When Sierpiński met Ulam IMU Annual Meeting 2021

Tanmay Inamdar

Bar-Ilan University

06/07/2021

All results are joint work with Assaf Rinot (BIU) from one of the following two papers.

- Was Ulam right?, Tanmay Inamdar and Assaf Rinot, submitted, available at http://p.assafrinot.com/47.
- [2] Relative club guessing, Tanmay Inamdar and Assaf Rinot, in progress, will be available at http://p.assafrinot.com/46.
- By default, all results are from [1].

Conventions

Unless otherwise specified:

- κ an infinite regular cardinal, $\theta \leq \kappa$ a cardinal;
- $J^{\mathrm{bd}}[\kappa]$ is the ideal of *bounded* subsets of κ ;
- NS_κ is the ideal of non-stationary subsets of κ;
- J an ideal on κ extending $J^{\mathrm{bd}}[\kappa]$;

$$\blacktriangleright E_{\xi}^{\kappa} := \{ \delta < \kappa \mid \mathrm{cf}(\delta) = \xi \};$$

$$\blacktriangleright A \circledast B := \{ (\alpha, \beta) \in A \times B \mid \alpha < \beta \};$$

- ▶ $Tr(S) := \{ \alpha \in E_{>\aleph_0}^{\kappa} \mid S \cap \alpha \text{ is stationary in } \alpha \};$
- $\langle C_{\delta} | \delta \in S \rangle$ is a *C*-sequence if $C_{\delta} \subseteq \delta$ is a club for every $\delta \in S$;
- subnormal is a technical condition on ideals that covers both normal ideals and J^{bd}[k];
- an upper-regressive function is one satisfying c(α, β) < β for ordinals α < β in its domain.</p>

Motivating problem

Let $\xi < \kappa$ be infinite regular cardinals and $\langle C_{\delta} \mid \delta \in E_{\xi}^{\kappa} \rangle$ a *C*-sequence be such that

• for every
$$\delta \in E_{\xi}^{\kappa}$$
, $\operatorname{otp}(C_{\delta}) = \xi$;

for every D ⊆ κ a club there is δ ∈ E^κ_ξ such that sup(nacc(C_δ) ∩ D) = δ.

Then, if $\theta \leq \xi$, are there $\langle h_{\delta} : C_{\delta} \rightarrow \theta \mid \delta \in E_{\xi}^{\kappa} \rangle$ such that for every club $D \subseteq \kappa$ there is $\delta \in E_{\xi}^{\kappa}$ such that for every $\tau < \theta$,

$$\sup(\operatorname{nacc}(C_{\delta})\cap D\cap h_{\delta}^{-1}\{ au\})=\delta?$$

- Best results in Shelah572.
- Interest comes from strong colourings.
- For this and more, see [2].

Introducing onto and unbounded

Definition

Let $c : [\kappa]^2 \to \theta$ be a colouring.

- c witnesses onto(J, θ) if for every B ∈ J⁺ there is an η < κ such that c[{η} ⊛ B] = θ;
- c witnesses unbounded(J, θ) if it is upper-regressive and for every B ∈ J⁺ there is an η < κ such that otp(c[{η} ⊛ B]) = θ.

Another parameter has been suppressed, but an example is given when we discuss the onto mapping principle of Sierpiński. Two classical results and one new result

Theorem (Jensen+Kunen '69)

Let κ be an uncountable cardinal.

- 1. For κ regular, κ is ineffable iff onto(NS_{κ}, 2) fails.
- 2. κ is almost ineffable iff onto($J^{bd}[\kappa], 2$) fails.

Theorem

Let κ be an uncountable cardinal. Then κ is weakly compact iff $onto(J^{bd}[\kappa], 3)$ fails.

Weak-saturation

Theorem

Suppose that J is a subnormal κ -complete ideal such that unbounded (J, θ) holds. Then there is $d : [\kappa]^2 \to \theta$ such that for every element B of J^+ there is an $\eta < \kappa$ such that the set

$$\{\tau < \theta \mid \{\beta \in B \mid d(\eta, \beta) = \tau\} \in J^+\}$$

has ordertype θ .

If in fact $onto(J, \theta)$ holds, then d can be found such that this set is all of θ .

Corollary ([2])

If $\langle C_{\delta} | \delta \in E_{\xi}^{\kappa} \rangle$ guesses clubs and $\theta \leq \xi$ then we can partition it into θ -many pieces assuming

- 1. $\theta < \xi$ and unbounded($J^{\mathrm{bd}}[\xi], \theta$) holds;
- 2. $\theta = \xi$ and onto $(J^{\text{bd}}[\xi], \xi)$ holds.

The onto mapping principle of Sierpiński

An example of the suppressed parameter.

Theorem (Sierpiński '34, Miller '14, Guzmán '17)

The following are equivalent:

- 1. $\operatorname{non}(\mathcal{M}) = \aleph_1;$
- 2. there are functions $\langle f_n : \aleph_1 \to \aleph_1 \mid n < \aleph_0 \rangle$ such that for every cofinal $B \subseteq \aleph_1$, there is an $n < \aleph_0$ such that $f_n[B] = \aleph_1$;
- 3. onto $(\aleph_0, J^{\mathrm{bd}}[\aleph_1], \aleph_1);$
- 4. there are functions $\langle f_n : \aleph_1 \to \aleph_1 \mid n < \aleph_0 \rangle$ such that for every cofinal $B \subseteq \aleph_1$, for all but finitely many $n < \aleph_0$ we have $f_n[B] = \aleph_1$;
- 5. onto($[\aleph_0]^{\aleph_0}, J^{\mathrm{bd}}[\aleph_1], \aleph_1$).

There's more, see Kojman+Rinot+Steprans: 'Sierpiński's onto mapping principle and partitions'.

Strongly amenable ideal I

Till otherwise stated, κ is assumed to be uncountable and regular.

Definition

Let $S \subseteq \kappa$. A *C*-sequence $\vec{C} = \langle C_{\beta} \mid \beta \in S \rangle$ is strongly amenable in κ if for every club *D* in κ , the set $\{\beta \in S \mid D \cap \beta \subseteq C_{\beta}\}$ is bounded in κ .

Theorem

The following are equivalent:

- 1. unbounded $(J^{\mathrm{bd}}[\kappa], \kappa);$
- 2. there is a C-sequence $\vec{C} = \langle C_{\beta} \mid \beta \in \kappa \rangle$ which is strongly amenable in κ .

Theorem

If κ is weakly compact then κ does not carry a strongly amenable C-sequence. In L the converse is also true.

Strongly amenable ideal II

Definition SA_{κ} := { $S \subseteq \kappa \mid S$ carries a *C*-sequence strongly amenable in κ }.

Theorem

 SA_{κ} is a κ -complete ideal and the following sets are all subsets of SA_{κ} :

- 1. NS_{*κ*};
- 2. $\{\{\beta < \kappa \mid cf(\beta) < \beta\}\};$
- 3. $\{\kappa \setminus \operatorname{Tr}(S) \mid S \in (\operatorname{NS}_{\kappa})^+\};$
- 4. $\{\kappa \setminus \operatorname{Tr}^{\alpha}(\kappa) \mid \alpha < \kappa\}.$

Proposition

Every stationary $S \subseteq \kappa$ contains a stationary subset S' such that $S' \in SA_{\kappa}$.

Strongly amenable ideal III

Theorem If $\kappa \notin SA_{\kappa}$ then

- 1. for every $\mu < \kappa$ and $\langle S_i | i < \mu \rangle$ stationary subsets of κ , Reg $(\kappa) \cap \bigcap_{i < \mu} \operatorname{Tr}(S_i) \neq \emptyset$;
- 2. κ is greatly Mahlo;

3.
$$\Box(\kappa,<\!\mu)$$
 fails for all $\mu<\kappa$

4. κ is weakly compact in L.

Theorem

Assuming the consistency of a weakly compact cardinal, it is consistent that

1. $\kappa = 2^{\aleph_0}$ and $\kappa \notin SA_{\kappa}$;

2. κ is strongly inaccessible, not weakly compact, and $\kappa \notin SA_{\kappa}$.

Amenable ideal I

Definition (Brodsky+Rinot)

Let $S \subseteq \kappa$. A *C*-sequence $\vec{C} = \langle C_{\beta} | \beta \in S \rangle$ is amenable in κ iff for every club *D* in κ , the set $\{\beta \in S | D \cap \beta \subseteq C_{\beta}\}$ is non-stationary in κ .

Theorem

The following are equivalent for $S \subseteq \kappa$ stationary:

- 1. S carries an amenable C-sequence;
- 2. unbounded (NS_{κ} \upharpoonright S, κ).

Definition

 $A_{\kappa} := \{ S \subseteq \kappa \mid S \text{ carries a } C \text{-sequence amenable in } \kappa \}.$

Theorem

If $S \subseteq \kappa$ is ineffable then $S \notin A_{\kappa}$. In L the converse is also true.

Amenable ideal II

Theorem

 A_{κ} is a normal κ -complete ideal containing SA_{κ} and hence containing $\{\kappa \setminus Tr^{\alpha}(\kappa) \mid \alpha < \kappa^+\}$.

Corollary

If $\kappa \notin A_{\kappa}$ then

- 1. for every sequence $\langle S_i | i < \kappa \rangle$ of stationary subsets of κ , there is $\delta < \kappa$ inaccessible such that $\delta \in \bigcap_{i < \delta} \operatorname{Tr}(S_i)$;
- 2. κ is greatly Mahlo;
- 3. $\Box(\kappa, <\mu)$ fails for all $\mu < \kappa$
- 4. κ is weakly compact in L.

Conjecture

If $\kappa \notin A_{\kappa}$ then κ is ineffable in L.

Theorem

Assuming the consistency of an ineffable cardinal, it is consistent that

1. $\kappa = 2^{\aleph_0}$ and $\kappa \notin A_{\kappa}$;

2. κ is strongly inaccessible, not weakly compact, and $\kappa \notin A_{\kappa}$.

Definition (Ulam '30, Hajnal '69)

A matrix $\langle \mathit{U}_{\eta,\tau} \mid \eta < \tau < \kappa \rangle$ is a triangular Ulam matrix if

- 1. for every $\eta < \kappa$, $\{U_{\eta,\tau} \mid \eta < \tau < \kappa\}$ consists of pairwise disjoint subsets of κ ;
- 2. the set $T := \{ \tau < \kappa \mid |\kappa \setminus \bigcup_{\eta < \tau} U_{\eta,\tau}| < \kappa \}$ is stationary in κ . This set is called the *support*.

Ulam matrices II

Theorem (Hajnal '69, [1])

Let $T \subseteq \kappa$ be stationary. The following are equivalent:

- 1. $\operatorname{Tr}(T) \cap \operatorname{Reg}(\kappa)$ is non-stationary;
- 2. κ carries a triangular Ulam matrix with support T;
- unbounded*(J, {T}) holds for every normal J, which means: there is an upper-regressive colouring c : [κ]² → κ with the property that, for all B ∈ J⁺, for every τ ∈ T, there is an η < τ and a β ∈ B such that c(η, β) = τ

In particular, unbounded($J^{bd}[\kappa], \kappa$) is a more applicable principle than Ulam matrices for obtaining non-weak-saturation results in a uniform manner.

Pumping-up I

Theorem

Let $\theta < \kappa$. The following all imply unbounded $(J^{bd}[\kappa], \theta)$:

- 1. $\kappa \not\rightarrow [\text{Stat}(\kappa)]^2_{\theta}$;
- 2. there is a κ -Souslin tree;
- 3. $cf(\theta) = \theta$ and there is a tree T of height θ with at least κ -many branches such that each level has size less than κ ;
- 4. unbounded $(J^{\mathrm{bd}}[\kappa], \theta^+)$ if $\theta^+ < \kappa$.

Proposition (probably Erdős+Hajnal)

Let $\theta < \kappa$. Then $\kappa \not\rightarrow [\kappa; \kappa]^2_{\theta}$ is equivalent to a strong form of $\operatorname{onto}(J^{\operatorname{bd}}[\kappa], \theta)$.

Pumping-up II

Theorem

Let $\theta \leq \chi < \kappa$ and J be subnormal. Then unbounded (J, χ) implies onto (J, θ) if any of the following occurs:

- 1. $cf(\theta) = \theta < \chi;$
- 2. $C(\theta, \chi) < \kappa$, which means: there is a subfamily \mathcal{X} of $[\chi]^{\theta}$ of size less than κ such that every club $C \subseteq \chi$ contains some $X \in \mathcal{X}$;

3.
$$\theta = \chi$$
 and $2^{\theta} < \kappa$.

Theorem

Let θ be regular. If $onto(J^{bd}[\theta], \theta)$ holds and $\mathfrak{b}_{\theta} = \theta^+$ then $onto(J^{bd}[\theta^+], \theta^+)$ holds as well.

ZFC conclusions

Theorem

The following all hold

- 1. unbounded ($J^{\mathrm{bd}}[\aleph_0],\aleph_0);$
- 2. unbounded($J^{\text{bd}}[\kappa], n$) for $\aleph_0 < \kappa \leq 2^{\aleph_0}$ and $0 < n < \aleph_0$ and $cf(\kappa) \leq \kappa$;
- 3. unbounded $(J^{bd}[\theta^+], \theta)$ for θ a singular cardinal;
- 4. unbounded $(J^{\mathrm{bd}}[\mathfrak{d}_{\theta}], \theta)$ for θ regular;
- 5. unbounded $(J^{\mathrm{bd}}[\mathfrak{b}_{\theta}], \theta)$ for θ regular.

Some more results for singulars

Theorem

Let κ be singular.

- 1. unbounded $(J^{\mathrm{bd}}[\kappa], \theta)$ holds iff $\theta \leq \mathsf{cf}(\kappa)$;
- 2. onto($J^{\mathrm{bd}}[\kappa], \theta$) holds for every regular $\theta < \mathsf{cf}(\kappa)$.
- onto(J^{bd}[κ], θ) holds for every singular θ such that θ⁺ < cf(κ).

onto with maximal colours

Theorem (Guzmán '17)

 $\operatorname{\mathsf{non}}(\mathcal{M}) = \aleph_1 \text{ implies } \operatorname{onto}(J^{\operatorname{bd}}[\aleph_1], \aleph_1).$

Theorem (Larson '07)

It is consistent that $onto(NS_{\aleph_1}, \aleph_1)$, and hence $onto(J^{bd}[\aleph_1], \aleph_1)$ as well, fails.

Theorem

- 1. For κ a successor cardinal, (κ) implies onto $(J^{bd}[\kappa], \kappa)$.
- 2. $\diamondsuit^*(\kappa)$ implies onto(NS_{κ}, κ).
- If ◊(S) holds for some S ⊆ κ stationary not reflecting at regulars then onto(J^{bd}[κ], κ) holds.

Weakly compact cardinals

Theorem

The following are equivalent for κ uncountable:

- 1. κ is not weakly compact;
- 2. unbounded $(J^{\mathrm{bd}}[\kappa], \aleph_0)$ holds.

Theorem

The following are equivalent for $\kappa \geq 2^{\aleph_0}$:

- 1. κ is not weakly compact;
- 2. onto($J^{\mathrm{bd}}[\kappa], \aleph_0$) holds.

Ineffable cardinals

Theorem

The following are equivalent for κ uncountable regular:

- 1. κ is not ineffable;
- 2. unbounded (NS_{κ}, \aleph_0) holds.

Theorem

The following are equivalent for regular $\kappa \geq 2^{\aleph_0}$:

- 1. κ is not ineffable;
- 2. onto(NS_{κ}, \aleph_0) holds.

The end?

