, there is a coherent witness to $CG(\kappa, T, \langle J^{bd}[\delta] | \delta < \kappa \rangle)$. (4) It now follows from the result of the previous-previous slide (moving the S) that CG(S, T, $\langle J^{bd}[\delta] | \delta \in S \rangle$) holds.

Some open problems

Question (Moving between ideals)

Suppose that *S* consists of ineffables. Does $CG(S, \kappa, \vec{J})$ hold where each J_{δ} is $NS_{\delta} \upharpoonright R_{\delta}$, for some small stationary subset R_{δ} of δ , supporting an amenable *C*-sequence?

Question

Suppose that λ is a singular cardinal of coutnable cofinality. Must there exist a *C*-sequence $\langle C_{\delta} | \delta \in E_{cf(\lambda)}^{\lambda^+} \rangle$ such that for every club $D \subseteq \lambda^+$, there exists a $\delta \in E_{cf(\lambda)}^{\lambda^+}$ satisfying the following? 1. $C_{\delta} \subseteq D$;

2. $\langle cf(\beta) | \beta \in C_{\delta} \rangle$ is an increasing sequence converging to λ .

An affirmative answer would follow from a Q we asked yesterday:

Question

Suppose that λ is a singular cardinal. Must there exist a *C*-sequence $\langle C_{\delta} | \delta \in E_{cf(\lambda)}^{\lambda^+} \rangle$ such that for every club $D \subseteq \lambda^+$, the set $\{\delta \in E_{cf(\lambda)}^{\lambda^+} | C_{\delta} \subseteq D \& \operatorname{otp}(C_{\delta}) = \lambda\}$ is stationary?

16 / 16