COMPLICATED COLORINGS, REVISITED

ASSAF RINOT AND JING ZHANG

ABSTRACT. In a paper from 1997, Shelah asked whether Pri(AT, AT, AT, )\)
holds for every inaccessible cardinal A. Here, we prove that an affirmative
answer follows from [J(AT). Furthermore, we establish that for every pair
X < k of regular uncountable cardinals, (k) implies Pri(k, k, &, X).

1. INTRODUCTION

The subject matter of this paper is the following two anti-Ramsey coloring prin-
ciples:

Definition 1.1 (Shelah, [She88]). Pry(k, &, 0, x) asserts the existence of a coloring
¢ : [k]? — 6 such that for every o < ¥, every pairwise disjoint subfamily A C [x]°
of size k, and every T < 6, there is (a,b) € [A]? such that cla x b] = {7}.

Definition 1.2 (Lambie-Hanson and Rinot, [LHRI18]). U(k, u, 8, x) asserts the
existence of a coloring ¢ : [k]?> — @ such that for every o < y, every pairwise
disjoint subfamily A C [k]7 of size k, and every 7 < 6, there exists B € [A]* such
that, for every (a,b) € [B]?, min(c[a x b]) > 7.*

For those who meet these definitions for the first time, it is beneficial to start
by parsing the special case in which the 4" parameter gets its smallest possible
nontrivial value: The instance Prq(k,k,6,2) asserts the existence of a coloring
¢ : [k]?> — 0 such that ¢ takes on every possible color on every large set, that is, for
every A C k of size k, the set {c(a, §) | @ < B is a pair of elements of A} is equal
to 0. Likewise, U(k, 2,6, 2) asserts the existence of a coloring ¢ : [k]> — 6 such that
¢ takes on unboundedly many colors on every large set.

By increasing the 4" parameter one gets “block-wise” version of the above prin-
ciples. The importance of this line of study — especially in proving instances of
Pry(...) and U(...) with a large value of the 4*" parameter — is explained in details
in the introductions to [Rinl4a, Rinl4b, LHR18|. In what follows, we survey a few
milestone results, depending on the identity of .

» At the level of the first uncountable cardinal k = Ny, the picture is complete:
In his seminal paper [Tod87], Todoréevié proved that Pry (N1, N1, Ny, 2) holds, im-
proving upon a classic result of Sierpinski [Sie33] asserting that Prq(Ry, Ny, 2,2)
holds. In 1980, Galvin [Gal80] proved that Pri(Ry, Ry, 6,R) is independent of ZFC
for any cardinal § € [2,X;]. Finally, a few years ago, by pushing further ideas of
Moore [Mo006], Peng and Wu [PW18] proved that Prq(Ry, Ry, Ry, x) holds for every
X € [2,Ng). As for the other coloring principle, and in contrast with Galvin’s result,
by [LHR18], U(Ry, Ry, 0, Rg) holds for any cardinal 6 € [2,R].

Date: Preprint as of September 24, 2022. For the latest version, visit http://p.assafrinot.com/52.
INote that Pri(k, k, 0, x) implies U(k, 2, 6, x). However, by [LHR21, Theorem 3.3], it does not
imply U(x, &, 6, x).
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» At the level of the second uncountable cardinal, k = Ng, a celebrated result of
Shelah [She97] asserts that Prq(Ng, Ng, No, Ng) is a theorem of ZFC. Ever since, the
following problem remained open:

Open problem (Shelah, [She97, Shel9)). (1) Does Pry(Rg, g, g, Ry) hold?
(2) Does Pry(AT, AT, AT X) hold for A inaccessible?

In comparison, by [LHR18], UAT, AT, 0, A) is a theorem of ZFC for every infinite
regular cardinal A and every cardinal 6 € [2, \T].

» At the level of kK = AT for A a singular cardinal, the main problem left open
has to do with the 3' parameter of Pri(...) rather than the 4" (see [She94a,
ES05, ES09, Eisl0, Eis13a, Eis13b]). This is a consequence of three findings. First,
by the main result of [Rinl2], for every singular cardinal A and every cardinal
6 < AT, Pry(AT, AT, 6,2) implies Pri(A*T,AT,0,cf()\)). Second, by [RZ22, §2], if
A is the singular limit of strongly compact cardinals, then Pry(AT, A", 2, (cf(X\))T)
fails, meaning that the first result cannot be improved. Third, by [RZ22, §2],
Pri(A*,AT,2, \) outright fails for every singular cardinal \.

The situation with U(...) is slightly better. An analog of the first result may be
found as [LHR18, Lemma 2.5 and Theorem 4.21(3)]. An analog of the second result
may be found as [LHR18, Theorem 2.14]. In contrast, by [LHR18, Corollary 4.15],
it is in fact consistent that U(A*, AT, 0, \) holds for every singular cardinal A and
every cardinal 6 € [2, \T].

> At the level of a Mahlo cardinal , by [She94b, Conclusion 4.8(2)], the existence
of a stationary subset of EY, that does not reflect at inaccessibles entails that
Pry(k, k,0,x) holds for all # < x. By [RZ22, §5], the existence of nonreflecting a
stationary subset of Reg(x) on which ¢ holds entails that Pry(k, &, &, k) holds.

The situation with U(...) is analogous: By [LHR18, Theorem 4.23], the existence
of a stationary subset of EY, that does not reflect at inaccessibles entails that
U(k, K,60,x) holds for all § < k. By [LHR22, Proposition 2.5, the existence of
nonreflecting a stationary subset of Reg(x) entails that U(k, &, 6, k) holds for all
0 < k.

» At the level of an abstract regular cardinal x > Ny, we mention two key results.
First, by [Rinl4b], for every regular cardinal £ > Ny and every x € Reg(k) such
that xT < k, the existence of a nonreflecting stationary subset of EY entails that
Pri(k, %, &, x) holds (this is optimal, by [LHR21, Theorem 3.4], it is consistent that
for some inaccessible cardinal x, E admits a nonreflecting stationary set, and yet,
Pri(k, k, k, xT) fails). Second, by [Rinl4a], for every regular cardinal x > Ry and
every x € Reg(k) such that x* < k, (k) entails that Pry(k, k, &, x) holds.

Here, the situation with U(...) is again better. By [LHR18, Corollaries 4.12 and
4.15] and [LHR22, Theorems 4.4 and 4.13], the analogs of the two results are true
even without requiring “x* < x”!

After many years without progress on the above mentioned Open Problem, in the
last few years, there have been a few breakthroughs. In an unpublished note from
2017, Todorcevié¢ proved that CH implies a weak form of Pry(Rq, Ro, Ro, X1), strong
enough to entail one of its intended applications (the existence of a o-complete
No-cc partial order whose square does not satisfy that Ng-cc). Next, in [RZ22, §6],
the authors obtained a full lifting of Galvin’s strong coloring theorem, proving that
for every infinite regular cardinal A, Pri(AT,A* AT, ) holds assuming the stick

principle T()\Jr). In particular, an affirmative answer to (1) follows from 2%t = N,.
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Then, very recently, in [She21], Shelah proved that for every regular uncountable

cardinal A, Pri(AT, AT, AT, ) holds assuming the existence of a nonreflecting sta-

tionary subset of Eg\ So, by a standard fact from inner model theory, a negative

answer to (1) implies that 8y is a Mahlo cardinal in Gédel’s constructible universe.
The main result of this paper reads as follows:

Theorem A. For every regular uncountable cardinal X, if O(AT) holds, then so
does Pri(AT, AT, AT N). In particular, a negative answer to (1) implies that Ry is
a weakly compact cardinal in Godel’s constructible universe.

Thanks to the preceding theorem, we can now waive the hypothesis “x*™ < ”
from [Rinl4a, Theorem B], altogether getting a clear picture:

Theorem A’. For every pair x < k of reqgular uncountable cardinals, O(k) implies
Prl(’%a K, R, X)

Now, let us say a few words about the proof. As made clear by the earlier
discussion, in the case that x = x T, it is easier to prove U(k, s, 0, x) than proving
Pri(k, &, 0, x). Therefore, we consider the following slight strengthening of U(...):

Definition 1.3. Uj(k,u, 0, ) asserts the existence of a coloring ¢ : []?> — 6 such
that for every o < x, every pairwise disjoint subfamily A C [k]? of size k, and every
€ < 0, there exists B € [A]* such that, for every (a,b) € [B]?, there exists 7 > €
such that c[a x b] = {7}.

Shelah’s proof from [She21] can be described as utilizing the hypothesis of his
theorem twice: first to get Uy(AT,2, AT, \), and then to derive Pry(AT, AT, AT, )\)
from the latter.? Here, we shall follow a similar path, building on the progress made
in [RZ21, §5] with respect to walking along well-chosen [J(x)-sequences. We shall
also present a couple of propositions translating Uy (...) to Pri(...) and vice versa,
demonstrating that Uy (k, u, 0, x) is of interest also with 6 < x. For instance, it will
be proved that for every regular uncountable cardinal A that is not greatly Mahlo
(e.g., A =N1), Uy (AT, 2, \, \) iff Pry(AT, A", A", X). Thus, the core contribution of
this paper reads as follows.

Theorem B. Suppose that x < 0 < k are infinite regular cardinals such that
max{x, N1} < k. If O(k) holds, then so does Uy(k,2,0,x).

1.1. Organization of this paper. In Section 2, we provide some necessary back-
ground on C-sequences and walks on ordinals. In response to a request of the
referee, this section now offers many discussions around the relevant definitions,
with the hope of helping the reader become comfortable with these definitions.

In Section 3, we prove Theorem B as Theorem 3.1.

In Section 4, we provide sufficient conditions for instances of U; to imply Pry,
and then derive Theorem A as Corollary 4.7.

2. PRELIMINARIES

In what follows, x < k denotes a pair of infinite regular cardinals. Reg(x) stands

for the set of all infinite and regular cardinals below x. Let EY := {a < & |
cf(a) = x}, and define EZ , EZ | ES . EZ,, Ef analogously. A stationary

2We learned from Feldman that our principle Uj is close to the principle Prsy from [She94b,
Definition 4.3]. Specifically, Uy (A1, 2, A1, \) coincides with Prga(AT, AT, A1, \).
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subset S C k is nonreflecting (resp. nonreflecting at inaccessibles) iff there exists
no a € E%, (resp. a a regular limit uncountable cardinal) such that S N« is
stationary in . For a set of ordinals a, we write ssup(a) := sup{a+1 | a € a},
acc™(a) = {a < ssup(a) | sup(aNa) = a > 0}, acc(a) := aNacct(a) and
nacc(a) := a \ acc(a). For sets of ordinals that are not ordinals, a and b, we write
a < b to express that a < 3 for all & € a and 3 € b. For an ordinal o and a set of
ordinals A, we write [A]? for {B C A | otp(B) = ¢}. In the special case that o = 2
and A is either an ordinal or a collection of sets of ordinals, we interpret [A]? as the
collection of ordered pairs {(a,b) € A x A | a < b}. In particular, [k]?> = {(«a, ) |
a< B <k}

For the rest of this section, let us fix a C-sequence C = (Cq | @ < K) over k, i.e.,
for every a < K, Cy, is a closed subset of a with sup(Cy) = sup(«).

Definition 2.1 (Todorcevi¢). From C, derive maps Tr : [5]2 — “k, p : [K] = w,
tr: [k]? = <Yk and X : [k]> — &, as follows. Let (o, B) € [k]? be arbitrary.
e Tr(a, f) : w— & is defined by recursion on n < w:
B, n=>0
Tr(a, B)(n) := { min(Cry(a,p)(n-1) \ @), 7>0& Tr(a,B)(n—1)>a
a, otherwise

o po(a, B) :==min{l < w | Tr(a, 8)(1) = a};
hd tr(a7ﬂ) = TI‘(Oé,ﬂ) “72(0475);
e Ma, ) = max{sup(Cry(a,g)m) N @) | n < p2(a, B)}.

The above definition comes from the theory of walks on ordinals [Tod07]. Given
a pair of ordinals a@ < 8 below &, one would like to walk from 8 down to «. This
is done by recursion, letting Sy := §, and Bp4+1 := min(Cp, \ @), thus, obtaining
an ordinal 8,41 such that a < f,41 < S,. Since the ordinals are well-founded,
there must exist some integer k such that Sx11 = «, so that, the walk is g =
Bo > 1> -+ > Pr+1 = a. The functions of Definition 2.1 record various aspects
of this walk. The walk itself is recorded by Tr(c, ), since, for every n < k,
we have that Tr(a,8) = fBn, and for every n > k, we have that Tr(a,8) = a.
The length of the walk is recorded by pa(c, 3). Now, since Tr(a, 8) is eventually
constant with value «, its nontrivial part is those ordinals greater than «, i.e.,
Bo > P1 > -+ > PB; this is recorded by tr(a, 8). Next, notice that for every i < k,
since B;+1 = min(Cpg, \ @) is still bigger than «, the fact that Cj, is a closed subset
of B; implies that sup(Cp, N ) is smaller than «. In the special case that also
sup(Cpg, N «) is smaller than «a, altogether A(«, 3) is an ordinal smaller than «,
and then a very useful concatenation phenomenon is taking place. Indeed, in this
case, for every ordinal € lying in-between A(«, 8) and «, the walk from f to e is
the outcome of first walking from S to a and then walking from « to €. See, e.g.,
[Rinl4b, Claim 3.1.2] for a proof of the following elementary fact.

Fact 2.2. Whenever A(a, ) < e < a < < K, tr(e, B) = tr(a, 5)" tr(e, o).

In [Rinl4a], a natural variation of A(-,) was considered. It is called Aa(,-) and
it has the property that As(a, 8) < a whenever 0 < a < 8 < k.

Definition 2.3 ([Rinl4a, Definition 2.8]). Define A : [k]> — & via
A2(a, B) :=sup(an{sup(Cs Na) | 6 € Im(tr(c, 5))}).
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With Ao, one gets Fact 2.2 as Case (1) of two possible cases:

Fact 2.4 ([LHRI18, Lemma 4.7]). Suppose that Aa(a, f) < e < a < f < k.
Then tr(e, B) end-extends tr(a, 8), and one of the following cases holds:
(1) a € Im(tr(e, B)); or
(2) a € acc(Cs) for 6 := min(Im(tr(a, B))).

Given an ordinal n < k and a walk of the form 8 =g > 81 > -+ > Bk+1 = q,
it is quite natural to ask whether 7 shows up as an element of Cg, for some n < k.
If it is the case, then we would like to record the least such n, and otherwise, we
would like to record that it is not the case. This is achieved, as follows.

Convention 2.5 ([RZ21]). For every ordinal n < k and a pair (o, 8) € [k]?, let
Na,p = min{n < w | n € Cry(a,p)(n) Or 7 = p2(a, B)} + 1.

By now, it should be clear that the definition of the walk from 8 to a and all
the corresponding charachteristic functions (such as py and As) are highly sensitive
to the initial choice of the sequence C. This motivates the introduction of mea-
sures that calibrate various aspects of C. Motivated by [Tod07, Theorem 6.3.2],
in [LHR21, Definition 1.7(1)], the measure x(-) was introduced, and it was shown
that by walking along C, the outcome p; witnesses U(k, k, w, X(C_")) (see [LHR21,
Lemma 5.8]). Then, in [RZ22, Definition 3.13], two more measures were defined.
The two measures are x1, X2, and it is the case that XQ(é, k) < Xl(é) < X(C_") For
our purpose, it suffices to define x;. Its definition makes use of Convention 2.5, as
follows.

Definition 2.6 ([RZ22, §3]). x1(C) stands for the supremum of ¢ + 1 over all
o < k satisfying the following condition:

For every pairwise disjoint subfamily A C [k]? of size k, there are a stationary
set A C k and an ordinal n < k such that, for every § € A, there exist x many
b € A such that, for every 8 € b, A(4, 8) = n and p2(d, 5) = 15,5

—

This means that for every ordinal o < x1(C) and every pairwise disjoint family
consisting of k¥ many blocks, each being a subset of x of ordertype o, there are
stationarily many § < k for which there are x many blocks b in the given family
that are ‘good for ¢’ in the following sense:

(a) B+ A(J, ) is a constant map over b, whose sole value is smaller than J;

(b) for any g € b, if f =Ly > 1 > -+ > Pr+1 = I denotes the walk from 3
to &, then k is the least (equivalently, unique) n < k to satisfy A(0, ) =
sup(Cg, N9).

By pressing down, we can find a stationary set A C k and some ordinal < k
such that, in Clause (a), the sole value is 7 for every § € A. Recalling Fact 2.2,
this tells us that for every § € A and every € lying in-between 7 and 4, for every S
in a block good for §, the walk from § to € passes through §, i.e., there exists some
n < w such that Tr(e, 8)(n) = ¢. Then, Clause (b) tells us that, in fact, n = ns g.

It is not hard to see that y1(C) cannot exceed sup(Reg(x)). In the proof of
[RZ22, Lemma 3.16], a sufficient condition for C to attain its maximal possible x1-
value was given. The condition is a combination of c being coherent and satisfying
a modest form of club-guessing. To be more specific:
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Fact 2.7 ([RZ22, §3]). If the following hold:

(R) for all a < k and § € acc(Cy), Cs = Cq N6, and
(3) for every club D C k, there exists v > 0 with sup(nacc(Cy) N D) =7,

—

then x1(C) = sup(Reg(k)).

The existence of C-sequences C over an inaccessible & satisfying X1(C_") = K were
used in [RZ22, §5] to prove the consistency of Pry(k, k, K, k).

Definition 2.8 (Todorcevié, [Tod87]). For a cardinal p < k, O(k, <) asserts the
existence of a sequence C = (C, | @ < k) such that

(1) for every @ < K, C, is nonempty collection of less than p many closed
subsets C of a with sup(C') = sup(«);

(2) for all « < k, C € C, and 6 € acc(C), CNJ € Cs;

(3) there exists no club C' in x such that CNa € C, for all a € acc(C).

The special case of O(k, <u) with = 2 is denoted by O(k). Equivalently, O(x)
asserts the existence of a coherent C-sequence C = (C,, | @ < k) with the property
that for every club C in &, there exists some « € acc(C) such that C' Na # C,.

Fact 2.9 (Hayut and Lambie-Hanson, [HLH17, Lemma 2.4]). Clause (3) of Defi-
nition 2.8 is preserved in any k-cc forcing extension, provided that p < K.

3. THEOREM B

Theorem 3.1. Suppose that x < 0 < k are infinite reqular cardinals such that
max{x, N1} < k. If O(k) holds, then so does Uy(k,2,0,x).
Proof. Suppose that O(x) holds. Then, by [RZ21, Lemma 5.1], we may fix a C-
sequence C = (Cy, | o < r) satisfying the following:

(1) Cot1 ={0,a} for every a < k;

(2) for every club D C &, there exists v > 0 with sup(nacc(C,) N D) = ~;

(3) for every a € acc(k) and @& € acc(Cy), Cq = Co N @;

(4) for every i < k, {o < k | min(C,) = i} is stationary.

—

Note that, by Fact 2.7, x1(C) = sup(Reg(k)). If 8 < k, then let p := 6;
otherwise, let p := x. Derive a coloring h : Kk — u via

h(a) = min(Cy), if min(.Ca) <
0, otherwise.

We shall walk along C'. Derive a function try, : [5]2 — <“k via

tra(a, B) := (h(Tr(a, B)(2)) | i < pa(a, B)).

Then, define a coloring d : [k]? — p via
d(a, ) := max(Im(try (e, B))).

Simply put, for every pair o < 8 of ordinals in &, if B =5y > -+ > Br41 = @
denotes the walk from § to «, and there exists some n < k such that min(Cpg,) < u,
then d(a, §) is equal to the largest possible value of min(Cg, ) over all such n’s.

Claim 3.1.1. Suppose that «, 8,7 are ordinals, and \a(7,8) < a <y < 8 < k.
Then Im(trp (e, 8)) = Im(trp(e, 7)) U Im(trp(y, 8)). In particular, d(a, ) =

max{d(a, ’7)7 d(P% 6)}
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Proof. By Fact 2.4, one of the following cases holds:

» v € Im(tr(e, 5)). In this case, tr(a, §) = tr(y, )" tr(a, ), so we done.

» v € acc(Cs) for § := min(Im(tr(vy, 5))). In this case, tr(a, 8) = tr(d,5)"
tr(a, d), so that Im(try(c, 5)) = Im(try (e, 6)) U Im(try (5, 8)). Since v €
acc(Cs), Clause (3) above and the definition of the function h together
imply that trp(a,d) = trp(e,v). In addition, tr(y,8) = tr(d, 8)" (), so
that Im(try(y,8)) = Im(try(5,8)) U {h(d)}. Since h(d) € Im(try(a,d)),
altogether,

Im(trp, (o, 7)) UIm(try (v, 8)) = Im(trp (o, 6)) U Im(try (8, 8)). O

We are now ready to define the sought coloring c. If 4 = 6, then let ¢ := d, and
otherwise define c : [k]? — 0 via

c(a, B) := max{¢ € Im(tr(a, B)) | (&) = d(a, B)}.

To see that ¢ witnesses Uy (k, 2,60, x), suppose that we are given € < 0, o < x
and a k-sized pairwise disjoint subfamily A C [k]?; we need to find 7 > € and
(a,b) € [A]? such that c[a x b] = {7}. Recall that x is a regular cardinal smaller
than x and that y1(C) = sup(Reg(k)), so that o < x < x1(C). In particular, we
may fix a stationary subset A C x and an ordinal 1 < k such that, for every § € A,
there exists b € A with min(b) > § such that A(J,8) = n for every § € b. Set
7' 1= max{n, €}.

Counsider the club C := {y < k| sup{min(a) | a € ANP(y)} =~}. Forally € C
and € < v, fix a7 € AN P(y) with min(a?) > ¢; as |al| < p, 77 := sup{d(a,7) |
a € al}is < p. As k > Ny, we may fix some stationary ' € C'N E%, along with
To < p such that, for every v € I, sup{e < v | 72 < 19} = 7.

By Clause (4), for each i < u, H; := {a < k| h(a) = i} is stationary, so, fix § €
AN, acct (H;Nacet (I'\7')). Pick b € A with min(b) > § such that A(d, ) = n
for every 8 € b. As |b] < p, 71 :=sup{d(d,5) | B € b} is < p. If € < p, then pick
¢ € Hyyyry+er1Nacct (T\n'); otherwise, pick ¢ € Hyy 4, +1Nacc™ (I'\n'). Next, pick
v € T above max{A2((,d),n’'}. Finally, pick £ < v above max{A2(7, (), A2(¢,9), 7'}
such that 77 < 79, and then set a := a.

Claim 3.1.2. Leta € a and 8 € b. Then:

(1) maX{)\g(’}/,C),)\g(C,(S),/\((S, /8)’6} <e<a<y< C <o< ﬁ;
(i) (e, B) = c(7,0) > e

Proof. (i) This is clear, recalling that ' = max{A(J, ), €}.
(ii) From A(d,5) < a < 6 < B and Fact 2.2, we infer that tr(a, 8) = tr(d, 5)"
tr(a, d), so that d(«, 8) = max{d(d, 8),d(c,d)}. By Clause (i) and Claim 3.1.1,

d(Oé, 6) = max{d(a, C)vd(ga 6)} > h(C) >T > d(éa ﬂ)

Consequently, d(a, ) = d(a, §) and ¢(a, 8) = ¢(a, d). By Clause (i) and Claim 3.1.1,
Im(trp (e, 6)) = Im(trp (o, v) UIm(try(v,9)). As d(o,y) < 10 < h({) < d(7,9), it
follows that d(a, d) = d(7,9) and c¢(«, d) = d(v,0). Altogether, c(a, 8) = ¢(7,9).

Now, if § < k, then € < § = p and ¢ = d, so that c(a, 8) = d(%é) > h(¢) >
Otherwise, c¢(a, 8) > min(Im(tr(a, §))) > a > e.

o O

Set 7 := ¢(,9). Then 7 > € and c[a x b] = {7}, as sought.
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Remark 3.2. The preceding proof makes it clear that the auxiliary coloring d wit-
nesses Uj(k,2,u,x). By Fact 2.4, the coloring d is moreover closed in the sense
that, for all 8 < k and ¢ < 0, the set {a < 8| ¢(e, B) < i} is closed below 3. So,
by [LHR18, Lemma 4.2], d witnesses U(k, &, 11, X), as well.

4. CONNECTING U; WITH Pry

Throughout this section, ¥ < k is a pair of infinite regular cardinals, and 0
is a regular cardinal < k. Let A{ denote the collection of all pairwise disjoint
subfamilies A C P(x) such that |[A| = k and sup{|a|] | a € A} < x. Given a
coloring ¢ : []? — 0, for every A C P(k), let T.(A) be the set of all 7 < 6§ such
that, for some (a,b) € [A]?, cla x b] = {7}. The next definition appears (with a
slightly different notation) in Stage B in the proof of [She21, Theorem 1.1]:

Definition 4.1. For every coloring ¢ : [k]? — 0, let
Fex ={T C0|3A€ A} [T.(A) CTI}.

Proposition 4.2. Suppose that a coloring c : [k]> — 0 witnesses Uy (k,2,0,x), and
A is some cardinal. Then:
(1) F.y is a x-complete uniform filter on 0;
(2) If every x-complete uniform filter on 0 is not weakly A-saturated, then
Pri(k, k, A, x) holds.

Proof. (1) It is clear that F., is upward-closed. To see that it is yx-complete,
suppose that we are given a sequence (X; | ¢ < ) of elements of F.,, for some
§ < x. For each i <4, fix A; € A} such that T.(A;) € X;. Pick A € A¥ such that,
for every a € A, there is a sequence (a; | i < 0) € ][, 5.As such that a = {J,_s a;.
Then, Tc(A) € ;o5 Te(Ai) € [);c5 Xi and hence the latter is in F¢. ,. Finally, since
c witnesses Uy (k, 2,0, ), for every A € AT and every € < 0, T.(A) \ € is nonempty.
So F, , consists of cofinal subset of 6. Since 0 is regular, F. , is uniform.

(2) Suppose that no x-complete uniform filter on 6 is weakly A-saturated. In
particular, by Clause (1), we may pick a map 1 : 6 — X such that that the preimage
of any singleton is F, g-positive. Then 1 o ¢ witnesses Prq(k, k, A, x). O

Definition 4.3 (folklore). For a regular uncountable cardinal A, Refl(A, A, Reg(}))
asserts that for every sequence (S; | i < A) of stationary subsets of A, there exists
an inaccessible cardinal 8 < A such that S; N g is stationary in S for every ¢ < 3.

Corollary 4.4. Suppose that X\ is a regular uncountable cardinal. If Refl(\, A,
Reg(A)) fails, then the following are equivalent:

(1) Pry(AT, AT, AT N);

(2) Pry(AT, AT, A N);

(3) Up(AT, 2,0, N).

Proof. The implication (1) == (2) == (3) is trivial, and the implication
(2) = (1) is well-known (this follows from [KRS22, Theorem A]). By the preced-
ing proposition, to see the implication (3) = (2), it suffices to prove that under
our hypothesis on A, no A-complete uniform filter on A is weakly A-saturated. By
[IR22, Theorem A], the latter follows from x(\) > 1. By [LHR21, Lemma 2.12], if
X(A) <1, then Refl(A, A\, Reg(\)) holds. O
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Corollary 4.5. If )\ is a regular uncountable cardinal that is not greatly Mahlo,
then Uy (AT, 2, A\, \) is equivalent to Pry(AT, AT, AT A).

Proof. For every regular uncountable cardinal A, the reflection principle Refl(A, A,
Reg(A)) implies that A is greatly Mahlo (see [LHR21, Proposition 2.11]). O

Lemma 4.6. Suppose that X is a regular uncountable cardinal and (AT, <) holds.
Then every A-complete uniform filter on AT is not weakly \-saturated.

Proof. Fix a O\, <A)-sequence C = (Co | @ < AT). For each o < AT, fix an
injective enumeration (Cy ; | i < |Col) of Cy.

Towards a contradiction, suppose that F' is a A-complete uniform filter on AT
that is weakly A-saturated. Since F' is A-complete, F' is moreover A-saturated.
Hence, P(AT)/F is a A-cc notion of forcing.

Let G be P(AT)/F-generic over V. Then G is a uniform V-ultrafilter over A*
extending F. By [Forl0, Propositions 2.9 and 2.14], Ult(V, G) is well-founded and
j: V= M ~TUlt(V,G) satisfies crit(j) = .

Now, work in V[G]. Denote j(C) by (D | o < j(A1)). For every o < A, since
crit(j) = XA > |Cql, it is the case that Dj,) = j(Ca) = j“Co. Since G is uniform,
v = sup(j“AT) is < j(AT), as witnessed by the identity map id : AT — AT, As V[G]
is a A-cc forcing extension of V, cf¥ () = cfVI€(y) = AT, so that cfM(y) > AT,
Pick D € D,,.

Claim 4.6.1. A := j~![acc(D)] is a cofinal subset of \*.

Proof. Given ¢ < AT, we recursively define (in V[G]) an increasing sequence (o, |
n < w) of ordinals below A* such that:

(1) e=a, and
(2) for all n < w, (j(an),j(ans1)] N D # 0.

Consider o* := sup,,_, a,,. Notice that cf” (a*) < A, since if cf (a*) > A, then
by the fact that V[G] is a A-cc forcing extension of V we have w = cf V1 (a*) > A
which is impossible. As a result, sup j“a* = j(a*) € acc(D), which implies that o*
is an element of A above e. O

For each a € A, DNj(a) € Dj(q) = j“Ca, so we may pick some i, < A such that
DNj(a) = j(Cyu,,). Fix some ¢ < A for which A’ := {& € A | i, = i} is cofinal
in A*. For every (a, ) € [A']?, j(Cai) = DNj(a) and j(Cs ;) = DN j(B), so, by
elementarity, Co ; = Cs; Na. As A’ is cofinal in AT, it follows that C := [J{C4;
a € A} is a club in A*. Evidently, C N« € C, for every a € acc(C). However,
V[G] is a A-cc forcing extension of V', contradicting Fact 2.9. O

We are now ready to prove Theorem A:

Corollary 4.7. Suppose that X is a reqular uncountable cardinal, and O(A1) holds.
Then Pri(AT, AT, AT, \) holds, as well.

Proof. By Theorem 3.1, using (k,0,x) := (AT, AT, A), U(AT,2, A", \) holds. So,
by Proposition 4.2 (using 6 := A*) and Lemma 4.6, Pry (AT, AT, A\, \) holds. Then,
again by [KRS22, Theorem A], Pri(AT, AT, AT, \) holds, as well. O
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