In praise of *C*-sequences

11th Young Set Theory Workshop, Bernoulli Center, Lausanne, June 2018

> Assaf Rinot Bar-Ilan University

Bibliography

Much of the results presented here come from joint works with Ari Brodsky and Chris Lambie-Hanson.

I will occasionally provide a reference of the form [n], where n is some positive integer. To obtain the cited paper, simply go to http://assafrinot.com/paper/n

Conventions

- λ denotes an infinite cardinal;
- κ denotes a regular uncountable cardinal (e.g., $\kappa = \lambda^+$);
- $\operatorname{Reg}(\kappa)$ denotes the set of infinite regular cardinals $< \kappa$;
- Γ denotes a stationary subset of κ
 (we often implicitly assume Γ consists only of limit nonzero ordinals);

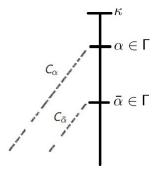
•
$$E_{\chi}^{\kappa} := \{ \alpha < \kappa \mid \mathsf{cf}(\alpha) = \chi \};$$

•
$$E_{>\chi}^{\kappa} := \{ \alpha < \kappa \mid \mathsf{cf}(\alpha) > \chi \};$$

• etc'...

Definition

A <u>C-sequence over Γ </u> is a sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ such that, for every $\alpha \in \Gamma$, C_{α} is a closed subset of α , with $\sup(C_{\alpha}) = \sup(\alpha)$.



Definition

A <u>C-sequence over Γ </u> is a sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ such that, for every $\alpha \in \Gamma$, C_{α} is a closed subset of α , with $\sup(C_{\alpha}) = \sup(\alpha)$.

Thesis

C-sequences successfully capture the combinatorial features of κ .

Definition

A <u>C-sequence over Γ </u> is a sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ such that, for every $\alpha \in \Gamma$, C_{α} is a closed subset of α , with $\sup(C_{\alpha}) = \sup(\alpha)$.

Thesis

C-sequences successfully capture the combinatorial features of κ .

Example 1

The type of \vec{C} is the least ordinal ξ satisfying $\operatorname{otp}(C_{\alpha}) < \xi$ for all $\alpha \in \Gamma$. Clearly, κ is a successor cardinal iff there is a \vec{C} over κ with type $(\vec{C}) < \kappa$.

Definition

A <u>C-sequence over Γ </u> is a sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ such that, for every $\alpha \in \Gamma$, C_{α} is a closed subset of α , with $\sup(C_{\alpha}) = \sup(\alpha)$.

Thesis

C-sequences successfully capture the combinatorial features of κ .

Example 2

The width of \vec{C} is the least cardinal μ satisfying $|\mathcal{G}_{\beta}(\vec{C})| < \mu$ for all $\beta < \kappa$, where $\mathcal{G}_{\beta}(\vec{C}) := \{C_{\alpha} \cap \beta \mid \alpha \in \Gamma, \sup(C_{\alpha} \cap \beta) = \beta\}.$ Clearly, κ is a strong limit iff for every \vec{C} over κ , width $(\vec{C}) \leq \kappa$.

Definition

A <u>C-sequence over Γ </u> is a sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ such that, for every $\alpha \in \Gamma$, C_{α} is a closed subset of α , with $\sup(C_{\alpha}) = \sup(\alpha)$.

Thesis

C-sequences successfully capture the combinatorial features of κ .

Exercise

Find a C-sequence characterization of the following statements: κ is Mahlo, κ is weakly compact, κ is ineffable.

Definition

A <u>C-sequence over Γ </u> is a sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ such that, for every $\alpha \in \Gamma$, C_{α} is a closed subset of α , with $\sup(C_{\alpha}) = \sup(\alpha)$.

Thesis

C-sequences successfully capture the combinatorial features of κ .

Example 3

 $\kappa^{<\kappa} = \kappa$ iff there is a *C*-sequence $\langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ satisfying:

• {{
$$\beta < \bar{\alpha} \mid (\beta + 1) \in C_{\alpha}$$
} | $\alpha \in \Gamma, \bar{\alpha} < \alpha$ } = $[\kappa]^{<\kappa}$.

Definition

A C-sequence over Γ is a sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ such that, for every $\alpha \in \Gamma$, C_{α} is a closed subset of α , with sup $(C_{\alpha}) = sup(\alpha)$.

Thesis

C-sequences successfully capture the combinatorial features of κ .

Example 4

 $\Diamond(\Gamma)$ iff there is a *C*-sequence $\langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ satisfying the two:

- ► {{ $\beta < \bar{\alpha} \mid (\beta + 1) \in C_{\alpha}$ } | $\alpha \in \Gamma, \bar{\alpha} < \alpha$ } = $[\kappa]^{<\kappa}$;
- ► For every cofinal $A \subseteq \kappa$, there is a nonzero $\alpha \in \Gamma$ with $\{\beta < \alpha \mid (\beta + 1) \in C_{\alpha}\} \subseteq A$.

Definition

A <u>C-sequence over Γ </u> is a sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ such that, for every $\alpha \in \Gamma$, C_{α} is a closed subset of α , with $\sup(C_{\alpha}) = \sup(\alpha)$.

Thesis

C-sequences successfully capture the combinatorial features of κ .

In this series of lectures, we shall present various combinatorial problems, and demonstrate how the C-sequence perspective leads to their solution. We shall also provide a toolbox for manipulating and producing C-sequences.

Graphs

Definition

A graph is a pair G = (V, E), where $E \subseteq [V]^2$. Elements of V are called the vertices of G; Elements of E are called the edges of G.

Definition

The chromatic number of G = (V, E), denoted Chr(G), is the least cardinal θ for which there exists a coloring $f : V \to \theta$ such that: $f(x) \neq f(y)$ for all $\{x, y\} \in E$.

Intermediate value theorem?

Suppose that G is a graph of size and chromatic number \aleph_2 . Must it contain a subgraph of size and chromatic number \aleph_1 ?

Definition

Let $\mathbb{P} = (P, \leq)$ denote a partially ordered set (poset).

- P is said to satisfy the κ-cc iff it has no antichains of size κ, i.e., if
 for every A ⊆ P of size κ, there exist a ≠ b in A that are compatible.
- P is said to satisfy the κ-Knaster iff for every A ⊆ P of size κ, there
 is B ⊆ A of size κ such that any two conditions in B are compatible.
- \mathbb{P}^{θ} stands for the poset whose elements are functions $f : \theta \to P$, and $f \leq_{\mathbb{P}^{\theta}} g$ iff $f(\alpha) \leq g(\alpha)$ for all $\alpha < \theta$.

Definition

Let $\mathbb{P} = (P, \leq)$ denote a partially ordered set (poset).

- P is said to satisfy the κ-cc iff it has no antichains of size κ, i.e., if
 for every A ⊆ P of size κ, there exist a ≠ b in A that are compatible.
- P is said to satisfy the κ-Knaster iff for every A ⊆ P of size κ, there
 is B ⊆ A of size κ such that any two conditions in B are compatible.
- \mathbb{P}^{θ} stands for the poset whose elements are functions $f : \theta \to P$, and $f \leq_{\mathbb{P}^{\theta}} g$ iff $f(\alpha) \leq g(\alpha)$ for all $\alpha < \theta$.

Fact

Martin's Axiom (MA_{\aleph_1}) implies that any \aleph_1 -cc poset \mathbb{P} is \aleph_1 -Knaster. In particular, \mathbb{P}^n is \aleph_1 -cc for any positive integer n.

Assaf Rinot (Bar-Ilan University)

In praise of C-sequences

Definition

Let $\mathbb{P} = (P, \leq)$ denote a partially ordered set (poset).

- P is said to satisfy the κ-cc iff it has no antichains of size κ, i.e., if
 for every A ⊆ P of size κ, there exist a ≠ b in A that are compatible.
- P is said to satisfy the κ-Knaster iff for every A ⊆ P of size κ, there
 is B ⊆ A of size κ such that any two conditions in B are compatible.
- \mathbb{P}^{θ} stands for the poset whose elements are functions $f : \theta \to P$, and $f \leq_{\mathbb{P}^{\theta}} g$ iff $f(\alpha) \leq g(\alpha)$ for all $\alpha < \theta$.

Theorem (Shelah, 1997)

There is an \aleph_2 -cc poset \mathbb{P} such that \mathbb{P}^2 does not satisfy \aleph_2 -cc.

Fact

Martin's Axiom (MA_{\aleph_1}) implies that any \aleph_1 -cc poset \mathbb{P} is \aleph_1 -Knaster. In particular, \mathbb{P}^n is \aleph_1 -cc for any positive integer n.

Assaf Rinot (Bar-Ilan University)

In praise of C-sequences

Definition

Let $\mathbb{P} = (P, \leq)$ denote a partially ordered set (poset).

- P is said to satisfy the κ-cc iff it has no antichains of size κ, i.e., if
 for every A ⊆ P of size κ, there exist a ≠ b in A that are compatible.
- P is said to satisfy the κ-Knaster iff for every A ⊆ P of size κ, there
 is B ⊆ A of size κ such that any two conditions in B are compatible.
- \mathbb{P}^{θ} stands for the poset whose elements are functions $f : \theta \to P$, and $f \leq_{\mathbb{P}^{\theta}} g$ iff $f(\alpha) \leq g(\alpha)$ for all $\alpha < \theta$.

Theorem (Shelah, 1997)

There is an \aleph_2 -cc poset \mathbb{P} such that \mathbb{P}^2 does not satisfy \aleph_2 -cc.

How about Knaster?

Is there an \aleph_2 -Knaster poset \mathbb{P} such that \mathbb{P}^{ω} does not satisfy \aleph_2 -cc?

Definition

A (streamlined) κ -Aronszajn tree is a collection $\mathcal{T} \subseteq {}^{<\kappa}2$ satisfying:

- for all $\alpha < \kappa$, the set $\mathcal{T}_{\alpha} := \{t \in \mathcal{T} \mid \mathsf{dom}(t) = \alpha\}$ has size $< \kappa$;
- for all $\alpha < \kappa$ and $t \in \mathcal{T}$, there is $s \in \mathcal{T}_{\alpha}$ with $s \cup t \in \mathcal{T}$;
- for all $b : \kappa \to 2$, there is $\alpha < \kappa$ with $b \upharpoonright \alpha \notin \mathcal{T}$.

We think of \mathcal{T} as a set, partially ordered by \subseteq .

Definition

A (streamlined) κ -Aronszajn tree is a collection $\mathcal{T} \subseteq {}^{<\kappa}2$ satisfying:

- for all $\alpha < \kappa$, the set $\mathcal{T}_{\alpha} := \{t \in \mathcal{T} \mid \mathsf{dom}(t) = \alpha\}$ has size $< \kappa$;
- for all $\alpha < \kappa$ and $t \in \mathcal{T}$, there is $s \in \mathcal{T}_{\alpha}$ with $s \cup t \in \mathcal{T}$;
- for all $b : \kappa \to 2$, there is $\alpha < \kappa$ with $b \upharpoonright \alpha \notin \mathcal{T}$.

We think of \mathcal{T} as a set, partially ordered by \subseteq .

Definition

A λ^+ -Aronszajn tree \mathcal{T} is said to be special iff there exists $f : \mathcal{T} \to \lambda$ such that for every $C \subseteq \mathcal{T}$ linearly ordered by \subseteq , $f \upharpoonright C$ is injective.

Definition

A (streamlined) κ -Aronszajn tree is a collection $\mathcal{T} \subseteq {}^{<\kappa}2$ satisfying:

- for all $\alpha < \kappa$, the set $\mathcal{T}_{\alpha} := \{t \in \mathcal{T} \mid \mathsf{dom}(t) = \alpha\}$ has size $< \kappa$;
- for all $\alpha < \kappa$ and $t \in \mathcal{T}$, there is $s \in \mathcal{T}_{\alpha}$ with $s \cup t \in \mathcal{T}$;
- for all $b : \kappa \to 2$, there is $\alpha < \kappa$ with $b \upharpoonright \alpha \notin \mathcal{T}$.

We think of \mathcal{T} as a set, partially ordered by \subseteq .

Definition

A λ^+ -Aronszajn tree \mathcal{T} is said to be special iff there exists $f : \mathcal{T} \to \lambda$ such that for every $C \subseteq \mathcal{T}$ linearly ordered by \subseteq , $f \upharpoonright C$ is injective.

Example 5 (Jensen, 1972)

There is a special λ^+ -Aronszajn tree iff there is \vec{C} over λ^+ with width $(\vec{C}) \leq \lambda^+$ and type $(\vec{C}) < \lambda^+$.

Assaf Rinot (Bar-Ilan University)

Definition

A (streamlined) κ -Aronszajn tree is a collection $\mathcal{T} \subseteq {}^{<\kappa}2$ satisfying:

- for all $\alpha < \kappa$, the set $\mathcal{T}_{\alpha} := \{t \in \mathcal{T} \mid \mathsf{dom}(t) = \alpha\}$ has size $< \kappa$;
- for all $\alpha < \kappa$ and $t \in \mathcal{T}$, there is $s \in \mathcal{T}_{\alpha}$ with $s \cup t \in \mathcal{T}$;
- for all $b : \kappa \to 2$, there is $\alpha < \kappa$ with $b \upharpoonright \alpha \notin \mathcal{T}$.

We think of \mathcal{T} as a set, partially ordered by \subseteq .

Definition

A λ^+ -Aronszajn tree \mathcal{T} is said to be special iff there exists $f : \mathcal{T} \to \lambda$ such that for every $C \subseteq \mathcal{T}$ linearly ordered by \subseteq , $f \upharpoonright C$ is injective.

Archetypical problem

For an ordinal α , is it consistent with GCH that there is an $\aleph_{\alpha+1}$ -Aronszajn tree, but all of them are special?

Assaf Rinot (Bar-Ilan University)

In praise of C-sequences

Definition

A subset $X \subseteq \kappa$ is said to be α -fat iff for every club $D \subseteq \kappa$, there exists a strictly increasing and continuous function $\pi : \alpha \to X \cap D$. (That is, $X \cap D$ contains a "closed copy" of α .)

Definition

A subset $X \subseteq \kappa$ is said to be α -fat iff for every club $D \subseteq \kappa$, there exists a strictly increasing and continuous function $\pi : \alpha \to X \cap D$. (That is, $X \cap D$ contains a "closed copy" of α .)

Note: $X \subseteq \kappa$ is 1-fat iff it is stationary;

Definition

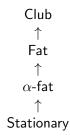
A subset $X \subseteq \kappa$ is said to be α -fat iff for every club $D \subseteq \kappa$, there exists a strictly increasing and continuous function $\pi : \alpha \to X \cap D$. (That is, $X \cap D$ contains a "closed copy" of α .) X is said to be fat iff it is α -fat for all $\alpha < \kappa$.

Note: $X \subseteq \kappa$ is 1-fat iff it is stationary;

Definition

A subset $X \subseteq \kappa$ is said to be α -fat iff for every club $D \subseteq \kappa$, there exists a strictly increasing and continuous function $\pi : \alpha \to X \cap D$. (That is, $X \cap D$ contains a "closed copy" of α .) X is said to be fat iff it is α -fat for all $\alpha < \kappa$.

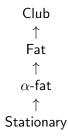
Note: $X \subseteq \kappa$ is 1-fat iff it is stationary; X is κ -fat iff it contains a club.



Definition

A subset $X \subseteq \kappa$ is said to be α -fat iff for every club $D \subseteq \kappa$, there exists a strictly increasing and continuous function $\pi : \alpha \to X \cap D$. (That is, $X \cap D$ contains a "closed copy" of α .) X is said to be fat iff it is α -fat for all $\alpha < \kappa$.

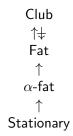
Note: $X \subseteq \kappa$ is 1-fat iff it is stationary; X is κ -fat iff it contains a club. For regular $\theta < \kappa$, if $X \subseteq \kappa$ is $(\theta + 1)$ -fat, then $X \cap E_{\theta}^{\kappa}$ is stationary.



Definition

A subset $X \subseteq \kappa$ is said to be α -fat iff for every club $D \subseteq \kappa$, there exists a strictly increasing and continuous function $\pi : \alpha \to X \cap D$. (That is, $X \cap D$ contains a "closed copy" of α .) X is said to be fat iff it is α -fat for all $\alpha < \kappa$.

Note: $X \subseteq \kappa$ is fat iff it is $(\theta + 1)$ -fat for all regular $\theta < \kappa$.



Definition

A subset $X \subseteq \kappa$ is said to be α -fat iff for every club $D \subseteq \kappa$, there exists a strictly increasing and continuous function $\pi : \alpha \to X \cap D$. (That is, $X \cap D$ contains a "closed copy" of α .) X is said to be fat iff it is α -fat for all $\alpha < \kappa$.

Note: $X \subseteq \kappa$ is fat iff it is $(\theta + 1)$ -fat for all regular $\theta < \kappa$.

Fact

- (H. Friedman, 1974) A subset of \aleph_1 is fat iff it is stationary.
- (Ulam, 1930) Every stationary subset of ℵ₁ may be split into ℵ₁ many stationary sets.

In particular, any fat subset of \aleph_1 may be split into two fat sets.

Definition

A subset $X \subseteq \kappa$ is said to be α -fat iff for every club $D \subseteq \kappa$, there exists a strictly increasing and continuous function $\pi : \alpha \to X \cap D$. (That is, $X \cap D$ contains a "closed copy" of α .) X is said to be fat iff it is α -fat for all $\alpha < \kappa$.

Note: $X \subseteq \kappa$ is fat iff it is $(\theta + 1)$ -fat for all regular $\theta < \kappa$.

Fact

- (H. Friedman, 1974) A subset of ℵ₁ is fat iff it is stationary.
- (Ulam, 1930) Every stationary subset of ℵ₁ may be split into ℵ₁ many stationary sets.

In particular, any fat subset of \aleph_1 may be split into two fat sets.

How about splitting fat subsets of \aleph_2 ?

Assaf Rinot (Bar-Ilan University)

In praise of C-sequences

Partitioning a fat set

Preliminary: Derived sets

For a cofinal subset $A \subseteq \kappa$, let

- $\operatorname{acc}^+(A) := \{ \alpha \in \kappa \mid A \cap \alpha \text{ is unbounded in } \alpha \};$
- $\operatorname{Tr}(A) := \{ \alpha \in E_{>\omega}^{\kappa} \mid A \cap \alpha \text{ is stationary in } \alpha \}.$

Fact

- acc⁺(A) is a club in κ ;
- **2** If $A \subseteq E_{\chi}^{\kappa}$, then $\operatorname{Tr}(A) \subseteq E_{>\chi}^{\kappa}$;
- If D is a club in κ , then $\operatorname{acc}^+(D) \subseteq D$;
- If D is a club in κ , then for every $\alpha \in \operatorname{acc}^+(D)$, $D \cap \alpha$ is a club in α .

Corollary

Tr(A) is stationary in $\kappa \implies A$ is stationary in κ .

Proof. Let *D* be an arbitrary club in κ . We shall prove that $D \cap A \neq \emptyset$. As Tr(*A*) is stationary in κ , let us pick $\alpha \in \text{Tr}(A) \cap \text{acc}^+(D)$. As $\alpha \in \text{Tr}(A)$, $A \cap \alpha$ is stat. in α ; As $\alpha \in \text{acc}^+(D)$, $D \cap \alpha$ is a club in α . Altogether, $A \cap D \cap \alpha \neq \emptyset$.

Assaf Rinot (Bar-Ilan University)

Preliminary: Derived sets

For a cofinal subset $A \subseteq \kappa$, let

- $\operatorname{acc}^+(A) := \{ \alpha \in \kappa \mid A \cap \alpha \text{ is unbounded in } \alpha \};$
- $\operatorname{Tr}(A) := \{ \alpha \in E_{>\omega}^{\kappa} \mid A \cap \alpha \text{ is stationary in } \alpha \}.$

Fact

- acc⁺(A) is a club in κ ;
- **2** If $A \subseteq E_{\chi}^{\kappa}$, then $\operatorname{Tr}(A) \subseteq E_{>\chi}^{\kappa}$;
- If D is a club in κ , then $\operatorname{acc}^+(D) \subseteq D$;
- If D is a club in κ , then for every $\alpha \in \operatorname{acc}^+(D)$, $D \cap \alpha$ is a club in α .

Exercise

For every cofinal $A \subseteq \kappa$ and every club $B \subseteq \kappa$, there exists a cofinal $A' \subseteq A$ such that $\operatorname{acc}^+(A') \subseteq B$.

Exercise

For κ weakly compact, A is stationary \implies Tr(A) is stationary.

Magidor's 1982 model

Proposition

Assuming the consistency of a weakly compact cardinal, it is consistent that \aleph_2 cannot be split into two fat sets.

Proof. Starting from a weakly compact cardinal, Magidor constructed a model in which for every stationary $S \subseteq E_{\omega^2}^{\omega_2}$, there exists a club $D \subseteq \omega_2$ such that $\operatorname{Tr}(S) = \{\delta \in E_{\omega_1}^{\omega_2} \mid S \cap \delta \text{ is stationary in } \delta\}$ covers $D \cap E_{\omega_1}^{\omega_2}$. Work in this model, and let F_0 , F_1 be arbitrary fat subsets of ω_2 . As F_0 is $(\omega + 1)$ -fat, $S_0 := F_0 \cap E_{\omega^2}^{\omega_2}$ is a stationary subset of $E_{\omega^2}^{\omega_2}$. So, let D be a club subset of ω_2 such that $D \cap E_{\omega_1}^{\omega_2} \subseteq \text{Tr}(S_0)$. As F_1 is $(\omega_1 + 1)$ -fat, let $\pi : \omega_1 + 1 \to F_1 \cap D$ be a strictly increasing and continuous function. Put $\delta := \pi(\omega_1)$, and $C := \pi[\omega_1]$, so that $\delta \in D \cap E_{\omega_1}^{\omega_2}$ and C is a club in δ . As $D \cap E_{\omega_1}^{\omega_2} \subseteq \text{Tr}(S_0)$, we have $\delta \in \text{Tr}(S_0)$. That is, $S_0 \cap \delta$ is stationary. Consequently, $S_0 \cap C \neq \emptyset$. In particular, $F_0 \cap F_1 \neq \emptyset$.

Amenable C-sequences

Definition [29]

A C-sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ is said to be amenable iff for every club $D \subseteq \kappa$, the set $\{ \alpha \in \Gamma \mid D \cap \alpha \subseteq C_{\alpha} \}$ is nonstationary.

Example

Any \vec{C} over a subset of κ with type $(\vec{C}) < \kappa$, is amenable. In particular, any successor cardinal carries an amenable *C*-sequence.

(for every $\xi < \kappa$ and club $D \subseteq \kappa$, $\{\alpha < \kappa \mid \mathsf{otp}(D \cap \alpha) > \xi\}$ is a club in κ)

Amenable C-sequences

Definition [29]

A C-sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ is said to be amenable iff for every club $D \subseteq \kappa$, the set $\{ \alpha \in \Gamma \mid D \cap \alpha \subseteq C_{\alpha} \}$ is nonstationary.

Note: If \vec{C} is amenable, then $\vec{C} \upharpoonright \Gamma'$ is amenable for every stationary $\Gamma' \subseteq \Gamma$.

Exercise

If V = L, then the following are equivalent for all regular uncountable κ :

- κ carries an amenable *C*-sequence;
- There is a κ -Kurepa tree.

Amenable C-sequences (cont.)

Recall: An amenable *C*-sequence over Γ is a seq. $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ s.t.:

- for every limit ordinal $\alpha \in \Gamma$, C_{α} is a club subset of α ;
- **2** for every club $D \subseteq \kappa$, $\{\alpha \in \Gamma \mid D \cap \alpha \subseteq C_{\alpha}\}$ is nonstationary.

Proposition

Every stationary $\Gamma \subseteq \kappa$ admits a stationary subset $\Gamma' \subseteq \Gamma$ that carries an amenable *C*-sequence.

Amenable C-sequences (cont.)

Recall: An amenable *C*-sequence over Γ is a seq. $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ s.t.:

- for every limit ordinal $\alpha \in \Gamma$, C_{α} is a club subset of α ;
- **2** for every club $D \subseteq \kappa$, $\{\alpha \in \Gamma \mid D \cap \alpha \subseteq C_{\alpha}\}$ is nonstationary.

Proposition

Every stationary $\Gamma \subseteq \kappa$ admits a stationary subset $\Gamma' \subseteq \Gamma$ that carries an amenable *C*-sequence.

Claim 1. $\Gamma' := \Gamma \setminus Tr(\Gamma)$ is stationary.

Recall: An amenable *C*-sequence over Γ is a seq. $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ s.t.:

- for every limit ordinal $\alpha \in \Gamma$, C_{α} is a club subset of α ;
- **2** for every club $D \subseteq \kappa$, $\{\alpha \in \Gamma \mid D \cap \alpha \subseteq C_{\alpha}\}$ is nonstationary.

 $\mathsf{Tr}(\Gamma) := \{ \alpha \in E_{>\omega}^{\kappa} \mid \Gamma \cap \alpha \text{ is stationary in } \alpha \}.$

Proposition

Every stationary $\Gamma \subseteq \kappa$ admits a stationary subset $\Gamma' \subseteq \Gamma$ that carries an amenable *C*-sequence.

Claim 1. $\Gamma' := \Gamma \setminus Tr(\Gamma)$ is stationary.

Recall: An amenable *C*-sequence over Γ is a seq. $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ s.t.:

- for every limit ordinal $\alpha \in \Gamma$, C_{α} is a club subset of α ;
- **2** for every club $D \subseteq \kappa$, $\{\alpha \in \Gamma \mid D \cap \alpha \subseteq C_{\alpha}\}$ is nonstationary.

 $\mathsf{Tr}(\Gamma) := \{ \alpha \in E_{>\omega}^{\kappa} \mid \Gamma \cap \alpha \text{ is stationary in } \alpha \}.$

Proposition

Every stationary $\Gamma \subseteq \kappa$ admits a stationary subset $\Gamma' \subseteq \Gamma$ that carries an amenable *C*-sequence.

Claim 1. $\Gamma' := \Gamma \setminus \text{Tr}(\Gamma)$ is stationary. **Proof.** Fix an arbitrary club $D \subseteq \kappa$. We shall show that $\Gamma' \cap D \neq \emptyset$.

Recall: An amenable *C*-sequence over Γ is a seq. $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ s.t.:

- for every limit ordinal $\alpha \in \Gamma$, C_{α} is a club subset of α ;
- **2** for every club $D \subseteq \kappa$, $\{\alpha \in \Gamma \mid D \cap \alpha \subseteq C_{\alpha}\}$ is nonstationary.

 $\mathsf{Tr}(\Gamma) := \{ \alpha \in E_{>\omega}^{\kappa} \mid \Gamma \cap \alpha \text{ is stationary in } \alpha \}.$

Proposition

Every stationary $\Gamma \subseteq \kappa$ admits a stationary subset $\Gamma' \subseteq \Gamma$ that carries an amenable *C*-sequence.

Claim 1. $\Gamma' := \Gamma \setminus \text{Tr}(\Gamma)$ is stationary. **Proof.** Fix an arbitrary club $D \subseteq \kappa$. We shall show that $\Gamma' \cap D \neq \emptyset$. As Γ is stationary, we may let $\alpha := \min(\operatorname{acc}^+(D) \cap \Gamma)$.

Recall: An amenable *C*-sequence over Γ is a seq. $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ s.t.:

• for every limit ordinal $\alpha \in \Gamma$, C_{α} is a club subset of α ;

2 for every club $D \subseteq \kappa$, $\{\alpha \in \Gamma \mid D \cap \alpha \subseteq C_{\alpha}\}$ is nonstationary.

 $\mathsf{Tr}(\Gamma) := \{ \alpha \in E_{>\omega}^{\kappa} \mid \Gamma \cap \alpha \text{ is stationary in } \alpha \}.$

Proposition

Every stationary $\Gamma \subseteq \kappa$ admits a stationary subset $\Gamma' \subseteq \Gamma$ that carries an amenable *C*-sequence.

Claim 1. $\Gamma' := \Gamma \setminus \text{Tr}(\Gamma)$ is stationary. **Proof.** Fix an arbitrary club $D \subseteq \kappa$. We shall show that $\Gamma' \cap D \neq \emptyset$. As Γ is stationary, we may let $\alpha := \min(\operatorname{acc}^+(D) \cap \Gamma)$. Then $\alpha \in D \cap \Gamma$ and $D \cap \alpha$ is closed and unbounded in α .

Recall: An amenable *C*-sequence over Γ is a seq. $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ s.t.:

• for every limit ordinal $\alpha \in \Gamma$, C_{α} is a club subset of α ;

2 for every club $D \subseteq \kappa$, $\{\alpha \in \Gamma \mid D \cap \alpha \subseteq C_{\alpha}\}$ is nonstationary.

 $\mathsf{Tr}(\Gamma) := \{ \alpha \in E_{>\omega}^{\kappa} \mid \Gamma \cap \alpha \text{ is stationary in } \alpha \}.$

Proposition

Every stationary $\Gamma \subseteq \kappa$ admits a stationary subset $\Gamma' \subseteq \Gamma$ that carries an amenable *C*-sequence.

Claim 1. $\Gamma' := \Gamma \setminus \text{Tr}(\Gamma)$ is stationary. **Proof.** Fix an arbitrary club $D \subseteq \kappa$. We shall show that $\Gamma' \cap D \neq \emptyset$. As Γ is stationary, we may let $\alpha := \min(\operatorname{acc}^+(D) \cap \Gamma)$. Then $\alpha \in D \cap \Gamma$ and $D \cap \alpha$ is closed and unbounded in α . If $\operatorname{cf}(\alpha) = \omega$, then $\alpha \notin \operatorname{Tr}(\Gamma)$, and we are done.

Recall: An amenable *C*-sequence over Γ is a seq. $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ s.t.:

• for every limit ordinal $\alpha \in \Gamma$, C_{α} is a club subset of α ;

2 for every club $D \subseteq \kappa$, $\{\alpha \in \Gamma \mid D \cap \alpha \subseteq C_{\alpha}\}$ is nonstationary.

 $\mathsf{Tr}(\Gamma) := \{ \alpha \in E_{>\omega}^{\kappa} \mid \Gamma \cap \alpha \text{ is stationary in } \alpha \}.$

Proposition

Every stationary $\Gamma \subseteq \kappa$ admits a stationary subset $\Gamma' \subseteq \Gamma$ that carries an amenable *C*-sequence.

Claim 1. $\Gamma' := \Gamma \setminus \operatorname{Tr}(\Gamma)$ is stationary. **Proof.** Fix an arbitrary club $D \subseteq \kappa$. We shall show that $\Gamma' \cap D \neq \emptyset$. As Γ is stationary, we may let $\alpha := \min(\operatorname{acc}^+(D) \cap \Gamma)$. Then $\alpha \in D \cap \Gamma$ and $D \cap \alpha$ is closed and unbounded in α . If $\operatorname{cf}(\alpha) = \omega$, then $\alpha \notin \operatorname{Tr}(\Gamma)$, and we are done. Suppose $\operatorname{cf}(\alpha) > \omega$. Then also $\operatorname{acc}^+(D \cap \alpha)$ is closed and unbounded in α .

Recall: An amenable *C*-sequence over Γ is a seq. $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ s.t.:

• for every limit ordinal $\alpha \in \Gamma$, C_{α} is a club subset of α ;

2 for every club $D \subseteq \kappa$, $\{\alpha \in \Gamma \mid D \cap \alpha \subseteq C_{\alpha}\}$ is nonstationary.

 $\mathsf{Tr}(\Gamma) := \{ \alpha \in E_{>\omega}^{\kappa} \mid \Gamma \cap \alpha \text{ is stationary in } \alpha \}.$

Proposition

Every stationary $\Gamma \subseteq \kappa$ admits a stationary subset $\Gamma' \subseteq \Gamma$ that carries an amenable *C*-sequence.

Claim 1. $\Gamma' := \Gamma \setminus \operatorname{Tr}(\Gamma)$ is stationary. **Proof.** Fix an arbitrary club $D \subseteq \kappa$. We shall show that $\Gamma' \cap D \neq \emptyset$. As Γ is stationary, we may let $\alpha := \min(\operatorname{acc}^+(D) \cap \Gamma)$. Then $\alpha \in D \cap \Gamma$ and $D \cap \alpha$ is closed and unbounded in α . If $\operatorname{cf}(\alpha) = \omega$, then $\alpha \notin \operatorname{Tr}(\Gamma)$, and we are done. Suppose $\operatorname{cf}(\alpha) > \omega$. Then also $\operatorname{acc}^+(D \cap \alpha)$ is closed and unbounded in α . By minimality of α , the club $\operatorname{acc}^+(D \cap \alpha) = \operatorname{acc}^+(D) \cap \alpha$ is disjoint from Γ . In particular, $\alpha \notin \operatorname{Tr}(\Gamma)$, and we are done.

Recall: An amenable *C*-sequence over Γ is a seq. $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ s.t.:

- for every limit ordinal $\alpha \in \Gamma$, C_{α} is a club subset of α ;
- **2** for every club $D \subseteq \kappa$, $\{\alpha \in \Gamma \mid D \cap \alpha \subseteq C_{\alpha}\}$ is nonstationary.

 $\mathsf{Tr}(\Gamma) := \{ \alpha \in E_{>\omega}^{\kappa} \mid \Gamma \cap \alpha \text{ is stationary in } \alpha \}.$

Proposition

Every stationary $\Gamma \subseteq \kappa$ admits a stationary subset $\Gamma' \subseteq \Gamma$ that carries an amenable *C*-sequence.

Claim 2. $\Gamma' := \Gamma \setminus Tr(\Gamma)$ carries an amenable *C*-sequence.

Recall: An amenable *C*-sequence over Γ is a seq. $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ s.t.:

- for every limit ordinal $\alpha \in \Gamma$, C_{α} is a club subset of α ;
- **2** for every club $D \subseteq \kappa$, $\{\alpha \in \Gamma \mid D \cap \alpha \subseteq C_{\alpha}\}$ is nonstationary.

 $\mathsf{Tr}(\Gamma) := \{ \alpha \in E_{>\omega}^{\kappa} \mid \Gamma \cap \alpha \text{ is stationary in } \alpha \}.$

Proposition

Every stationary $\Gamma \subseteq \kappa$ admits a stationary subset $\Gamma' \subseteq \Gamma$ that carries an amenable *C*-sequence.

Claim 2. $\Gamma' := \Gamma \setminus \text{Tr}(\Gamma)$ carries an amenable *C*-sequence. **Proof.** Fix a *C*-sequence $\langle C_{\alpha} \mid \alpha \in \Gamma' \rangle$ such that, for α of cofinality ω , $otp(C_{\alpha}) = \omega$, and for α of cofinality $> \omega$, $C_{\alpha} \cap \Gamma = \emptyset$.

Recall: An amenable *C*-sequence over Γ is a seq. $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ s.t.:

• for every limit ordinal $\alpha \in \Gamma$, C_{α} is a club subset of α ;

2 for every club $D \subseteq \kappa$, $\{\alpha \in \Gamma \mid D \cap \alpha \subseteq C_{\alpha}\}$ is nonstationary.

 $\mathsf{Tr}(\Gamma) := \{ \alpha \in E_{>\omega}^{\kappa} \mid \Gamma \cap \alpha \text{ is stationary in } \alpha \}.$

Proposition

Every stationary $\Gamma \subseteq \kappa$ admits a stationary subset $\Gamma' \subseteq \Gamma$ that carries an amenable *C*-sequence.

Claim 2. $\Gamma' := \Gamma \setminus \text{Tr}(\Gamma)$ carries an amenable *C*-sequence. **Proof.** Fix a *C*-sequence $\langle C_{\alpha} \mid \alpha \in \Gamma' \rangle$ such that, for α of cofinality ω , $otp(C_{\alpha}) = \omega$, and for α of cofinality $> \omega$, $C_{\alpha} \cap \Gamma = \emptyset$. Let *D* be an arbitrary club in κ .

Recall: An amenable *C*-sequence over Γ is a seq. $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ s.t.:

• for every limit ordinal $\alpha \in \Gamma$, C_{α} is a club subset of α ;

2 for every club $D \subseteq \kappa$, $\{\alpha \in \Gamma \mid D \cap \alpha \subseteq C_{\alpha}\}$ is nonstationary.

 $\mathsf{Tr}(\Gamma) := \{ \alpha \in E_{>\omega}^{\kappa} \mid \Gamma \cap \alpha \text{ is stationary in } \alpha \}.$

Proposition

Every stationary $\Gamma \subseteq \kappa$ admits a stationary subset $\Gamma' \subseteq \Gamma$ that carries an amenable *C*-sequence.

Claim 2. $\Gamma' := \Gamma \setminus \text{Tr}(\Gamma)$ carries an amenable *C*-sequence. **Proof.** Fix a *C*-sequence $\langle C_{\alpha} \mid \alpha \in \Gamma' \rangle$ such that, for α of cofinality ω , $otp(C_{\alpha}) = \omega$, and for α of cofinality $> \omega$, $C_{\alpha} \cap \Gamma = \emptyset$. Let *D* be an arbitrary club in κ . As Γ is stationary, let $\beta := \min(D \cap \Gamma)$.

Recall: An amenable *C*-sequence over Γ is a seq. $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ s.t.:

• for every limit ordinal $\alpha \in \Gamma$, C_{α} is a club subset of α ;

2 for every club $D \subseteq \kappa$, $\{\alpha \in \Gamma \mid D \cap \alpha \subseteq C_{\alpha}\}$ is nonstationary.

 $\mathsf{Tr}(\Gamma) := \{ \alpha \in E_{>\omega}^{\kappa} \mid \Gamma \cap \alpha \text{ is stationary in } \alpha \}.$

Proposition

Every stationary $\Gamma \subseteq \kappa$ admits a stationary subset $\Gamma' \subseteq \Gamma$ that carries an amenable *C*-sequence.

Claim 2. $\Gamma' := \Gamma \setminus \text{Tr}(\Gamma)$ carries an amenable *C*-sequence. **Proof.** Fix a *C*-sequence $\langle C_{\alpha} \mid \alpha \in \Gamma' \rangle$ such that, for α of cofinality ω , $otp(C_{\alpha}) = \omega$, and for α of cofinality $> \omega$, $C_{\alpha} \cap \Gamma = \emptyset$. Let *D* be an arbitrary club in κ . As Γ is stationary, let $\beta := \min(D \cap \Gamma)$. As $otp(D) = \kappa$, we may fix $\gamma \in D$ such that $otp(D \cap \gamma) = \beta + \omega + 1$.

Recall: An amenable *C*-sequence over Γ is a seq. $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ s.t.:

• for every limit ordinal $\alpha \in \Gamma$, C_{α} is a club subset of α ;

2 for every club $D \subseteq \kappa$, $\{\alpha \in \Gamma \mid D \cap \alpha \subseteq C_{\alpha}\}$ is nonstationary.

 $\mathsf{Tr}(\Gamma) := \{ \alpha \in E_{>\omega}^{\kappa} \mid \Gamma \cap \alpha \text{ is stationary in } \alpha \}.$

Proposition

Every stationary $\Gamma \subseteq \kappa$ admits a stationary subset $\Gamma' \subseteq \Gamma$ that carries an amenable *C*-sequence.

Claim 2. $\Gamma' := \Gamma \setminus \text{Tr}(\Gamma)$ carries an amenable *C*-sequence. **Proof.** Fix a *C*-sequence $\langle C_{\alpha} \mid \alpha \in \Gamma' \rangle$ such that, for α of cofinality ω , $otp(C_{\alpha}) = \omega$, and for α of cofinality $> \omega$, $C_{\alpha} \cap \Gamma = \emptyset$. Let *D* be an arbitrary club in κ . As Γ is stationary, let $\beta := \min(D \cap \Gamma)$. As $otp(D) = \kappa$, we may fix $\gamma \in D$ such that $otp(D \cap \gamma) = \beta + \omega + 1$. Then $A := \{\alpha \in \Gamma' \mid D \cap \alpha \subseteq C_{\alpha}\}$ is bounded below γ ;

Recall: An amenable *C*-sequence over Γ is a seq. $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ s.t.:

• for every limit ordinal $\alpha \in \Gamma$, C_{α} is a club subset of α ;

2 for every club $D \subseteq \kappa$, $\{\alpha \in \Gamma \mid D \cap \alpha \subseteq C_{\alpha}\}$ is nonstationary.

 $\mathsf{Tr}(\Gamma) := \{ \alpha \in E_{>\omega}^{\kappa} \mid \Gamma \cap \alpha \text{ is stationary in } \alpha \}.$

Proposition

Every stationary $\Gamma \subseteq \kappa$ admits a stationary subset $\Gamma' \subseteq \Gamma$ that carries an amenable *C*-sequence.

Claim 2. $\Gamma' := \Gamma \setminus \operatorname{Tr}(\Gamma)$ carries an amenable *C*-sequence. Proof. Fix a *C*-sequence $\langle C_{\alpha} \mid \alpha \in \Gamma' \rangle$ such that, for α of cofinality ω , otp $(C_{\alpha}) = \omega$, and for α of cofinality $> \omega$, $C_{\alpha} \cap \Gamma = \emptyset$. Let *D* be an arbitrary club in κ . As Γ is stationary, let $\beta := \min(D \cap \Gamma)$. As $\operatorname{otp}(D) = \kappa$, we may fix $\gamma \in D$ such that $\operatorname{otp}(D \cap \gamma) = \beta + \omega + 1$. Then $A := \{\alpha \in \Gamma' \mid D \cap \alpha \subseteq C_{\alpha}\}$ is bounded below γ ; For $\alpha \in A \setminus \gamma$: \triangleright If $\operatorname{cf}(\alpha) = \omega$, then $\operatorname{otp}(D \cap \alpha) > \omega = \operatorname{otp}(C_{\alpha})$. \triangleright If $\operatorname{cf}(\alpha) > \omega$, then $\beta \in D \cap \alpha \setminus C_{\alpha}$.

Utility of amenability

Lemma

Suppose that $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ is an amenable *C*-sequence. For every stationary $\Omega \subseteq \Gamma$, there exists $i < \kappa$ such that, for all $\tau < \kappa$, $\Omega_{i,\tau} := \{\alpha \in \Omega \mid \min(C_{\alpha} \setminus i) \geq \tau\}$ is stationary.

Proof. Suppose not. Fix a stationary $\Omega \subseteq \Gamma$ and a function $f : \kappa \to \kappa$ such that, for each $i < \kappa$, $\Omega_{i,f(i)}$ is disjoint from some club, say, D_i . Consider the club $D := \{\alpha \in \Delta_{i < \kappa} D_i \mid f[\alpha] \subseteq \alpha\}$. As $\vec{C} \upharpoonright (\Omega \cap D)$ is amenable, we may fix $\alpha \in \Omega \cap D$ with $D \cap \alpha \nsubseteq C_{\alpha}$. Pick $\beta \in D \cap \alpha \setminus C_{\alpha}$. Evidently, $\beta < \alpha$ and $f[\beta] \subseteq \beta$. For all $i < \beta$, as $\alpha \in D$, we have $\alpha \in D_i$ and hence $\min(C_{\alpha} \setminus i) < f(i) < \beta$. So $\{\min(C_{\alpha} \setminus i) \mid i < \beta\}$ is unbounded in β , while $\beta \notin C_{\alpha}$. This is a contradiction.

Corollary

Every stationary $\Omega \subseteq \kappa$ may be split into κ many stationary sets.

Proof. By shrinking, we may assume that Ω carries an amenable *C*-sequence $\langle C_{\alpha} \mid \alpha \in \Omega \rangle$. Let $i < \kappa$ be given by the preceding Lemma. Then, by Fodor's lemma, for every $\tau < \kappa$, there exists $\tau' \in [\tau, \kappa)$ such that $\{\alpha \in \Omega \mid \min(C_{\alpha} \setminus i) = \tau'\}$ is stationary. Thus, there is an increasing $h : \kappa \to \kappa$ with $\{\alpha \in \Omega \mid \min(C_{\alpha} \setminus i) = h(j)\}$ stationary for all $j < \kappa$. \Box

Corollary

Every stationary $\Omega \subseteq \kappa$ may be split into κ many stationary sets.

Proof. By shrinking, we may assume that Ω carries an amenable *C*-sequence $\langle C_{\alpha} \mid \alpha \in \Omega \rangle$. Let $i < \kappa$ be given by the preceding Lemma. Then, by Fodor's lemma, for every $\tau < \kappa$, there exists $\tau' \in [\tau, \kappa)$ such that $\{\alpha \in \Omega \mid \min(C_{\alpha} \setminus i) = \tau'\}$ is stationary. Thus, there is an increasing $h : \kappa \to \kappa$ with $\{\alpha \in \Omega \mid \min(C_{\alpha} \setminus i) = h(j)\}$ stationary for all $j < \kappa$. \Box

Define $\Phi : \mathcal{P}(\kappa) \to \mathcal{P}(\kappa)$ by stipulating:

$$\Phi(x) := \begin{cases} (x \setminus i), & \text{if } \sup(x) > i; \\ x, & \text{otherwise.} \end{cases}$$

Corollary

Every stationary $\Omega \subseteq \kappa$ may be split into κ many stationary sets.

Proof. By shrinking, we may assume that Ω carries an amenable *C*-sequence $\langle C_{\alpha} \mid \alpha \in \Omega \rangle$. Let $i < \kappa$ be given by the preceding Lemma. Then, by Fodor's lemma, for every $\tau < \kappa$, there exists $\tau' \in [\tau, \kappa)$ such that $\{\alpha \in \Omega \mid \min(C_{\alpha} \setminus i) = \tau'\}$ is stationary. Thus, there is an increasing $h : \kappa \to \kappa$ with $\{\alpha \in \Omega \mid \min(C_{\alpha} \setminus i) = h(j)\}$ stationary for all $j < \kappa$. \Box

Define $\Phi : \mathcal{P}(\kappa) \to \mathcal{P}(\kappa)$ by stipulating:

$$\Phi(x) := egin{cases} (x \setminus i), & ext{if } \sup(x) > i; \\ x, & ext{otherwise.} \end{cases}$$

Then, for cofinally many $\tau < \kappa$, $\{\alpha \in \Omega \mid \min(\Phi(C_{\alpha})) = \tau\}$ is stationary.

Corollary

Every stationary $\Omega \subseteq \kappa$ may be split into κ many stationary sets.

Proof. By shrinking, we may assume that Ω carries an amenable *C*-sequence $\langle C_{\alpha} \mid \alpha \in \Omega \rangle$. Let $i < \kappa$ be given by the preceding Lemma. Then, by Fodor's lemma, for every $\tau < \kappa$, there exists $\tau' \in [\tau, \kappa)$ such that $\{\alpha \in \Omega \mid \min(C_{\alpha} \setminus i) = \tau'\}$ is stationary. Thus, there is an increasing $h : \kappa \to \kappa$ with $\{\alpha \in \Omega \mid \min(C_{\alpha} \setminus i) = h(j)\}$ stationary for all $j < \kappa$. \Box Define $\Phi : \mathcal{P}(\kappa) \to \mathcal{P}(\kappa)$ by stipulating:

$$\Phi(x) := \begin{cases} (x \setminus i) \cup \{ \operatorname{otp}(\operatorname{Im}(h) \cap \min(x \setminus i)) \}, & \text{if } \operatorname{sup}(x) > i; \\ x, & \text{otherwise.} \end{cases}$$

Then, for cofinally many $\tau < \kappa$, $\{\alpha \in \Omega \mid \min(\Phi(C_{\alpha})) = \tau\}$ is stationary.

Corollary

Every stationary $\Omega \subseteq \kappa$ may be split into κ many stationary sets.

Proof. By shrinking, we may assume that Ω carries an amenable *C*-sequence $\langle C_{\alpha} \mid \alpha \in \Omega \rangle$. Let $i < \kappa$ be given by the preceding Lemma. Then, by Fodor's lemma, for every $\tau < \kappa$, there exists $\tau' \in [\tau, \kappa)$ such that $\{\alpha \in \Omega \mid \min(C_{\alpha} \setminus i) = \tau'\}$ is stationary. Thus, there is an increasing $h : \kappa \to \kappa$ with $\{\alpha \in \Omega \mid \min(C_{\alpha} \setminus i) = h(j)\}$ stationary for all $j < \kappa$. \Box Define $\Phi : \mathcal{P}(\kappa) \to \mathcal{P}(\kappa)$ by stipulating:

$$\Phi(x) := \begin{cases} (x \setminus i) \cup \{ \operatorname{otp}(\operatorname{Im}(h) \cap \operatorname{min}(x \setminus i)) \}, & \text{if } \operatorname{sup}(x) > i; \\ x, & \text{otherwise.} \end{cases}$$

Then, for every $\tau < \kappa$, $\{\alpha \in \Omega \mid \min(\Phi(C_{\alpha})) = \tau\}$ is stationary in κ .

 $K(\kappa)$ denotes the set of all $x \in \mathcal{P}(\kappa)$ s.t. x is a club subset of sup(x).

Definition [29]

 $\Phi: \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ is a postprocessing function iff for every $x \in \mathcal{K}(\kappa)$:

- $\Phi(x)$ is a club in $\sup(x)$;
- $\operatorname{acc}^+(\Phi(x)) \subseteq \operatorname{acc}^+(x);$
- $\Phi(x) \cap \overline{\alpha} = \Phi(x \cap \overline{\alpha})$ for every $\overline{\alpha} \in \operatorname{acc}^+(\Phi(x))$.

A monoid acting on the class of *C*-sequences

- The identity map Id : $\mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ is a postprocessing function;
- The composition of postprocessing function is a postprocessing func.
- If $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ is a *C*-sequence, so is $\vec{C}^{\Phi} := \langle \Phi(C_{\alpha}) \mid \alpha \in \Gamma \rangle$. Furthermore, type $(\vec{C}^{\Phi}) \leq$ type (\vec{C}) and width $(\vec{C}^{\Phi}) \leq$ width (\vec{C}) ;
- \vec{C} is amenable iff \vec{C}^{Φ} is amenable.

 $K(\kappa)$ denotes the set of all $x \in \mathcal{P}(\kappa)$ s.t. x is a club subset of sup(x).

Definition [29]

 $\Phi: \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ is a postprocessing function iff for every $x \in \mathcal{K}(\kappa)$:

- $\Phi(x)$ is a club in sup(x);
- $\operatorname{acc}^+(\Phi(x)) \subseteq \operatorname{acc}^+(x);$
- $\Phi(x) \cap \overline{\alpha} = \Phi(x \cap \overline{\alpha})$ for every $\overline{\alpha} \in \operatorname{acc}^+(\Phi(x))$.

The monoid of postprocessings is closed under various mixing operations.

Example

If $\vec{\Phi} = \langle \Phi_{\tau} \mid \tau \in T \rangle$ is a sequence of postprocessing functions, then mix $(\vec{\Phi})$, defined by

$$\operatorname{mix}(\vec{\Phi})(x) = \begin{cases} x, & \text{if } \min(x) \notin T; \\ \Phi_{\tau}(x), & \text{if } \min(x) = \tau, \end{cases}$$

is a postprocessing function.

 $K(\kappa)$ denotes the set of all $x \in \mathcal{P}(\kappa)$ s.t. x is a club subset of sup(x).

Definition [29]

 $\Phi: \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ is a postprocessing function iff for every $x \in \mathcal{K}(\kappa)$:

- $\Phi(x)$ is a club in $\sup(x)$;
- $\operatorname{acc}^+(\Phi(x)) \subseteq \operatorname{acc}^+(x);$
- $\Phi(x) \cap \overline{\alpha} = \Phi(x \cap \overline{\alpha})$ for every $\overline{\alpha} \in \operatorname{acc}^+(\Phi(x))$.

Recall that we have shown

Suppose that $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ is an amenable *C*-sequence. Suppose that $\Omega \subseteq \Gamma$ is stationary. Then there exists a postprocessing function $\Phi : \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ such that, for cofinally many $\tau < \kappa$, $\{\alpha \in \Omega \mid \min(\Phi(C_{\alpha})) = \tau\}$ is stationary.

A theorem on disjoint refinements [29]

Suppose that $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ is an amenable *C*-sequence. Suppose that $\langle \Omega_{\tau} \mid \tau < \lambda \rangle$ is a sequence of stationary subsets of Γ , $\lambda \leq \kappa$. Then there exists a postprocessing function $\Phi : \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ such that, for cofinally many $\tau < \lambda$, $\{\alpha \in \Omega_{\tau} \mid \min(\Phi(C_{\alpha})) = \tau\}$ is stationary.

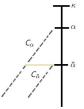
Recall that we have shown

Suppose that $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ is an amenable *C*-sequence. Suppose that $\Omega \subseteq \Gamma$ is stationary. Then there exists a postprocessing function $\Phi : \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ such that, for cofinally many $\tau < \kappa$, $\{\alpha \in \Omega \mid \min(\Phi(C_{\alpha})) = \tau\}$ is stationary.

The latter follows from the former by invoking it with a constant κ -sequence.

Definition

 $\Box(\kappa) \text{ asserts the existence of a } C\text{-sequence } \langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle \text{ such that:}$ • for every $\alpha \in \operatorname{acc}^+(\kappa)$ and every $\bar{\alpha} \in \operatorname{acc}^+(C_{\alpha}), \ C_{\bar{\alpha}} = C_{\alpha} \cap \bar{\alpha};$



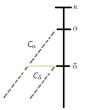
Assaf Rinot (Bar-Ilan University)

Definition

 $\Box(\kappa)$ asserts the existence of a *C*-sequence $\langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$ such that:

• for every $\alpha \in \operatorname{acc}^+(\kappa)$ and every $\bar{\alpha} \in \operatorname{acc}^+(\mathcal{C}_{\alpha})$, $\mathcal{C}_{\bar{\alpha}} = \mathcal{C}_{\alpha} \cap \bar{\alpha}$;

2 for every club $D \subseteq \kappa$, there exists $\bar{\alpha} \in \operatorname{acc}^+(D)$ with $C_{\bar{\alpha}} \neq D \cap \bar{\alpha}$.



Definition

 $\Box(\kappa)$ asserts the existence of a *C*-sequence $\langle C_{\alpha} | \alpha \in \operatorname{acc}^+(\kappa) \rangle$ such that:

- for every $\alpha \in \operatorname{acc}^+(\kappa)$ and every $\bar{\alpha} \in \operatorname{acc}^+(\mathcal{C}_{\alpha})$, $\mathcal{C}_{\bar{\alpha}} = \mathcal{C}_{\alpha} \cap \bar{\alpha}$;
- **2** for every club $D \subseteq \kappa$, there exists $\bar{\alpha} \in \operatorname{acc}^+(D)$ with $C_{\bar{\alpha}} \neq D \cap \bar{\alpha}$.

Fact (Todorcevic, 1987)

If $V \models \neg \Box(\kappa)$, then $L \models \kappa$ is weakly compact.

Recall: $\Phi : \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ is a postprocessing function iff for every x:

- $\Phi(x)$ is a club in sup(x);
- $\operatorname{acc}^+(\Phi(x)) \subseteq \operatorname{acc}^+(x);$
- $\Phi(x) \cap \overline{\alpha} = \Phi(x \cap \overline{\alpha})$ for every $\overline{\alpha} \in \operatorname{acc}^+(\Phi(x))$.

Definition

 $\Box(\kappa)$ asserts the existence of a *C*-sequence $\langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$ such that:

- for every $\alpha \in \operatorname{acc}^+(\kappa)$ and every $\bar{\alpha} \in \operatorname{acc}^+(\mathcal{C}_{\alpha}), \ \mathcal{C}_{\bar{\alpha}} = \mathcal{C}_{\alpha} \cap \bar{\alpha};$
- **2** for every club $D \subseteq \kappa$, there exists $\bar{\alpha} \in \operatorname{acc}^+(D)$ with $C_{\bar{\alpha}} \neq D \cap \bar{\alpha}$.

Note: If \vec{C} is $\Box(\kappa)$ -sequence, then so is \vec{C}^{Φ} .

Recall: $\Phi : \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ is a postprocessing function iff for every x:

- $\Phi(x)$ is a club in $\sup(x)$;
- $\operatorname{acc}^+(\Phi(x)) \subseteq \operatorname{acc}^+(x);$
- $\Phi(x) \cap \overline{\alpha} = \Phi(x \cap \overline{\alpha})$ for every $\overline{\alpha} \in \operatorname{acc}^+(\Phi(x))$.

Definition

 $\Box(\kappa)$ asserts the existence of a *C*-sequence $\langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$ such that:

• for every $\alpha \in \operatorname{acc}^+(\kappa)$ and every $\bar{\alpha} \in \operatorname{acc}^+(\mathcal{C}_{\alpha}), \ \mathcal{C}_{\bar{\alpha}} = \mathcal{C}_{\alpha} \cap \bar{\alpha};$

② for every club D ⊆ κ, there exists $\bar{α} ∈ acc^+(D)$ with $C_{\bar{α}} ≠ D ∩ \bar{α}$.

Note: If \vec{C} is $\Box(\kappa)$ -sequence, then so is \vec{C}^{Φ} . width $(\vec{C}^{\Phi}) \leq \text{width}(\vec{C}) = 2$.

Recall: $\Phi : \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ is a postprocessing function iff for every *x*:

- $\Phi(x)$ is a club in $\sup(x)$;
- $\operatorname{acc}^+(\Phi(x)) \subseteq \operatorname{acc}^+(x);$
- $\Phi(x) \cap \overline{\alpha} = \Phi(x \cap \overline{\alpha})$ for every $\overline{\alpha} \in \operatorname{acc}^+(\Phi(x))$.

Definition

 $\Box(\kappa)$ asserts the existence of a *C*-sequence $\langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$ such that:

• for every $\alpha \in \operatorname{acc}^+(\kappa)$ and every $\bar{\alpha} \in \operatorname{acc}^+(\mathcal{C}_{\alpha})$, $\mathcal{C}_{\bar{\alpha}} = \mathcal{C}_{\alpha} \cap \bar{\alpha}$;

(a) for every club $D \subseteq \kappa$, there exists $\bar{\alpha} \in \operatorname{acc}^+(D)$ with $C_{\bar{\alpha}} \neq D \cap \bar{\alpha}$.

Note: If \vec{C} is $\Box(\kappa)$ -sequence, then so is \vec{C}^{Φ} . width $(\vec{C}^{\Phi}) \leq \text{width}(\vec{C}) = 2$. If $D \subseteq \kappa$ is a club satisfying $\Phi(C_{\bar{\alpha}}) = D \cap \bar{\alpha}$ for all $\bar{\alpha} \in \operatorname{acc}^+(D)$, then for all $\bar{\alpha} < \alpha$ from $\operatorname{acc}^+(D)$, $\bar{\alpha} \in \operatorname{acc}^+(D \cap \alpha) = \operatorname{acc}^+(\Phi(C_{\alpha})) \subseteq \operatorname{acc}^+(C_{\alpha})$, and hence $C_{\bar{\alpha}} = C_{\alpha} \cap \bar{\alpha}$.

Recall: $\Phi : \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ is a postprocessing function iff for every *x*:

- $\Phi(x)$ is a club in $\sup(x)$;
- $\operatorname{acc}^+(\Phi(x)) \subseteq \operatorname{acc}^+(x);$
- $\Phi(x) \cap \overline{\alpha} = \Phi(x \cap \overline{\alpha})$ for every $\overline{\alpha} \in \operatorname{acc}^+(\Phi(x))$.

Definition

 $\Box(\kappa)$ asserts the existence of a *C*-sequence $\langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$ such that:

• for every $\alpha \in \operatorname{acc}^+(\kappa)$ and every $\bar{\alpha} \in \operatorname{acc}^+(\mathcal{C}_{\alpha})$, $\mathcal{C}_{\bar{\alpha}} = \mathcal{C}_{\alpha} \cap \bar{\alpha}$;

(a) for every club $D \subseteq \kappa$, there exists $\bar{\alpha} \in \operatorname{acc}^+(D)$ with $C_{\bar{\alpha}} \neq D \cap \bar{\alpha}$.

Note: If \vec{C} is $\Box(\kappa)$ -sequence, then so is \vec{C}^{Φ} . width $(\vec{C}^{\Phi}) \leq \text{width}(\vec{C}) = 2$. If $D \subseteq \kappa$ is a club satisfying $\Phi(C_{\bar{\alpha}}) = D \cap \bar{\alpha}$ for all $\bar{\alpha} \in \operatorname{acc}^+(D)$, then for all $\bar{\alpha} < \alpha$ from $\operatorname{acc}^+(D)$, $\bar{\alpha} \in \operatorname{acc}^+(D \cap \alpha) = \operatorname{acc}^+(\Phi(C_{\alpha})) \subseteq \operatorname{acc}^+(C_{\alpha})$, and hence $C_{\bar{\alpha}} = C_{\alpha} \cap \bar{\alpha}$. So $\langle C_{\bar{\alpha}} \mid \bar{\alpha} \in \operatorname{acc}^+(D) \rangle$ converges to a club contradicting Clause (2).

Recall: $\Phi : \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ is a postprocessing function iff for every *x*:

- $\Phi(x)$ is a club in $\sup(x)$;
- $\operatorname{acc}^+(\Phi(x)) \subseteq \operatorname{acc}^+(x);$
- $\Phi(x) \cap \overline{\alpha} = \Phi(x \cap \overline{\alpha})$ for every $\overline{\alpha} \in \operatorname{acc}^+(\Phi(x))$.

Definition

 $\Box(\kappa)$ asserts the existence of a *C*-sequence $\langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$ such that:

- for every $\alpha \in \operatorname{acc}^+(\kappa)$ and every $\bar{\alpha} \in \operatorname{acc}^+(\mathcal{C}_{\alpha})$, $\mathcal{C}_{\bar{\alpha}} = \mathcal{C}_{\alpha} \cap \bar{\alpha}$;
- **2** for every club $D \subseteq \kappa$, there exists $\bar{\alpha} \in \operatorname{acc}^+(D)$ with $C_{\bar{\alpha}} \neq D \cap \bar{\alpha}$.

Exercise

Any $\Box(\kappa)$ -sequence is amenable.

Recall: $F \subseteq \kappa$ is fat iff it is $(\theta + 1)$ -fat for every $\theta \in \text{Reg}(\kappa)$.

Theorem [29]

Suppose that $\Box(\kappa)$ holds, $\kappa \geq \aleph_2$, and that $F \subseteq \kappa$ is fat. Then there exists a partition of F into κ many fat sets.

Recall: $F \subseteq \kappa$ is fat iff it is $(\theta + 1)$ -fat for every $\theta \in \text{Reg}(\kappa)$.

Theorem [29]

Suppose that $\Box(\kappa)$ holds, $\kappa \geq \aleph_2$, and that $F \subseteq \kappa$ is fat. Then there exists a partition of F into κ many fat sets.

Claim 1. There exists a $\Box(\kappa)$ -sequence $\langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$ such that, for cofinally many $\theta \in \operatorname{Reg}(\kappa)$, the following set is stationary:

 $S_{\theta} := \{ \alpha \in F \cap E_{\theta}^{\kappa} \mid F \cap \alpha \text{ contains a club in } \alpha \And \min(C_{\alpha}) = \theta \}.$

Recall: $F \subseteq \kappa$ is fat iff it is $(\theta + 1)$ -fat for every $\theta \in \text{Reg}(\kappa)$.

Theorem [29]

Suppose that $\Box(\kappa)$ holds, $\kappa \geq \aleph_2$, and that $F \subseteq \kappa$ is fat. Then there exists a partition of F into κ many fat sets.

Claim 1. There exists a $\Box(\kappa)$ -sequence $\langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$ such that, for cofinally many $\theta \in \operatorname{Reg}(\kappa)$, the following set is stationary:

 $S_{\theta} := \{ \alpha \in F \cap E_{\theta}^{\kappa} \mid F \cap \alpha \text{ contains a club in } \alpha \And \min(C_{\alpha}) = \theta \}.$

Proof. Let $\{\theta_{\tau} \mid \tau < \lambda\}$ be the increasing enumeration of $\text{Reg}(\kappa)$.

Recall: $F \subseteq \kappa$ is fat iff it is $(\theta + 1)$ -fat for every $\theta \in \text{Reg}(\kappa)$.

Theorem [29]

Suppose that $\Box(\kappa)$ holds, $\kappa \geq \aleph_2$, and that $F \subseteq \kappa$ is fat. Then there exists a partition of F into κ many fat sets.

Claim 1. There exists a $\Box(\kappa)$ -sequence $\langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$ such that, for cofinally many $\theta \in \operatorname{Reg}(\kappa)$, the following set is stationary:

 $S_{\theta} := \{ \alpha \in F \cap E_{\theta}^{\kappa} \mid F \cap \alpha \text{ contains a club in } \alpha \And \min(C_{\alpha}) = \theta \}.$

Proof. Let $\{\theta_{\tau} \mid \tau < \lambda\}$ be the increasing enumeration of $\text{Reg}(\kappa)$. For each $\tau < \lambda$, let $\Omega_{\tau} := \{\alpha \in F \cap E_{\theta_{\tau}}^{\kappa} \mid F \cap \alpha \text{ contains a club in } \alpha\}$. As F is fat, Ω_{τ} is stationary.

Recall: $F \subseteq \kappa$ is fat iff it is $(\theta + 1)$ -fat for every $\theta \in \text{Reg}(\kappa)$.

Theorem [29]

Suppose that $\Box(\kappa)$ holds, $\kappa \geq \aleph_2$, and that $F \subseteq \kappa$ is fat. Then there exists a partition of F into κ many fat sets.

Claim 1. There exists a $\Box(\kappa)$ -sequence $\langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$ such that, for cofinally many $\theta \in \operatorname{Reg}(\kappa)$, the following set is stationary:

 $S_{\theta} := \{ \alpha \in F \cap E_{\theta}^{\kappa} \mid F \cap \alpha \text{ contains a club in } \alpha \And \min(C_{\alpha}) = \theta \}.$

Proof. Let $\{\theta_{\tau} \mid \tau < \lambda\}$ be the increasing enumeration of $\text{Reg}(\kappa)$. For each $\tau < \lambda$, let $\Omega_{\tau} := \{\alpha \in F \cap E_{\theta_{\tau}}^{\kappa} \mid F \cap \alpha \text{ contains a club in } \alpha\}$. As F is fat, Ω_{τ} is stationary. Fix a $\Box(\kappa)$ -sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \text{acc}^+(\kappa) \rangle$.

Recall: $F \subseteq \kappa$ is fat iff it is $(\theta + 1)$ -fat for every $\theta \in \text{Reg}(\kappa)$.

Theorem [29]

Suppose that $\Box(\kappa)$ holds, $\kappa \geq \aleph_2$, and that $F \subseteq \kappa$ is fat. Then there exists a partition of F into κ many fat sets.

Claim 1. There exists a $\Box(\kappa)$ -sequence $\langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$ such that, for cofinally many $\theta \in \operatorname{Reg}(\kappa)$, the following set is stationary:

 $S_{\theta} := \{ \alpha \in F \cap E_{\theta}^{\kappa} \mid F \cap \alpha \text{ contains a club in } \alpha \And \min(C_{\alpha}) = \theta \}.$

Proof. Let $\{\theta_{\tau} \mid \tau < \lambda\}$ be the increasing enumeration of $\operatorname{Reg}(\kappa)$. For each $\tau < \lambda$, let $\Omega_{\tau} := \{\alpha \in F \cap E_{\theta_{\tau}}^{\kappa} \mid F \cap \alpha \text{ contains a club in } \alpha\}$. As F is fat, Ω_{τ} is stationary. Fix a $\Box(\kappa)$ -sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$. By the Disjoint Refinements Theorem, there is a postprocessing function $\Phi : \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ satisfying that for cofinally many $\tau < \lambda$, the set $\{\alpha \in \Omega_{\tau} \mid \min(\Phi(C_{\alpha})) = \tau\}$ is stationary.

Recall: $F \subseteq \kappa$ is fat iff it is $(\theta + 1)$ -fat for every $\theta \in \text{Reg}(\kappa)$.

Theorem [29]

Suppose that $\Box(\kappa)$ holds, $\kappa \geq \aleph_2$, and that $F \subseteq \kappa$ is fat. Then there exists a partition of F into κ many fat sets.

Claim 1. There exists a $\Box(\kappa)$ -sequence $\langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$ such that, for cofinally many $\theta \in \operatorname{Reg}(\kappa)$, the following set is stationary:

 $S_{\theta} := \{ \alpha \in F \cap E_{\theta}^{\kappa} \mid F \cap \alpha \text{ contains a club in } \alpha \And \min(C_{\alpha}) = \theta \}.$

Proof. Let $\{\theta_{\tau} \mid \tau < \lambda\}$ be the increasing enumeration of $\text{Reg}(\kappa)$. For each $\tau < \lambda$, let $\Omega_{\tau} := \{\alpha \in F \cap E_{\theta_{\tau}}^{\kappa} \mid F \cap \alpha \text{ contains a club in } \alpha\}$. As F is fat, Ω_{τ} is stationary. Fix a $\Box(\kappa)$ -sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \text{acc}^+(\kappa) \rangle$. By the Disjoint Refinements Theorem, there is a postprocessing function $\Phi : \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ satisfying that for cofinally many $\tau < \lambda$, the set $\{\alpha \in \Omega_{\tau} \mid \min(\Phi(C_{\alpha})) = \tau\}$ is stationary. So, \vec{C}^{Φ} is as sought (modulo a straight-forward correction to replace min $= \tau_{\theta}$ with min $= \theta$).

Recall: $F \subseteq \kappa$ is fat iff it is $(\theta + 1)$ -fat for every $\theta \in \text{Reg}(\kappa)$.

Theorem [29]

Suppose that $\Box(\kappa)$ holds, $\kappa \geq \aleph_2$, and that $F \subseteq \kappa$ is fat. Then there exists a partition of F into κ many fat sets.

Proof. Fix a $\Box(\kappa)$ -sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$, and a cofinal $\Theta \subseteq \operatorname{Reg}(\kappa) \setminus \aleph_1$, such that for all $\theta \in \Theta$, the following set is stationary:

 $S_{\theta} := \{ \alpha \in F \cap E_{\theta}^{\kappa} \mid F \cap \alpha \text{ contains a club in } \alpha \And \min(C_{\alpha}) = \theta \}.$

Recall: $F \subseteq \kappa$ is fat iff it is $(\theta + 1)$ -fat for every $\theta \in \text{Reg}(\kappa)$.

Theorem [29]

Suppose that $\Box(\kappa)$ holds, $\kappa \geq \aleph_2$, and that $F \subseteq \kappa$ is fat. Then there exists a partition of F into κ many fat sets.

Proof. Fix a $\Box(\kappa)$ -sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$, and a cofinal $\Theta \subseteq \operatorname{Reg}(\kappa) \setminus \aleph_1$, such that for all $\theta \in \Theta$, the following set is stationary:

 $S_{\theta} := \{ \alpha \in F \cap E_{\theta}^{\kappa} \mid F \cap \alpha \text{ contains a club in } \alpha \& \min(C_{\alpha}) = \theta \}.$ For each $\theta \in \Theta$, fix a postprocessing function $\Phi_{\theta} : \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ such that, for all $\tau < \kappa$, $\{ \alpha \in S_{\theta} \mid \min(\Phi_{\theta}(C_{\alpha})) = \tau \}$ is stationary.

Recall: $F \subseteq \kappa$ is fat iff it is $(\theta + 1)$ -fat for every $\theta \in \text{Reg}(\kappa)$.

Theorem [29]

Suppose that $\Box(\kappa)$ holds, $\kappa \ge \aleph_2$, and that $F \subseteq \kappa$ is fat. Then there exists a partition of F into κ many fat sets.

Proof. Fix a $\Box(\kappa)$ -sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$, and a cofinal $\Theta \subseteq \operatorname{Reg}(\kappa) \setminus \aleph_1$, such that for all $\theta \in \Theta$, the following set is stationary:

 $S_{\theta} := \{ \alpha \in F \cap E_{\theta}^{\kappa} \mid F \cap \alpha \text{ contains a club in } \alpha \& \min(C_{\alpha}) = \theta \}.$ For each $\theta \in \Theta$, fix a postprocessing function $\Phi_{\theta} : \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ such that, for all $\tau < \kappa$, $\{ \alpha \in S_{\theta} \mid \min(\Phi_{\theta}(C_{\alpha})) = \tau \}$ is stationary. Let $\Phi := \min(\langle \Phi_{\theta} \mid \theta \in \Theta \rangle)$ and denote $F_{\tau} := \{ \alpha \in F \mid \min(\Phi(C_{\alpha})) = \tau \}.$

$$\Phi(x) = \begin{cases} x, & \text{if } \min(x) \notin \Theta; \\ \Phi_{\theta}(x), & \text{if } \min(x) = \theta. \end{cases}$$

Recall: $F \subseteq \kappa$ is fat iff it is $(\theta + 1)$ -fat for every $\theta \in \text{Reg}(\kappa)$.

Theorem [29]

Suppose that $\Box(\kappa)$ holds, $\kappa \ge \aleph_2$, and that $F \subseteq \kappa$ is fat. Then there exists a partition of F into κ many fat sets.

Proof. Fix a $\Box(\kappa)$ -sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$, and a cofinal $\Theta \subseteq \operatorname{Reg}(\kappa) \setminus \aleph_1$, such that for all $\theta \in \Theta$, the following set is stationary:

 $S_{\theta} := \{ \alpha \in F \cap E_{\theta}^{\kappa} \mid F \cap \alpha \text{ contains a club in } \alpha \& \min(C_{\alpha}) = \theta \}.$ For each $\theta \in \Theta$, fix a postprocessing function $\Phi_{\theta} : \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ such that, for all $\tau < \kappa$, $\{ \alpha \in S_{\theta} \mid \min(\Phi_{\theta}(C_{\alpha})) = \tau \}$ is stationary. Let $\Phi := \min(\langle \Phi_{\theta} \mid \theta \in \Theta \rangle)$ and denote $F_{\tau} := \{ \alpha \in F \mid \min(\Phi(C_{\alpha})) = \tau \}.$ To see that F_{τ} is fat, fix a club $D \subseteq \kappa$ and $\theta \in \operatorname{Reg}(\kappa)$. May assume $\theta \in \Theta$.

Recall: $F \subseteq \kappa$ is fat iff it is $(\theta + 1)$ -fat for every $\theta \in \text{Reg}(\kappa)$.

Theorem [29]

Suppose that $\Box(\kappa)$ holds, $\kappa \geq \aleph_2$, and that $F \subseteq \kappa$ is fat. Then there exists a partition of F into κ many fat sets.

Proof. Fix a $\Box(\kappa)$ -sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$, and a cofinal $\Theta \subseteq \operatorname{Reg}(\kappa) \setminus \aleph_1$, such that for all $\theta \in \Theta$, the following set is stationary:

 $S_{\theta} := \{ \alpha \in F \cap E_{\theta}^{\kappa} \mid F \cap \alpha \text{ contains a club in } \alpha \& \min(C_{\alpha}) = \theta \}.$ For each $\theta \in \Theta$, fix a postprocessing function $\Phi_{\theta} : \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ such that, for all $\tau < \kappa$, $\{ \alpha \in S_{\theta} \mid \min(\Phi_{\theta}(C_{\alpha})) = \tau \}$ is stationary. Let $\Phi := \min(\langle \Phi_{\theta} \mid \theta \in \Theta \rangle)$ and denote $F_{\tau} := \{ \alpha \in F \mid \min(\Phi(C_{\alpha})) = \tau \}.$ To see that F_{τ} is fat, fix a club $D \subseteq \kappa$ and $\theta \in \operatorname{Reg}(\kappa)$. May assume $\theta \in \Theta$. By the choice of Φ_{θ} , pick $\alpha \in \operatorname{acc}^+(D) \cap S_{\theta}$ with $\min(\Phi_{\theta}(C_{\alpha})) = \tau$.

Recall: $F \subseteq \kappa$ is fat iff it is $(\theta + 1)$ -fat for every $\theta \in \text{Reg}(\kappa)$.

Theorem [29]

Suppose that $\Box(\kappa)$ holds, $\kappa \geq \aleph_2$, and that $F \subseteq \kappa$ is fat. Then there exists a partition of F into κ many fat sets.

Proof. Fix a $\Box(\kappa)$ -sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$, and a cofinal $\Theta \subseteq \operatorname{Reg}(\kappa) \setminus \aleph_1$, such that for all $\theta \in \Theta$, the following set is stationary:

 $S_{\theta} := \{ \alpha \in F \cap E_{\theta}^{\kappa} \mid F \cap \alpha \text{ contains a club in } \alpha \And \min(C_{\alpha}) = \theta \}.$

For each $\theta \in \Theta$, fix a postprocessing function $\Phi_{\theta} : \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ such that, for all $\tau < \kappa$, $\{\alpha \in S_{\theta} \mid \min(\Phi_{\theta}(C_{\alpha})) = \tau\}$ is stationary. Let $\Phi := \min(\langle \Phi_{\theta} \mid \theta \in \Theta \rangle)$ and denote $F_{\tau} := \{\alpha \in F \mid \min(\Phi(C_{\alpha})) = \tau\}$. To see that F_{τ} is fat, fix a club $D \subseteq \kappa$ and $\theta \in \operatorname{Reg}(\kappa)$. May assume $\theta \in \Theta$. By the choice of Φ_{θ} , pick $\alpha \in \operatorname{acc}^+(D) \cap S_{\theta}$ with $\min(\Phi_{\theta}(C_{\alpha})) = \tau$. For all $\bar{\alpha} \in \operatorname{acc}^+(\Phi(C_{\alpha}))$, $\min(\Phi(C_{\bar{\alpha}})) = \min(\Phi(C_{\alpha})) = \min(\Phi_{\theta}(C_{\alpha})) = \tau$.

Recall: $F \subseteq \kappa$ is fat iff it is $(\theta + 1)$ -fat for every $\theta \in \text{Reg}(\kappa)$.

Theorem [29]

Suppose that $\Box(\kappa)$ holds, $\kappa \geq \aleph_2$, and that $F \subseteq \kappa$ is fat. Then there exists a partition of F into κ many fat sets.

Proof. Fix a $\Box(\kappa)$ -sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$, and a cofinal $\Theta \subseteq \operatorname{Reg}(\kappa) \setminus \aleph_1$, such that for all $\theta \in \Theta$, the following set is stationary:

 $S_{\theta} := \{ \alpha \in F \cap E_{\theta}^{\kappa} \mid F \cap \alpha \text{ contains a club in } \alpha \And \min(C_{\alpha}) = \theta \}.$

For each $\theta \in \Theta$, fix a postprocessing function $\Phi_{\theta} : \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ such that, for all $\tau < \kappa$, $\{\alpha \in S_{\theta} \mid \min(\Phi_{\theta}(C_{\alpha})) = \tau\}$ is stationary. Let $\Phi := \min(\langle \Phi_{\theta} \mid \theta \in \Theta \rangle)$ and denote $F_{\tau} := \{\alpha \in F \mid \min(\Phi(C_{\alpha})) = \tau\}$. To see that F_{τ} is fat, fix a club $D \subseteq \kappa$ and $\theta \in \operatorname{Reg}(\kappa)$. May assume $\theta \in \Theta$. By the choice of Φ_{θ} , pick $\alpha \in \operatorname{acc}^+(D) \cap S_{\theta}$ with $\min(\Phi_{\theta}(C_{\alpha})) = \tau$. For all $\bar{\alpha} \in \operatorname{acc}^+(\Phi(C_{\alpha}))$, $\min(\Phi(C_{\bar{\alpha}})) = \min(\Phi(C_{\alpha})) = \min(\Phi_{\theta}(C_{\alpha})) = \tau$. As $\alpha \in S_{\theta}$, pick a club c in α with $c \subseteq F$.

Recall: $F \subseteq \kappa$ is fat iff it is $(\theta + 1)$ -fat for every $\theta \in \text{Reg}(\kappa)$.

Theorem [29]

Suppose that $\Box(\kappa)$ holds, $\kappa \geq \aleph_2$, and that $F \subseteq \kappa$ is fat. Then there exists a partition of F into κ many fat sets.

Proof. Fix a $\Box(\kappa)$ -sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$, and a cofinal $\Theta \subseteq \operatorname{Reg}(\kappa) \setminus \aleph_1$, such that for all $\theta \in \Theta$, the following set is stationary:

 $S_{\theta} := \{ \alpha \in F \cap E_{\theta}^{\kappa} \mid F \cap \alpha \text{ contains a club in } \alpha \& \min(C_{\alpha}) = \theta \}.$ For each $\theta \in \Theta$, fix a postprocessing function $\Phi_{\theta} : \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ such that, for all $\tau < \kappa$, $\{ \alpha \in S_{\theta} \mid \min(\Phi_{\theta}(C_{\alpha})) = \tau \}$ is stationary. Let $\Phi := \min(\langle \Phi_{\theta} \mid \theta \in \Theta \rangle)$ and denote $F_{\tau} := \{ \alpha \in F \mid \min(\Phi(C_{\alpha})) = \tau \}.$ To see that F_{τ} is fat, fix a club $D \subseteq \kappa$ and $\theta \in \operatorname{Reg}(\kappa)$. May assume $\theta \in \Theta$. By the choice of Φ_{θ} , pick $\alpha \in \operatorname{acc}^+(D) \cap S_{\theta}$ with $\min(\Phi_{\theta}(C_{\alpha})) = \tau$. For all $\bar{\alpha} \in \operatorname{acc}^+(\Phi(C_{\alpha}))$, $\min(\Phi(C_{\bar{\alpha}})) = \min(\Phi(C_{\alpha})) = \min(\Phi_{\theta}(C_{\alpha})) = \tau$. As $\alpha \in S_{\theta}$, pick a club c in α with $c \subseteq F$. Set $e := \operatorname{acc}^+(\Phi(C_{\alpha})) \cap c \cap D$.

Recall: $F \subseteq \kappa$ is fat iff it is $(\theta + 1)$ -fat for every $\theta \in \text{Reg}(\kappa)$.

Theorem [29]

Suppose that $\Box(\kappa)$ holds, $\kappa \ge \aleph_2$, and that $F \subseteq \kappa$ is fat. Then there exists a partition of F into κ many fat sets.

Proof. Fix a $\Box(\kappa)$ -sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$, and a cofinal $\Theta \subseteq \operatorname{Reg}(\kappa) \setminus \aleph_1$, such that for all $\theta \in \Theta$, the following set is stationary:

 $S_{\theta} := \{ \alpha \in F \cap E_{\theta}^{\kappa} \mid F \cap \alpha \text{ contains a club in } \alpha \& \min(C_{\alpha}) = \theta \}.$ For each $\theta \in \Theta$, fix a postprocessing function $\Phi_{\theta} : \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ such that, for all $\tau < \kappa$, $\{ \alpha \in S_{\theta} \mid \min(\Phi_{\theta}(C_{\alpha})) = \tau \}$ is stationary. Let $\Phi := \min(\langle \Phi_{\theta} \mid \theta \in \Theta \rangle)$ and denote $F_{\tau} := \{ \alpha \in F \mid \min(\Phi(C_{\alpha})) = \tau \}.$ To see that F_{τ} is fat, fix a club $D \subseteq \kappa$ and $\theta \in \operatorname{Reg}(\kappa)$. May assume $\theta \in \Theta$. By the choice of Φ_{θ} , pick $\alpha \in \operatorname{acc}^+(D) \cap S_{\theta}$ with $\min(\Phi_{\theta}(C_{\alpha})) = \tau$. For all $\bar{\alpha} \in \operatorname{acc}^+(\Phi(C_{\alpha}))$, $\min(\Phi(C_{\bar{\alpha}})) = \min(\Phi(C_{\alpha})) = \min(\Phi_{\theta}(C_{\alpha})) = \tau$. As $\alpha \in S_{\theta}$, pick a club c in α with $c \subseteq F$. Set $e := \operatorname{acc}^+(\Phi(C_{\alpha})) \cap c \cap D$. As $\operatorname{cf}(\alpha) = \theta \geq \aleph_1$, e is a club in α .

Assaf Rinot (Bar-Ilan University)

Recall: $F \subseteq \kappa$ is fat iff it is $(\theta + 1)$ -fat for every $\theta \in \text{Reg}(\kappa)$.

Theorem [29]

Suppose that $\Box(\kappa)$ holds, $\kappa \geq \aleph_2$, and that $F \subseteq \kappa$ is fat. Then there exists a partition of F into κ many fat sets.

Proof. Fix a $\Box(\kappa)$ -sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$, and a cofinal $\Theta \subseteq \operatorname{Reg}(\kappa) \setminus \aleph_1$, such that for all $\theta \in \Theta$, the following set is stationary:

 $S_{\theta} := \{ \alpha \in F \cap E_{\theta}^{\kappa} \mid F \cap \alpha \text{ contains a club in } \alpha \& \min(C_{\alpha}) = \theta \}.$ For each $\theta \in \Theta$, fix a postprocessing function $\Phi_{\theta} : \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ such that, for all $\tau < \kappa$, $\{ \alpha \in S_{\theta} \mid \min(\Phi_{\theta}(C_{\alpha})) = \tau \}$ is stationary. Let $\Phi := \min(\langle \Phi_{\theta} \mid \theta \in \Theta \rangle)$ and denote $F_{\tau} := \{ \alpha \in F \mid \min(\Phi(C_{\alpha})) = \tau \}.$ To see that F_{τ} is fat, fix a club $D \subseteq \kappa$ and $\theta \in \operatorname{Reg}(\kappa)$. May assume $\theta \in \Theta$. By the choice of Φ_{θ} , pick $\alpha \in \operatorname{acc}^+(D) \cap S_{\theta}$ with $\min(\Phi_{\theta}(C_{\alpha})) = \tau$. For all $\bar{\alpha} \in \operatorname{acc}^+(\Phi(C_{\alpha}))$, $\min(\Phi(C_{\bar{\alpha}})) = \min(\Phi(C_{\alpha})) = \min(\Phi_{\theta}(C_{\alpha})) = \tau$. As $\alpha \in S_{\theta}$, pick a club c in α with $c \subseteq F$. Set $e := \operatorname{acc}^+(\Phi(C_{\alpha})) \cap c \cap D$. As $\operatorname{cf}(\alpha) = \theta \geq \aleph_1$, e is a club in α . Altogether, $e \cup \{\alpha\} \subseteq F_{\tau} \cap D$.

Recall: $F \subseteq \kappa$ is fat iff it is $(\theta + 1)$ -fat for every $\theta \in \text{Reg}(\kappa)$.

Theorem [29]

Suppose that $\Box(\kappa)$ holds, $\kappa \geq \aleph_2$, and that $F \subseteq \kappa$ is fat. Then there exists a partition of F into κ many fat sets.

Corollary

The following are equiconsistent:

- There exists a weakly compact cardinal;
- \aleph_2 cannot be partitioned into two fat sets.

Homework: Shelah's club-guessing

Suppose $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ is a *C*-sequence with $\Gamma \subseteq \kappa$ stationary. Show:

- If |type(C)|⁺ < κ, then there is a postprocessing Φ : K(κ) → K(κ) such that for every club D ⊆ κ, for some γ ∈ Γ, Φ(C_γ) ⊆ D.
- If C is amenable, then there is a postprocessing Φ : K(κ) → K(κ) s.t. for every club D ⊆ κ, for some γ ∈ Γ, sup(nacc(Φ(C_γ)) ∩ D) = γ.
 Here, nacc(x) := x \ acc⁺(x).

Productivity of chain conditions

From a coloring $d : [\kappa]^2 \to \theta$ with $\theta \in \text{Reg}(\kappa)$, we derive two posets:

•
$$\mathbb{P} := \{(x,i) \mid x \in [\kappa]^{<\omega}, d"[x]^2 \subseteq \{i\}\};$$

•
$$\mathbb{Q} := \{(x,i) \mid x \in [\kappa]^{<\omega}, d"[x]^2 \cap i = \emptyset\}.$$

(y,j) extends (x,i) iff $y \supseteq x$ and j = i.

Key feature

- \mathbb{P}^2 fails to have the κ -cc;
- \mathbb{Q}^{θ} fails to have the κ -cc.

From a coloring $d : [\kappa]^2 \to \theta$ with $\theta \in \text{Reg}(\kappa)$, we derive two posets:

•
$$\mathbb{P} := \{(x,i) \mid x \in [\kappa]^{<\omega}, d"[x]^2 \subseteq \{i\}\};$$

•
$$\mathbb{Q} := \{(x,i) \mid x \in [\kappa]^{<\omega}, d"[x]^2 \cap i = \emptyset\}.$$

(y,j) extends (x,i) iff $y \supseteq x$ and j = i.

Key feature

- \mathbb{P}^2 fails to have the κ -cc, e.g., $\{\langle (\{\alpha\}, 0), (\{\alpha\}, 1) \rangle \mid \alpha < \kappa\}$.
- \mathbb{Q}^{θ} fails to have the κ -cc.

▶ for $\alpha < \beta < \kappa$, if ({ α }, 0) and ({ β }, 0) are compatible in \mathbb{P} , then $d(\alpha, \beta) = 0$, so that ({ α }, 1) and ({ β }, 1) are incompatible.

From a coloring $d : [\kappa]^2 \to \theta$ with $\theta \in \text{Reg}(\kappa)$, we derive two posets:

•
$$\mathbb{P} := \{(x,i) \mid x \in [\kappa]^{<\omega}, d"[x]^2 \subseteq \{i\}\};$$

•
$$\mathbb{Q} := \{(x,i) \mid x \in [\kappa]^{<\omega}, d"[x]^2 \cap i = \emptyset\}.$$

(y,j) extends (x,i) iff $y \supseteq x$ and j = i.

Key feature

- \mathbb{P}^2 fails to have the κ -cc, e.g., $\{\langle (\{\alpha\}, i) \mid i < 2 \rangle \mid \alpha < \kappa\}.$
- \mathbb{Q}^{θ} fails to have the κ -cc, e.g., $\{\langle (\{\alpha\}, i) \mid i < \theta \rangle \mid \alpha < \kappa\}$.

▶ for $\alpha < \beta < \kappa$ if $d(\alpha, \beta) = i$, then $(\{\alpha\}, i+1)$ and $(\{\beta\}, i+1)$ are incompatible in \mathbb{Q} .

From a coloring $d : [\kappa]^2 \to \theta$ with $\theta \in \text{Reg}(\kappa)$, we derive two posets:

•
$$\mathbb{P} := \{ (x, i) \mid x \in [\kappa]^{<\chi}, d"[x]^2 \subseteq \{i\} \};$$

•
$$\mathbb{Q} := \{(x,i) \mid x \in [\kappa]^{<\chi}, d"[x]^2 \cap i = \emptyset\}.$$

(y,j) extends (x,i) iff $y \supseteq x$ and j = i.

Key feature

- \mathbb{P}^2 fails to have the κ -cc, and is χ -closed;
- \mathbb{Q}^{θ} fails to have the κ -cc, and is χ -closed.

From a coloring $d : [\kappa]^2 \to \theta$ with $\theta \in \text{Reg}(\kappa)$, we derive two posets:

•
$$\mathbb{P} := \{ (x, i) \mid x \in [\kappa]^{<\chi}, d"[x]^2 \subseteq \{i\} \};$$

•
$$\mathbb{Q} := \{(x,i) \mid x \in [\kappa]^{<\chi}, d"[x]^2 \cap i = \emptyset\}.$$

(y,j) extends (x,i) iff $y \supseteq x$ and j = i.

Key feature

- \mathbb{P}^2 fails to have the κ -cc, and is χ -closed;
- \mathbb{Q}^{θ} fails to have the κ -cc, and is χ -closed.

The heart of the matter is to construct d for which the corresponding \mathbb{P} be κ -cc, or \mathbb{Q}^{τ} be κ -Knaster for all $\tau < \theta$. By a simple reverse-engineering process, one arrives at a reformulation of these features in the language of the coloring d. For the poset \mathbb{P} , see [18]. Today, we shall focus on the poset \mathbb{Q} .

Suppose $\mathbb{Q} := \{(x, i) \mid x \in [\kappa]^{<\omega}, d^{"}[x]^2 \cap i = \emptyset\}$ derived from $d : [\kappa]^2 \to \theta$. Assuming $\theta \in \operatorname{Reg}(\kappa)$, \mathbb{Q} is κ -Knaster iff d witnesses $U(\kappa, \theta)$:

Suppose $\mathbb{Q} := \{(x, i) \mid x \in [\kappa]^{<\omega}, d^{"}[x]^2 \cap i = \emptyset\}$ derived from $d : [\kappa]^2 \to \theta$. Assuming $\theta \in \operatorname{Reg}(\kappa)$, \mathbb{Q} is κ -Knaster iff d witnesses $U(\kappa, \theta)$:

Definition

Suppose $\mathbb{Q} := \{(x, i) \mid x \in [\kappa]^{<\omega}, d^{"}[x]^2 \cap i = \emptyset\}$ derived from $d : [\kappa]^2 \to \theta$. Assuming $\theta \in \operatorname{Reg}(\kappa)$, \mathbb{Q} is κ -Knaster iff d witnesses $U(\kappa, \theta)$:

Definition

 $U(\kappa, \theta)$ asserts the existence of a coloring $d : [\kappa]^2 \to \theta$ such that for every family $\mathcal{A} \subseteq [\kappa]^{<\omega}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\kappa}$ such that $\min(d[a \times b]) > i$ for all a < b from \mathcal{B} .

Sometimes, one would prefer the χ -closed variation: $\mathbb{Q} := \{(x, i) \mid x \in [\kappa]^{<\chi}, d^{"}[x]^2 \cap i = \emptyset\}.$

Suppose $\mathbb{Q} := \{(x, i) \mid x \in [\kappa]^{<\omega}, d^{"}[x]^2 \cap i = \emptyset\}$ derived from $d : [\kappa]^2 \to \theta$. Assuming $\theta \in \operatorname{Reg}(\kappa)$, \mathbb{Q} is κ -Knaster iff d witnesses $U(\kappa, \theta)$:

Definition

 $U(\kappa, \theta)$ asserts the existence of a coloring $d : [\kappa]^2 \to \theta$ such that for every family $\mathcal{A} \subseteq [\kappa]^{<\omega}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\kappa}$ such that $\min(d[a \times b]) > i$ for all a < b from \mathcal{B} .

Sometimes, one would prefer the χ -closed variation: $\mathbb{Q} := \{(x, i) \mid x \in [\kappa]^{<\chi}, d^{"}[x]^2 \cap i = \emptyset\}.$

Definition [34]

The higher the χ is, the harder it gets. U($\kappa, \theta, 2$) simply asserts there is a coloring $d : [\kappa]^2 \to \theta$ such that for every $A \in [\kappa]^{\kappa}$ and $i < \theta$, there is $B \in [A]^{\kappa}$ with $d(\alpha, \beta) > i$ for all $(\alpha, \beta) \in [B]^2$.

Definition [34]

Exercise

Suppose that $\theta \leq \chi$ are regular cardinals, and $\mu^{\leq \chi} < \kappa$ for all $\mu < \kappa$. If U(κ, θ, χ) holds, then there exists a χ -closed poset \mathbb{Q} such that:

- **2** \mathbb{Q}^{θ} fails to have the κ -cc.

Definition [34]

Exercise

Suppose that $\theta \leq \chi$ are regular cardinals, and $\mu^{<\chi} < \kappa$ for all $\mu < \kappa$. If U(κ, θ, χ) holds, then there exists a χ -closed poset \mathbb{Q} such that:

- **2** \mathbb{Q}^{θ} fails to have the κ -cc.

The higher the χ is, the harder it gets. If κ is weakly compact, then U(κ, θ, χ) fails already for $\chi = 2$.

Definition [34]

The C-sequence number

Theorem (Todorcevic, 1987)

For every strongly inaccessible cardinal κ , the following are equivalent:

- **1** κ is weakly compact;
- 2 For every C-sequence $\langle C_{\beta} \mid \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and

 $b: \kappa \to \kappa$ such that $\Delta \cap \alpha = C_{b(\alpha)} \cap \alpha$ for every $\alpha < \kappa$.

The cardinal invariant that we introduce suggests a way to measure how far an inaccessible cardinal κ is from being weakly compact, though, as we will see, it is of interest for successor cardinals as well.

The *C*-sequence number of κ [35]

If κ is weakly compact, then let $\chi(\kappa) := 0$. Otherwise, let $\chi(\kappa)$ denote the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Increasing the C-sequence number

Kunen showed that by forcing over a model with a weakly compact cardinal κ , one obtains a model V having a κ -Souslin tree \mathbb{S} such that $V^{\mathbb{S}} \models \kappa$ is weakly compact.

Proposition

In Kunen's model, $\chi(\kappa) = 1$.

Proof. The κ -Souslin tree witnesses that κ is not weakly compact, so $\chi(\kappa) \neq 0$. Now, let $\vec{C} = \langle C_{\beta} \mid \beta < \kappa \rangle$ be an arbitrary *C*-sequence. In $V^{\mathbb{S}}$, \vec{C} is a *C*-sequence over a weakly compact cardinal κ , and hence there is $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to \kappa$ s.t. $\Delta \cap \alpha = C_{b(\alpha)} \cap \alpha$ for each $\alpha < \kappa$. Clearly, Δ is a club. As \mathbb{S} is κ -cc, there is a club $D \subseteq \kappa$ in *V*, with $D \subseteq \Delta$. Then $D \cap \alpha \subseteq C_{b(\alpha)} \cap \alpha$ for each $\alpha < \kappa$.

Theorem [35]

Suppose κ is weakly compact. For every regular cardinal $\theta \leq \kappa$, there is a forcing extension in which κ remains strongly inaccessible, and $\chi(\kappa) = \theta$.

Assaf Rinot (Bar-Ilan University)

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Proposition

 $\chi(\kappa) \leq \sup(\operatorname{Reg}(\kappa)).$

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Proposition

 $\chi(\kappa) \leq \sup(\operatorname{Reg}(\kappa)).$

Proof. Clearly, $\chi(\kappa) \leq \kappa$, so suppose $\sup(\text{Reg}(\kappa)) < \kappa$.

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} \mid \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Proposition

 $\chi(\kappa) \leq \sup(\operatorname{Reg}(\kappa)).$

Proof. Clearly, $\chi(\kappa) \leq \kappa$, so suppose sup(Reg(κ)) < κ . Then $\kappa = \lambda^+$ for $\lambda := \sup(\text{Reg}(\kappa))$.

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Proposition

 $\chi(\kappa) \leq \sup(\operatorname{Reg}(\kappa)).$

Proof. Clearly, $\chi(\kappa) \leq \kappa$, so suppose sup $(\operatorname{Reg}(\kappa)) < \kappa$. Then $\kappa = \lambda^+$ for $\lambda := \sup(\operatorname{Reg}(\kappa))$. Let $\langle C_\beta \mid \beta < \kappa \rangle$ be arbitrary. Then $\Delta := \bigcup_{\beta < \kappa} C_\beta$ is in $[\kappa]^{\kappa}$ and $|\Delta \cap \alpha| \leq \lambda$ for all $\alpha < \kappa$.

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Proposition

 $\chi(\kappa) \leq \sup(\operatorname{Reg}(\kappa)).$

Proof. Clearly, $\chi(\kappa) \leq \kappa$, so suppose sup $(\operatorname{Reg}(\kappa)) < \kappa$. Then $\kappa = \lambda^+$ for $\lambda := \operatorname{sup}(\operatorname{Reg}(\kappa))$. Let $\langle C_\beta \mid \beta < \kappa \rangle$ be arbitrary. Then $\Delta := \bigcup_{\beta < \kappa} C_\beta$ is in $[\kappa]^{\kappa}$ and $|\Delta \cap \alpha| \leq \lambda$ for all $\alpha < \kappa$. Evidently, there is $b : \kappa \to [\kappa]^{\lambda}$ such that $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for all $\alpha < \kappa$.

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Proposition

 $\chi(\kappa) \leq \sup(\operatorname{Reg}(\kappa)).$

Proof. Clearly, $\chi(\kappa) \leq \kappa$, so suppose sup(Reg(κ)) < κ . Then $\kappa = \lambda^+$ for $\lambda :=$ sup(Reg(κ)). Let $\langle C_\beta \mid \beta < \kappa \rangle$ be arbitrary. Then $\Delta := \bigcup_{\beta < \kappa} C_\beta$ is in $[\kappa]^{\kappa}$ and $|\Delta \cap \alpha| \leq \lambda$ for all $\alpha < \kappa$. Evidently, there is $b : \kappa \to [\kappa]^{\lambda}$ such that $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_\beta$ for all $\alpha < \kappa$. So $\chi(\kappa) \leq \lambda$.

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Theorem (Todorcevic, 1987; see also [35])

 $U(\kappa, \omega, \chi(\kappa))$ holds.

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} \mid \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Theorem (Todorcevic, 1987; see also [35])

 $U(\kappa, \omega, \chi(\kappa))$ holds.

Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$.

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} \mid \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Theorem (Todorcevic, 1987; see also [35])

 $U(\kappa, \omega, \chi(\kappa))$ holds.

Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$. In particular, $\sup(C_{\beta}) = \sup(\beta)$ for all $\beta < \kappa$.

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} \mid \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Theorem (Todorcevic, 1987; see also [35])

 $U(\kappa, \omega, \chi(\kappa))$ holds.

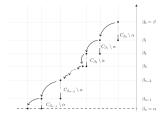
Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$. Define $d : [\kappa]^2 \to \omega$ as follows.

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} \mid \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

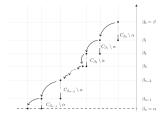
Theorem (Todorcevic, 1987; see also [35])

 $U(\kappa, \omega, \chi(\kappa))$ holds.

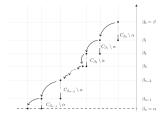
Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$. Define $d : [\kappa]^2 \to \omega$ as follows. Given $\alpha < \beta < \kappa$, recursively define:



Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$. Define $d : [\kappa]^2 \to \omega$ as follows. Given $\alpha < \beta < \kappa$, recursively define: $\beta_0 := \beta$.



Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$. Define $d : [\kappa]^2 \to \omega$ as follows. Given $\alpha < \beta < \kappa$, recursively define: $\beta_0 := \beta$. If $\beta_n > \alpha$, let $\beta_{n+1} := \min(C_{\beta_n} \setminus \alpha)$.



Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$. Define $d : [\kappa]^2 \to \omega$ as follows. Given $\alpha < \beta < \kappa$, recursively define: $\beta_0 := \beta$. If $\beta_n > \alpha$, let $\beta_{n+1} := \min(C_{\beta_n} \setminus \alpha)$. Otherwise, let $d(\alpha, \beta) := n$.

Recall

 $U(\kappa, \theta, \chi)$ asserts there is a coloring $d : [\kappa]^2 \to \theta$ s.t. for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\kappa}$ s.t. $\min(d[a \times b]) > i$ for all a < b from \mathcal{B} .

Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$. Define $d : [\kappa]^2 \to \omega$ as follows. Given $\alpha < \beta < \kappa$, recursively define: $\beta_0 := \beta$. If $\beta_n > \alpha$, let $\beta_{n+1} := \min(C_{\beta_n} \setminus \alpha)$. Otherwise, let $d(\alpha, \beta) := n$. We claim that d witnesses $U(\kappa, \omega, \chi(\kappa))$.

Recall

 $U(\kappa, \theta, \chi)$ asserts there is a coloring $d : [\kappa]^2 \to \theta$ s.t. for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\kappa}$ s.t. $\min(d[a \times b]) > i$ for all a < b from \mathcal{B} .

Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$. Define $d : [\kappa]^2 \to \omega$ as follows. Given $\alpha < \beta < \kappa$, recursively define: $\beta_0 := \beta$. If $\beta_n > \alpha$, let $\beta_{n+1} := \min(C_{\beta_n} \setminus \alpha)$. Otherwise, let $d(\alpha, \beta) := n$. We claim that *d* witnesses $U(\kappa, \omega, \chi(\kappa))$. We prove by induction on $i < \omega$ that for all $\chi' < \chi(\kappa)$ and $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets., there is $\mathcal{B} \in [\mathcal{A}]^{\kappa}$ such that $\min(d[a \times b]) \ge i$ for all a < b from \mathcal{B} .

Recall

 $U(\kappa, \theta, \chi)$ asserts there is a coloring $d : [\kappa]^2 \to \theta$ s.t. for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\kappa}$ s.t. $\min(d[a \times b]) > i$ for all a < b from \mathcal{B} .

Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$. Define $d : [\kappa]^2 \to \omega$ as follows. Given $\alpha < \beta < \kappa$, recursively define: $\beta_0 := \beta$. If $\beta_n > \alpha$, let $\beta_{n+1} := \min(C_{\beta_n} \setminus \alpha)$. Otherwise, let $d(\alpha, \beta) := n$. We prove *d* witnesses $U(\kappa, \omega, \chi(\kappa))$ by induction on $i < \omega$.

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} \mid \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Theorem (Todorcevic, 1987; see also [35])

 $U(\kappa, \omega, \chi(\kappa))$ holds.

Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$. Define $d : [\kappa]^2 \to \omega$ as follows. Given $\alpha < \beta < \kappa$, recursively define: $\beta_0 := \beta$. If $\beta_n > \alpha$, let $\beta_{n+1} := \min(C_{\beta_n} \setminus \alpha)$. Otherwise, let $d(\alpha, \beta) := n$. We prove *d* witnesses $U(\kappa, \omega, \chi(\kappa))$ by induction on $i < \omega$. Fix $\chi < \chi(\kappa)$ and $\mathcal{A} \subseteq [\kappa]^{\chi}$ consisting of κ -many pairwise disjoint sets.

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Theorem (Todorcevic, 1987; see also [35])

 $U(\kappa, \omega, \chi(\kappa))$ holds.

Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$. Define $d : [\kappa]^2 \to \omega$ as follows. Given $\alpha < \beta < \kappa$, recursively define: $\beta_0 := \beta$. If $\beta_n > \alpha$, let $\beta_{n+1} := \min(C_{\beta_n} \setminus \alpha)$. Otherwise, let $d(\alpha, \beta) := n$. We prove *d* witnesses $U(\kappa, \omega, \chi(\kappa))$ by induction on $i < \omega$. Fix $\chi < \chi(\kappa)$ and $\mathcal{A} \subseteq [\kappa]^{\chi}$ consisting of κ -many pairwise disjoint sets. Note that $S := \{\gamma \in E_{>\chi}^{\kappa} \mid \exists a \in \mathcal{A}[\gamma < a \& \gamma \notin \bigcup_{\beta \in a} C_{\beta}]\}$ is stationary.

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Theorem (Todorcevic, 1987; see also [35])

 $U(\kappa, \omega, \chi(\kappa))$ holds.

Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$. Define $d : [\kappa]^2 \to \omega$ as follows. Given $\alpha < \beta < \kappa$, recursively define: $\beta_0 := \beta$. If $\beta_n > \alpha$, let $\beta_{n+1} := \min(C_{\beta_n} \setminus \alpha)$. Otherwise, let $d(\alpha, \beta) := n$. We prove *d* witnesses $U(\kappa, \omega, \chi(\kappa))$ by induction on $i < \omega$. Fix $\chi < \chi(\kappa)$ and $\mathcal{A} \subseteq [\kappa]^{\chi}$ consisting of κ -many pairwise disjoint sets. Note that $S := \{\gamma \in E_{>\chi}^{\kappa} \mid \exists a \in \mathcal{A}[\gamma < a \& \gamma \notin \bigcup_{\beta \in a} C_{\beta}]\}$ is stationary. Let *D* be an arbitrary club. As $\chi < \sup(\operatorname{Reg}(\kappa)), \Delta := D \cap E_{>\chi}^{\kappa}$ is in $[\kappa]^{\kappa}$.

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Theorem (Todorcevic, 1987; see also [35])

 $U(\kappa, \omega, \chi(\kappa))$ holds.

Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$. Define $d : [\kappa]^2 \to \omega$ as follows. Given $\alpha < \beta < \kappa$, recursively define: $\beta_0 := \beta$. If $\beta_n > \alpha$, let $\beta_{n+1} := \min(C_{\beta_n} \setminus \alpha)$. Otherwise, let $d(\alpha, \beta) := n$. We prove *d* witnesses $U(\kappa, \omega, \chi(\kappa))$ by induction on $i < \omega$. Fix $\chi < \chi(\kappa)$ and $\mathcal{A} \subseteq [\kappa]^{\chi}$ consisting of κ -many pairwise disjoint sets. Note that $S := \{\gamma \in E_{>\chi}^{\kappa} \mid \exists a \in \mathcal{A}[\gamma < a \& \gamma \notin \bigcup_{\beta \in a} C_{\beta}]\}$ is stationary. Let *D* be an arbitrary club. As $\chi < \sup(\operatorname{Reg}(\kappa))$, $\Delta := D \cap E_{>\chi}^{\kappa}$ is in $[\kappa]^{\kappa}$. Fix $\alpha < \kappa$ such that $\Delta \cap \alpha \not\subseteq \bigcup_{\beta \in a} C_{\beta}$ for any $a \in [\kappa]^{<\chi(\kappa)}$.

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Theorem (Todorcevic, 1987; see also [35])

 $U(\kappa, \omega, \chi(\kappa))$ holds.

Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$. Define $d : [\kappa]^2 \to \omega$ as follows. Given $\alpha < \beta < \kappa$, recursively define: $\beta_0 := \beta$. If $\beta_n > \alpha$, let $\beta_{n+1} := \min(C_{\beta_n} \setminus \alpha)$. Otherwise, let $d(\alpha, \beta) := n$. We prove *d* witnesses $U(\kappa, \omega, \chi(\kappa))$ by induction on $i < \omega$. Fix $\chi < \chi(\kappa)$ and $\mathcal{A} \subseteq [\kappa]^{\chi}$ consisting of κ -many pairwise disjoint sets. Note that $S := \{\gamma \in E_{>\chi}^{\kappa} \mid \exists a \in \mathcal{A}[\gamma < a \& \gamma \notin \bigcup_{\beta \in a} C_{\beta}]\}$ is stationary. Let *D* be an arbitrary club. As $\chi < \sup(\operatorname{Reg}(\kappa)), \Delta := D \cap E_{>\chi}^{\kappa}$ is in $[\kappa]^{\kappa}$. Fix $\alpha < \kappa$ such that $\Delta \cap \alpha \not\subseteq \bigcup_{\beta \in a} C_{\beta}$ for any $a \in [\kappa]^{<\chi(\kappa)}$. Pick $a \in \mathcal{A}$ with $\alpha < a$.

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Theorem (Todorcevic, 1987; see also [35])

 $U(\kappa, \omega, \chi(\kappa))$ holds.

Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$. Define $d : [\kappa]^2 \to \omega$ as follows. Given $\alpha < \beta < \kappa$, recursively define: $\beta_0 := \beta$. If $\beta_n > \alpha$, let $\beta_{n+1} := \min(C_{\beta_n} \setminus \alpha)$. Otherwise, let $d(\alpha, \beta) := n$. We prove *d* witnesses $U(\kappa, \omega, \chi(\kappa))$ by induction on $i < \omega$. Fix $\chi < \chi(\kappa)$ and $\mathcal{A} \subseteq [\kappa]^{\chi}$ consisting of κ -many pairwise disjoint sets. Note that $S := \{\gamma \in E_{>\chi}^{\kappa} \mid \exists a \in \mathcal{A}[\gamma < a \& \gamma \notin \bigcup_{\beta \in a} C_{\beta}]\}$ is stationary. Let *D* be an arbitrary club. As $\chi < \sup(\operatorname{Reg}(\kappa))$, $\Delta := D \cap E_{>\chi}^{\kappa}$ is in $[\kappa]^{\kappa}$. Fix $\alpha < \kappa$ such that $\Delta \cap \alpha \not\subseteq \bigcup_{\beta \in a} C_{\beta}$ for any $a \in [\kappa]^{<\chi(\kappa)}$. Pick $a \in \mathcal{A}$ with $\alpha < a$. Now, pick $\gamma \in \Delta \cap \alpha \setminus \bigcup_{\beta \in a} C_{\beta}$. Then $\gamma \in S$.

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Theorem (Todorcevic, 1987; see also [35])

 $U(\kappa, \omega, \chi(\kappa))$ holds.

Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$. Define $d : [\kappa]^2 \to \omega$ as follows. Given $\alpha < \beta < \kappa$, recursively define: $\beta_0 := \beta$. If $\beta_n > \alpha$, let $\beta_{n+1} := \min(C_{\beta_n} \setminus \alpha)$. Otherwise, let $d(\alpha, \beta) := n$. We prove *d* witnesses $U(\kappa, \omega, \chi(\kappa))$ by induction on $i < \omega$. Fix $\chi < \chi(\kappa)$ and $\mathcal{A} \subseteq [\kappa]^{\chi}$ consisting of κ -many pairwise disjoint sets. Note that $S := \{\gamma \in E_{>\chi}^{\kappa} \mid \exists a \in \mathcal{A}[\gamma < a \& \gamma \notin \bigcup_{\beta \in a} C_{\beta}]\}$ is stationary. For each $\gamma \in S$, pick $a_{\gamma} \in \mathcal{A}$ with $\gamma < a_{\gamma}$ and $\gamma \notin \bigcup_{\beta \in a_{\infty}} C_{\beta}$.

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Theorem (Todorcevic, 1987; see also [35])

 $U(\kappa, \omega, \chi(\kappa))$ holds.

Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$. Define $d : [\kappa]^2 \to \omega$ as follows. Given $\alpha < \beta < \kappa$, recursively define: $\beta_0 := \beta$. If $\beta_n > \alpha$, let $\beta_{n+1} := \min(C_{\beta_n} \setminus \alpha)$. Otherwise, let $d(\alpha, \beta) := n$. We prove *d* witnesses $U(\kappa, \omega, \chi(\kappa))$ by induction on $i < \omega$. Fix $\chi < \chi(\kappa)$ and $\mathcal{A} \subseteq [\kappa]^{\chi}$ consisting of κ -many pairwise disjoint sets. Note that $S := \{\gamma \in \mathbb{E}^{\kappa}_{>\chi} \mid \exists a \in \mathcal{A}[\gamma < a \& \gamma \notin \bigcup_{\beta \in a} C_{\beta}]\}$ is stationary. For each $\gamma \in S$, pick $a_{\gamma} \in \mathcal{A}$ with $\gamma < a_{\gamma}$ and $\gamma \notin \bigcup_{\beta \in a_{\gamma}} C_{\beta}$. Note that $\gamma \mapsto \sup\{\sup(C_{\beta} \cap \gamma) \mid \beta \in a_{\gamma}\}$ is regressive over *S*.

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Theorem (Todorcevic, 1987; see also [35])

 $U(\kappa, \omega, \chi(\kappa))$ holds.

Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$. Define $d : [\kappa]^2 \to \omega$ as follows. Given $\alpha < \beta < \kappa$, recursively define: $\beta_0 := \beta$. If $\beta_n > \alpha$, let $\beta_{n+1} := \min(C_{\beta_n} \setminus \alpha)$. Otherwise, let $d(\alpha, \beta) := n$. We prove *d* witnesses $U(\kappa, \omega, \chi(\kappa))$ by induction on $i < \omega$. Fix $\chi < \chi(\kappa)$ and $\mathcal{A} \subseteq [\kappa]^{\chi}$ consisting of κ -many pairwise disjoint sets. Note that $S := \{\gamma \in E_{>\chi}^{\kappa} \mid \exists a \in \mathcal{A}[\gamma < a \& \gamma \notin \bigcup_{\beta \in a} C_{\beta}]\}$ is stationary. For each $\gamma \in S$, pick $a_{\gamma} \in \mathcal{A}$ with $\gamma < a_{\gamma}$ and $\gamma \notin \bigcup_{\beta \in a_{\gamma}} C_{\beta}$. Fix $\epsilon < \kappa$ with sup{sup($C_{\beta} \cap \gamma$) | $\beta \in a_{\gamma}$ } = ϵ for stationarily many $\gamma \in S$.

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Theorem (Todorcevic, 1987; see also [35])

 $U(\kappa, \omega, \chi(\kappa))$ holds.

Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$. Define $d : [\kappa]^2 \to \omega$ as follows. Given $\alpha < \beta < \kappa$, recursively define: $\beta_0 := \beta$. If $\beta_n > \alpha$, let $\beta_{n+1} := \min(C_{\beta_n} \setminus \alpha)$. Otherwise, let $d(\alpha, \beta) := n$. We prove *d* witnesses $U(\kappa, \omega, \chi(\kappa))$ by induction on $i < \omega$. Fix $\chi < \chi(\kappa)$ and $\mathcal{A} \subseteq [\kappa]^{\chi}$ consisting of κ -many pairwise disjoint sets. We found $\epsilon < \kappa$ and $\langle a_{\gamma} | \gamma \in T \rangle$ with $T \in [\kappa]^{\kappa}$ such that, for all $\gamma \in T$, $a_{\gamma} \in \mathcal{A}$, $\sup\{\sup(C_{\beta} \cap \gamma) | \beta \in a_{\gamma}\} = \epsilon < \gamma < a_{\gamma}$.

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Theorem (Todorcevic, 1987; see also [35])

 $U(\kappa, \omega, \chi(\kappa))$ holds.

Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$. Define $d : [\kappa]^2 \to \omega$ as follows. Given $\alpha < \beta < \kappa$, recursively define: $\beta_0 := \beta$. If $\beta_n > \alpha$, let $\beta_{n+1} := \min(C_{\beta_n} \setminus \alpha)$. Otherwise, let $d(\alpha, \beta) := n$. We prove *d* witnesses $U(\kappa, \omega, \chi(\kappa))$ by induction on $i < \omega$. Fix $\chi < \chi(\kappa)$ and $\mathcal{A} \subseteq [\kappa]^{\chi}$ consisting of κ -many pairwise disjoint sets. We found $\epsilon < \kappa$ and $\langle a_{\gamma} | \gamma \in T \rangle$ with $T \in [\kappa]^{\kappa}$ s.t., for all $(\gamma, \delta) \in [T]^2$, $a_{\gamma} \in \mathcal{A}$, $\sup\{\sup(C_{\beta} \cap \gamma) | \beta \in a_{\gamma}\} = \epsilon < \gamma < a_{\gamma} < \delta$.

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Theorem (Todorcevic, 1987; see also [35])

 $U(\kappa, \omega, \chi(\kappa))$ holds.

Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$. Define $d : [\kappa]^2 \to \omega$ as follows. Given $\alpha < \beta < \kappa$, recursively define: $\beta_0 := \beta$. If $\beta_n > \alpha$, let $\beta_{n+1} := \min(C_{\beta_n} \setminus \alpha)$. Otherwise, let $d(\alpha, \beta) := n$. We prove *d* witnesses $U(\kappa, \omega, \chi(\kappa))$ by induction on $i < \omega$. Fix $\chi < \chi(\kappa)$ and $\mathcal{A} \subseteq [\kappa]^{\chi}$ consisting of κ -many pairwise disjoint sets. We found $\epsilon < \kappa$ and $\langle a_{\gamma} | \gamma \in T \rangle$ with $T \in [\kappa]^{\kappa}$ s.t., for all $(\gamma, \delta) \in [T]^2$, $a_{\delta} \in \mathcal{A}$, $\sup\{\sup(C_{\beta} \cap \delta) | \beta \in a_{\delta}\} = \epsilon < \gamma < a_{\gamma} < \delta$.

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Theorem (Todorcevic, 1987; see also [35])

 $U(\kappa, \omega, \chi(\kappa))$ holds.

Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$. Define $d : [\kappa]^2 \to \omega$ as follows. Given $\alpha < \beta < \kappa$, recursively define: $\beta_0 := \beta$. If $\beta_n > \alpha$, let $\beta_{n+1} := \min(C_{\beta_n} \setminus \alpha)$. Otherwise, let $d(\alpha, \beta) := n$. We prove *d* witnesses $U(\kappa, \omega, \chi(\kappa))$ by induction on $i < \omega$. Fix $\chi < \chi(\kappa)$ and $\mathcal{A} \subseteq [\kappa]^{\chi}$ consisting of κ -many pairwise disjoint sets. We found $\epsilon < \kappa$ and $\langle a_{\gamma} | \gamma \in T \rangle$ with $T \in [\kappa]^{\kappa}$ s.t., for all $(\gamma, \delta) \in [T]^2$, $a_{\delta} \in \mathcal{A}$, $\sup\{\sup(C_{\beta} \cap \delta) | \beta \in a_{\delta}\} = \epsilon < \gamma < a_{\gamma} < \delta$. Denote $\overline{a_{\delta}} := a_{\delta} \cup \{\min(C_{\beta} \setminus \delta) | \beta \in a_{\delta}\}$.

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Theorem (Todorcevic, 1987; see also [35])

 $U(\kappa, \omega, \chi(\kappa))$ holds.

Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$. Define $d : [\kappa]^2 \to \omega$ as follows. Given $\alpha < \beta < \kappa$, recursively define: $\beta_0 := \beta$. If $\beta_n > \alpha$, let $\beta_{n+1} := \min(C_{\beta_n} \setminus \alpha)$. Otherwise, let $d(\alpha, \beta) := n$. We prove *d* witnesses $U(\kappa, \omega, \chi(\kappa))$ by induction on $i < \omega$. Fix $\chi < \chi(\kappa)$ and $\mathcal{A} \subseteq [\kappa]^{\chi}$ consisting of κ -many pairwise disjoint sets. We found $\epsilon < \kappa$ and $\langle a_{\gamma} | \gamma \in T \rangle$ with $T \in [\kappa]^{\kappa}$ s.t., for all $(\gamma, \delta) \in [T]^2$, $a_{\delta} \in \mathcal{A}$, $\sup\{\sup(C_{\beta} \cap \delta) | \beta \in a_{\delta}\} = \epsilon < \gamma < a_{\gamma} < \delta$. Denote $\overline{a_{\delta}} := a_{\delta} \cup \{\min(C_{\beta} \setminus \delta) | \beta \in a_{\delta}\}$. By the hypothesis on *i*, find $R \in [T]^{\kappa}$ s.t. $\min(d[\overline{a_{\gamma}} \times \overline{a_{\delta}}]) \ge i$ for all $(\gamma, \delta) \in [R]^2$.

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Theorem (Todorcevic, 1987; see also [35])

 $U(\kappa, \omega, \chi(\kappa))$ holds.

Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$. Define $d : [\kappa]^2 \to \omega$ as follows. Given $\alpha < \beta < \kappa$, recursively define: $\beta_0 := \beta$. If $\beta_n > \alpha$, let $\beta_{n+1} := \min(C_{\beta_n} \setminus \alpha)$. Otherwise, let $d(\alpha, \beta) := n$. We prove *d* witnesses $U(\kappa, \omega, \chi(\kappa))$ by induction on $i < \omega$. Fix $\chi < \chi(\kappa)$ and $\mathcal{A} \subseteq [\kappa]^{\chi}$ consisting of κ -many pairwise disjoint sets. We found $\epsilon < \kappa$ and $\langle a_{\gamma} | \gamma \in T \rangle$ with $T \in [\kappa]^{\kappa}$ s.t., for all $(\gamma, \delta) \in [T]^2$, $a_{\delta} \in \mathcal{A}$, $\sup\{\sup(C_{\beta} \cap \delta) | \beta \in a_{\delta}\} = \epsilon < \gamma < a_{\gamma} < \delta$. Denote $\overline{a_{\delta}} := a_{\delta} \cup \{\min(C_{\beta} \setminus \delta) | \beta \in a_{\delta}\}$. By the hypothesis on *i*, find $R \in [T]^{\kappa}$ s.t. $\min(d[\overline{a_{\gamma}} \times \overline{a_{\delta}}]) \ge i$ for all $(\gamma, \delta) \in [R]^2$. Let $(\alpha, \beta) \in a_{\gamma} \times a_{\delta}$.

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Theorem (Todorcevic, 1987; see also [35])

 $U(\kappa, \omega, \chi(\kappa))$ holds.

Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$. Define $d : [\kappa]^2 \to \omega$ as follows. Given $\alpha < \beta < \kappa$, recursively define: $\beta_0 := \beta$. If $\beta_n > \alpha$, let $\beta_{n+1} := \min(C_{\beta_n} \setminus \alpha)$. Otherwise, let $d(\alpha, \beta) := n$. We prove d witnesses $U(\kappa, \omega, \chi(\kappa))$ by induction on $i < \omega$. Fix $\chi < \chi(\kappa)$ and $\mathcal{A} \subseteq [\kappa]^{\chi}$ consisting of κ -many pairwise disjoint sets. We found $\epsilon < \kappa$ and $\langle a_{\gamma} \mid \gamma \in T \rangle$ with $T \in [\kappa]^{\kappa}$ s.t., for all $(\gamma, \delta) \in [T]^2$, $a_{\delta} \in \mathcal{A}$, $\sup\{\sup(C_{\beta} \cap \delta) \mid \beta \in a_{\delta}\} = \epsilon < \gamma < a_{\gamma} < \delta$. Denote $\overline{a_{\delta}} := a_{\delta} \cup \{\min(C_{\beta} \setminus \delta) \mid \beta \in a_{\delta}\}$. By the hypothesis on *i*, find $R \in [T]^{\kappa}$ s.t. min $(d[\overline{a_{\gamma}} \times \overline{a_{\delta}}]) \geq i$ for all $(\gamma, \delta) \in [R]^2$. Let $(\alpha, \beta) \in a_{\gamma} \times a_{\delta}$. As $\epsilon < \gamma < \alpha < \delta$, we have $\beta_1 := \min(C_{\beta} \setminus \alpha) = \min(C_{\beta} \setminus \delta)$.

Recall: If κ is not weakly compact, then $\chi(\kappa)$ denotes the least cardinal $\chi \leq \kappa$ such that, for every *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Theorem (Todorcevic, 1987; see also [35])

 $U(\kappa, \omega, \chi(\kappa))$ holds.

Proof. Fix a *C*-sequence $\langle C_{\beta} | \beta < \kappa \rangle$ witnessing the value of $\chi(\kappa)$. Define $d : [\kappa]^2 \to \omega$ as follows. Given $\alpha < \beta < \kappa$, recursively define: $\beta_0 := \beta$. If $\beta_n > \alpha$, let $\beta_{n+1} := \min(C_{\beta_n} \setminus \alpha)$. Otherwise, let $d(\alpha, \beta) := n$. We prove d witnesses $U(\kappa, \omega, \chi(\kappa))$ by induction on $i < \omega$. Fix $\chi < \chi(\kappa)$ and $\mathcal{A} \subseteq [\kappa]^{\chi}$ consisting of κ -many pairwise disjoint sets. We found $\epsilon < \kappa$ and $\langle a_{\gamma} | \gamma \in T \rangle$ with $T \in [\kappa]^{\kappa}$ s.t., for all $(\gamma, \delta) \in [T]^2$, $a_{\delta} \in \mathcal{A}$, sup{sup($C_{\beta} \cap \delta$) | $\beta \in a_{\delta}$ } = $\epsilon < \gamma < a_{\gamma} < \delta$. Denote $\overline{a_{\delta}} := a_{\gamma} \cup \{\min(C_{\beta} \setminus \delta) \mid \beta \in a_{\delta}\}$. By the hypothesis on *i*, find $R \in [T]^{\kappa}$ s.t. $\min(d[\overline{a_{\gamma}} \times \overline{a_{\delta}}]) \geq i$ for all $(\gamma, \delta) \in [R]^2$. Let $(\alpha, \beta) \in a_{\gamma} \times a_{\delta}$. So $\beta_1 := \min(C_\beta \setminus \alpha) = \min(C_\beta \setminus \delta)$ and $d(\alpha, \beta) = d(\alpha, \beta_1) + 1 \ge i + 1.\Box$

Exercise

•
$$cf(\lambda) \leq \chi(\lambda^+) \leq \lambda$$
.

In particular, $\chi(\lambda^+) = \lambda$ whenever λ is regular.

Exercise

In particular, it is consistent for $\chi(\kappa)$ to be a singular cardinal.

Exercise

•
$$cf(\lambda) \leq \chi(\lambda^+) \leq \lambda$$
.

2 If
$$\Box(\kappa)$$
 holds, then $\chi(\kappa) = \sup(\operatorname{Reg}(\kappa))$.

3 If
$$\chi(\kappa) > 1$$
, then $\chi(\kappa) \ge \omega$.

Exercise

Note that, under V = L, $\chi(\kappa) > 0 \implies \chi(\kappa) = \sup(\text{Reg}(\kappa))$.

Exercise

•
$$cf(\lambda) \leq \chi(\lambda^+) \leq \lambda$$
.

2 If
$$\Box(\kappa)$$
 holds, then $\chi(\kappa) = \sup(\operatorname{Reg}(\kappa))$.

3 If
$$\chi(\kappa) > 1$$
, then $\chi(\kappa) \ge \omega$.

Note that, under V = L, $\chi(\kappa) > 0 \implies \chi(\kappa) = \sup(\operatorname{Reg}(\kappa))$.

Lemma

Every stationary subset of $E_{>\chi(\kappa)}^{\kappa}$ reflects.

Exercise

•
$$cf(\lambda) \leq \chi(\lambda^+) \leq \lambda$$
.

2 If
$$\Box(\kappa)$$
 holds, then $\chi(\kappa) = \sup(\operatorname{Reg}(\kappa))$.

3 If $\chi(\kappa) > 1$, then $\chi(\kappa) \ge \omega$.

Note that, under V = L, $\chi(\kappa) > 0 \implies \chi(\kappa) = \sup(\operatorname{Reg}(\kappa))$.

Lemma

Every stationary subset of $E_{>\chi(\kappa)}^{\kappa}$ reflects.

Proof. Suppose not. Fix $S \subseteq E_{>\chi(\kappa)}^{\kappa}$ stationary with $Tr(S) = \emptyset$.

Exercise

•
$$cf(\lambda) \leq \chi(\lambda^+) \leq \lambda$$
.

2 If
$$\Box(\kappa)$$
 holds, then $\chi(\kappa) = \sup(\operatorname{Reg}(\kappa))$.

• If $\chi(\kappa) > 1$, then $\chi(\kappa) \ge \omega$.

Note that, under V = L, $\chi(\kappa) > 0 \implies \chi(\kappa) = \sup(\operatorname{Reg}(\kappa))$.

Lemma

Every stationary subset of $E_{>\chi(\kappa)}^{\kappa}$ reflects.

Proof. Suppose not. Fix $S \subseteq E_{>\chi(\kappa)}^{\kappa}$ stationary with $\operatorname{Tr}(S) = \emptyset$. Let $\langle C_{\beta} \mid \beta < \kappa \rangle$ be a *C*-sequence such that $\operatorname{acc}^{+}(C_{\beta}) \cap S = \emptyset$ for all $\beta < \kappa$.

Exercise

•
$$cf(\lambda) \leq \chi(\lambda^+) \leq \lambda$$
.

2 If
$$\Box(\kappa)$$
 holds, then $\chi(\kappa) = \sup(\operatorname{Reg}(\kappa))$.

• If $\chi(\kappa) > 1$, then $\chi(\kappa) \ge \omega$.

Note that, under V = L, $\chi(\kappa) > 0 \implies \chi(\kappa) = \sup(\operatorname{Reg}(\kappa))$.

Lemma

Every stationary subset of $E_{>\chi(\kappa)}^{\kappa}$ reflects.

Proof. Suppose not. Fix $S \subseteq E_{>\chi(\kappa)}^{\kappa}$ stationary with $\operatorname{Tr}(S) = \emptyset$. Let $\langle C_{\beta} \mid \beta < \kappa \rangle$ be a *C*-sequence such that $\operatorname{acc}^{+}(C_{\beta}) \cap S = \emptyset$ for all $\beta < \kappa$. Fix $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi(\kappa)}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for all $\alpha < \kappa$.

Exercise

•
$$cf(\lambda) \leq \chi(\lambda^+) \leq \lambda$$
.

2 If
$$\Box(\kappa)$$
 holds, then $\chi(\kappa) = \sup(\operatorname{Reg}(\kappa))$.

3 If
$$\chi(\kappa) > 1$$
, then $\chi(\kappa) \ge \omega$.

Note that, under V = L, $\chi(\kappa) > 0 \implies \chi(\kappa) = \sup(\operatorname{Reg}(\kappa))$.

Lemma

Every stationary subset of $E_{>\chi(\kappa)}^{\kappa}$ reflects.

Proof. Suppose not. Fix $S \subseteq E_{>\chi(\kappa)}^{\kappa}$ stationary with $\operatorname{Tr}(S) = \emptyset$. Let $\langle C_{\beta} \mid \beta < \kappa \rangle$ be a *C*-sequence such that $\operatorname{acc}^+(C_{\beta}) \cap S = \emptyset$ for all $\beta < \kappa$. Fix $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi(\kappa)}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for all $\alpha < \kappa$. Fix $A \in [E_{>\chi(\kappa)}^{\kappa}]^{\kappa}$ and $\epsilon < \kappa$ with $\sup(b(\alpha) \cap \alpha) = \epsilon$ for all $\alpha \in A$.

Exercise

•
$$cf(\lambda) \leq \chi(\lambda^+) \leq \lambda$$
.

2 If
$$\Box(\kappa)$$
 holds, then $\chi(\kappa) = \sup(\operatorname{Reg}(\kappa))$.

3 If
$$\chi(\kappa) > 1$$
, then $\chi(\kappa) \ge \omega$.

Note that, under V = L, $\chi(\kappa) > 0 \implies \chi(\kappa) = \sup(\operatorname{Reg}(\kappa))$.

Lemma

Every stationary subset of $E_{>\chi(\kappa)}^{\kappa}$ reflects.

Proof. Suppose not. Fix $S \subseteq E_{>\chi(\kappa)}^{\kappa}$ stationary with $\operatorname{Tr}(S) = \emptyset$. Let $\langle C_{\beta} \mid \beta < \kappa \rangle$ be a *C*-sequence such that $\operatorname{acc}^{+}(C_{\beta}) \cap S = \emptyset$ for all $\beta < \kappa$. Fix $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi(\kappa)}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for all $\alpha < \kappa$. Fix $A \in [E_{>\chi(\kappa)}^{\kappa}]^{\kappa}$ and $\epsilon < \kappa$ with $\sup(b(\alpha) \cap \alpha) = \epsilon$ for all $\alpha \in A$. Fix $\delta \in \operatorname{acc}^{+}(\Delta \setminus \epsilon) \cap S$ and $\alpha \in A$ above δ .

Exercise

•
$$cf(\lambda) \leq \chi(\lambda^+) \leq \lambda$$
.

2 If
$$\Box(\kappa)$$
 holds, then $\chi(\kappa) = \sup(\operatorname{Reg}(\kappa))$.

3 If $\chi(\kappa) > 1$, then $\chi(\kappa) \ge \omega$.

Note that, under V = L, $\chi(\kappa) > 0 \implies \chi(\kappa) = \sup(\operatorname{Reg}(\kappa))$.

Lemma

Every stationary subset of $E_{>\chi(\kappa)}^{\kappa}$ reflects.

Proof. Suppose not. Fix $S \subseteq E_{>\chi(\kappa)}^{\kappa}$ stationary with $\operatorname{Tr}(S) = \emptyset$. Let $\langle C_{\beta} \mid \beta < \kappa \rangle$ be a *C*-sequence such that $\operatorname{acc}^{+}(C_{\beta}) \cap S = \emptyset$ for all $\beta < \kappa$. Fix $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi(\kappa)}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for all $\alpha < \kappa$. Fix $A \in [E_{>\chi(\kappa)}^{\kappa}]^{\kappa}$ and $\epsilon < \kappa$ with $\sup(b(\alpha) \cap \alpha) = \epsilon$ for all $\alpha \in A$. Fix $\delta \in \operatorname{acc}^{+}(\Delta \setminus \epsilon) \cap S$ and $\alpha \in A$ above δ . As $\operatorname{cf}(\delta) > |b(\alpha)|$, find $\beta \in b(\alpha)$ with $\sup(C_{\beta} \cap \delta) = \delta$.

Exercise

•
$$cf(\lambda) \leq \chi(\lambda^+) \leq \lambda$$
.

2 If
$$\Box(\kappa)$$
 holds, then $\chi(\kappa) = \sup(\operatorname{Reg}(\kappa))$.

3 If $\chi(\kappa) > 1$, then $\chi(\kappa) \ge \omega$.

Note that, under V = L, $\chi(\kappa) > 0 \implies \chi(\kappa) = \sup(\operatorname{Reg}(\kappa))$.

Lemma

Every stationary subset of $E_{>\chi(\kappa)}^{\kappa}$ reflects.

Proof. Suppose not. Fix $S \subseteq E_{>\chi(\kappa)}^{\kappa}$ stationary with $\operatorname{Tr}(S) = \emptyset$. Let $\langle C_{\beta} \mid \beta < \kappa \rangle$ be a *C*-sequence such that $\operatorname{acc}^{+}(C_{\beta}) \cap S = \emptyset$ for all $\beta < \kappa$. Fix $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi(\kappa)}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for all $\alpha < \kappa$. Fix $A \in [E_{>\chi(\kappa)}^{\kappa}]^{\kappa}$ and $\epsilon < \kappa$ with $\sup(b(\alpha) \cap \alpha) = \epsilon$ for all $\alpha \in A$. Fix $\delta \in \operatorname{acc}^{+}(\Delta \setminus \epsilon) \cap S$ and $\alpha \in A$ above δ . As $\operatorname{cf}(\delta) > |b(\alpha)|$, find $\beta \in b(\alpha)$ with $\sup(C_{\beta} \cap \delta) = \delta$. Then $\beta \ge \alpha > \delta$ and $\delta \in \operatorname{acc}^{+}(C_{\beta}) \cap S$. \Box

Assaf Rinot (Bar-Ilan University)

Exercise

•
$$cf(\lambda) \leq \chi(\lambda^+) \leq \lambda$$
.

2 If
$$\Box(\kappa)$$
 holds, then $\chi(\kappa) = \sup(\operatorname{Reg}(\kappa))$.

3 If $\chi(\kappa) > 1$, then $\chi(\kappa) \ge \omega$.

Note that, under V = L, $\chi(\kappa) > 0 \implies \chi(\kappa) = \sup(\operatorname{Reg}(\kappa))$.

Lemma

Every stationary subset of $E_{>\chi(\kappa)}^{\kappa}$ reflects.

Corollary [35]

If κ is a successor, or if $\Box(\kappa)$ holds, or if there is a non-reflecting stationary subset of κ , then there is a κ -Knaster poset \mathbb{Q} for which \mathbb{Q}^{ω} is not κ -cc.

In particular, there is an \aleph_2 -Knaster poset \mathbb{Q} such that \mathbb{Q}^{ω} is not \aleph_2 -cc.

Increasing at the level of successors of singulars

Theorem [35]

If λ is a singular limit of supercompact cardinals, then $\chi(\lambda^+) = cf(\lambda)$.

Theorem [35]

If λ is a singular limit of supercompact cardinals, and $\theta \in \operatorname{Reg}(\lambda) \setminus \operatorname{cf}(\lambda)$, then in some cofinality-preserving forcing extension, $\chi(\lambda^+) = \theta$.

Supercompact cardinals

Lemma. Suppose \vec{C} is a *C*-sequence over κ . If $\delta < \kappa$ is supercompact, then there is $A \in [\kappa]^{\kappa}$ such that for every $B \in [A]^{<\delta}$, there is $\beta < \kappa$ with $B \subseteq C_{\beta}$. **Proof.** Let U be a normal, fine ultrafilter over $\mathcal{P}_{\delta}(\kappa)$, and let $j: V \to M \cong \text{Ult}(V, U)$ be the corresponding ultrapower map. Recall that $\operatorname{crit}(j) = \delta$, $j(\delta) > \kappa$, and $\kappa M \subseteq M$. Let $\langle D_{\beta} \mid \beta < i(\kappa) \rangle$ denote the enumeration of $i(\vec{C})$. Let $\gamma := \sup(i''\kappa)$, and let $A := \{ \alpha < \kappa \mid j(\alpha) \in D_{\gamma} \}$. Since j is continuous at ordinals of cofinality less than δ , and since D_{γ} is club in γ , it follows that j " κ is $<\delta$ -club in γ , and hence A is $<\delta$ -club in κ . In particular, $|A| = \kappa$. Let $\alpha \in A$ be arbitrary, and let $X_{\alpha} := \{x \in \mathcal{P}_{\delta}(\kappa) \mid \alpha \in C_{\sup(x)}\}$. As $j(\alpha) \in D_{\gamma}$, we have $j \, "\kappa \in \{z \in \mathcal{P}_{i(\delta)}(j(\kappa)) \mid j(\alpha) \in D_{sup(z)}\} = j(X_{\alpha})$, and thus $X_{\alpha} \in U$. Finally, for every $B \in [A]^{<\delta}$, use the δ -completeness of U to find $x \in \bigcap_{\alpha \in B} X_{\alpha}$, and note that $B \subseteq C_{\beta}$ for $\beta := \sup(x)$.

Successors of singulars

Corollary [35]

If λ is a singular limit of supercompact cardinals, then $\chi(\lambda^+) = cf(\lambda)$.

Proof. To see that $\chi(\lambda^+) \leq cf(\lambda)$, fix a *C*-sequence $\vec{C} = \langle C_\beta \mid \beta < \lambda^+ \rangle$. Fix an increasing sequence $\langle \lambda_i \mid i < cf(\lambda) \rangle$ of supercompacts, $\nearrow \lambda$. By the Lemma, for each $i < cf(\lambda)$, let us pick $A_i \in [\lambda^+]^{\lambda^+}$ such that for every $B \in [A]^{<\lambda_i}$, for some $\beta < \lambda^+$, $B \subseteq C_\beta$. Consider the club $\Delta := \bigcap_{i < cf(\lambda)} acc^+(A_i)$, and let $\alpha < \lambda^+$ be arbitrary. We shall find $\langle \beta_i \mid i < cf(\lambda) \rangle$ such that $\Delta \cap \alpha \subseteq \bigcup_{i < cf(\lambda)} C_{\beta_i}$. By increasing α , we may assume that $otp(\Delta \cap \alpha) = \alpha$ and $cf(\alpha) = \omega$. Now, by definition of $\Delta \cap \alpha$, let us fix $\langle B_i \mid i < cf(\lambda) \rangle$ such that

• for every $i < cf(\lambda)$, $B_i \in [A_i]^{<\lambda_i}$ and $sup(B_i) = \alpha$;

•
$$\Delta \cap \alpha = \bigcup_{i < cf(\lambda)} acc^+(B_i).$$

For each $i < cf(\lambda)$, pick $\beta_i < \lambda^+$ such that $B_i \subseteq C_{\beta_i}$. As C_{β_i} is closed below α , we also have $acc^+(B_i) \subseteq C_{\beta_i}$. So $\langle \beta_i \mid i < cf(\lambda) \rangle$ is as sought. \Box

Chromatic number of graphs - large gaps

Compactness and incompactness of chromatic number

Recall: A graph is a pair G = (V, E), where $E \subseteq [V]^2$.

V is the set of vertices of G, and E is the set of edges of G.

The *chromatic number* of G, denoted Chr(G), is the least cardinal θ for which there exists a coloring $f : V \to \theta$ such that:

 $f(x) \neq f(y)$ for all $\{x, y\} \in E$.

Theorem (Baumgartner, 1984)

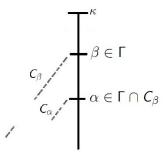
It is consistent with GCH that there exists a graph of size and chromatic number \aleph_2 containing no subgraphs of chromatic number \aleph_1 .

Theorem (Foreman-Laver, 1988)

Assuming the consistency of a huge cardinal, it is consistent that GCH holds and any graph of size and chromatic number \aleph_2 contains a subgraph of size and chromatic number \aleph_1 .

Definition [12]

Given a *C*-sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$, define a graph $G(\vec{C}) := (\Gamma, E)$ by: $E := \{ \{\alpha, \beta\} \in [\Gamma]^2 \mid \alpha \in C_{\beta}, \min(C_{\alpha}) > \sup(C_{\beta} \cap \alpha) \ge \min(C_{\beta}) \}.$

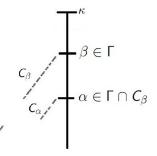


Definition [12]

Given a *C*-sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$, define a graph $G(\vec{C}) := (\Gamma, E)$ by: $E := \{ \{\alpha, \beta\} \in [\Gamma]^2 \mid \alpha \in C_{\beta}, \min(C_{\alpha}) > \sup(C_{\beta} \cap \alpha) \ge \min(C_{\beta}) \}.$

Exercise

Show that $G(\vec{C})$ is triangle free. I.e., for all $\alpha < \beta < \gamma$, $\{\alpha, \beta, \gamma\}^2 \nsubseteq E$



Definition [12]

Given a *C*-sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$, define a graph $G(\vec{C}) := (\Gamma, E)$ by: $E := \{ \{\alpha, \beta\} \in [\Gamma]^2 \mid \alpha \in C_{\beta}, \min(C_{\alpha}) > \sup(C_{\beta} \cap \alpha) \ge \min(C_{\beta}) \}.$

Recall

The type of a *C*-sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ is the least ordinal ξ satisfying $otp(C_{\alpha}) < \xi$ for all $\alpha \in \Gamma$.

Definition [12]

Given a *C*-sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$, define a graph $G(\vec{C}) := (\Gamma, E)$ by: $E := \{ \{\alpha, \beta\} \in [\Gamma]^2 \mid \alpha \in C_{\beta}, \min(C_{\alpha}) > \sup(C_{\beta} \cap \alpha) \ge \min(C_{\beta}) \}.$

Recall

The type of a *C*-sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ is the least ordinal ξ satisfying $otp(C_{\alpha}) < \xi$ for all $\alpha \in \Gamma$.

Exercise

For any cardinal θ , if type $(\vec{C}) \leq \theta$, then $Chr(G(\vec{C})) \leq \theta$.

Definition [12]

Given a *C*-sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$, define a graph $G(\vec{C}) := (\Gamma, E)$ by: $E := \{ \{\alpha, \beta\} \in [\Gamma]^2 \mid \alpha \in C_{\beta}, \min(C_{\alpha}) > \sup(C_{\beta} \cap \alpha) \ge \min(C_{\beta}) \}.$

Definition

A *C*-sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ is said to be coherent iff for every $\alpha \in \Gamma$ and $\bar{\alpha} \in \operatorname{acc}^+(C_{\alpha})$, we have $\bar{\alpha} \in \Gamma$ and $C_{\bar{\alpha}} = C_{\alpha} \cap \bar{\alpha}$.

Definition [12]

Given a *C*-sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$, define a graph $G(\vec{C}) := (\Gamma, E)$ by: $E := \{ \{\alpha, \beta\} \in [\Gamma]^2 \mid \alpha \in C_{\beta}, \min(C_{\alpha}) > \sup(C_{\beta} \cap \alpha) \ge \min(C_{\beta}) \}.$

Definition

A C-sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ is said to be coherent iff for every $\alpha \in \Gamma$ and $\bar{\alpha} \in \operatorname{acc}^+(C_{\alpha})$, we have $\bar{\alpha} \in \Gamma$ and $C_{\bar{\alpha}} = C_{\alpha} \cap \bar{\alpha}$.

Lemma [28]

If \vec{C} is a coherent C-sequence over κ , then any small subgraph of $G(\vec{C})$ (i.e., of size $< \kappa$) is countably chromatic.

Definition [12]

Given a *C*-sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$, define a graph $G(\vec{C}) := (\Gamma, E)$ by: $E := \{ \{\alpha, \beta\} \in [\Gamma]^2 \mid \alpha \in C_{\beta}, \min(C_{\alpha}) > \sup(C_{\beta} \cap \alpha) \ge \min(C_{\beta}) \}.$

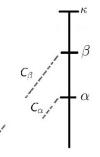
Definition

A C-sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \Gamma \rangle$ is said to be coherent iff for every $\alpha \in \Gamma$ and $\bar{\alpha} \in \operatorname{acc}^+(C_{\alpha})$, we have $\bar{\alpha} \in \Gamma$ and $C_{\bar{\alpha}} = C_{\alpha} \cap \bar{\alpha}$.

Large gaps for free [28]

Let \vec{C} be a generic coherent *C*-sequence over κ . Then $G(\vec{C})$ has chromatic number κ , but all of its small subgraphs are countably chromatic.

Let $\vec{C} = \langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$ be a coherent *C*-sequence. Recall that $E := \{ \{\alpha, \beta\} \mid \alpha \in N_{\beta} \}$, where $N_{\beta} := \{ \alpha \in C_{\beta} \mid \min(C_{\alpha}) > \sup(C_{\beta} \cap \alpha) \ge \min(C_{\beta}) \}.$



Let $\vec{C} = \langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$ be a coherent *C*-sequence. Recall that $E := \{\{\alpha, \beta\} \mid \alpha \in N_{\beta}\}$, where $N_{\beta} := \{\alpha \in C_{\beta} \mid \min(C_{\alpha}) > \sup(C_{\beta} \cap \alpha) \ge \min(C_{\beta})\}$. We shall show that for every $\gamma < \kappa$, there is a suitable coloring $f : \gamma \to \omega$: (1) $f(\alpha) \neq f(\beta)$ for all $\{\alpha, \beta\} \in E$, and (2) $f[N_{\delta}]$ is finite for all $\delta < \kappa$.

Let $\vec{C} = \langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$ be a coherent *C*-sequence. Recall that $E := \{\{\alpha, \beta\} \mid \alpha \in N_{\beta}\}$, where $N_{\beta} := \{\alpha \in C_{\beta} \mid \min(C_{\alpha}) > \sup(C_{\beta} \cap \alpha) \ge \min(C_{\beta})\}$. We shall show that for every $\gamma < \kappa$, there is a suitable coloring $f : \gamma \to \omega$: (1) $f(\alpha) \neq f(\beta)$ for all $\{\alpha, \beta\} \in E$, and (2) $f[N_{\delta}]$ is finite for all $\delta < \kappa$.

Observation: It suffices to verify that $f[N_{\delta}]$ is finite for all $\delta \in E_{\omega}^{\gamma+1}$.

Let $\vec{C} = \langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$ be a coherent *C*-sequence. Recall that $E := \{\{\alpha, \beta\} \mid \alpha \in N_{\beta}\}$, where $N_{\beta} := \{\alpha \in C_{\beta} \mid \min(C_{\alpha}) > \sup(C_{\beta} \cap \alpha) \ge \min(C_{\beta})\}$. We shall show that for every $\gamma < \kappa$, there is a suitable coloring $f : \gamma \to \omega$: (1) $f(\alpha) \neq f(\beta)$ for all $\{\alpha, \beta\} \in E$, and (2) $f[N_{\delta}]$ is finite for all $\delta < \kappa$.

Observation: It suffices to verify that $f[N_{\delta}]$ is finite for all $\delta \in E_{\omega}^{\gamma+1}$. **Proof.** If $\delta < \kappa$, and $f[N_{\delta}]$ is infinite, then there is $I \in [N_{\delta} \cap \gamma]^{\omega}$ on which f is injective. Put $\overline{\delta} := \sup(I)$. So $I \subseteq N_{\delta} \cap \overline{\delta} = N_{\overline{\delta}}$ and $f[N_{\overline{\delta}}]$ is infinite. However, $\overline{\delta} \in E_{\omega}^{\gamma+1}$.

Let $\vec{C} = \langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$ be a coherent *C*-sequence. Recall that $E := \{\{\alpha, \beta\} \mid \alpha \in N_{\beta}\}$, where $N_{\beta} := \{\alpha \in C_{\beta} \mid \min(C_{\alpha}) > \sup(C_{\beta} \cap \alpha) \ge \min(C_{\beta})\}$. Suitable: $f(\alpha) \neq f(\beta)$ for all $\{\alpha, \beta\} \in E$, and $f[N_{\delta}]$ is finite for all $\delta < \kappa$. **Claim.** For every $\bar{\gamma} < \gamma < \kappa$, suitable $\bar{f} : \bar{\gamma} \to \omega$ and $x \in [\omega]^{\omega}$, there is a suitable $f : \gamma \to \omega$ extending \bar{f} with $f[\gamma \setminus \bar{\gamma}] \subseteq x$.

Let $\vec{C} = \langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$ be a coherent *C*-sequence. Recall that $E := \{\{\alpha, \beta\} \mid \alpha \in N_{\beta}\}$, where $N_{\beta} := \{\alpha \in C_{\beta} \mid \min(C_{\alpha}) > \sup(C_{\beta} \cap \alpha) \ge \min(C_{\beta})\}$. Suitable: $f(\alpha) \neq f(\beta)$ for all $\{\alpha, \beta\} \in E$, and $f[N_{\delta}]$ is finite for all $\delta < \kappa$. **Claim.** For every $\bar{\gamma} < \gamma < \kappa$, suitable $\bar{f} : \bar{\gamma} \to \omega$ and $x \in [\omega]^{\omega}$, there is a suitable $f : \gamma \to \omega$ extending \bar{f} with $f[\gamma \setminus \bar{\gamma}] \subseteq x$. **Proof.** By induction. Suppose $\gamma < \kappa$ and the claim holds for $\gamma' < \kappa$.

Let $\vec{C} = \langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$ be a coherent *C*-sequence. Recall that $E := \{\{\alpha, \beta\} \mid \alpha \in N_{\beta}\}$, where $N_{\beta} := \{\alpha \in C_{\beta} \mid \min(C_{\alpha}) > \sup(C_{\beta} \cap \alpha) \ge \min(C_{\beta})\}$. Suitable: $f(\alpha) \neq f(\beta)$ for all $\{\alpha, \beta\} \in E$, and $f[N_{\delta}]$ is finite for all $\delta < \kappa$. **Claim.** For every $\bar{\gamma} < \gamma < \kappa$, suitable $\bar{f} : \bar{\gamma} \to \omega$ and $x \in [\omega]^{\omega}$, there is a suitable $f : \gamma \to \omega$ extending \bar{f} with $f[\gamma \setminus \bar{\gamma}] \subseteq x$. **Proof.** By induction. Suppose $\gamma < \kappa$ and the claim holds for $\gamma' < \kappa$. Let $\bar{f} : \bar{\gamma} \to \omega$ be suitable with $\bar{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f : \gamma \to \omega$ extending \bar{f} such that $f[\gamma \setminus \bar{\gamma}] \subseteq x$.

Let $\vec{C} = \langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$ be a coherent *C*-sequence. Recall that $E := \{\{\alpha, \beta\} \mid \alpha \in N_{\beta}\}$, where $N_{\beta} := \{\alpha \in C_{\beta} \mid \min(C_{\alpha}) > \sup(C_{\beta} \cap \alpha) \ge \min(C_{\beta})\}$. Suitable: $f(\alpha) \neq f(\beta)$ for all $\{\alpha, \beta\} \in E$, and $f[N_{\delta}]$ is finite for all $\delta < \kappa$. **Claim.** For every $\bar{\gamma} < \gamma < \kappa$, suitable $\bar{f} : \bar{\gamma} \to \omega$ and $x \in [\omega]^{\omega}$, there is a suitable $f : \gamma \to \omega$ extending \bar{f} with $f[\gamma \setminus \bar{\gamma}] \subseteq x$. **Proof.** By induction. Suppose $\gamma < \kappa$ and the claim holds for $\gamma' < \kappa$. Let $\bar{f} : \bar{\gamma} \to \omega$ be suitable with $\bar{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f : \gamma \to \omega$ extending \bar{f} such that $f[\gamma \setminus \bar{\gamma}] \subseteq x$. **>** If $\gamma = \gamma' + 1$, then $y := \bar{f}[N_{\gamma'}]$ is finite, and we may find $\xi \in x \setminus y$.

Let $\vec{C} = \langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$ be a coherent *C*-sequence. Recall that $E := \{\{\alpha, \beta\} \mid \alpha \in N_{\beta}\}$, where $N_{\beta} := \{ \alpha \in C_{\beta} \mid \min(C_{\alpha}) > \sup(C_{\beta} \cap \alpha) \ge \min(C_{\beta}) \}.$ Suitable: $f(\alpha) \neq f(\beta)$ for all $\{\alpha, \beta\} \in E$, and $f[N_{\delta}]$ is finite for all $\delta < \kappa$. **Claim.** For every $\bar{\gamma} < \gamma < \kappa$, suitable $\bar{f} : \bar{\gamma} \to \omega$ and $x \in [\omega]^{\omega}$, there is a suitable $f: \gamma \to \omega$ extending \overline{f} with $f[\gamma \setminus \overline{\gamma}] \subset x$. **Proof.** By induction. Suppose $\gamma < \kappa$ and the claim holds for $\gamma' < \kappa$. Let $\overline{f}: \overline{\gamma} \to \omega$ be suitable with $\overline{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f : \gamma \to \omega$ extending \overline{f} such that $f[\gamma \setminus \overline{\gamma}] \subset x$. ▶ If $\gamma = \gamma' + 1$, then $y := \overline{f}[N_{\gamma'}]$ is finite, and we may find $\xi \in x \setminus y$. Pick a suitable $f': \gamma' \to \omega$ extending \overline{f} with $f'[\gamma' \setminus \overline{\gamma}] \subseteq (x \setminus \{\xi\})$.

Let $\vec{C} = \langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$ be a coherent *C*-sequence. Recall that $E := \{\{\alpha, \beta\} \mid \alpha \in N_{\beta}\}$, where $N_{\beta} := \{ \alpha \in C_{\beta} \mid \min(C_{\alpha}) > \sup(C_{\beta} \cap \alpha) \ge \min(C_{\beta}) \}.$ Suitable: $f(\alpha) \neq f(\beta)$ for all $\{\alpha, \beta\} \in E$, and $f[N_{\delta}]$ is finite for all $\delta < \kappa$. **Claim.** For every $\bar{\gamma} < \gamma < \kappa$, suitable $\bar{f} : \bar{\gamma} \to \omega$ and $x \in [\omega]^{\omega}$, there is a suitable $f: \gamma \to \omega$ extending \overline{f} with $f[\gamma \setminus \overline{\gamma}] \subset x$. **Proof.** By induction. Suppose $\gamma < \kappa$ and the claim holds for $\gamma' < \kappa$. Let $\overline{f} : \overline{\gamma} \to \omega$ be suitable with $\overline{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f : \gamma \to \omega$ extending \overline{f} such that $f[\gamma \setminus \overline{\gamma}] \subseteq x$. ▶ If $\gamma = \gamma' + 1$, then $y := \overline{f}[N_{\gamma'}]$ is finite, and we may find $\xi \in x \setminus y$. Pick a suitable $f' : \gamma' \to \omega$ extending \overline{f} with $f'[\gamma' \setminus \overline{\gamma}] \subseteq (x \setminus \{\xi\})$. Let $f := f' \cup \{(\gamma', \xi)\}$. Evidently, $f[\gamma \setminus \overline{\gamma}] \subseteq x$.

Let $\vec{C} = \langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$ be a coherent *C*-sequence. Recall that $E := \{\{\alpha, \beta\} \mid \alpha \in N_{\beta}\}$, where $N_{\beta} := \{ \alpha \in C_{\beta} \mid \min(C_{\alpha}) > \sup(C_{\beta} \cap \alpha) \ge \min(C_{\beta}) \}.$ Suitable: $f(\alpha) \neq f(\beta)$ for all $\{\alpha, \beta\} \in E$, and $f[N_{\delta}]$ is finite for all $\delta < \kappa$. **Claim.** For every $\bar{\gamma} < \gamma < \kappa$, suitable $\bar{f} : \bar{\gamma} \to \omega$ and $x \in [\omega]^{\omega}$, there is a suitable $f: \gamma \to \omega$ extending \overline{f} with $f[\gamma \setminus \overline{\gamma}] \subset x$. **Proof.** By induction. Suppose $\gamma < \kappa$ and the claim holds for $\gamma' < \kappa$. Let $\overline{f} : \overline{\gamma} \to \omega$ be suitable with $\overline{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f : \gamma \to \omega$ extending \overline{f} such that $f[\gamma \setminus \overline{\gamma}] \subseteq x$. ▶ If $\gamma = \gamma' + 1$, then $y := \overline{f}[N_{\gamma'}]$ is finite, and we may find $\xi \in x \setminus y$. Pick a suitable $f': \gamma' \to \omega$ extending \overline{f} with $f'[\gamma' \setminus \overline{\gamma}] \subseteq (x \setminus \{\xi\})$. Let $f := f' \cup \{(\gamma', \xi)\}$. Evidently, $f[\gamma \setminus \overline{\gamma}] \subseteq x$. Also, $f[N_{\delta}] = f'[N_{\delta}]$ is finite for all $\delta \in E_{\omega}^{\gamma+1} = E_{\omega}^{\gamma'+1}$.

Let $\vec{C} = \langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$ be a coherent *C*-sequence. Recall that $E := \{\{\alpha, \beta\} \mid \alpha \in N_{\beta}\}$, where $N_{\beta} := \{ \alpha \in C_{\beta} \mid \min(C_{\alpha}) > \sup(C_{\beta} \cap \alpha) \ge \min(C_{\beta}) \}.$ Suitable: $f(\alpha) \neq f(\beta)$ for all $\{\alpha, \beta\} \in E$, and $f[N_{\delta}]$ is finite for all $\delta < \kappa$. **Claim.** For every $\bar{\gamma} < \gamma < \kappa$, suitable $\bar{f} : \bar{\gamma} \to \omega$ and $x \in [\omega]^{\omega}$, there is a suitable $f: \gamma \to \omega$ extending \overline{f} with $f[\gamma \setminus \overline{\gamma}] \subset x$. **Proof.** By induction. Suppose $\gamma < \kappa$ and the claim holds for $\gamma' < \kappa$. Let $\overline{f}: \overline{\gamma} \to \omega$ be suitable with $\overline{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f : \gamma \to \omega$ extending \overline{f} such that $f[\gamma \setminus \overline{\gamma}] \subseteq x$. ▶ If $\gamma = \gamma' + 1$, then $y := \overline{f}[N_{\gamma'}]$ is finite, and we may find $\xi \in x \setminus y$. Pick a suitable $f': \gamma' \to \omega$ extending \overline{f} with $f'[\gamma' \setminus \overline{\gamma}] \subseteq (x \setminus \{\xi\})$. Let $f := f' \cup \{(\gamma', \xi)\}$. Evidently, $f[\gamma \setminus \overline{\gamma}] \subseteq x$. Also, $f[N_{\delta}] = f'[N_{\delta}]$ is finite for all $\delta \in E_{\omega}^{\gamma+1} = E_{\omega}^{\gamma'+1}$. Finally, if $\{\alpha, \beta\} \in E$ and $f(\alpha) = f(\beta)$, then by dom $(f) = \text{dom}(f') \cup \{\gamma'\}$ we may assume that $\beta = \gamma'$ and $\alpha \in N_{\gamma'}$. So, $f(\beta) = \xi$.

Let $\vec{C} = \langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$ be a coherent *C*-sequence. Recall that $E := \{\{\alpha, \beta\} \mid \alpha \in N_{\beta}\}$, where $N_{\beta} := \{ \alpha \in C_{\beta} \mid \min(C_{\alpha}) > \sup(C_{\beta} \cap \alpha) \ge \min(C_{\beta}) \}.$ Suitable: $f(\alpha) \neq f(\beta)$ for all $\{\alpha, \beta\} \in E$, and $f[N_{\delta}]$ is finite for all $\delta < \kappa$. **Claim.** For every $\bar{\gamma} < \gamma < \kappa$, suitable $\bar{f} : \bar{\gamma} \to \omega$ and $x \in [\omega]^{\omega}$, there is a suitable $f: \gamma \to \omega$ extending \overline{f} with $f[\gamma \setminus \overline{\gamma}] \subset x$. **Proof.** By induction. Suppose $\gamma < \kappa$ and the claim holds for $\gamma' < \kappa$. Let $\overline{f}: \overline{\gamma} \to \omega$ be suitable with $\overline{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f : \gamma \to \omega$ extending \overline{f} such that $f[\gamma \setminus \overline{\gamma}] \subseteq x$. ▶ If $\gamma = \gamma' + 1$, then $y := \overline{f}[N_{\gamma'}]$ is finite, and we may find $\xi \in x \setminus y$. Pick a suitable $f': \gamma' \to \omega$ extending \overline{f} with $f'[\gamma' \setminus \overline{\gamma}] \subseteq (x \setminus \{\xi\})$. Let $f := f' \cup \{(\gamma', \xi)\}$. Evidently, $f[\gamma \setminus \overline{\gamma}] \subseteq x$. Also, $f[N_{\delta}] = f'[N_{\delta}]$ is finite for all $\delta \in E_{\omega}^{\gamma+1} = E_{\omega}^{\gamma'+1}$. Finally, if $\{\alpha, \beta\} \in E$ and $f(\alpha) = f(\beta)$, then by dom $(f) = \text{dom}(f') \cup \{\gamma'\}$ we may assume that $\beta = \gamma'$ and $\alpha \in N_{\gamma'}$. So, $f(\beta) = \xi$. ▶▶ If $\alpha < \overline{\gamma}$, then $f(\alpha) = \overline{f}(\alpha) \in \gamma$. So, $f(\alpha) \neq \xi$.

Let $\vec{C} = \langle C_{\alpha} \mid \alpha \in \operatorname{acc}^+(\kappa) \rangle$ be a coherent *C*-sequence. Recall that $E := \{\{\alpha, \beta\} \mid \alpha \in N_{\beta}\}$, where $N_{\beta} := \{ \alpha \in C_{\beta} \mid \min(C_{\alpha}) > \sup(C_{\beta} \cap \alpha) \ge \min(C_{\beta}) \}.$ Suitable: $f(\alpha) \neq f(\beta)$ for all $\{\alpha, \beta\} \in E$, and $f[N_{\delta}]$ is finite for all $\delta < \kappa$. **Claim.** For every $\bar{\gamma} < \gamma < \kappa$, suitable $\bar{f} : \bar{\gamma} \to \omega$ and $x \in [\omega]^{\omega}$, there is a suitable $f : \gamma \to \omega$ extending \overline{f} with $f[\gamma \setminus \overline{\gamma}] \subseteq x$. **Proof.** By induction. Suppose $\gamma < \kappa$ and the claim holds for $\gamma' < \kappa$. Let $\overline{f} : \overline{\gamma} \to \omega$ be suitable with $\overline{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f: \gamma \to \omega$ extending \overline{f} such that $f[\gamma \setminus \overline{\gamma}] \subset x$. ▶ If $\gamma = \gamma' + 1$, then $y := \overline{f}[N_{\gamma'}]$ is finite, and we may find $\xi \in x \setminus y$. Pick a suitable $f': \gamma' \to \omega$ extending \bar{f} with $f'[\gamma' \setminus \bar{\gamma}] \subseteq (x \setminus \{\xi\})$. Let $f := f' \cup \{(\gamma', \xi)\}$. Evidently, $f[\gamma \setminus \overline{\gamma}] \subset x$. Also, $f[N_{\delta}] = f'[N_{\delta}]$ is finite for all $\delta \in E_{\omega}^{\gamma+1} = E_{\omega}^{\gamma'+1}$. Finally, if $\{\alpha, \beta\} \in E$ and $f(\alpha) = f(\beta)$, then by dom $(f) = \text{dom}(f') \cup \{\gamma'\}$ we may assume that $\beta = \gamma'$ and $\alpha \in N_{\gamma'}$. So, $f(\beta) = \xi$. ▶▶ If $\alpha < \overline{\gamma}$, then $f(\alpha) = \overline{f}(\alpha) \in \gamma$. So, $f(\alpha) \neq \xi$. ▶▶ If $\bar{\gamma} \leq \alpha < \gamma'$, then $f(\alpha) \in f'[\gamma' \setminus \bar{\gamma}]$. So, $f(\alpha) \neq \xi$.

Let $\overline{f}: \overline{\gamma} \to \omega$ be suitable with $\overline{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f: \gamma \to \omega$ extending \overline{f} such that $f[\gamma \setminus \overline{\gamma}] \subseteq x$. If $\gamma \in \operatorname{acc}^+(\kappa)$, then by extending \overline{f} (using the induction hypothesis), we may assume that $\overline{\gamma} \in C_{\gamma}$.

Let $\overline{f}: \overline{\gamma} \to \omega$ be suitable with $\overline{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f: \gamma \to \omega$ extending \overline{f} such that $f[\gamma \setminus \overline{\gamma}] \subseteq x$. If $\gamma \in \operatorname{acc}^+(\kappa)$, then by extending \overline{f} (using the induction hypothesis), we may assume that $\overline{\gamma} \in C_{\gamma}$. Put $y := \overline{f}[N_{\overline{\gamma}}]$ and pick $\xi \in x \setminus y$.

Let $\overline{f}: \overline{\gamma} \to \omega$ be suitable with $\overline{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f: \gamma \to \omega$ extending \overline{f} such that $f[\gamma \setminus \overline{\gamma}] \subseteq x$. If $\gamma \in \operatorname{acc}^+(\kappa)$, then by extending \overline{f} (using the induction hypothesis), we may assume that $\overline{\gamma} \in C_{\gamma}$. Put $y := \overline{f}[N_{\overline{\gamma}}]$ and pick $\xi \in x \setminus y$. Construct a chain of suitable colorings $\{f_{\eta}: \eta \to \omega \mid \eta \in (C_{\gamma} \setminus \overline{\gamma}) \cup \{\gamma\}\}$ such that: (i) $\overline{f} \subseteq f_{\eta}$, (ii) $f_{\eta}[\eta \setminus \overline{\gamma}] \subseteq x$,

Let $\overline{f}: \overline{\gamma} \to \omega$ be suitable with $\overline{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f: \gamma \to \omega$ extending \overline{f} such that $f[\gamma \setminus \overline{\gamma}] \subseteq x$. If $\gamma \in \operatorname{acc}^+(\kappa)$, then by extending \overline{f} (using the induction hypothesis), we may assume that $\overline{\gamma} \in C_{\gamma}$. Put $y := \overline{f}[N_{\overline{\gamma}}]$ and pick $\xi \in x \setminus y$. Construct a chain of suitable colorings $\{f_{\eta}: \eta \to \omega \mid \eta \in (C_{\gamma} \setminus \overline{\gamma}) \cup \{\gamma\}\}$ such that: (i) $\overline{f} \subseteq f_{\eta}$, (ii) $f_{\eta}[\eta \setminus \overline{\gamma}] \subseteq x$,

Evidently, if we succeed, then f_{γ} would be as sought.

Let $\overline{f}: \overline{\gamma} \to \omega$ be suitable with $\overline{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f: \gamma \to \omega$ extending \overline{f} such that $f[\gamma \setminus \overline{\gamma}] \subseteq x$. If $\gamma \in \operatorname{acc}^+(\kappa)$, then by extending \overline{f} (using the induction hypothesis), we may assume that $\overline{\gamma} \in C_{\gamma}$. Put $y := \overline{f}[N_{\overline{\gamma}}]$ and pick $\xi \in x \setminus y$. Construct a chain of suitable colorings $\{f_{\eta}: \eta \to \omega \mid \eta \in (C_{\gamma} \setminus \overline{\gamma}) \cup \{\gamma\}\}$ such that: (i) $\overline{f} \subseteq f_{\eta}$, (ii) $f_{\eta}[\eta \setminus \overline{\gamma}] \subseteq x$, (iii) $f_{\eta}^{-1}\{\xi\} \setminus \overline{\gamma} = N_{\gamma} \setminus \overline{\gamma}$.

Let $\overline{f}: \overline{\gamma} \to \omega$ be suitable with $\overline{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f: \gamma \to \omega$ extending \overline{f} such that $f[\gamma \setminus \overline{\gamma}] \subseteq x$. \blacktriangleright If $\gamma \in \operatorname{acc}^+(\kappa)$, then by extending \overline{f} (using the induction hypothesis), we may assume that $\overline{\gamma} \in C_{\gamma}$. Put $y := \overline{f}[N_{\overline{\gamma}}]$ and pick $\xi \in x \setminus y$. Construct a chain of suitable colorings $\{f_{\eta}: \eta \to \omega \mid \eta \in (C_{\gamma} \setminus \overline{\gamma}) \cup \{\gamma\}\}$ such that: (i) $\overline{f} \subseteq f_{\eta}$, (ii) $f_{\eta}[\eta \setminus \overline{\gamma}] \subseteq x$, (iii) $f_{\eta}^{-1}\{\xi\} \setminus \overline{\gamma} = N_{\gamma} \setminus \overline{\gamma}$. $\blacktriangleright \blacksquare$ Base: Let $f_{\overline{\gamma}} := \overline{f}$.

Let $\overline{f}: \overline{\gamma} \to \omega$ be suitable with $\overline{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f: \gamma \to \omega$ extending \overline{f} such that $f[\gamma \setminus \overline{\gamma}] \subseteq x$. \blacktriangleright If $\gamma \in \operatorname{acc}^+(\kappa)$, then by extending \overline{f} (using the induction hypothesis), we may assume that $\overline{\gamma} \in C_{\gamma}$. Put $y := \overline{f}[N_{\overline{\gamma}}]$ and pick $\xi \in x \setminus y$. Construct a chain of suitable colorings $\{f_{\eta}: \eta \to \omega \mid \eta \in (C_{\gamma} \setminus \overline{\gamma}) \cup \{\gamma\}\}$ such that: (i) $\overline{f} \subseteq f_{\eta}$, (ii) $f_{\eta}[\eta \setminus \overline{\gamma}] \subseteq x$, (iii) $f_{\eta}^{-1}\{\xi\} \setminus \overline{\gamma} = N_{\gamma} \setminus \overline{\gamma}$. \blacktriangleright Base: Let $f_{\overline{\gamma}} := \overline{f}$. \blacktriangleright Successor: If $\eta' < \eta$ are successive elements of C_{γ} , and $f_{\eta'}$ has already

been defined, then by the induction hypothesis, we may pick a suitable $g: \eta \to \omega$ extending $f_{\eta'}$ with $g[\eta \setminus \eta'] \subseteq x \setminus \{\xi\}$.

Let $\overline{f}: \overline{\gamma} \to \omega$ be suitable with $\overline{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f: \gamma \to \omega$ extending \overline{f} such that $f[\gamma \setminus \overline{\gamma}] \subseteq x$. \blacktriangleright If $\gamma \in \operatorname{acc}^+(\kappa)$, then by extending \overline{f} (using the induction hypothesis), we may assume that $\overline{\gamma} \in C_{\gamma}$. Put $y := \overline{f}[N_{\overline{\gamma}}]$ and pick $\xi \in x \setminus y$. Construct a chain of suitable colorings $\{f_{\eta}: \eta \to \omega \mid \eta \in (C_{\gamma} \setminus \overline{\gamma}) \cup \{\gamma\}\}$ such that: (i) $\overline{f} \subseteq f_{\eta}$, (ii) $f_{\eta}[\eta \setminus \overline{\gamma}] \subseteq x$, (iii) $f_{\eta}^{-1}\{\xi\} \setminus \overline{\gamma} = N_{\gamma} \setminus \overline{\gamma}$. \blacktriangleright Base: Let $f_{\overline{\gamma}} := \overline{f}$. \triangleright Successor: If $\eta' < \eta$ are successive elements of C_{γ} , and $f_{\eta'}$ has already been defined, then by the induction hypothesis, we may pick a suitable

 $g:\eta \to \omega$ extending $f_{\eta'}$ with $g[\eta \setminus \eta'] \subseteq x \setminus \{\xi\}$. Define $f_{\eta}:\eta \to \omega$

by letting $f_{\eta}(\beta) := \xi$ for all $\beta \in N_{\gamma} \setminus \overline{\gamma}$ and $f_{\eta}(\beta) := g(\beta)$ for any other β .

Let $\overline{f}: \overline{\gamma} \to \omega$ be suitable with $\overline{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f: \gamma \to \omega$ extending \overline{f} such that $f[\gamma \setminus \overline{\gamma}] \subseteq x$. \blacktriangleright If $\gamma \in \operatorname{acc}^+(\kappa)$, then by extending \overline{f} (using the induction hypothesis), we may assume that $\overline{\gamma} \in C_{\gamma}$. Put $y := \overline{f}[N_{\overline{\gamma}}]$ and pick $\xi \in x \setminus y$. Construct a chain of suitable colorings $\{f_{\eta}: \eta \to \omega \mid \eta \in (C_{\gamma} \setminus \overline{\gamma}) \cup \{\gamma\}\}$ such that: (i) $\overline{f} \subseteq f_{\eta}$, (ii) $f_{\eta}[\eta \setminus \overline{\gamma}] \subseteq x$, (iii) $f_{\eta}^{-1}\{\xi\} \setminus \overline{\gamma} = N_{\gamma} \setminus \overline{\gamma}$. \blacktriangleright Base: Let $f_{\overline{\gamma}} := \overline{f}$. \blacktriangleright Successor: If $\eta' < \eta$ are successive elements of C_{γ} , and $f_{\eta'}$ has already

been defined, then by the induction hypothesis, we may pick a suitable $g: \eta \to \omega$ extending $f_{\eta'}$ with $g[\eta \setminus \eta'] \subseteq x \setminus \{\xi\}$. Define $f_{\eta}: \eta \to \omega$ by letting $f_{\eta}(\beta) := \xi$ for all $\beta \in N_{\gamma} \setminus \bar{\gamma}$ and $f_{\eta}(\beta) := g(\beta)$ for any other β .

As $g \upharpoonright \eta' = f_{\eta'}$ and $f_{\eta'}^{-1}{\xi} \setminus \bar{\gamma} = N_{\gamma} \setminus \bar{\gamma}$, we have $\bar{f} = f_{\bar{\gamma}} \subseteq f_{\eta'} = g \upharpoonright \eta' \subseteq f_{\eta}$.

Let $\bar{f}: \bar{\gamma} \to \omega$ be suitable with $\bar{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f: \gamma \to \omega$ extending \bar{f} such that $f[\gamma \setminus \bar{\gamma}] \subseteq x$. \blacktriangleright If $\gamma \in \operatorname{acc}^+(\kappa)$, then by extending \bar{f} (using the induction hypothesis), we may assume that $\bar{\gamma} \in C_{\gamma}$. Put $y := \bar{f}[N_{\bar{\gamma}}]$ and pick $\xi \in x \setminus y$. Construct a chain of suitable colorings $\{f_{\eta}: \eta \to \omega \mid \eta \in (C_{\gamma} \setminus \bar{\gamma}) \cup \{\gamma\}\}$ such that: (i) $\bar{f} \subseteq f_{\eta}$, (ii) $f_{\eta}[\eta \setminus \bar{\gamma}] \subseteq x$, (iii) $f_{\eta}^{-1}\{\xi\} \setminus \bar{\gamma} = N_{\gamma} \setminus \bar{\gamma}$. $\blacktriangleright \blacksquare$ Base: Let $f_{\bar{\gamma}} := \bar{f}$.

►► Successor: If $\eta' < \eta$ are successive elements of C_{γ} , and $f_{\eta'}$ has already been defined, then by the induction hypothesis, we may pick a suitable $g: \eta \to \omega$ extending $f_{\eta'}$ with $g[\eta \setminus \eta'] \subseteq x \setminus \{\xi\}$. Define $f_{\eta}: \eta \to \omega$ by letting $f_{\eta}(\beta) := \xi$ for all $\beta \in N_{\gamma} \setminus \overline{\gamma}$ and $f_{\eta}(\beta) := g(\beta)$ for any other β . As $g \upharpoonright \eta' = f_{\eta'}$ and $f_{\eta'}^{-1}\{\xi\} \setminus \overline{\gamma} = N_{\gamma} \setminus \overline{\gamma}$, we have $\overline{f} = f_{\overline{\gamma}} \subseteq f_{\eta'} = g \upharpoonright \eta' \subseteq f_{\eta}$. For $\delta < \kappa$, $f_{\eta}[N_{\delta}] \subseteq g[N_{\delta}] \cup \{\xi\}$ is finite. Also, $f_{\eta}[\eta \setminus \overline{\gamma}] \subseteq g[\eta \setminus \overline{\gamma}] \cup \{\xi\} \subseteq x$.

Let $\bar{f}: \bar{\gamma} \to \omega$ be suitable with $\bar{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f: \gamma \to \omega$ extending \bar{f} such that $f[\gamma \setminus \bar{\gamma}] \subseteq x$. If $\gamma \in \operatorname{acc}^+(\kappa)$, then by extending \bar{f} (using the induction hypothesis), we may assume that $\bar{\gamma} \in C_{\gamma}$. Put $y := \bar{f}[N_{\bar{\gamma}}]$ and pick $\xi \in x \setminus y$. Construct a chain of suitable colorings $\{f_{\eta}: \eta \to \omega \mid \eta \in (C_{\gamma} \setminus \bar{\gamma}) \cup \{\gamma\}\}$ such that: (i) $\bar{f} \subseteq f_{\eta}$, (ii) $f_{\eta}[\eta \setminus \bar{\gamma}] \subseteq x$, (iii) $f_{\eta}^{-1}\{\xi\} \setminus \bar{\gamma} = N_{\gamma} \setminus \bar{\gamma}$. \blacktriangleright Base: Let $f_{\bar{\gamma}} := \bar{f}$.

►► Successor: If $\eta' < \eta$ are successive elements of C_{γ} , and $f_{\eta'}$ has already been defined, then by the induction hypothesis, we may pick a suitable $g: \eta \to \omega$ extending $f_{\eta'}$ with $g[\eta \setminus \eta'] \subseteq x \setminus \{\xi\}$. Define $f_{\eta}: \eta \to \omega$ by letting $f_{\eta}(\beta) := \xi$ for all $\beta \in N_{\gamma} \setminus \bar{\gamma}$ and $f_{\eta}(\beta) := g(\beta)$ for any other β . As $g \upharpoonright \eta' = f_{\eta'}$ and $f_{\eta'}^{-1}\{\xi\} \setminus \bar{\gamma} = N_{\gamma} \setminus \bar{\gamma}$, we have $\bar{f} = f_{\bar{\gamma}} \subseteq f_{\eta'} = g \upharpoonright \eta' \subseteq f_{\eta}$. For $\delta < \kappa$, $f_{\eta}[N_{\delta}] \subseteq g[N_{\delta}] \cup \{\xi\}$ is finite. Also, $f_{\eta}[\eta \setminus \bar{\gamma}] \subseteq g[\eta \setminus \bar{\gamma}] \cup \{\xi\} \subseteq x$. Finally, if $\{\alpha, \beta\} \in E$ and $f_{\eta}(\alpha) = f_{\eta}(\beta)$, then the latter equals ξ .

Let $\overline{f}: \overline{\gamma} \to \omega$ be suitable with $\overline{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f: \gamma \to \omega$ extending \overline{f} such that $f[\gamma \setminus \overline{\gamma}] \subseteq x$. \blacktriangleright If $\gamma \in \operatorname{acc}^+(\kappa)$, then by extending \overline{f} (using the induction hypothesis), we may assume that $\overline{\gamma} \in C_{\gamma}$. Put $y := \overline{f}[N_{\overline{\gamma}}]$ and pick $\xi \in x \setminus y$. Construct a chain of suitable colorings $\{f_{\eta}: \eta \to \omega \mid \eta \in (C_{\gamma} \setminus \overline{\gamma}) \cup \{\gamma\}\}$ such that: (i) $\overline{f} \subseteq f_{\eta}$, (ii) $f_{\eta}[\eta \setminus \overline{\gamma}] \subseteq x$, (iii) $f_{\eta}^{-1}\{\xi\} \setminus \overline{\gamma} = N_{\gamma} \setminus \overline{\gamma}$. \blacktriangleright Base: Let $f_{\overline{\gamma}} := \overline{f}$.

►► Successor: If $\eta' < \eta$ are successive elements of C_{γ} , and $f_{\eta'}$ has already been defined, then by the induction hypothesis, we may pick a suitable $g: \eta \to \omega$ extending $f_{\eta'}$ with $g[\eta \setminus \eta'] \subseteq x \setminus \{\xi\}$. Define $f_{\eta}: \eta \to \omega$ by letting $f_{\eta}(\beta) := \xi$ for all $\beta \in N_{\gamma} \setminus \overline{\gamma}$ and $f_{\eta}(\beta) := g(\beta)$ for any other β . As $g \upharpoonright \eta' = f_{\eta'}$ and $f_{\eta'}^{-1}\{\xi\} \setminus \overline{\gamma} = N_{\gamma} \setminus \overline{\gamma}$, we have $\overline{f} = f_{\overline{\gamma}} \subseteq f_{\eta'} = g \upharpoonright \eta' \subseteq f_{\eta}$. For $\delta < \kappa$, $f_{\eta}[N_{\delta}] \subseteq g[N_{\delta}] \cup \{\xi\}$ is finite. Also, $f_{\eta}[\eta \setminus \overline{\gamma}] \subseteq g[\eta \setminus \overline{\gamma}] \cup \{\xi\} \subseteq x$. Finally, if $\{\alpha, \beta\} \in E$ and $f_{\eta}(\alpha) = f_{\eta}(\beta)$, then the latter equals ξ . Say $\alpha < \beta$. Then $\alpha \in N_{\beta}$ and $\beta \ge \overline{\gamma}$.

Let $\overline{f}: \overline{\gamma} \to \omega$ be suitable with $\overline{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f: \gamma \to \omega$ extending \overline{f} such that $f[\gamma \setminus \overline{\gamma}] \subseteq x$. \blacktriangleright If $\gamma \in \operatorname{acc}^+(\kappa)$, then by extending \overline{f} (using the induction hypothesis), we may assume that $\overline{\gamma} \in C_{\gamma}$. Put $y := \overline{f}[N_{\overline{\gamma}}]$ and pick $\xi \in x \setminus y$. Construct a chain of suitable colorings $\{f_{\eta}: \eta \to \omega \mid \eta \in (C_{\gamma} \setminus \overline{\gamma}) \cup \{\gamma\}\}$ such that: (i) $\overline{f} \subseteq f_{\eta}$, (ii) $f_{\eta}[\eta \setminus \overline{\gamma}] \subseteq x$, (iii) $f_{\eta}^{-1}\{\xi\} \setminus \overline{\gamma} = N_{\gamma} \setminus \overline{\gamma}$. \blacktriangleright Base: Let $f_{\overline{\gamma}} := \overline{f}$.

►► Successor: If $\eta' < \eta$ are successive elements of C_{γ} , and $f_{\eta'}$ has already been defined, then by the induction hypothesis, we may pick a suitable $g: \eta \to \omega$ extending $f_{\eta'}$ with $g[\eta \setminus \eta'] \subseteq x \setminus \{\xi\}$. Define $f_{\eta}: \eta \to \omega$ by letting $f_{\eta}(\beta) := \xi$ for all $\beta \in N_{\gamma} \setminus \overline{\gamma}$ and $f_{\eta}(\beta) := g(\beta)$ for any other β . As $g \upharpoonright \eta' = f_{\eta'}$ and $f_{\eta'}^{-1}\{\xi\} \setminus \overline{\gamma} = N_{\gamma} \setminus \overline{\gamma}$, we have $\overline{f} = f_{\overline{\gamma}} \subseteq f_{\eta'} = g \upharpoonright \eta' \subseteq f_{\eta}$. For $\delta < \kappa$, $f_{\eta}[N_{\delta}] \subseteq g[N_{\delta}] \cup \{\xi\}$ is finite. Also, $f_{\eta}[\eta \setminus \overline{\gamma}] \subseteq g[\eta \setminus \overline{\gamma}] \cup \{\xi\} \subseteq x$. Finally, if $\{\alpha, \beta\} \in E$ and $f_{\eta}(\alpha) = f_{\eta}(\beta)$, then the latter equals ξ . Say $\alpha < \beta$. Then $\alpha \in N_{\beta}$ and $\beta \ge \overline{\gamma}$. So, $\beta \in N_{\gamma} \setminus \overline{\gamma}$.

Let $\overline{f}: \overline{\gamma} \to \omega$ be suitable with $\overline{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f: \gamma \to \omega$ extending \overline{f} such that $f[\gamma \setminus \overline{\gamma}] \subseteq x$. \blacktriangleright If $\gamma \in \operatorname{acc}^+(\kappa)$, then by extending \overline{f} (using the induction hypothesis), we may assume that $\overline{\gamma} \in C_{\gamma}$. Put $y := \overline{f}[N_{\overline{\gamma}}]$ and pick $\xi \in x \setminus y$. Construct a chain of suitable colorings $\{f_{\eta}: \eta \to \omega \mid \eta \in (C_{\gamma} \setminus \overline{\gamma}) \cup \{\gamma\}\}$ such that: (i) $\overline{f} \subseteq f_{\eta}$, (ii) $f_{\eta}[\eta \setminus \overline{\gamma}] \subseteq x$, (iii) $f_{\eta}^{-1}\{\xi\} \setminus \overline{\gamma} = N_{\gamma} \setminus \overline{\gamma}$. \blacktriangleright Base: Let $f_{\overline{\gamma}} := \overline{f}$.

▶▶ Successor: If $\eta' < \eta$ are successive elements of C_{γ} , and $f_{\eta'}$ has already been defined, then by the induction hypothesis, we may pick a suitable $g: \eta \to \omega$ extending $f_{\eta'}$ with $g[\eta \setminus \eta'] \subseteq x \setminus \{\xi\}$. Define $f_{\eta}: \eta \to \omega$ by letting $f_{\eta}(\beta) := \xi$ for all $\beta \in N_{\gamma} \setminus \overline{\gamma}$ and $f_{\eta}(\beta) := g(\beta)$ for any other β . As $g \upharpoonright \eta' = f_{\eta'}$ and $f_{\eta'}^{-1}\{\xi\} \setminus \overline{\gamma} = N_{\gamma} \setminus \overline{\gamma}$, we have $\overline{f} = f_{\overline{\gamma}} \subseteq f_{\eta'} = g \upharpoonright \eta' \subseteq f_{\eta}$. For $\delta < \kappa$, $f_{\eta}[N_{\delta}] \subseteq g[N_{\delta}] \cup \{\xi\}$ is finite. Also, $f_{\eta}[\eta \setminus \overline{\gamma}] \subseteq g[\eta \setminus \overline{\gamma}] \cup \{\xi\} \subseteq x$. Finally, if $\{\alpha, \beta\} \in E$ and $f_{\eta}(\alpha) = f_{\eta}(\beta)$, then the latter equals ξ . Say $\alpha < \beta$. Then $\alpha \in N_{\beta}$ and $\beta \ge \overline{\gamma}$. So, $\beta \in N_{\gamma} \setminus \overline{\gamma}$. As $\xi \notin y$, $\beta \neq \overline{\gamma}$.

Let $\overline{f}: \overline{\gamma} \to \omega$ be suitable with $\overline{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f: \gamma \to \omega$ extending \overline{f} such that $f[\gamma \setminus \overline{\gamma}] \subseteq x$. \blacktriangleright If $\gamma \in \operatorname{acc}^+(\kappa)$, then by extending \overline{f} (using the induction hypothesis), we may assume that $\overline{\gamma} \in C_{\gamma}$. Put $y := \overline{f}[N_{\overline{\gamma}}]$ and pick $\xi \in x \setminus y$. Construct a chain of suitable colorings $\{f_{\eta}: \eta \to \omega \mid \eta \in (C_{\gamma} \setminus \overline{\gamma}) \cup \{\gamma\}\}$ such that: (i) $\overline{f} \subseteq f_{\eta}$, (ii) $f_{\eta}[\eta \setminus \overline{\gamma}] \subseteq x$, (iii) $f_{\eta}^{-1}\{\xi\} \setminus \overline{\gamma} = N_{\gamma} \setminus \overline{\gamma}$. \blacktriangleright Base: Let $f_{\overline{\gamma}} := \overline{f}$.

►► Successor: If $\eta' < \eta$ are successive elements of C_{γ} , and $f_{\eta'}$ has already been defined, then by the induction hypothesis, we may pick a suitable $g: \eta \to \omega$ extending $f_{\eta'}$ with $g[\eta \setminus \eta'] \subseteq x \setminus \{\xi\}$. Define $f_{\eta}: \eta \to \omega$ by letting $f_{\eta}(\beta) := \xi$ for all $\beta \in N_{\gamma} \setminus \overline{\gamma}$ and $f_{\eta}(\beta) := g(\beta)$ for any other β . As $g \upharpoonright \eta' = f_{\eta'}$ and $f_{\eta'}^{-1}\{\xi\} \setminus \overline{\gamma} = N_{\gamma} \setminus \overline{\gamma}$, we have $\overline{f} = f_{\overline{\gamma}} \subseteq f_{\eta'} = g \upharpoonright \eta' \subseteq f_{\eta}$. For $\delta < \kappa$, $f_{\eta}[N_{\delta}] \subseteq g[N_{\delta}] \cup \{\xi\}$ is finite. Also, $f_{\eta}[\eta \setminus \overline{\gamma}] \subseteq g[\eta \setminus \overline{\gamma}] \cup \{\xi\} \subseteq x$. Finally, if $\{\alpha, \beta\} \in E$ and $f_{\eta}(\alpha) = f_{\eta}(\beta)$, then the latter equals ξ . Say $\alpha < \beta$. Then $\alpha \in N_{\beta}$ and $\beta \in N_{\gamma} \setminus (\overline{\gamma} + 1)$.

Let $\overline{f} : \overline{\gamma} \to \omega$ be suitable with $\overline{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f : \gamma \to \omega$ extending \overline{f} such that $f[\gamma \setminus \overline{\gamma}] \subseteq x$. \blacktriangleright If $\gamma \in \operatorname{acc}^+(\kappa)$, then by extending \overline{f} (using the induction hypothesis), we may assume that $\overline{\gamma} \in C_{\gamma}$. Put $y := \overline{f}[N_{\overline{\gamma}}]$ and pick $\xi \in x \setminus y$. Construct a chain of suitable colorings $\{f_{\eta} : \eta \to \omega \mid \eta \in (C_{\gamma} \setminus \overline{\gamma}) \cup \{\gamma\}\}$ such that: (i) $\overline{f} \subseteq f_{\eta}$, (ii) $f_{\eta}[\eta \setminus \overline{\gamma}] \subseteq x$, (iii) $f_{\eta}^{-1}\{\xi\} \setminus \overline{\gamma} = N_{\gamma} \setminus \overline{\gamma}$. \blacktriangleright Base: Let $f_{\overline{\gamma}} := \overline{f}$.

►► Successor: If $\eta' < \eta$ are successive elements of C_{γ} , and $f_{\eta'}$ has already been defined, then by the induction hypothesis, we may pick a suitable $g: \eta \to \omega$ extending $f_{\eta'}$ with $g[\eta \setminus \eta'] \subseteq x \setminus \{\xi\}$. Define $f_{\eta}: \eta \to \omega$ by letting $f_{\eta}(\beta) := \xi$ for all $\beta \in N_{\gamma} \setminus \overline{\gamma}$ and $f_{\eta}(\beta) := g(\beta)$ for any other β . As $g \upharpoonright \eta' = f_{\eta'}$ and $f_{\eta'}^{-1}\{\xi\} \setminus \overline{\gamma} = N_{\gamma} \setminus \overline{\gamma}$, we have $\overline{f} = f_{\overline{\gamma}} \subseteq f_{\eta'} = g \upharpoonright \eta' \subseteq f_{\eta}$. For $\delta < \kappa$, $f_{\eta}[N_{\delta}] \subseteq g[N_{\delta}] \cup \{\xi\}$ is finite. Also, $f_{\eta}[\eta \setminus \overline{\gamma}] \subseteq g[\eta \setminus \overline{\gamma}] \cup \{\xi\} \subseteq x$. Finally, if $\{\alpha, \beta\} \in E$ and $f_{\eta}(\alpha) = f_{\eta}(\beta)$, then the latter equals ξ . Say $\alpha < \beta$. Then $\alpha \in N_{\beta}$ and $\beta \in N_{\gamma} \setminus (\overline{\gamma} + 1)$. So $\alpha > \min(C_{\alpha}) > \sup(C_{\beta} \cap \alpha) \ge \min(C_{\beta}) > \sup(C_{\gamma} \cap \beta) \ge \overline{\gamma}$.

Let $\overline{f}: \overline{\gamma} \to \omega$ be suitable with $\overline{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f: \gamma \to \omega$ extending \overline{f} such that $f[\gamma \setminus \overline{\gamma}] \subseteq x$. \blacktriangleright If $\gamma \in \operatorname{acc}^+(\kappa)$, then by extending \overline{f} (using the induction hypothesis), we may assume that $\overline{\gamma} \in C_{\gamma}$. Put $y := \overline{f}[N_{\overline{\gamma}}]$ and pick $\xi \in x \setminus y$. Construct a chain of suitable colorings $\{f_{\eta}: \eta \to \omega \mid \eta \in (C_{\gamma} \setminus \overline{\gamma}) \cup \{\gamma\}\}$ such that: (i) $\overline{f} \subseteq f_{\eta}$, (ii) $f_{\eta}[\eta \setminus \overline{\gamma}] \subseteq x$, (iii) $f_{\eta}^{-1}\{\xi\} \setminus \overline{\gamma} = N_{\gamma} \setminus \overline{\gamma}$. \blacktriangleright Base: Let $f_{\overline{\gamma}} := \overline{f}$.

►► Successor: If $\eta' < \eta$ are successive elements of C_{γ} , and $f_{\eta'}$ has already been defined, then by the induction hypothesis, we may pick a suitable $g: \eta \to \omega$ extending $f_{\eta'}$ with $g[\eta \setminus \eta'] \subseteq x \setminus \{\xi\}$. Define $f_{\eta}: \eta \to \omega$ by letting $f_n(\beta) := \xi$ for all $\beta \in N_\gamma \setminus \overline{\gamma}$ and $f_n(\beta) := g(\beta)$ for any other β . As $g \upharpoonright \eta' = f_{\eta'}$ and $f_{\eta'}^{-1}{\xi} \setminus \bar{\gamma} = N_{\gamma} \setminus \bar{\gamma}$, we have $\bar{f} = f_{\bar{\gamma}} \subseteq f_{\eta'} = g \upharpoonright \eta' \subseteq f_{\eta}$. For $\delta < \kappa$, $f_n[N_{\delta}] \subseteq g[N_{\delta}] \cup \{\xi\}$ is finite. Also, $f_n[\eta \setminus \overline{\gamma}] \subseteq g[\eta \setminus \overline{\gamma}] \cup \{\xi\} \subseteq x$. Finally, if $\{\alpha, \beta\} \in E$ and $f_n(\alpha) = f_n(\beta)$, then the latter equals ξ . Say $\alpha < \beta$. Then $\alpha \in N_{\beta}$ and $\beta \in N_{\gamma} \setminus (\bar{\gamma} + 1)$. So $\alpha > \min(C_{\alpha}) > \sup(C_{\beta} \cap \alpha) \ge \min(C_{\beta}) > \sup(C_{\gamma} \cap \beta) \ge \overline{\gamma}$. Then $\alpha \in N_{\gamma} \setminus \overline{\gamma}$.

Let $\overline{f} : \overline{\gamma} \to \omega$ be suitable with $\overline{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f : \gamma \to \omega$ extending \overline{f} such that $f[\gamma \setminus \overline{\gamma}] \subseteq x$. \blacktriangleright If $\gamma \in \operatorname{acc}^+(\kappa)$, then by extending \overline{f} (using the induction hypothesis), we may assume that $\overline{\gamma} \in C_{\gamma}$. Put $y := \overline{f}[N_{\overline{\gamma}}]$ and pick $\xi \in x \setminus y$. Construct a chain of suitable colorings $\{f_{\eta} : \eta \to \omega \mid \eta \in (C_{\gamma} \setminus \overline{\gamma}) \cup \{\gamma\}\}$ such that: (i) $\overline{f} \subseteq f_{\eta}$, (ii) $f_{\eta}[\eta \setminus \overline{\gamma}] \subseteq x$, (iii) $f_{\eta}^{-1}\{\xi\} \setminus \overline{\gamma} = N_{\gamma} \setminus \overline{\gamma}$. \blacktriangleright Base: Let $f_{\overline{\gamma}} := \overline{f}$.

►► Successor: If $\eta' < \eta$ are successive elements of C_{γ} , and $f_{\eta'}$ has already been defined, then by the induction hypothesis, we may pick a suitable $g: \eta \to \omega$ extending $f_{\eta'}$ with $g[\eta \setminus \eta'] \subseteq x \setminus \{\xi\}$. Define $f_{\eta}: \eta \to \omega$ by letting $f_n(\beta) := \xi$ for all $\beta \in N_\gamma \setminus \overline{\gamma}$ and $f_n(\beta) := g(\beta)$ for any other β . As $g \upharpoonright \eta' = f_{\eta'}$ and $f_{\eta'}^{-1}{\xi} \setminus \bar{\gamma} = N_{\gamma} \setminus \bar{\gamma}$, we have $\bar{f} = f_{\bar{\gamma}} \subseteq f_{\eta'} = g \upharpoonright \eta' \subseteq f_{\eta}$. For $\delta < \kappa$, $f_n[N_{\delta}] \subseteq g[N_{\delta}] \cup \{\xi\}$ is finite. Also, $f_n[\eta \setminus \overline{\gamma}] \subseteq g[\eta \setminus \overline{\gamma}] \cup \{\xi\} \subseteq x$. Finally, if $\{\alpha, \beta\} \in E$ and $f_n(\alpha) = f_n(\beta)$, then the latter equals ξ . Say $\alpha < \beta$. Then $\alpha \in N_{\beta}$ and $\beta \in N_{\gamma} \setminus (\bar{\gamma} + 1)$. So $\alpha > \min(C_{\alpha}) > \sup(C_{\beta} \cap \alpha) \ge \min(C_{\beta}) > \sup(C_{\gamma} \cap \beta) \ge \overline{\gamma}$. Then $\alpha \in N_{\gamma} \setminus \overline{\gamma}$. However, $G(\vec{C})$ triangle-free!!

Assaf Rinot (Bar-Ilan University)

Let $\overline{f}: \overline{\gamma} \to \omega$ be suitable with $\overline{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f: \gamma \to \omega$ extending \overline{f} such that $f[\gamma \setminus \overline{\gamma}] \subseteq x$. \blacktriangleright If $\gamma \in \operatorname{acc}^+(\kappa)$, then by extending \overline{f} (using the induction hypothesis), we may assume that $\overline{\gamma} \in C_{\gamma}$. Put $y := \overline{f}[N_{\overline{\gamma}}]$ and pick $\xi \in x \setminus y$. Construct a chain of suitable colorings $\{f_{\eta}: \eta \to \omega \mid \eta \in (C_{\gamma} \setminus \overline{\gamma}) \cup \{\gamma\}\}$ such that: (i) $\overline{f} \subseteq f_{\eta}$, (ii) $f_{\eta}[\eta \setminus \overline{\gamma}] \subseteq x$, (iii) $f_{\eta}^{-1}\{\xi\} \setminus \overline{\gamma} = N_{\gamma} \setminus \overline{\gamma}$. \blacktriangleright Base: Let $f_{\overline{\gamma}} := \overline{f}$. \blacktriangleright Successor: If $\eta' < \eta$ are successive elements of C_{γ} , and $f_{\eta'}$ has already been defined, then by the induction hypothesis, we may pick a suitable

 $g: \eta \to \omega$ extending $f_{\eta'}$ with $g[\eta \setminus \eta'] \subseteq x \setminus \{\xi\}$. Define $f_{\eta}: \eta \to \omega$ by letting $f_{\eta}(\beta) := \xi$ for all $\beta \in N_{\gamma} \setminus \overline{\gamma}$ and $f_{\eta}(\beta) := g(\beta)$ for any other β . $\blacktriangleright \blacktriangleright$ Limit: For $\eta \in \operatorname{acc}^+(C_{\gamma} \setminus \overline{\gamma}) \cup \{\gamma\}$, let $f_{\eta} := \bigcup \{f_{\eta'} \mid \eta' \in (C_{\gamma} \setminus \overline{\gamma}) \cap \eta\}$.

Let $\bar{f}: \bar{\gamma} \to \omega$ be suitable with $\bar{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f: \gamma \to \omega$ extending \bar{f} such that $f[\gamma \setminus \bar{\gamma}] \subseteq x$. \blacktriangleright If $\gamma \in \operatorname{acc}^+(\kappa)$, then by extending \bar{f} (using the induction hypothesis), we may assume that $\bar{\gamma} \in C_{\gamma}$. Put $y := \bar{f}[N_{\bar{\gamma}}]$ and pick $\xi \in x \setminus y$. Construct a chain of suitable colorings $\{f_{\eta}: \eta \to \omega \mid \eta \in (C_{\gamma} \setminus \bar{\gamma}) \cup \{\gamma\}\}$ such that: (i) $\bar{f} \subseteq f_{\eta}$, (ii) $f_{\eta}[\eta \setminus \bar{\gamma}] \subseteq x$, (iii) $f_{\eta}^{-1}\{\xi\} \setminus \bar{\gamma} = N_{\gamma} \setminus \bar{\gamma}$. $\blacktriangleright \blacksquare$ Base: Let $f_{\bar{\gamma}} := \bar{f}$.

▶ Successor: If $\eta' < \eta$ are successive elements of C_{γ} , and $f_{\eta'}$ has already been defined, then by the induction hypothesis, we may pick a suitable $g: \eta \to \omega$ extending $f_{\eta'}$ with $g[\eta \setminus \eta'] \subseteq x \setminus \{\xi\}$. Define $f_{\eta}: \eta \to \omega$ by letting $f_{\eta}(\beta) := \xi$ for all $\beta \in N_{\gamma} \setminus \bar{\gamma}$ and $f_{\eta}(\beta) := g(\beta)$ for any other β . ▶ Limit: For $\eta \in \operatorname{acc}^+(C_{\gamma} \setminus \bar{\gamma}) \cup \{\gamma\}$, let $f_{\eta} := \bigcup \{f_{\eta'} \mid \eta' \in (C_{\gamma} \setminus \bar{\gamma}) \cap \eta\}$. Clearly, $f_{\eta}(\alpha) \neq f_{\eta}(\beta)$ for all $\{\alpha, \beta\} \in E \cap [\eta]^2$. Let $\delta \in E_{\omega}^{\eta+1}$ be arbitrary.

Let $\bar{f}: \bar{\gamma} \to \omega$ be suitable with $\bar{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f: \gamma \to \omega$ extending \bar{f} such that $f[\gamma \setminus \bar{\gamma}] \subseteq x$. \blacktriangleright If $\gamma \in \operatorname{acc}^+(\kappa)$, then by extending \bar{f} (using the induction hypothesis), we may assume that $\bar{\gamma} \in C_{\gamma}$. Put $y := \bar{f}[N_{\bar{\gamma}}]$ and pick $\xi \in x \setminus y$. Construct a chain of suitable colorings $\{f_{\eta}: \eta \to \omega \mid \eta \in (C_{\gamma} \setminus \bar{\gamma}) \cup \{\gamma\}\}$ such that: (i) $\bar{f} \subseteq f_{\eta}$, (ii) $f_{\eta}[\eta \setminus \bar{\gamma}] \subseteq x$, (iii) $f_{\eta}^{-1}\{\xi\} \setminus \bar{\gamma} = N_{\gamma} \setminus \bar{\gamma}$. $\blacktriangleright \blacksquare$ Base: Let $f_{\bar{\gamma}} := \bar{f}$.

▶▶ Successor: If $\eta' < \eta$ are successive elements of C_{γ} , and $f_{\eta'}$ has already been defined, then by the induction hypothesis, we may pick a suitable $g: \eta \to \omega$ extending $f_{\eta'}$ with $g[\eta \setminus \eta'] \subseteq x \setminus \{\xi\}$. Define $f_{\eta}: \eta \to \omega$ by letting $f_{\eta}(\beta) := \xi$ for all $\beta \in N_{\gamma} \setminus \bar{\gamma}$ and $f_{\eta}(\beta) := g(\beta)$ for any other β . ▶▶ Limit: For $\eta \in \operatorname{acc}^+(C_{\gamma} \setminus \bar{\gamma}) \cup \{\gamma\}$, let $f_{\eta} := \bigcup \{f_{\eta'} \mid \eta' \in (C_{\gamma} \setminus \bar{\gamma}) \cap \eta\}$. Clearly, $f_{\eta}(\alpha) \neq f_{\eta}(\beta)$ for all $\{\alpha, \beta\} \in E \cap [\eta]^2$. Let $\delta \in E_{\omega}^{\eta+1}$ be arbitrary. ▶▶ If $\delta < \eta$, then for $\eta' := \min(C_{\gamma} \setminus \delta)$, $c_{\eta}[N_{\delta}] = c_{\eta'}[N_{\delta}]$ is finite.

Let $\bar{f}: \bar{\gamma} \to \omega$ be suitable with $\bar{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f: \gamma \to \omega$ extending \bar{f} such that $f[\gamma \setminus \bar{\gamma}] \subseteq x$. If $\gamma \in \operatorname{acc}^+(\kappa)$, then by extending \bar{f} (using the induction hypothesis), we may assume that $\bar{\gamma} \in C_{\gamma}$. Put $y := \bar{f}[N_{\bar{\gamma}}]$ and pick $\xi \in x \setminus y$. Construct a chain of suitable colorings $\{f_{\eta}: \eta \to \omega \mid \eta \in (C_{\gamma} \setminus \bar{\gamma}) \cup \{\gamma\}\}$ such that: (i) $\bar{f} \subseteq f_{\eta}$, (ii) $f_{\eta}[\eta \setminus \bar{\gamma}] \subseteq x$, (iii) $f_{\eta}^{-1}\{\xi\} \setminus \bar{\gamma} = N_{\gamma} \setminus \bar{\gamma}$. \blacktriangleright Base: Let $f_{\bar{\gamma}} := \bar{f}$.

▶▶ Successor: If $\eta' < \eta$ are successive elements of C_{γ} , and $f_{\eta'}$ has already been defined, then by the induction hypothesis, we may pick a suitable $g: \eta \to \omega$ extending $f_{\eta'}$ with $g[\eta \setminus \eta'] \subseteq x \setminus \{\xi\}$. Define $f_{\eta}: \eta \to \omega$ by letting $f_{\eta}(\beta) := \xi$ for all $\beta \in N_{\gamma} \setminus \bar{\gamma}$ and $f_{\eta}(\beta) := g(\beta)$ for any other β . ▶▶ Limit: For $\eta \in \operatorname{acc}^+(C_{\gamma} \setminus \bar{\gamma}) \cup \{\gamma\}$, let $f_{\eta} := \bigcup \{f_{\eta'} \mid \eta' \in (C_{\gamma} \setminus \bar{\gamma}) \cap \eta\}$. Clearly, $f_{\eta}(\alpha) \neq f_{\eta}(\beta)$ for all $\{\alpha, \beta\} \in E \cap [\eta]^2$. Let $\delta \in E_{\omega}^{\eta+1}$ be arbitrary. ▶▶ If $\delta < \eta$, then for $\eta' := \min(C_{\gamma} \setminus \delta)$, $c_{\eta}[N_{\delta}] = c_{\eta'}[N_{\delta}]$ is finite. ▶▶ If $\delta = \eta$, then $\delta \in \operatorname{acc}^+(C_{\gamma}) \cup \{\gamma\}$ and $N_{\delta} = N_{\gamma} \cap \eta$.

Let $\overline{f} : \overline{\gamma} \to \omega$ be suitable with $\overline{\gamma} < \gamma$, and let $x \in [\omega]^{\omega}$ be arbitrary. We need to find a suitable $f : \gamma \to \omega$ extending \overline{f} such that $f[\gamma \setminus \overline{\gamma}] \subseteq x$. \blacktriangleright If $\gamma \in \operatorname{acc}^+(\kappa)$, then by extending \overline{f} (using the induction hypothesis), we may assume that $\overline{\gamma} \in C_{\gamma}$. Put $y := \overline{f}[N_{\overline{\gamma}}]$ and pick $\xi \in x \setminus y$. Construct a chain of suitable colorings $\{f_{\eta} : \eta \to \omega \mid \eta \in (C_{\gamma} \setminus \overline{\gamma}) \cup \{\gamma\}\}$ such that: (i) $\overline{f} \subseteq f_{\eta}$, (ii) $f_{\eta}[\eta \setminus \overline{\gamma}] \subseteq x$, (iii) $f_{\eta}^{-1}\{\xi\} \setminus \overline{\gamma} = N_{\gamma} \setminus \overline{\gamma}$. \blacktriangleright Base: Let $f_{\overline{\gamma}} := \overline{f}$.

▶▶ Successor: If $\eta' < \eta$ are successive elements of C_{γ} , and $f_{\eta'}$ has already been defined, then by the induction hypothesis, we may pick a suitable $g: \eta \to \omega$ extending $f_{\eta'}$ with $g[\eta \setminus \eta'] \subseteq x \setminus \{\xi\}$. Define $f_{\eta}: \eta \to \omega$ by letting $f_{\eta}(\beta) := \xi$ for all $\beta \in N_{\gamma} \setminus \bar{\gamma}$ and $f_{\eta}(\beta) := g(\beta)$ for any other β . ▶▶ Limit: For $\eta \in \operatorname{acc}^+(C_{\gamma} \setminus \bar{\gamma}) \cup \{\gamma\}$, let $f_{\eta} := \bigcup \{f_{\eta'} \mid \eta' \in (C_{\gamma} \setminus \bar{\gamma}) \cap \eta\}$. Clearly, $f_{\eta}(\alpha) \neq f_{\eta}(\beta)$ for all $\{\alpha, \beta\} \in E \cap [\eta]^2$. Let $\delta \in E_{\omega}^{\eta+1}$ be arbitrary. ▶▶ If $\delta < \eta$, then for $\eta' := \min(C_{\gamma} \setminus \delta)$, $c_{\eta}[N_{\delta}] = c_{\eta'}[N_{\delta}]$ is finite. ▶▶ If $\delta = \eta$, then $\delta \in \operatorname{acc}^+(C_{\gamma}) \cup \{\gamma\}$ and $N_{\delta} = N_{\gamma} \cap \eta$. So $c_{\eta}[N_{\delta}] = c_{\eta}[N_{\gamma}] = \bar{c}[N_{\delta}] \cup c_{\eta}[N_{\gamma} \setminus \bar{\gamma}] = \bar{c}[N_{\delta}] \cup \{\xi\}$ is finite. \Box

A typical feature of a generic coherent C-sequence

For every sequence $\langle A_i \mid i < \theta \rangle$ of cofinal subsets of κ , with $\theta < \kappa$, there is $\gamma \in \operatorname{acc}^+(\kappa)$ such that for all $i < \theta$:

•
$$\min(A_i) \leq \min(C_{\gamma});$$

• there is $\alpha \in C_{\gamma} \cap A_i$ such that $\min(C_{\gamma} \setminus (\alpha + 1)) \in A_i$.

Claim. Suppose for every sequence $\langle A_i | i < \theta \rangle$ of cofinal subsets of κ , with $\theta < \kappa$, there is $\gamma \in \Gamma$ such that for all $i < \theta$:

- $\min(A_i) \leq \min(C_{\gamma});$
- there is $\alpha \in C_{\gamma} \cap A_i$ such that $\min(C_{\gamma} \setminus (\alpha + 1)) \in A_i$.

Then $\operatorname{Chr}(G(\vec{C})) = \kappa$.

A typical feature of a generic coherent C-sequence

For every sequence $\langle A_i \mid i < \theta \rangle$ of cofinal subsets of κ , with $\theta < \kappa$, there is $\gamma \in \operatorname{acc}^+(\kappa)$ such that for all $i < \theta$:

•
$$\min(A_i) \leq \min(C_{\gamma});$$

▶ there is $\alpha \in C_{\gamma} \cap A_i$ such that $\min(C_{\gamma} \setminus (\alpha + 1)) \in A_i$.

Claim. Suppose for every sequence $\langle A_i | i < \theta \rangle$ of cofinal subsets of κ , with $\theta < \kappa$, there is $\gamma \in \Gamma$ such that for all $i < \theta$:

- $\min(A_i) \leq \min(C_{\gamma});$
- there is $\alpha \in C_{\gamma} \cap A_i$ such that $\min(C_{\gamma} \setminus (\alpha + 1)) \in A_i$.

Then $\operatorname{Chr}(G(\vec{C})) = \kappa$.

Proof. Suppose $Chr(G(\vec{C})) = \theta < \kappa$, as witnessed by $f : \Gamma \to \theta$.

Claim. Suppose for every sequence $\langle A_i | i < \theta \rangle$ of cofinal subsets of κ , with $\theta < \kappa$, there is $\gamma \in \Gamma$ such that for all $i < \theta$:

- $\min(A_i) \leq \min(C_{\gamma});$
- there is $\alpha \in C_{\gamma} \cap A_i$ such that $\min(C_{\gamma} \setminus (\alpha + 1)) \in A_i$.

Then $\operatorname{Chr}(G(\vec{C})) = \kappa$.

Proof. Suppose $Chr(G(\vec{C})) = \theta < \kappa$, as witnessed by $f: \Gamma \to \theta$.

Let I be the set of colors $i < \theta$ such that $\sup\{\min(C_{\beta}) \mid \beta \in f^{-1}\{i\}\} = \kappa$.

Claim. Suppose for every sequence $\langle A_i | i < \theta \rangle$ of cofinal subsets of κ , with $\theta < \kappa$, there is $\gamma \in \Gamma$ such that for all $i < \theta$:

•
$$\min(A_i) \leq \min(C_{\gamma});$$

• there is $\alpha \in C_{\gamma} \cap A_i$ such that $\min(C_{\gamma} \setminus (\alpha + 1)) \in A_i$.

Then $\operatorname{Chr}(G(\vec{C})) = \kappa$.

Proof. Suppose $\operatorname{Chr}(G(\vec{C})) = \theta < \kappa$, as witnessed by $f : \Gamma \to \theta$. Let *I* be the set of colors $i < \theta$ such that $\sup\{\min(C_{\beta}) \mid \beta \in f^{-1}\{i\}\} = \kappa$. For $i \in I$, define $g_i : \kappa \to \kappa$ by $g_i(\eta) := \min\{\beta \in f^{-1}\{i\} \mid \min(C_{\beta}) > \eta\}$.

Claim. Suppose for every sequence $\langle A_i | i < \theta \rangle$ of cofinal subsets of κ , with $\theta < \kappa$, there is $\gamma \in \Gamma$ such that for all $i < \theta$:

•
$$\min(A_i) \leq \min(C_{\gamma});$$

• there is $\alpha \in C_{\gamma} \cap A_i$ such that $\min(C_{\gamma} \setminus (\alpha + 1)) \in A_i$.

Then $\operatorname{Chr}(G(\vec{C})) = \kappa$.

Proof. Suppose $\operatorname{Chr}(G(\vec{C})) = \theta < \kappa$, as witnessed by $f : \Gamma \to \theta$. Let *I* be the set of colors $i < \theta$ such that $\sup\{\min(C_{\beta}) \mid \beta \in f^{-1}\{i\}\} = \kappa$. For $i \in I$, define $g_i : \kappa \to \kappa$ by $g_i(\eta) := \min\{\beta \in f^{-1}\{i\} \mid \min(C_{\beta}) > \eta\}$. Fix a club $D \subseteq \kappa$ such that for all $\delta \in D$ and $i < \theta$: for $i \in I$, $g_i[\delta] \subseteq \delta$; for $i \notin I$, $\sup\{\min(C_{\gamma}) \mid \gamma \in f^{-1}\{i\}\} < \delta$.

Claim. Suppose for every sequence $\langle A_i | i < \theta \rangle$ of cofinal subsets of κ , with $\theta < \kappa$, there is $\gamma \in \Gamma$ such that for all $i < \theta$:

•
$$\min(A_i) \leq \min(C_{\gamma});$$

• there is $\alpha \in C_{\gamma} \cap A_i$ such that $\min(C_{\gamma} \setminus (\alpha + 1)) \in A_i$.

Then $\operatorname{Chr}(G(\vec{C})) = \kappa$.

Proof. Suppose $\operatorname{Chr}(G(\vec{C})) = \theta < \kappa$, as witnessed by $f : \Gamma \to \theta$. Let *I* be the set of colors $i < \theta$ such that $\sup\{\min(C_{\beta}) \mid \beta \in f^{-1}\{i\}\} = \kappa$. For $i \in I$, define $g_i : \kappa \to \kappa$ by $g_i(\eta) := \min\{\beta \in f^{-1}\{i\} \mid \min(C_{\beta}) > \eta\}$. Fix a club $D \subseteq \kappa$ such that for all $\delta \in D$ and $i < \theta$: for $i \in I$, $g_i[\delta] \subseteq \delta$; for $i \notin I$, $\sup\{\min(C_{\gamma}) \mid \gamma \in f^{-1}\{i\}\} < \delta$. Fix a sequence of cofinal subsets of κ , $\langle A_i \mid i < \theta \rangle$, such that for all $i < \theta$:

for $i \in I$, $A_i \subseteq Im(g_i)$, $min(D) \leq min(A_i)$, $\forall \alpha < \beta$ from A_i , $(\alpha, \beta) \cap D \neq \emptyset$.

Claim. Suppose for every sequence $\langle A_i | i < \theta \rangle$ of cofinal subsets of κ , with $\theta < \kappa$, there is $\gamma \in \Gamma$ such that for all $i < \theta$:

- $\min(A_i) \leq \min(C_{\gamma});$
- there is $\alpha \in C_{\gamma} \cap A_i$ such that $\min(C_{\gamma} \setminus (\alpha + 1)) \in A_i$.

Then $\operatorname{Chr}(G(\vec{C})) = \kappa$. **Proof.** Suppose $\operatorname{Chr}(G(\vec{C})) = \theta < \kappa$, as witnessed by $f : \Gamma \to \theta$. Let *I* be the set of colors $i < \theta$ such that $\sup\{\min(C_{\beta}) \mid \beta \in f^{-1}\{i\}\} = \kappa$. For $i \in I$, define $g_i : \kappa \to \kappa$ by $g_i(\eta) := \min\{\beta \in f^{-1}\{i\} \mid \min(C_{\beta}) > \eta\}$. Fix a club $D \subseteq \kappa$ such that for all $\delta \in D$ and $i < \theta$: for $i \in I$, $g_i[\delta] \subseteq \delta$; for $i \notin I$, $\sup\{\min(C_{\gamma}) \mid \gamma \in f^{-1}\{i\}\} < \delta$. Fix a sequence of cofinal subsets of κ , $\langle A_i \mid i < \theta \rangle$, such that for all $i < \theta$: for $i \in I$, $A_i \subseteq \operatorname{Im}(g_i)$, $\min(D) \leq \min(A_i)$, $\forall \alpha < \beta$ from A_i , $(\alpha, \beta) \cap D \neq \emptyset$. Fix $\gamma \in \Gamma$ as above.

Claim. Suppose for every sequence $\langle A_i | i < \theta \rangle$ of cofinal subsets of κ , with $\theta < \kappa$, there is $\gamma \in \Gamma$ such that for all $i < \theta$:

- $\min(A_i) \leq \min(C_{\gamma});$
- there is $\alpha \in C_{\gamma} \cap A_i$ such that $\min(C_{\gamma} \setminus (\alpha + 1)) \in A_i$.

Then $\operatorname{Chr}(G(\vec{C})) = \kappa$. **Proof.** Suppose $\operatorname{Chr}(G(\vec{C})) = \theta < \kappa$, as witnessed by $f : \Gamma \to \theta$. Let *I* be the set of colors $i < \theta$ such that $\sup\{\min(C_{\beta}) \mid \beta \in f^{-1}\{i\}\} = \kappa$. For $i \in I$, define $g_i : \kappa \to \kappa$ by $g_i(\eta) := \min\{\beta \in f^{-1}\{i\} \mid \min(C_{\beta}) > \eta\}$. Fix a club $D \subseteq \kappa$ such that for all $\delta \in D$ and $i < \theta$: for $i \in I$, $g_i[\delta] \subseteq \delta$; for $i \notin I$, $\sup\{\min(C_{\gamma}) \mid \gamma \in f^{-1}\{i\}\} < \delta$. Fix a sequence of cofinal subsets of κ , $\langle A_i \mid i < \theta \rangle$, such that for all $i < \theta$: for $i \in I$, $A_i \subseteq \operatorname{Im}(g_i)$, $\min(D) \leq \min(A_i)$, $\forall \alpha < \beta$ from A_i , $(\alpha, \beta) \cap D \neq \emptyset$. Fix $\gamma \in \Gamma$ as above. Note $i := f(\gamma)$ is in I.

Claim. Suppose for every sequence $\langle A_i | i < \theta \rangle$ of cofinal subsets of κ , with $\theta < \kappa$, there is $\gamma \in \Gamma$ such that for all $i < \theta$:

- $\min(A_i) \leq \min(C_{\gamma});$
- there is $\alpha \in C_{\gamma} \cap A_i$ such that $\min(C_{\gamma} \setminus (\alpha + 1)) \in A_i$.

Then $\operatorname{Chr}(G(\vec{C})) = \kappa$.

Proof. Suppose $\operatorname{Chr}(G(\vec{C})) = \theta < \kappa$, as witnessed by $f : \Gamma \to \theta$. Let *I* be the set of colors $i < \theta$ such that $\sup\{\min(C_{\beta}) \mid \beta \in f^{-1}\{i\}\} = \kappa$. For $i \in I$, define $g_i : \kappa \to \kappa$ by $g_i(\eta) := \min\{\beta \in f^{-1}\{i\} \mid \min(C_{\beta}) > \eta\}$. Fix a club $D \subseteq \kappa$ such that for all $\delta \in D$ and $i < \theta$: for $i \in I$, $g_i[\delta] \subseteq \delta$; for $i \notin I$, $\sup\{\min(C_{\gamma}) \mid \gamma \in f^{-1}\{i\}\} < \delta$. Fix a sequence of cofinal subsets of κ , $\langle A_i \mid i < \theta \rangle$, such that for all $i < \theta$: for $i \in I$, $A_i \subseteq \operatorname{Im}(g_i)$, $\min(D) \leq \min(A_i)$, $\forall \alpha < \beta$ from A_i , $(\alpha, \beta) \cap D \neq \emptyset$.

Fix $\gamma \in \Gamma$ as above. Note $i := f(\gamma)$ is in I.

 $(\text{otherwise, }\min(C_{\gamma})<\min(D)\leq\min(A_i)\leq\min(C_{\gamma}).)$

Claim. Suppose for every sequence $\langle A_i | i < \theta \rangle$ of cofinal subsets of κ , with $\theta < \kappa$, there is $\gamma \in \Gamma$ such that for all $i < \theta$:

- $\min(A_i) \leq \min(C_{\gamma});$
- there is $\alpha \in C_{\gamma} \cap A_i$ such that $\min(C_{\gamma} \setminus (\alpha + 1)) \in A_i$.

Then $\operatorname{Chr}(G(\vec{C})) = \kappa$. **Proof.** Suppose $Chr(G(\vec{C})) = \theta < \kappa$, as witnessed by $f : \Gamma \to \theta$. Let *I* be the set of colors $i < \theta$ such that $\sup\{\min(C_{\beta}) \mid \beta \in f^{-1}\{i\}\} = \kappa$. For $i \in I$, define $g_i : \kappa \to \kappa$ by $g_i(\eta) := \min\{\beta \in f^{-1}\{i\} \mid \min(C_\beta) > \eta\}$. Fix a club $D \subseteq \kappa$ such that for all $\delta \in D$ and $i < \theta$: for $i \in I$, $g_i[\delta] \subseteq \delta$; for $i \notin I$, $\sup\{\min(C_{\gamma}) \mid \gamma \in f^{-1}\{i\}\} < \delta$. Fix a sequence of cofinal subsets of κ , $\langle A_i \mid i < \theta \rangle$, such that for all $i < \theta$: for $i \in I$, $A_i \subseteq Im(g_i)$, $min(D) \leq min(A_i)$, $\forall \alpha < \beta$ from A_i , $(\alpha, \beta) \cap D \neq \emptyset$. Fix $\gamma \in \Gamma$ as above. Note $i := f(\gamma)$ is in *I*. Fix $\alpha \in C_{\gamma} \cap A_i$ such that $\beta := \min(C_{\alpha} \setminus (\alpha + 1)) \in A_i.$

Claim. Suppose for every sequence $\langle A_i | i < \theta \rangle$ of cofinal subsets of κ , with $\theta < \kappa$, there is $\gamma \in \Gamma$ such that for all $i < \theta$:

•
$$\min(A_i) \leq \min(C_{\gamma});$$

• there is $\alpha \in C_{\gamma} \cap A_i$ such that $\min(C_{\gamma} \setminus (\alpha + 1)) \in A_i$.

Then $\operatorname{Chr}(G(\vec{C})) = \kappa$.

Proof. Suppose $\operatorname{Chr}(G(\vec{C})) = \theta < \kappa$, as witnessed by $f : \Gamma \to \theta$. Let *I* be the set of colors $i < \theta$ such that $\sup\{\min(C_{\beta}) \mid \beta \in f^{-1}\{i\}\} = \kappa$. For $i \in I$, define $g_i : \kappa \to \kappa$ by $g_i(\eta) := \min\{\beta \in f^{-1}\{i\} \mid \min(C_{\beta}) > \eta\}$. Fix a club $D \subseteq \kappa$ such that for all $\delta \in D$ and $i < \theta$: for $i \in I$, $g_i[\delta] \subseteq \delta$; for $i \notin I$, $\sup\{\min(C_{\gamma}) \mid \gamma \in f^{-1}\{i\}\} < \delta$. Fix a sequence of cofinal subsets of κ , $\langle A_i \mid i < \theta \rangle$, such that for all $i < \theta$: for $i \in I$, $A_i \subseteq \operatorname{Im}(g_i)$, $\min(D) \leq \min(A_i)$, $\forall \alpha < \beta$ from A_i , $(\alpha, \beta) \cap D \neq \emptyset$. Fix $\gamma \in \Gamma$ as above. Note $i := f(\gamma)$ is in *I*. Fix $\alpha \in C_{\gamma} \cap A_i$, $\delta \in D$, with $\beta := \min(C_{\gamma} \setminus (\alpha + 1)) \in A_i$ and $\alpha < \delta < \beta$.

Claim. Suppose for every sequence $\langle A_i | i < \theta \rangle$ of cofinal subsets of κ , with $\theta < \kappa$, there is $\gamma \in \Gamma$ such that for all $i < \theta$:

•
$$\min(A_i) \leq \min(C_{\gamma});$$

• there is $\alpha \in C_{\gamma} \cap A_i$ such that $\min(C_{\gamma} \setminus (\alpha + 1)) \in A_i$.

Then $\operatorname{Chr}(G(\vec{C})) = \kappa$.

Proof. Suppose $\operatorname{Chr}(G(\vec{C})) = \theta < \kappa$, as witnessed by $f : \Gamma \to \theta$. Let *I* be the set of colors $i < \theta$ such that $\sup\{\min(C_{\beta}) \mid \beta \in f^{-1}\{i\}\} = \kappa$. For $i \in I$, define $g_i : \kappa \to \kappa$ by $g_i(\eta) := \min\{\beta \in f^{-1}\{i\} \mid \min(C_{\beta}) > \eta\}$. Fix a club $D \subseteq \kappa$ such that for all $\delta \in D$ and $i < \theta$: for $i \in I$, $g_i[\delta] \subseteq \delta$; for $i \notin I$, $\sup\{\min(C_{\gamma}) \mid \gamma \in f^{-1}\{i\}\} < \delta$. Fix a sequence of cofinal subsets of κ , $\langle A_i \mid i < \theta \rangle$, such that for all $i < \theta$: for $i \in I$, $A_i \subseteq \operatorname{Im}(g_i)$, $\min(D) \leq \min(A_i)$, $\forall \alpha < \beta$ from A_i , $(\alpha, \beta) \cap D \neq \emptyset$. Fix $\gamma \in \Gamma$ as above. Note $i := f(\gamma)$ is in *I*. Fix $\alpha \in C_{\gamma} \cap A_i$, $\delta \in D$, with $\beta := \min(C_{\gamma} \setminus (\alpha + 1)) \in A_i$ and $\alpha < \delta < \beta$. Pick $\eta > \delta$ with $g_i(\eta) = \beta$.

Claim. Suppose for every sequence $\langle A_i | i < \theta \rangle$ of cofinal subsets of κ , with $\theta < \kappa$, there is $\gamma \in \Gamma$ such that for all $i < \theta$:

•
$$\min(A_i) \leq \min(C_{\gamma});$$

• there is $\alpha \in C_{\gamma} \cap A_i$ such that $\min(C_{\gamma} \setminus (\alpha + 1)) \in A_i$.

Then $\operatorname{Chr}(G(\vec{C})) = \kappa$.

Proof. Suppose $\operatorname{Chr}(G(\vec{C})) = \theta < \kappa$, as witnessed by $f : \Gamma \to \theta$. Let *I* be the set of colors $i < \theta$ such that $\sup\{\min(C_{\beta}) \mid \beta \in f^{-1}\{i\}\} = \kappa$. For $i \in I$, define $g_i : \kappa \to \kappa$ by $g_i(\eta) := \min\{\beta \in f^{-1}\{i\} \mid \min(C_{\beta}) > \eta\}$. Fix a club $D \subseteq \kappa$ such that for all $\delta \in D$ and $i < \theta$: for $i \in I$, $g_i[\delta] \subseteq \delta$; for $i \notin I$, $\sup\{\min(C_{\gamma}) \mid \gamma \in f^{-1}\{i\}\} < \delta$. Fix a sequence of cofinal subsets of κ , $\langle A_i \mid i < \theta \rangle$, such that for all $i < \theta$: for $i \in I$, $A_i \subseteq \operatorname{Im}(g_i)$, $\min(D) \leq \min(A_i)$, $\forall \alpha < \beta$ from A_i , $(\alpha, \beta) \cap D \neq \emptyset$. Fix $\gamma \in \Gamma$ as above. Note $i := f(\gamma)$ is in *I*. Fix $\alpha \in C_{\gamma} \cap A_i$, $\delta \in D$, with $\beta := \min(C_{\gamma} \setminus (\alpha + 1)) \in A_i$ and $\alpha < \delta < \beta$. Pick $\eta > \delta$ with $g_i(\eta) = \beta$.

Then $f(\beta) = i$ and $\min(C_{\beta}) > \eta > \delta > \alpha$, where $\alpha = \sup(C_{\gamma} \cap \beta)$.

Claim. Suppose for every sequence $\langle A_i | i < \theta \rangle$ of cofinal subsets of κ , with $\theta < \kappa$, there is $\gamma \in \Gamma$ such that for all $i < \theta$:

•
$$\min(A_i) \leq \min(C_{\gamma});$$

• there is $\alpha \in C_{\gamma} \cap A_i$ such that $\min(C_{\gamma} \setminus (\alpha + 1)) \in A_i$.

Then $\operatorname{Chr}(G(\vec{C})) = \kappa$.

Proof. Suppose $Chr(G(\vec{C})) = \theta < \kappa$, as witnessed by $f : \Gamma \to \theta$. Let I be the set of colors $i < \theta$ such that $\sup\{\min(C_{\beta}) \mid \beta \in f^{-1}\{i\}\} = \kappa$. For $i \in I$, define $g_i : \kappa \to \kappa$ by $g_i(\eta) := \min\{\beta \in f^{-1}\{i\} \mid \min(C_\beta) > \eta\}$. Fix a club $D \subseteq \kappa$ such that for all $\delta \in D$ and $i < \theta$: for $i \in I$, $g_i[\delta] \subseteq \delta$; for $i \notin I$, $\sup\{\min(C_{\gamma}) \mid \gamma \in f^{-1}\{i\}\} < \delta$. Fix a sequence of cofinal subsets of κ , $\langle A_i \mid i < \theta \rangle$, such that for all $i < \theta$: for $i \in I$, $A_i \subseteq Im(g_i)$, $min(D) \leq min(A_i)$, $\forall \alpha < \beta$ from A_i , $(\alpha, \beta) \cap D \neq \emptyset$. Fix $\gamma \in \Gamma$ as above. Note $i := f(\gamma)$ is in I. Fix $\alpha \in C_{\gamma} \cap A_i, \delta \in D$, with $\beta := \min(C_{\gamma} \setminus (\alpha + 1)) \in A_i$ and $\alpha < \delta < \beta$. Pick $\eta > \delta$ with $g_i(\eta) = \beta$. Then $f(\beta) = i$ and $\min(C_{\beta}) > \eta > \delta > \alpha$, where $\alpha = \sup(C_{\gamma} \cap \beta)$.

So $\beta \in N_{\gamma}$, contradicting the fact that $f(\gamma) = i$.

Large gaps above a strongly-compact cardinal

Theorem (de Bruijn-Erdős, 1951)

If G is a graph, $\theta < \delta$, δ strongly-compact, and all $(< \delta)$ -sized subgraphs of G have chromatic number $\leq \theta$, then $Chr(G) \leq \theta$.

Suppose $\delta < \kappa$ is a Laver-indestructible supercompact cardinal. Force with \mathbb{P} consisting of conditions $p := \langle C_{\alpha} \mid \alpha \in \gamma + 1 \rangle$ such that:

- $\gamma < \kappa$;
- for all $\alpha \leq \gamma$, C_{α} is a closed subset of α with $\sup(C_{\alpha}) = \sup(\alpha)$;
- for all $\alpha \leq \gamma$ and $\bar{\alpha} \in \operatorname{acc}^+(\mathcal{C}_\alpha)$, if $\operatorname{otp}(\mathcal{C}_\alpha) \geq \delta$, then $\mathcal{C}_{\bar{\alpha}} = \mathcal{C}_\alpha \cap \bar{\alpha}$.

 \mathbb{P} is $<\delta$ -directed closed, hence, in $V^{\mathbb{P}}$, δ remains supercompact. Let \vec{C} be the generic *C*-sequence. Then $G(\vec{C})$ has size and chromatic number κ , all of whose small subgraphs have chromatic number $\leq \delta$.

The distributivity number of a C-sequence

The distributivity number of a *C*-sequence Recall: $nacc(x) := x \setminus acc^+(x)$.

The distributivity number of a *C*-sequence

 $\mathfrak{h}(\vec{C})$ is the least cardinal $\theta \leq \kappa$ such that for some sequence $\langle A_i \mid i < \theta \rangle$ of cofinal subsets of κ , for every $\gamma \in \Gamma$, there is $i < \theta$ for which one of the following fails:

- $\min(A_i) \leq \min(C_{\gamma});$
- there is $\alpha \in \operatorname{nacc}(C_{\gamma}) \cap A_i$.

The 2-distributivity number of a C-sequence

 $\mathfrak{h}_2(\overline{C})$ is the least cardinal $\theta \leq \kappa$ such that for some sequence $\langle A_i \mid i < \theta \rangle$ of cofinal subsets of κ , for every $\gamma \in \Gamma$, there is $i < \theta$ for which one of the following fails:

- $\min(A_i) \leq \min(C_{\gamma});$
- there is $\alpha \in \operatorname{nacc}(C_{\gamma}) \cap A_i$ with $\min(C_{\gamma} \setminus (\alpha + 1)) \in A_i$.

The 2-distributivity number of a *C*-sequence

 $\mathfrak{h}_2(\vec{C})$ is the least cardinal $\theta \leq \kappa$ such that for some sequence $\langle A_i \mid i < \theta \rangle$ of cofinal subsets of κ , for every $\gamma \in \Gamma$, there is $i < \theta$ for which one of the following fails:

- $\min(A_i) \leq \min(C_{\gamma});$
- there is $\alpha \in \operatorname{nacc}(C_{\gamma}) \cap A_i$ with $\min(C_{\gamma} \setminus (\alpha + 1)) \in A_i$.

The argument we gave shows: $\operatorname{Chr}(G(\vec{C})) \geq \mathfrak{h}_2(\vec{C})$.

The 2-distributivity number of a C-sequence

 $\mathfrak{h}_2(\vec{C})$ is the least cardinal $\theta \leq \kappa$ such that for some sequence $\langle A_i \mid i < \theta \rangle$ of cofinal subsets of κ , for every $\gamma \in \Gamma$, there is $i < \theta$ for which one of the following fails:

- $\min(A_i) \leq \min(C_{\gamma});$
- there is $\alpha \in \operatorname{nacc}(C_{\gamma}) \cap A_i$ with $\min(C_{\gamma} \setminus (\alpha + 1)) \in A_i$.

The argument we gave shows: $Chr(G(\vec{C})) \ge \mathfrak{h}_2(\vec{C})$.

Theorem [28]

Suppose that $\Diamond(\kappa)$ holds, and let $\theta \in \operatorname{Reg}(\kappa)$. Then \exists postprocessing function $\Phi : \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ satisfying the following. For every \vec{C} : if $\mathfrak{h}(\vec{C} \upharpoonright E_{\theta}^{\kappa}) > 1$, then $\mathfrak{h}_2(\vec{C}^{\Phi}) > \theta$.

Theorem [24]

Assume GCH. Suppose that $\kappa = \lambda^+$ and $\theta \in \text{Reg}(\lambda)$. If $\Box(\kappa)$ holds, then there is a coherent $\langle C_{\alpha} | \alpha \in \text{acc}^+(\kappa) \rangle$ such that for every cofinal $A \subseteq \kappa$, there is $\gamma \in E_{\theta}^{\kappa}$ with $\sup(\text{nacc}(C_{\gamma}) \cap A) = \gamma$.

Theorem [24]

Assume GCH. Suppose that $\kappa = \lambda^+$ and $\theta \in \text{Reg}(\lambda)$. If $\Box(\kappa)$ holds, then there is a coherent $\langle C_{\alpha} | \alpha \in \text{acc}^+(\kappa) \rangle$ such that for every cofinal $A \subseteq \kappa$, there is $\gamma \in E_{\theta}^{\kappa}$ with $\sup(\text{nacc}(C_{\gamma}) \cap A) = \gamma$.

So GCH $+\Box(\lambda^+)$ yields for each $\theta < \lambda$ a graph of size λ^+ and chromatic number $> \theta$, all of whose small subgraphs are countably chromatic.

Theorem [24]

Assume GCH. Suppose that $\kappa = \lambda^+$ and $\theta \in \text{Reg}(\lambda)$. If $\Box(\kappa)$ holds, then there is a coherent $\langle C_{\alpha} | \alpha \in \text{acc}^+(\kappa) \rangle$ such that for every cofinal $A \subseteq \kappa$, there is $\gamma \in E_{\theta}^{\kappa}$ with $\sup(\text{nacc}(C_{\gamma}) \cap A) = \gamma$.

So GCH + $\Box(\lambda^+)$ yields for each $\theta < \lambda$ a graph of size λ^+ and chromatic number $> \theta$, all of whose small subgraphs are countably chromatic. By taking the disjoint union of these graphs, we get:

Corollary

GCH + $\Box(\lambda^+)$ yields a graph of size λ^+ and chromatic number $\geq \lambda$, all of whose small subgraphs are countably chromatic.

Theorem [24]

Assume GCH. Suppose that $\kappa = \lambda^+$ and $\theta \in \text{Reg}(\lambda)$. If $\Box(\kappa)$ holds, then there is a coherent $\langle C_{\alpha} | \alpha \in \text{acc}^+(\kappa) \rangle$ such that for every cofinal $A \subseteq \kappa$, there is $\gamma \in E_{\theta}^{\kappa}$ with $\sup(\text{nacc}(C_{\gamma}) \cap A) = \gamma$.

Exercise

Suppose that $\kappa = \theta^{++}$ and for every stationary $S \subseteq E_{\theta}^{\kappa}$, $\operatorname{Tr}(S) \neq \emptyset$. Suppose that $\langle C_{\alpha} \mid \alpha \in \operatorname{acc}^{+}(\kappa) \rangle$ is a coherent *C*-sequence such that for every cofinal $A \subseteq \kappa$, there is $\gamma \in E_{\theta}^{\kappa}$ with $\sup(\operatorname{nacc}(C_{\gamma}) \cap A) = \gamma$. Then for every cofinal $A \subseteq \kappa$, $\exists \gamma \in E_{\theta^{+}}^{\kappa}$ with $\sup(\operatorname{nacc}(C_{\gamma}) \cap A) = \gamma$.

Theorem [24]

Assume GCH. Suppose that $\kappa = \lambda^+$ and $\theta \in \text{Reg}(\lambda)$. If $\Box(\kappa)$ holds, then there is a coherent $\langle C_{\alpha} | \alpha \in \text{acc}^+(\kappa) \rangle$ such that for every cofinal $A \subseteq \kappa$, there is $\gamma \in E_{\theta}^{\kappa}$ with $\sup(\text{nacc}(C_{\gamma}) \cap A) = \gamma$.

So GCH + $\Box(\aleph_2)$ +all stationary subsets of $E_{\omega}^{\omega_2}$ reflect yields a graph of size and chromatic $\# \aleph_2$ all of whose small subgraphs are countably chromatic.

Exercise

Suppose that $\kappa = \theta^{++}$ and for every stationary $S \subseteq E_{\theta}^{\kappa}$, $\operatorname{Tr}(S) \neq \emptyset$. Suppose that $\langle C_{\alpha} \mid \alpha \in \operatorname{acc}^{+}(\kappa) \rangle$ is a coherent *C*-sequence such that for every cofinal $A \subseteq \kappa$, there is $\gamma \in E_{\theta}^{\kappa}$ with $\sup(\operatorname{nacc}(C_{\gamma}) \cap A) = \gamma$. Then for every cofinal $A \subseteq \kappa$, $\exists \gamma \in E_{\theta^{+}}^{\kappa}$ with $\sup(\operatorname{nacc}(C_{\gamma}) \cap A) = \gamma$.

Theorem [24]

Assume GCH. Suppose that $\kappa = \lambda^+$ and $\theta \in \text{Reg}(\lambda)$. If $\Box(\kappa)$ holds, then there is a coherent $\langle C_{\alpha} | \alpha \in \text{acc}^+(\kappa) \rangle$ such that for every cofinal $A \subseteq \kappa$, there is $\gamma \in E_{\theta}^{\kappa}$ with $\sup(\text{nacc}(C_{\gamma}) \cap A) = \gamma$.

Recall: GCH + $\Box(\lambda^+)$ yields a graph of size λ^+ and chromatic number $\geq \lambda$, all of whose small subgraphs are countably chromatic.

Question

Assume GCH $+\Box(\lambda^+)$ for λ singular. Must there exist a graph of size and chromatic number λ^+ all of whose small subgraphs are countably chromatic?

Theorem [24]

Assume GCH. Suppose that $\kappa = \lambda^+$ and $\theta \in \text{Reg}(\lambda)$. If $\Box(\kappa)$ holds, then there is a coherent $\langle C_{\alpha} | \alpha \in \text{acc}^+(\kappa) \rangle$ such that for every cofinal $A \subseteq \kappa$, there is $\gamma \in E_{\theta}^{\kappa}$ with $\sup(\text{nacc}(C_{\gamma}) \cap A) = \gamma$.

Recall: GCH + $\Box(\lambda^+)$ yields a graph of size λ^+ and chromatic number $\geq \lambda$, all of whose small subgraphs are countably chromatic.

Question

Assume GCH + $\Box(\lambda^+)$ for λ singular.

Must there exist a graph of size and chromatic number λ^+ all of whose small subgraphs are countably chromatic?

Recall that if $otp(C_{\alpha}) < \lambda$ for all α , then $Chr(G(\vec{C})) \leq \lambda$.

Definition

 \Box_{λ} asserts the existence of a coherent *C*-sequence \vec{C} over λ^+ with type $(\vec{C}) \leq \lambda + 1$.

Definition

 \Box_{λ} asserts the existence of a coherent *C*-sequence \vec{C} over λ^+ with type $(\vec{C}) \leq \lambda + 1$.

Exercise

If $\kappa = \lambda^+$ with λ singular, then \exists pp function $\Phi : \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ satisfying: For every \vec{C} over κ with type $(\vec{C}) = \lambda + 1$, type $(\vec{C}^{\Phi}) = \lambda$.

Definition

 \Box_{λ} asserts the existence of a coherent *C*-sequence \vec{C} over λ^+ with type $(\vec{C}) \leq \lambda + 1$.

Exercise

If $\kappa = \lambda^+$ with λ singular, then \exists pp function $\Phi : \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ satisfying: For every \vec{C} over κ with type $(\vec{C}) = \lambda + 1$, type $(\vec{C}^{\Phi}) = \lambda$.

So, for λ singular, \Box_{λ} may be witnessed by \vec{C} with type $(\vec{C}) = \lambda$.

Definition

 \Box_{λ} asserts the existence of a coherent *C*-sequence \vec{C} over λ^+ with type $(\vec{C}) \leq \lambda + 1$.

Exercise

If $\kappa = \lambda^+$ with λ singular, then \exists pp function $\Phi : \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ satisfying: For every \vec{C} over κ with type $(\vec{C}) = \lambda + 1$, type $(\vec{C}^{\Phi}) = \lambda$.

So, for λ singular, \Box_{λ} may be witnessed by \vec{C} with type $(\vec{C}) = \lambda$. Unfortunately, postprocessing functions won't help, as type $(\vec{C}^{\Phi}) \leq \text{type}(\vec{C})$.

Definition

 \Box_{λ} asserts the existence of a coherent *C*-sequence \vec{C} over λ^+ with type $(\vec{C}) \leq \lambda + 1$.

Exercise

If $\kappa = \lambda^+$ with λ singular, then \exists pp function $\Phi : \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ satisfying: For every \vec{C} over κ with type $(\vec{C}) = \lambda + 1$, type $(\vec{C}^{\Phi}) = \lambda$.

So, for λ singular, \Box_{λ} may be witnessed by \vec{C} with type $(\vec{C}) = \lambda$. Unfortunately, postprocessing functions won't help, as type $(\vec{C}^{\Phi}) \leq \text{type}(\vec{C})$.

To increase type(\vec{C}) from λ to $\lambda + 1$ (or even to λ^+) in a coherent way, we had to devise another method.

Here is a sample result in this vein...

Definition

 \Box_{λ} asserts the existence of a coherent *C*-sequence \vec{C} over λ^+ with type $(\vec{C}) \leq \lambda + 1$.

Exercise

If $\kappa = \lambda^+$ with λ singular, then \exists pp function $\Phi : \mathcal{K}(\kappa) \to \mathcal{K}(\kappa)$ satisfying: For every \vec{C} over κ with type $(\vec{C}) = \lambda + 1$, type $(\vec{C}^{\Phi}) = \lambda$.

So, for λ singular, \Box_{λ} may be witnessed by \vec{C} with type $(\vec{C}) = \lambda$.

Theorem [19]

For every singular cardinal λ , the following are equivalent:

•
$$\Box_{\lambda}$$
 holds and $2^{\lambda} = \lambda^+$;

There is a coherent C-sequence C over λ⁺ with type(C) = λ + 1, satisfying: for every sequence ⟨A_i | i < λ⟩ of cofinal subsets of λ⁺, there is α ∈ acc⁺(λ⁺) with C_α(i + 1) ∈ A_i for all i < λ.

Blowing up the type of a C-sequence

For an indecomposable ordinal $\Lambda < \kappa$, write

$$I(\Lambda) := \min \left\{ \sup \{ \varepsilon + 1 \mid \varepsilon \in \operatorname{Im}(\vec{\Lambda}) \} \mid \vec{\Lambda} \in {}^{\operatorname{cf}(\Lambda)}\Lambda \And \sum \vec{\Lambda} = \Lambda \right\}.$$

For example:

- If $\Lambda < \kappa$ is a regular cardinal, then $I(\Lambda) = 2$;
- If $\Lambda < \kappa$ is a singular cardinal, then $I(\Lambda) = \Lambda$;
- If $\Lambda = \lambda \cdot \eta$ (ordinal multiplication), with $\eta = cf(\eta) \le \lambda < \kappa$, then $l(\Lambda) = \lambda + 1$.

Blowing up the type of a C-sequence

For an indecomposable ordinal $\Lambda < \kappa$, write

$$I(\Lambda) := \min \left\{ \sup \{ \varepsilon + 1 \mid \varepsilon \in \mathsf{Im}(\vec{\Lambda}) \} \mid \vec{\Lambda} \in {}^{\mathsf{cf}(\Lambda)}\Lambda \And \sum \vec{\Lambda} = \Lambda \right\}.$$

Theorem [29]

Suppose that $\Diamond(\kappa)$ holds and $\Lambda < \kappa$ is indecomposable. Suppose \vec{C} is a *C*-sequence over κ such that for every cofinal $A \subseteq \kappa$ and every $\Lambda' < I(\Lambda)$, $\exists \alpha \in \operatorname{acc}^+(\kappa)$ with $\Lambda' \leq \operatorname{otp}(C_{\alpha}) < \Lambda$ and $\operatorname{nacc}(C_{\alpha}) \subseteq A$. Then there is a *C*-sequence \vec{D} over κ with:

• width
$$(\vec{D}) \leq \text{width}(\vec{C});$$

3
$$type(ec{D}) \leq max\{type(ec{C}), \Lambda+1\};$$

③ for every cofinal $A \subseteq \kappa$, there is a cofinal $B \subseteq \kappa$, for which

$$\left\{ \alpha \in \mathsf{acc}^+(\kappa) \; \middle| \; \begin{array}{c} \mathsf{nacc}(\mathcal{C}_\alpha) \subseteq \mathcal{B}, \\ \mathsf{otp}(\mathcal{C}_\alpha) = \mathsf{cf}(\Lambda) \end{array} \right\} \subseteq \left\{ \alpha < \kappa \; \middle| \; \begin{array}{c} \mathsf{nacc}(\mathcal{D}_\alpha) \subseteq \mathcal{A}, \\ \mathsf{otp}(\mathcal{D}_\alpha) = \Lambda \end{array} \right\}.$$

Assaf Rinot (Bar-Ilan University)

No need to force

Corollary [29]

Suppose $\Box(\lambda^+)$ holds for a given singular cardinal λ . Assuming GCH, we can cook up a $\Box(\lambda^+)$ -sequence \vec{C} with $\mathfrak{h}_2(\vec{C}) = \lambda^+$.

In particular, $G(\vec{C})$ forms a graph of size and chromatic number λ^+ all of whose small subgraphs are countably chromatic.

Distributive Aronszajn trees

Definition

width (\vec{C}, Ω) is the least cardinal μ satisfying $|\mathcal{G}_{\beta}(\vec{C})| < \mu$ for all $\beta \in \Omega$, where $\mathcal{G}_{\beta}(\vec{C}) := \{C_{\alpha} \cap \gamma \mid \alpha \in \Gamma, sup(C_{\alpha} \cap \beta) = \beta\}.$

Of course, width(\vec{C}) is nothing but width(\vec{C}, κ).

Theorem [29]

Assume $\Diamond(\kappa)$, and \vec{C} is a *C*-sequence over κ with width $(\vec{C}) \leq \kappa$. Suppose for every club $D \subseteq \kappa$, there is $\beta \in D$ with sup $(\operatorname{nacc}(g) \cap D) = \beta$ for all $g \in \mathcal{G}_{\beta}(\vec{C})$ (aka, "wide club-guessing"). Then there is a corresponding κ -Aronszajn tree $\mathcal{T}(\vec{C})$ which is θ -distributive for every cardinal $\theta < \mathfrak{h}(\vec{C})$.

In particular, if $\mathfrak{h}(\vec{C}) = \kappa$, then forcing with $\mathcal{T}(\vec{C})$ does not collapse κ while adding a chain of size κ , which must mean that $\mathcal{T}(\vec{C})$ is non-special.

Set $\mathfrak{h}(\vec{C}) := \kappa + 1$ iff for any sequence $\langle A_i \mid i < \kappa \rangle$ of cofinal subsets of κ , there is a (limit, nonzero) $\gamma \in \Gamma$, such that for all $i < \gamma$, the two hold:

- $\min(A_i) \leq \min(C_{\gamma});$
- there is $\alpha \in \operatorname{nacc}(C_{\gamma}) \cap A_i$.

Set $\mathfrak{h}(\vec{C}) := \kappa + 1$ iff for any sequence $\langle A_i \mid i < \kappa \rangle$ of cofinal subsets of κ , there is a (limit, nonzero) $\gamma \in \Gamma$, such that for all $i < \gamma$, the two hold:

- $\min(A_i) \leq \min(C_{\gamma});$
- there is $\alpha \in \operatorname{nacc}(C_{\gamma}) \cap A_i$.

Theorem [22]

Suppose $\Diamond(\kappa)$ holds, and \vec{C} is a *C*-sequence over κ with width $(\vec{C}) \leq \kappa$. • If width $(\vec{C}) = 2$ and $\mathfrak{h}(\vec{C}) = \kappa + 1$, then there is a coherent κ -Souslin tree.

Coherent: For all $s, t \in \mathcal{T}$, $\{\alpha \in \mathsf{dom}(s) \cap \mathsf{dom}(t) \mid s(\alpha) \neq t(\alpha)\}$ is finite.

Set $\mathfrak{h}(\vec{C}) := \kappa + 1$ iff for any sequence $\langle A_i \mid i < \kappa \rangle$ of cofinal subsets of κ , there is a (limit, nonzero) $\gamma \in \Gamma$, such that for all $i < \gamma$, the two hold:

- $\min(A_i) \leq \min(C_{\gamma});$
- there is $\alpha \in \operatorname{nacc}(C_{\gamma}) \cap A_i$.

Theorem [22],[32]

Suppose $\Diamond(\kappa)$ holds, and \vec{C} is a *C*-sequence over κ with width $(\vec{C}) \leq \kappa$.

- If width(\vec{C}) = 2 and $\mathfrak{h}(\vec{C}) = \kappa + 1$, then there is a coherent κ -Souslin tree.
- If there is Ω ⊆ κ with width(C, Ω) = 2 and h(C ↾ Ω) = κ + 1, then there is a free κ-Souslin tree.

Free: For all pairwise distinct $t_0, \ldots, t_n \in \mathcal{T}$ with $\operatorname{ht}(t_0) = \cdots = \operatorname{ht}(t_n)$, the product of the upper cones $t_0^{\uparrow} \otimes \cdots \otimes t_n^{\uparrow}$ is again κ -Souslin.

Set $\mathfrak{h}(\vec{C}) := \kappa + 1$ iff for any sequence $\langle A_i \mid i < \kappa \rangle$ of cofinal subsets of κ , there is a (limit, nonzero) $\gamma \in \Gamma$, such that for all $i < \gamma$, the two hold:

- $\min(A_i) \leq \min(C_{\gamma});$
- there is $\alpha \in \operatorname{nacc}(C_{\gamma}) \cap A_i$.

More notions of forcing add a Souslin tree [26]

Suppose $\lambda^{<\lambda} = \lambda$ is a regular uncountable cardinal and $2^{\lambda} = \lambda^+$. Suppose \mathbb{P} is a λ^+ -cc notion of forcing of size $\leq \lambda^+$ and:

- $\mathbb P$ forces that cf($\lambda) < |\lambda|$ (e.g., Prikry), or
- \mathbb{P} preserves the regularity of λ , and is not $^{\lambda}\lambda$ -bounding (e.g., Hechler).
- Then, in $V^{\mathbb{P}}$, there is a \vec{C} over λ^+ and $\Omega \subseteq \lambda^+$ such that:
 - width(\vec{C}) $\leq \lambda^+$;
 - type $(\vec{C}) = \lambda + 1;$
 - width $(\vec{C} \upharpoonright \Omega) = 2$ and $\mathfrak{h}(\vec{C} \upharpoonright \Omega) = \lambda^+ + 1$.