A NEW SMALL DOWKER SPACE

ASSAF RINOT, ROY SHALEV, AND STEVO TODORCEVIC

ABSTRACT. It is proved that a strong instance of the guessing principle A_{AD} on the first uncountable cardinal follows from either the principle (b), or the existence of a Luzin set. In particular, any of the above hypotheses entails the existence of a Dowker space of size \aleph_1 .

1. INTRODUCTION

A Dowker space is a normal topological space X whose product with the unit interval $X \times [0, 1]$ is not normal. Whether such a space exists was asked by Dowker back in 1951 [Dow51]. As of now, there are just three constructions of Dowker spaces in ZFC: Rudin's space of size $(\aleph_{\omega})^{\aleph_0}$ [Rud72], Balogh's space of size continuum [Bal96], and the Kojman-Shelah space of size $\aleph_{\omega+1}$ [KS98]. Rudin's Conjecture 4 from [Rud90], asserting that there exists a Dowker space of size \aleph_1 remains open.

In [RS23], the guessing principle \clubsuit_{AD} was introduced, and it was shown that for every regular uncountable cardinal κ , each of the following two conditions implies the existence of a Dowker space of size κ :

- (i) $A_{AD}(S, 1, 2)$ holds for a partition S of some nonreflecting stationary subset of κ into infinitely many stationary sets;
- (ii) $\clubsuit_{AD}(\{E_{\lambda}^{\kappa}\},\lambda,1)$ holds, where κ is the successor of a regular cardinal λ .

It was also shown that in each of the scenarios of [Rud74, dC77, Wei81, Goo95] in which there exists a Dowker space of size κ , either (i) or (ii) indeed hold.

The definition of the guessing principle under discussion reads as follows:

Definition 1.1. Let S be a collection of stationary subsets of a regular uncountable cardinal κ , and μ , θ be nonzero cardinals below κ . The principle $A_{AD}(S, \mu, \theta)$ asserts the existence of a sequence $\langle A_{\alpha} \mid \alpha \in \bigcup S \rangle$ such that:

- (1) For every $\alpha \in \operatorname{acc}(\kappa) \cap \bigcup S$, \mathcal{A}_{α} is a pairwise disjoint family of μ many cofinal subsets of α ;
- (2) For every $\mathcal{B} \subseteq [\kappa]^{\kappa}$ of size θ , for every $S \in \mathcal{S}$, there are stationarily many $\alpha \in S$ such that $\sup(A \cap B) = \alpha$ for all $A \in \mathcal{A}_{\alpha}$ and $B \in \mathcal{B}$;
- (3) For all $A \neq A'$ from $\bigcup_{S \in S} \bigcup_{\alpha \in S} \mathcal{A}_{\alpha}$, $\sup(A \cap A') < \sup(A)$.

Remark 1.2. The variation $\clubsuit_{AD}(S, \mu, <\theta)$ is defined in the obvious way.

In [JKR76], Juhász, Kunen and Rudin constructed a Dowker space of size \aleph_1 assuming the continuum hypothesis. This was then improved by the third author [Tod89, p. 53] who got such a space from the existence of a Luzin set (cf. [Sze94]).

Date: Preprint as of December 22, 2022. For the latest version, visit http://p.assafrinot.com/54. 2010 Mathematics Subject Classification. Primary 03E05, 54G20; Secondary 03E65.

The first main result of this paper shows that also in the above scenarios (when the continuum hypothesis holds or merely a Luzin set exists), Clauses (i) and (ii) hold. This answers Question 2.35 of [RS23] in the negative.

Theorem A. Let $\lambda = \lambda^{<\lambda}$ be an infinite regular cardinal.

Then $(1) \implies (2) \implies (3)$:

- (1) There exists a λ^+ -Luzin subset of λ_{λ} ;
- (2) There exists a tight strongly unbounded coloring $c : \lambda \times \lambda^+ \to \lambda$;
- (3) For every partition S of $E_{\lambda}^{\lambda^+}$ into stationary sets, $\mathbf{A}_{AD}(S, \lambda, <\lambda)$ holds.

Note that as in the case $\lambda := \aleph_0$, for every infinite cardinal $\lambda = \lambda^{<\lambda}$, the existence of a λ^+ -Luzin subset of ${}^{\lambda}\lambda$ follows from $2^{\lambda} = \lambda^+$. Our second main result derives $A_{\rm AD}$ from another consequence of $2^{\lambda} = \lambda^+$, namely, from the *stick* principle:

Theorem B. Let λ be an infinite regular cardinal.

Then $\uparrow(\lambda^+)$ implies that for every partition S of $E_{\lambda}^{\lambda^+}$ into stationary sets, $\clubsuit_{AD}(S,\lambda,\lambda)$ holds.

What's interesting about Theorem B is that it uncovers a scenario for the existence of a Dowker space that was not known before. In particular, it yields the following contribution to the small Dowker space problem:

Corollary C. $\[\]$ entails the existence of a Dowker spaces of size \aleph_1 .

Let us expand on our topological application. In Clause (i) above, the Dowker space is obtained as a ladder-system space, and in Clause (ii), it is a de Caux type space of hereditary density λ and Lindelöf degree κ (i.e., an *S*-space). At the end of this paper, we shall tweak the construction of Clause (i) to obtain many pairwise nonhomeomorphic Dowker spaces. Altogether, it will follow that \P entails the existence of 2^{\aleph_1} many pairwise nonhomeomorphic Dowker spaces of size \aleph_1 .

1.1. Organization of this paper. In Section 2, we define *unbounded*, strongly *unbounded* and *tight* colorings, and provide sufficient conditions for their existence. The proof of the implication $(1) \implies (2)$ of Theorem A will be found there.

In Section 3, we get an instance of $A_{AD}(...)$ from a tight strongly unbounded coloring. In particular, the proof of the implication (2) \implies (3) of Theorem A will be found there.

In Section 4, we get instances of $A_{AD}(\ldots)$ from the principles $\uparrow(\lambda^+)$ and $\diamondsuit(\mathfrak{b})$. In particular, the proof of Theorem B will be found there.

In the Appendix, we slightly extend Clause (i) above, showing that for every regular uncountable cardinal κ , if $\mathbf{A}_{AD}(\mathcal{S}, 1, 2)$ holds for an infinite partition \mathcal{S} of some nonreflecting stationary subset of κ into μ many stationary sets, then there are 2^{μ} many pairwise nonhomeomorphic Dowker spaces of size κ .

2. Unbounded colorings and generalized Luzin sets

In this section, κ denotes a regular uncountable cardinal, and ν and λ denote infinite cardinals $< \kappa$.

Definition 2.1. Suppose that $c: \nu \times \kappa \to \lambda$ is a coloring.

- For each $\beta < \kappa$, derive the fiber map $c_{\beta} : \nu \to \lambda$ via $c_{\beta}(\eta) := c(\eta, \beta)$;
- c is unbounded iff for every cofinal $B \subseteq \kappa$, there is an $\eta < \nu$ such that

$$\sup\{c_{\beta}(\eta) \mid \beta \in B\} = \lambda;$$

• c is strongly unbounded iff for every cofinal $B \subseteq \kappa$, there are an $\eta < \nu$ and a map $t : \eta \to \lambda$ such that

$$\sup\{c_{\beta}(\eta) \mid \beta \in B \& t \subseteq c_{\beta}\} = \lambda;$$

- For every $\mathbb{T} \subseteq {}^{<\nu}\lambda$, let $[\mathbb{T}]_c := \{\beta < \kappa \mid \forall \eta < \nu \ (c_\beta \upharpoonright \eta \in \mathbb{T})\};$
- Set $\mathcal{T}_c := \{ \mathbb{T} \subseteq {}^{<\nu}\lambda \mid \sup([\mathbb{T}]_c) = \kappa \};$
- c is tight iff $cf(\mathcal{T}_c, \supseteq) \leq \kappa$.

Remark 2.2. It is clear that ${}^{<\nu}\lambda \in \mathcal{T}_c$, so that $1 \leq |\mathcal{T}_c| \leq 2^{(\lambda^{<\nu})}$.

2.1. From unbounded to strongly unbounded.

Lemma 2.3. Suppose that $\lambda = \aleph_0$ or λ is strongly inaccessible.

Then any unbounded coloring $c : \lambda \times \kappa \to \lambda$ is strongly unbounded.

Proof. Suppose that $c : \lambda \times \kappa \to \lambda$ is a given unbounded coloring. Let B be some cofinal subset of κ . By hypothesis, there exists an $\eta < \lambda$ such that $\sup\{c_{\beta}(\eta) \mid \beta \in B\} = \lambda$. For the least such η , it follows that there exists some ordinal $\mu < \lambda$ such that

$$\{c_{\beta}(i) \mid \beta \in B, i < \eta\} \subseteq \mu$$

As $|^{\eta}\mu| < cf(\lambda) = \lambda$, there must exist some $t \in {}^{\eta}\mu$ such that

$$\sup\{c_{\beta}(\eta) \mid \beta \in B \& t \subseteq c_{\beta}\} = \lambda_{\beta}$$

as sought.

Definition 2.4 (Shelah, [She83, §2]). For a regular uncountable cardinal λ :

(1) $D\ell_{\lambda}$ asserts the existence of a sequence $\langle \mathcal{P}_{\eta} \mid \eta < \lambda \rangle$ such that: • for every $\eta < \lambda, \mathcal{P}_{\eta} \subseteq \mathcal{P}(\eta)$ and $|\mathcal{P}_{\eta}| < \lambda$;

- for every $A \subseteq \lambda$, for stationarily many $\eta < \lambda$, $A \cap \eta \in \mathcal{P}_{\eta}$.
- (2) $D\ell_{\lambda}^*$ asserts the existence of a sequence $\langle \mathcal{P}_{\eta} \mid \eta < \lambda \rangle$ such that:
 - for every $\eta < \lambda$, $\mathcal{P}_{\eta} \subseteq \mathcal{P}(\eta)$ and $|\mathcal{P}_{\eta}| < \lambda$;
 - for every $A \subseteq \lambda$, for club many $\eta < \lambda$, $A \cap \eta \in \mathcal{P}_{\eta}$.

Fact 2.5 (Shelah, [She00, Claim 3.2] and [She10, Claim 2.5]). For a regular uncountable cardinal λ :

- (1) If λ is strongly inaccessible, then $D\ell_{\lambda}^{*}$ holds;
- (2) \Diamond_{λ} implies $D\ell_{\lambda}$, and \Diamond_{λ}^{*} implies $D\ell_{\lambda}^{*}$;
- (3) If $\lambda \geq \beth_{\omega}$ then $D\ell_{\lambda}$ iff $\lambda^{<\lambda} = \lambda$;
- (4) If λ is a successor of an uncountable cardinal, then $D\ell_{\lambda}$ iff $\lambda^{<\lambda} = \lambda$.

Lemma 2.6. Suppose that λ is a regular uncountable cardinal and $D\ell_{\lambda}^*$ holds. Then there exists a strongly unbounded coloring $c : \lambda \times \kappa \to \lambda$, for $\kappa := \mathfrak{b}_{\lambda}$.

Proof. We commence with verifying the following variation of weak diamond.

Claim 2.6.1. For every function $F : {}^{<\lambda}\lambda \to \lambda$, there exists a function $g : \lambda \to \lambda$ with the property that for every function $f : \lambda \to \lambda$, the following set covers a club:

$$\{\eta < \lambda \mid F(f \upharpoonright \eta) \le g(\eta)\}$$

Proof. Using $D\ell_{\lambda}^*$, we may fix a sequence $\langle \mathcal{F}_{\eta} \mid \eta < \lambda \rangle$ such that:

- for every $\eta < \lambda$, $\mathcal{F}_{\eta} \subseteq {}^{\eta}\eta$ and $|\mathcal{F}_{\eta}| < \lambda$;
- for every function $f : \lambda \to \lambda$, for club many $\eta < \lambda$, $f \upharpoonright \eta \in \mathcal{F}_{\eta}$.

Now, given any function $F: {}^{<\lambda}\lambda \to \lambda$, define an oracle function $g:\lambda \to \lambda$ via

$$g(\eta) := \sup\{F(t) \mid t \in \mathcal{F}_{\eta}\}.$$

Next, given any function $f : \lambda \to \lambda$, the set $C := \{\eta < \lambda \mid f \upharpoonright \eta \in \mathcal{F}_{\eta}\}$ covers a club, and it is clear that, for every $\eta \in C$, $g(\eta) \ge F(f \upharpoonright \eta)$.

For functions $f, g \in {}^{\lambda}\lambda$, let $f <_{cl} g$ iff $\{\alpha < \lambda \mid f(\alpha) < g(\alpha)\}$ covers a club. By [CS95, Theorem 6], \mathfrak{b}_{λ} coincides with the least size of a family of functions from λ to λ that is not bounded with respect to $<_{cl}$. It follows that we may construct a $<_{cl}$ -increasing sequence of functions $\langle f_{\beta} \mid \beta < \kappa \rangle$ for which $\{f_{\beta} \mid \beta < \kappa\}$ is not bounded with respect to $<_{cl}$. Define $c : \lambda \times \kappa \to \lambda$ via $c(\eta, \beta) := f_{\beta}(\eta)$. Then, for every function $g : \lambda \to \lambda$, for a tail of $\beta < \kappa$, $S_{\beta}(g) := \{\eta < \lambda \mid g(\eta) \leq c_{\beta}(\eta)\}$ is stationary. We claim that c is strongly unbounded. Towards a contradiction, suppose that this is not the case, as witnessed by a cofinal set B. Then, we may define a function $F : {}^{<\lambda}\lambda \to \lambda$ by letting for all $\eta < \lambda$ and $t : \eta \to \lambda$,

$$F(t) := \sup\{c_{\beta}(\eta) \mid \beta \in B, t \subseteq c_{\beta}\} + 1.$$

Now, pick a corresponding oracle $g: \lambda \to \lambda$ such that for every function $f: \lambda \to \lambda$, the following set covers a club:

$$C_f := \{\eta < \lambda \mid F(f \upharpoonright \eta) \le g(\eta)\}$$

Pick $\beta \in B$ such that $S_{\beta}(g)$ is stationary. Then, find $\eta \in S_{\beta}(g) \cap C_{c_{\beta}}$. Altogether, $c_{\beta}(\eta) < F(c_{\beta} \upharpoonright \eta) \leq g(\eta) \leq c_{\beta}(\eta)$. This is a contradiction.

Lemma 2.7. Suppose that λ is a regular uncountable cardinal and $D\ell_{\lambda}$ holds. If $\kappa = \mathfrak{b}_{\lambda} = \mathfrak{d}_{\lambda}$, then there exists a strongly unbounded coloring $c : \lambda \times \kappa \to \lambda$.

Proof. As $\kappa = \mathfrak{b}_{\lambda} = \mathfrak{d}_{\lambda}$, it is possible to construct a coloring $c : \lambda \times \kappa \to \lambda$ with the property that for every function $g : \lambda \to \lambda$, for a tail of $\beta < \kappa$,

$$C_{\beta}(g) := \{\eta < \lambda \mid g(\eta) \le c_{\beta}(\eta)\}$$

is co-bounded in κ .¹ We claim that *c* is strongly unbounded. Towards a contradiction, suppose that this is not the case, as witnessed by a cofinal set *B*. Then, we may define a function $F : {}^{<\lambda}\lambda \to \lambda$ by letting for all $\eta < \lambda$ and $t : \eta \to \lambda$,

$$F(t) := \sup\{c_{\beta}(\eta) \mid \beta \in B, t \subseteq c_{\beta}\} + 1.$$

As $D\ell_{\lambda}$ holds, we may pick a corresponding oracle $g : \lambda \to \lambda$ such that for every function $f : \lambda \to \lambda$, the following set is stationary:

$$S_f := \{\eta < \lambda \mid F(f \upharpoonright \eta) \le g(\eta)\}.$$

Pick $\beta \in B$ such that $C_{\beta}(g)$ covers a club. Then, find $\eta \in C_{\beta}(g) \cap S_{c_{\beta}}$. Altogether, $c_{\beta}(\eta) < F(c_{\beta} \upharpoonright \eta) \leq g(\eta) \leq c_{\beta}(\eta)$. This is a contradiction.

2.2. Tightness.

Lemma 2.8. Suppose that $\mathfrak{d} = \mathfrak{c} = \kappa$. Then there exists a tight strongly unbounded coloring $c : \omega \times \kappa \to \omega$.

Proof. It is easy to construct an unbounded coloring $c : \omega \times \mathfrak{d} \to \omega$ (see [IR22, §6]). By Lemma 2.3, c is moreover strongly unbounded. As $\mathcal{T}_c \subseteq \mathcal{P}({}^{<\omega}\omega)$, it follows that $|T_c| \leq \mathfrak{c}$. So, if $\mathfrak{d} = \mathfrak{c} = \kappa$, then c is tight. \Box

¹See [IR22, §6]: for λ regular, $\mathfrak{b}_{\lambda} = \mathfrak{d}_{\lambda} = \kappa$ implies that $\mathsf{unbounded}([\lambda]^{\lambda}, J^{\mathrm{bd}}[\kappa], \lambda)$ holds.

Corollary 2.9. Suppose that $\lambda = \lambda^{<\lambda}$ is an infinite cardinal satisfying any of the following:

- $\lambda = \aleph_0$, or
- $\lambda = \aleph_1$ and \diamondsuit_{λ} holds, or
- $\lambda > \aleph_1$ is a successor cardinal, or
- $\lambda \geq \beth_{\omega}, or$
- λ is strongly inaccessible.

If $\kappa = \mathfrak{b}_{\lambda} = 2^{\lambda}$, then there exists a tight strongly unbounded coloring $c : \lambda \times \kappa \to \lambda$.

Proof. As in the proof of the previous lemma, the fact that $\kappa = 2^{\lambda^{<\lambda}}$ implies that any strongly unbounded coloring $c : \lambda \times \kappa \to \lambda$ is tight. Assuming $\kappa = \mathfrak{b}_{\lambda}$, it is also easy to obtain an unbounded coloring $c : \lambda \times \kappa \to \lambda$. So the heart of the matter is to get a strongly unbounded one. Lemma 2.3 takes care of the first and last bullet. The remaining bullets follow from Lemma 2.7 together with Fact 2.5.

Definition 2.10. A κ -Luzin subset of $^{\lambda}\lambda$ is a subset $L \subseteq {}^{\lambda}\lambda$ of size κ having the property that for every $B \in [L]^{\kappa}$, there exists $t \in {}^{<\lambda}\lambda$ such that, for every $t' \in {}^{<\lambda}\lambda$ extending t, there exists an element of B extending t'.

It is well-known that MA implies the existence of a c-Luzin subset of ${}^{\omega}\omega$. More generally, $\operatorname{cov}(\mathcal{M}) = \operatorname{cof}(\mathcal{M}) = \kappa$ entails the existence of a κ -Luzin subset of ${}^{\omega}\omega$. Also, the following fact is standard:

Fact 2.11 (Luzin). For every infinite cardinal $\lambda = \lambda^{<\lambda}$, if $2^{\lambda} = \lambda^{+}$, then there exists a λ^{+} -Luzin subset of $^{\lambda}\lambda$.

Lemma 2.12. Suppose that there exists a κ -Luzin subset of λ , with κ regular. If $\lambda^{<\lambda} < \kappa$, then there exists a tight strongly unbounded coloring $c : \lambda \times \kappa \to \lambda$.

Proof. Fix an injective enumeration $\vec{g} = \langle g_{\beta} \mid \beta < \kappa \rangle$ of a κ -Luzin subset of $\lambda \lambda$. Let $c : \lambda \times \kappa \to \lambda$ denote the unique coloring such that $c_{\beta} = g_{\beta}$ for all $\beta < \kappa$.

Claim 2.12.1. c is strongly unbounded.

Proof. Let $B \in [\kappa]^{\kappa}$; we need to find $\eta < \lambda$ and a map $t : \eta \to \lambda$ such that $\sup\{c_{\beta}(\eta) \mid \beta \in B \& t \subseteq c_{\beta}\} = \lambda$. As $\operatorname{Im}(\vec{g})$ is a κ -Luzin subset of $\lambda \lambda$, fix some $t \in {}^{<\lambda}\lambda$ such that, for every $t' \in {}^{<\lambda}\lambda$ extending t, there exists $l \in \{g_{\beta} \mid \beta \in B\}$ extending t'. Set $\eta := \operatorname{dom}(t)$. Then for every $\gamma < \lambda$, we can find $\beta \in B$ such that g_{β} extends $t^{\frown}\langle\gamma\rangle$. Altogether, $\{c_{\beta}(\eta) \mid \beta \in B \& t \subseteq c_{\beta}\} = \lambda$.

For every $s \in {}^{<\lambda}\lambda$, denote $\mathbb{T}_s := \{t \in {}^{<\lambda}\lambda \mid s \subseteq t \text{ or } t \subseteq s\}.$

Claim 2.12.2. For every $\mathbb{T} \in \mathcal{T}_c$, there exists $s \in {}^{<\lambda}\lambda$ such that $\mathbb{T} \supseteq \mathbb{T}_s \in \mathcal{T}_c$.

Proof. Let $\mathbb{T} \in \mathcal{T}_c$, so that $[\mathbb{T}]_c = \{\beta < \kappa \mid \forall \eta < \lambda (c_\beta \upharpoonright \eta \in \mathbb{T})\}$ is cofinal in κ . For every $t \in {}^{<\lambda}\lambda$, write $A_t := \{\beta \in [\mathbb{T}]_c \mid t \subseteq c_\beta\}$. As $\lambda^{<\lambda} < \operatorname{cf}(\kappa) = \kappa$, the set $N := \bigcup \{A_t \mid t \in {}^{<\lambda}\lambda, |A_t| < \kappa\}$ has size $< \kappa$. In particular, $B := [\mathbb{T}]_c \setminus N$ has size κ . As $\operatorname{Im}(\vec{g})$ is a κ -Luzin subset of ${}^{\lambda}\lambda$, fix some $s \in {}^{<\lambda}\lambda$ such that, for every $s' \in {}^{<\lambda}\lambda$ extending s, there exists $\beta \in B$ such that $s' \subseteq g_\beta$. As $B \subseteq [\mathbb{T}]_c$, it follows that $\mathbb{T}_s \subseteq \mathbb{T}$.

Finally, to show that $[\mathbb{T}_s]_c = \{\beta < \kappa \mid \forall \eta < \lambda (c_\beta \upharpoonright \eta \in \mathbb{T}_s)\}$ is in \mathcal{T}_c , we need to prove that $\sup([\mathbb{T}_s]_c) = \kappa$. Recalling that s extends g_β for some $\beta \in B \subseteq (\kappa \setminus N)$, we infer that $|A_s| = \kappa$. As $[\mathbb{T}_s]_c$ clearly covers A_s , we infer that $\sup([\mathbb{T}_s]_c) = \kappa$. \Box

In particular, $cf(\mathcal{T}_c, \supseteq) \leq \lambda^{<\lambda}$. So, we are done.

3. Theorem A

Definition 3.1 ([LHR23, §3.3]). Let $\lambda < \kappa$ be a pair of infinite cardinals, $e : [\kappa]^2 \to \lambda$ be a coloring, and S be a subset of κ .

(1) *e* is *S*-coherent iff for all $\beta \leq \gamma < \delta < \kappa$ with $\beta \in S$,

$$\sup\{\xi < \beta \mid e(\xi, \gamma) \neq e(\xi, \delta)\} < \beta;$$

 $(2) \ \partial(e) := \{ \alpha \in \operatorname{acc}(\kappa) \mid \forall \gamma \in \kappa \setminus \alpha \, \forall \nu < \lambda \, [\sup\{\xi < \alpha \mid e(\xi, \gamma) \le \nu\} < \alpha] \}.$

Fact 3.2 ([LHR23, Lemma 3.31]). Let $\lambda < \kappa$ be a pair of infinite regular cardinals. For a stationary subset $S \subseteq E_{\lambda}^{\kappa}$, the following are equivalent:

- S is nonreflecting;
- There exists an S-coherent coloring $e: [\kappa]^2 \to \lambda$ such that $\partial(e) \supseteq S$.

Theorem 3.3. Suppose:

- (1) $\theta \leq \lambda < \kappa$ are infinite cardinals, with λ, κ regular,
- (2) $c: \lambda \times \kappa \to \lambda$ is a strongly unbounded coloring,
- (3) c is tight. Furthermore, $(cf(\mathcal{T}_c, \supseteq))^{<\theta} \leq \kappa$, and
- (4) S is a partition of some nonreflecting stationary subset of E_{λ}^{κ} into stationary sets.

Then there exists a club $C \subseteq \kappa$ such that $A_{AD}(\{S \cap C \mid S \in S\}, \lambda, \langle \theta \rangle)$ holds. If either $\kappa = \lambda^+$ or $\lambda^{\langle \lambda \rangle} = \lambda$, then C can moreover be taken to be whole of κ .

Proof. The proof is an elaboration of a construction from [Tod89, §2]. Let \mathcal{T} be a dense subfamily of \mathcal{T}_c of minimal size. Let $\operatorname{Seq}_{<\theta}(\mathcal{T})$ denote the collection of all nonempty sequences of elements of \mathcal{T} of length $< \theta$. By Clause (3) above, $|\operatorname{Seq}_{<\theta}(\mathcal{T})| \leq \kappa$. Let \mathcal{S} be a given partition of some nonreflecting stationary subset \mathbb{S} of E^{κ}_{λ} into stationary sets. Then, for every $S \in \mathcal{S}$, let $\langle S_{\sigma} | \sigma \in \operatorname{Seq}_{<\theta}(\mathcal{T}) \rangle$ be a partition of S into stationary sets.

Claim 3.3.1. The set $\Sigma := \{c_{\beta} \upharpoonright \Lambda \mid \beta < \kappa, \Lambda < \lambda\}$ has size $< \kappa$.

Proof. Suppose not. Since κ is a regular cardinal greater than λ , it follows that there exist $B \in [\kappa]^{\kappa}$ and $\Lambda < \lambda$ on which the map $\beta \mapsto c_{\beta} \upharpoonright \Lambda$ is injective. By possibly shrinking B further, we may also assume the existence of some $\epsilon < \lambda$ such that $c_{\beta}[\Lambda] \subseteq \epsilon$ for all $\beta \in B$. But then c cannot be strongly unbounded. Indeed, for every $t : \eta \to \lambda$, if $\eta < \Lambda$, then $\{c_{\beta}(\eta) \mid \beta \in B, t \subseteq c_{\beta}\} \subseteq \epsilon$, and if $\eta \in [\Lambda, \lambda)$, then $|\{c_{\beta}(\eta) \mid \beta \in B, t \subseteq c_{\beta}\}| \leq 1$.

Set $T^* := \{t \in \Sigma \mid |\{\beta < \kappa \mid t \subseteq c_\beta\}| = \kappa\}$. By Claim 3.3.1, $|T^*| < \kappa$, so we may fix a surjection $f : \kappa \to T^*$ with the property that for every $\epsilon < \kappa$, $\{f(\xi+1) \mid \epsilon < \xi < \epsilon + |T^*|\} = T^*$. By Claim 3.3.1, we may also fix a large enough ordinal $\varrho < \kappa$ such that $\bigcup \{\{\beta < \kappa \mid t \subseteq c_\beta\} \mid t \in \Sigma \setminus T^*\} \subseteq \varrho$.

Next, we turn to recursively define an injective matrix $\langle \beta_{\alpha,j} \mid \alpha < \kappa, j < \zeta(\alpha) \rangle$ of ordinals in κ , as follows. Suppose that $\alpha < \kappa$ and that $\langle \beta_{\bar{\alpha},\bar{j}} \mid \bar{\alpha} < \alpha, \bar{j} < \zeta(\bar{\alpha}) \rangle$ has already been defined.

▶ If $\{(S, \sigma) \in S \times \text{Seq}_{<\theta}(\mathcal{T}) \mid \alpha \in S_{\sigma}\}$ is nonempty, then it is a singleton, so let (S, σ) denote its unique element. Write $\sigma = \langle \mathbb{T}_j \mid j < \zeta \rangle$. Set $\zeta(\alpha) := \zeta$, and then, by recursion on $j < \zeta(\alpha)$, set

$$(\star) \qquad \beta_{\alpha,j} := \min([\mathbb{T}_j]_c \setminus (\varrho \cup \{\beta_{\bar{\alpha},\bar{j}}, \beta_{\alpha,j'} \mid \bar{\alpha} < \alpha, \bar{j} \le \zeta(\bar{\alpha}), j' < j\})).$$

▶ Otherwise, set $\zeta(\alpha) := 1$ and

$$(\star\star) \qquad \beta_{\alpha,0} := \min(\{\beta < \kappa \mid f(\alpha) \subseteq c_{\beta}\} \setminus (\varrho \cup \{\beta_{\bar{\alpha},\bar{j}} \mid \bar{\alpha} < \alpha, \bar{j} < \zeta(\bar{\alpha})\})).$$

Having constructed the above injective matrix of ordinals in κ , we derive a corresponding injective matrix $\vec{d} = \langle d_{\alpha,j} \mid \alpha < \kappa, j < \zeta(\alpha) \rangle$ by setting $d_{\alpha,j} := c_{\beta_{\alpha,j}}$.

For all $x \neq y$ in λ , denote $\Delta(x, y) := \min\{\eta < \lambda \mid x(\eta) \neq y(\eta)\}$. As λ is regular, for every $x \in \lambda$, we may attach a strictly increasing function $\hat{x} : \lambda \to \lambda$ satisfying $\hat{x}(\eta) \geq x(\eta)$ for all $\eta < \lambda$.

Next, as S is a nonreflecting stationary subset of E_{λ}^{κ} , by Fact 3.2, we may fix a coloring $e : [\kappa]^2 \to \lambda$ that is S-coherent and such that $\mathbb{S} \subseteq \partial(e)$.

Fix a surjection $\varsigma : \kappa \to \lambda$ such that $\partial(e) \cap \varsigma^{-1}{i}$ is stationary for every $i < \lambda$. Next, for every $\alpha < \kappa$ and $j < \zeta(\alpha)$, define a map $h_{\alpha,j} : \alpha \to \lambda$ via:

$$h_{\alpha,j}(\xi) := \varsigma(\min\{\gamma \in (\xi, \alpha] \mid \gamma = \alpha \text{ or } e(\gamma, \alpha) \le \Delta(d_{\xi,0}, d_{\alpha,j})\}).$$

For all $\alpha < \kappa$ and $i < \lambda$, let $A^i_{\alpha,*} := \bigcup_{j < \zeta(\alpha)} A^i_{\alpha,j}$, where for every $j < \zeta(\alpha)$:

$$A^{i}_{\alpha,j} := \{\xi < \alpha \mid h_{\alpha,j}(\xi) = i \& e(\xi, \alpha) \le d_{\alpha,j}(\Delta(d_{\xi,0}, d_{\alpha,j}))\}.$$

Claim 3.3.2. Suppose that $\alpha \in \partial(e)$, $\beta < \kappa$, $j < \zeta(\alpha)$, $j' < \zeta(\beta)$, and $i, i' < \lambda$. If $(\alpha, j) \neq (\beta, j')$. Then $\sup(A^i_{\alpha, j} \cap A^{j'}_{\beta, j'}) < \alpha$.

Proof. Suppose that $(\alpha, j) \neq (\beta, j')$, and then let $\eta := \Delta(d_{\alpha,j}, d_{\beta,j'})$. Towards a contradiction, suppose that $A^i_{\alpha,j} \cap A^{i'}_{\beta,j'}$ is cofinal in α . Set $\nu := \hat{d}_{\alpha,j}(\eta)$. As $\alpha \in \partial(e)$, the following set is cofinal in α :

$$Y := \{ \xi \in A^{i}_{\alpha,j} \cap A^{i'}_{\beta,j'} \mid e(\xi, \alpha) > \nu \}.$$

For every $\xi \in Y$, $\hat{d}_{\alpha,j}(\eta) = \nu < e(\xi, \alpha) \leq \hat{d}_{\alpha,j}(\Delta(d_{\xi,0}, d_{\alpha,j}))$, so since $\hat{d}_{\alpha,j}$ is strictly increasing, $\Delta(d_{\xi,0}, d_{\alpha,j}) > \eta = \Delta(d_{\alpha,j}, d_{\beta,j'})$, and hence $\Delta(d_{\xi,0}, d_{\beta,j'}) = \eta$. Set $\tau := \hat{d}_{\beta,j'}(\eta)$. As $Y \subseteq \alpha \cap A_{\beta,j'}^{i'}$, altogether $Y \subseteq \{\xi < \alpha \mid e(\xi, \beta) \leq \tau\}$. As $\alpha \in \partial(e)$, Y is bounded in α . This is a contradiction. \Box

Claim 3.3.3. Let $\alpha \in \mathbb{S}$ and $i \neq i'$ in λ . Then $\sup(A_{\alpha,*}^i \cap A_{\alpha,*}^{i'}) < \alpha$.

Proof. Suppose not. As $\zeta(\alpha) < \theta \leq \lambda = \operatorname{cf}(\alpha)$, there must exist $j, j' < \zeta(\alpha)$ such that $\sup(A^i_{\alpha,j} \cap A^{i'}_{\alpha,j'}) = \alpha$. As $\alpha \in \mathbb{S} \subseteq \partial(e)$, Claim 3.3.2 implies that j = j'. But it is evident that $A^i_{\alpha,j}$ and $A^{i'}_{\alpha,j}$ are disjoint.

For all $\alpha \in \mathbb{S}$ and $i < \lambda$, let

$$A^i_{\alpha} := A^i_{\alpha,*} \setminus \bigcup_{i' < i} A^{i'}_{\alpha,*}.$$

Clearly, $\langle A_{\alpha}^{i} | i < \lambda \rangle$ consists of pairwise disjoint subsets of α .

Claim 3.3.4. Let $(\alpha, \beta) \in [\mathbb{S}]^2$ and $i, i' < \lambda$. Then $\sup(A^i_{\alpha} \cap A^{i'}_{\beta}) < \alpha$.

Proof. Suppose not. In particular, $\sup(A^i_{\alpha,*} \cap A^{i'}_{\beta,*}) = \alpha$. However, $\zeta(\alpha), \zeta(\beta) < \theta \leq \lambda = \operatorname{cf}(\alpha)$, so there must exist $j < \zeta(\alpha)$ and $j' < \zeta(\beta)$ such that $\sup(A^i_{\alpha,j} \cap A^{i'}_{\beta,j'}) = \alpha$, contradicting Claim 3.3.2.

Now, we turn to inspect the guessing features of the matrix $\langle A^i_{\alpha} \mid \alpha \in \mathbb{S}, i < \lambda \rangle$.

Claim 3.3.5. Let $S \in S$, and let $\langle X_j | j < \zeta \rangle$ be any sequence of cofinal subsets of κ with $0 < \zeta < \theta$. Then $\{\alpha \in S | \forall i < \lambda \forall j < \zeta \sup(A^i_{\alpha} \cap X_j) = \alpha\}$ is stationary.

Proof. For all $j < \zeta$ and $t \in \Sigma$, denote $X_j^t := \{\xi \in X_j \mid t \subseteq d_{\xi,0}\}$. Set

$$T_j := \{t \in \Sigma \mid |X_j^t| = \kappa\}.$$

By Claim 3.3.1, $N_j := \bigcup \{X_j^t \mid t \in \Sigma \setminus T_j\}$ is the small union of sets of size $< \kappa$, so that $|X_j \setminus N_j| = \kappa$. For all $\xi \in X_j \setminus N_j$ and $\eta < \lambda$, $c_{\beta_{\xi,0}} \upharpoonright \eta = d_{\xi,0} \upharpoonright \eta \in T_j$, so that $[T_j]_c$ covers $\{\beta_{\xi,0} \mid \xi \in X_j \setminus N_j\}$, and hence $T_j \in \mathcal{T}_c$. Recalling that \mathcal{T} is dense in \mathcal{T}_c , we may now pick $\mathbb{T}_j \in \mathcal{T}$ with $\mathbb{T}_j \subseteq T_j$. In particular, $\sigma := \langle \mathbb{T}_j \mid j < \zeta \rangle$ is in $\operatorname{Seq}_{<\theta}(\mathcal{T})$, and S_{σ} is stationary.

Towards a contradiction, suppose that $\{\alpha \in S \mid \forall i < \lambda \forall j < \zeta \sup(A_{\alpha}^{i} \cap X_{j}) = \alpha\}$ is nonstationary. As S_{σ} is a stationary subset of S, we may fix $i < \lambda$ and $j < \zeta$ for which the following set is stationary:

$$S^0 := \{ \alpha \in S_\sigma \mid \sup(A^i_\alpha \cap X_j) < \alpha \}.$$

For every $\alpha \in S^0$, since $i < \lambda = cf(\alpha)$ and since $A^i_{\alpha} = A^i_{\alpha,*} \setminus \bigcup_{i' < i} A^{i'}_{\alpha,*}$, Claim 3.3.3 implies that $sup(A^i_{\alpha,*} \cap X_j) < \alpha$. In particular, $sup(A^i_{\alpha,j} \cap X_j) < \alpha$. So by Fodor's lemma, we may fix an $\epsilon < \kappa$ such that the following set is stationary:

$$S^1 := \{ \alpha \in S_\sigma \mid \sup(A^i_{\alpha,j} \cap X_j) = \epsilon < \alpha \}.$$

By the choice of the map ς , the set Γ of all $\gamma \in \partial(e) \cap \varsigma^{-1}\{i\}$ for which there exists an elementary submodel $M_{\gamma} \prec H_{\kappa^+}$ containing $\{\vec{d}, X_j, \Sigma\}$ and satisfying $\gamma = M_{\gamma} \cap \kappa$ is stationary. Fix $\delta \in \mathbb{S} \cap \operatorname{acc}^+(\Gamma \setminus \epsilon)$. As $\delta \in \mathbb{S}$ and e is S-coherent, we may fix $S^2 \in [S^1 \setminus \delta]^{\kappa}$ along with some $\varepsilon < \delta$ such that, for every $\alpha \in S^2$,

$$\{\xi < \delta \mid e(\xi, \alpha) \neq e(\xi, \delta)\} \subseteq \varepsilon$$

Pick $\gamma \in \Gamma \cap \delta$ above max{ ϵ, ε }, and then fix a model M_{γ} witnessing that $\gamma \in \Gamma$.

Put $\nu := e(\gamma, \delta)$. By Claim 3.3.1, we may find a cofinal subset of $S^3 \subseteq S^2$ on which the map $\alpha \mapsto d_{\alpha,j} \upharpoonright \nu$ is constant.

Next, as c is strongly unbounded and $\{\beta_{\alpha,j} \mid \alpha \in S^3\}$ is cofinal in κ , we may find an ordinal $\eta < \lambda$ and a map $t : \eta \to \lambda$ such that

$$\sup\{c_{\beta_{\alpha,j}}(\eta) \mid \alpha \in S^3, t \subseteq c_{\beta_{\alpha,j}}\} = \lambda.$$

Equivalently, for every $\tau < \lambda$, for some $\alpha \in S^3$, $d_{\alpha,j} \upharpoonright \eta = t$ and $d_{\alpha,j}(\eta) > \tau$. Clearly, $\eta \geq \nu$.

Pick for a moment $\alpha^* \in S^3$ such that $t \subseteq d_{\alpha^*,j}$. Since $\alpha^* \in S^3 \subseteq S_{\sigma}$, Equation (*) and the definition of σ implies that $\beta_{\alpha^*,j}$ is in $[\mathbb{T}_j]_c$. Recalling Definition 2.1, from $c_{\beta_{\alpha^*,j}} \upharpoonright \eta = d_{\alpha^*,j} \upharpoonright \eta = t$, we infer that $t \in \mathbb{T}_j$. As $\mathbb{T}_j \subseteq T_j$, this means that $|X_j^t| = \kappa$. It thus follows from $\{\vec{d}, X_j, \Sigma\} \in M_{\gamma}$ that $\sup(X_j^t \cap \gamma) = \gamma$. Now, as $\gamma \in \partial(e), G := \{\bar{\gamma} < \gamma \mid e(\bar{\gamma}, \delta) \leq \eta\}$ is bounded below γ . Altogether, we may find $\xi \in X_j^t \cap \gamma$ above $\max\{\epsilon, \varepsilon, \sup(G)\}$.

Set $\tau := \max\{e(\xi, \delta), d_{\xi,0}(\eta)\}$, and then pick $\alpha \in S^3$ such that $d_{\alpha,j} \upharpoonright \eta = t$ and $d_{\alpha,j}(\eta) > \tau$. As $d_{\alpha,j} \upharpoonright \eta = t = d_{\xi,0} \upharpoonright \eta$ and $d_{\alpha,j}(\eta) > d_{\xi,0}(\eta)$, we infer that $\Delta(d_{\xi,0}, d_{\alpha,j}) = \eta$. As $\varepsilon < \xi < \delta$, altogether,

$$\hat{d}_{\alpha,j}(\Delta(d_{\xi,0}, d_{\alpha,j})) = \hat{d}_{\alpha,j}(\eta) \ge d_{\alpha,j}(\eta) > \tau \ge e(\xi, \delta) = e(\xi, \alpha).$$

Next, from $\Delta(d_{\xi,0}, d_{\alpha,j}) = \eta$ and the fact that $\xi > \varepsilon$, we also infer that

$$h_{\alpha,j}(\xi) = \varsigma(\min\{\bar{\gamma} \in (\xi, \alpha] \mid \bar{\gamma} = \alpha \text{ or } e(\bar{\gamma}, \delta) \le \eta\}).$$

Since $e(\gamma, \delta) = \nu \leq \eta$ and $\varsigma(\gamma) = i$, it follows that if $h_{\alpha,j}(\xi) \neq i$, then there exists $\bar{\gamma} \in (\xi, \gamma)$ such that $e(\bar{\gamma}, \delta) \leq \eta$, contradicting the fact that $\xi > \sup(G)$. So, it is the case that $h_{\alpha,j}(\xi) = i$. Consequently, $\xi \in A^i_{\alpha,j}$.

Altogether, we established that ξ is an element of $A^i_{\alpha,j} \cap X_j$ above ϵ , contradicting the fact that $\alpha \in S^3 \subseteq S^1$.

The next claim implies that there exists a club $C \subseteq \kappa$ such that, for every $\alpha \in C$, for every $i < \lambda$, $\sup(A^i_{\alpha}) = \alpha$.

Claim 3.3.6. Let $S \subseteq \mathbb{S}$ be stationary. Then $\{\alpha \in S \mid \forall i < \lambda \sup(A^i_{\alpha} \cap S) = \alpha\}$ is stationary.

Proof. Suppose not, and fix $i < \lambda$ for which the following set is stationary:

$$S^0 := \{ \alpha \in S \mid \sup(A^i_\alpha \cap S) < \alpha \}.$$

It follows that there exists an $\epsilon < \kappa$ such that

$$S^1 := \{ \alpha \in S \mid \sup(A^i_{\alpha,0} \cap S) = \epsilon < \alpha \}.$$

Similarly to the proof of the previous claim, find ordinals $\varepsilon < \gamma < \delta$ and a set $S^2 \in [S^1 \setminus \delta]^{\kappa}$ such that:

- $\gamma, \delta \in \partial(e);$
- $\delta = M_{\delta} \cap \kappa$ for some elementary submodel $M_{\delta} \prec H_{\kappa^+}$ containing $\{\vec{d}, S, \Sigma\};$
- $\gamma = M_{\gamma} \cap \kappa$ for some elementary submodel $M_{\gamma} \prec H_{\kappa^+}$ containing $\{\vec{d}, S, \Sigma\};$
- for every $\alpha \in S^2$, $\{\xi < \delta \mid e(\xi, \alpha) \neq e(\xi, \delta)\} \subseteq \varepsilon$.

Put $\nu := e(\gamma, \delta)$. Then find a cofinal subset of $S^3 \subseteq S^2$ on which the map $\alpha \mapsto d_{\alpha,0} \upharpoonright \nu$ is constant. As $\{\beta_{\alpha,0} \mid \alpha \in S^3\}$ is cofinal in κ , the choice of the coloring c provides an ordinal $\eta < \lambda$ and a map $t : \eta \to \lambda$ such that, for every $\tau < \lambda$, for some $\alpha \in S^3$, $d_{\alpha,0} \upharpoonright \eta = t$ and $d_{\alpha,0}(\eta) > \tau$. The same analysis is true for any final segment of S^3 and hence, by Clause (1) and the pigeonhole principle, we may fix some $t : \eta \to \lambda$ such that, for every $\tau < \lambda$, for cofinally many $\alpha \in S^3$, $d_{\alpha,0} \upharpoonright \eta = t$ and $d_{\alpha,0}(\eta) > \tau$. Clearly, $\eta \ge \nu$.

As $\{\overline{d}, S, \Sigma\} \in M_{\delta}$ and $S^3 \cap M_{\delta} = \emptyset$, by elementarity, the set of $\xi \in S \cap M_{\delta}$ such that $d_{\xi,0} \upharpoonright \eta = t$ is cofinal in γ . As $\gamma \in \partial(e)$, $G := \{\overline{\gamma} < \gamma \mid e(\overline{\gamma}, \delta) \leq \eta\}$ is bounded below γ . So, we may find $\xi \in S \cap \gamma$ above $\max\{\epsilon, \varepsilon, \sup(G)\}$ such that $d_{\xi,0} \upharpoonright \eta = t$. Set $\tau := \max\{e(\xi, \delta), d_{\xi,0}(\eta)\}$, and then pick $\alpha \in S^3$ such that $d_{\alpha,0} \upharpoonright \eta = t$ and $d_{\alpha,0}(\eta) > \tau$. From this point on, a verification identical to that of Claim 3.3.5 shows that ξ is an element of $A^i_{\alpha,0} \cap S$ above ϵ , contradicting the fact that $\alpha \in S^3 \subseteq S^1$.

In summary, we have shown that there exists a club $C \subseteq \kappa$ such that:

- (a) For every $\alpha \in C$, for every $i < \lambda$, $\sup(A^i_\alpha) = \alpha$;
- (b) For every $S \in \mathcal{S}$, for every sequence $\langle X_j \mid j < \zeta \rangle$ of cofinal subsets of κ with $0 < \zeta < \theta$, the set $\{\alpha \in S \mid \forall i < \lambda \forall j < \zeta \sup(A_{\alpha}^i \cap X_j) = \alpha\}$ is stationary;
- $({\rm c}) \ \ {\rm For \ all} \ (\alpha,\beta)\in [\mathbb{S}]^2 \ {\rm and} \ i,i'<\lambda, \ {\rm sup}(A^i_\alpha\cap A^{i'}_\beta)<\alpha.$

Suppose now that either $\kappa = \lambda^+$ or $\lambda^{<\lambda} = \lambda$, and let us prove that $A_{AD}(S, \lambda, <\theta)$ holds. For this, it suffices to define for every $\alpha \in \mathbb{S} \setminus C$, a sequence $\langle a^i_{\alpha} \mid i < \lambda \rangle$ of pairwise disjoint cofinal subsets of α such that the amalgam of $\langle \langle a^i_{\alpha} \mid i < \lambda \rangle \mid \alpha \in \mathbb{S} \setminus C \rangle$ and $\langle \langle A^i_{\alpha} \mid i < \lambda \rangle \mid \alpha \in \mathbb{S} \cap C \rangle$ will form an almost-disjoint system. To this end, let $\alpha \in \mathbb{S} \setminus C$.

Claim 3.3.7. For every $\eta < \lambda$, $\sup\{\xi < \alpha \mid \Delta(d_{\xi,0}, d_{\alpha,0}) \ge \eta\} = \alpha$.

Proof. Let $\eta < \lambda$, $t := d_{\alpha,0} \upharpoonright \eta$ and $\epsilon < \alpha$; we need to find ξ with $\epsilon < \xi < \alpha$ such that $t \subseteq d_{\xi,0}$. Now, recall that by the construction of \vec{d} , $d_{\alpha,0} = c_{\beta}$ for some ordinal $\beta \in \kappa \setminus \varrho$. Consequently, $t = c_{\beta} \upharpoonright \eta \in T^*$. So since either $\kappa = \lambda^+$ or $\lambda^{<\lambda} = \lambda$, Claim 3.3.1 implies that $|T^*| \leq \lambda = cf(\alpha)$. Then, since the surjection fwas chosen to satisfy $\{f(\xi + 1) \mid \epsilon < \xi < \epsilon + |T^*|\} = T^*$, we may find some ξ with $\epsilon < \xi < \xi + 1 < \alpha$ such that $f(\xi + 1) = t$. As $\bigcup S \subseteq \mathbb{S}$, we get from Equation $(\star\star)$ that $d_{\xi+1,0} = c_{\beta_{\xi+1,0}} \supseteq t$, and hence $\Delta(d_{\xi+1,0}, d_{\alpha,0}) \geq \eta$.

Using the preceding claim, fix a strictly increasing sequence $\langle \xi_{\eta}^{\alpha} \mid \eta < \lambda \rangle$ of ordinals, converging to α , such that, for every $\eta < \lambda$, $\Delta(d_{\xi_{\alpha}^{\alpha},0}, d_{\alpha,0}) \geq \eta$. Then, let $\langle a_{\alpha}^{i} \mid i < \lambda \rangle$ be some partition of $\{\xi_{\eta}^{\alpha} \mid \eta < \lambda\}$ into λ many sets of size λ .

As each a^i_{α} has order-type λ , the verification of almost-disjointness of the merged systems boils down to verifying the following case.

Claim 3.3.8. Let $\alpha \in \mathbb{S} \setminus C$ and $\beta \in \mathbb{S} \cap C$ above α . Let $i, i' < \lambda$. Then $\sup(a_{\alpha}^{i} \cap A_{\beta}^{i'}) < \alpha$.

Proof. Suppose not. Fix $j' < \zeta(\beta)$ such that $a^i_{\alpha} \cap A^{i'}_{\beta,j'}$ is cofinal in α . Set $\eta := \Delta(d_{\alpha,0}, d_{\beta,j'})$. By the choice of a^i_{α} , $\{\xi \in a^i_{\alpha} \mid \Delta(d_{\xi,0}, d_{\alpha,0}) \leq \eta\}$ is bounded in α , and hence the following set is cofinal in α :

 $Y := \{ \xi \in a_{\alpha}^{i} \cap A_{\beta,j'}^{i'} \mid \Delta(d_{\xi,0}, d_{\alpha,0}) > \eta \}.$

For every $\xi \in Y$, $\Delta(d_{\xi,0}, d_{\alpha,0}) > \eta = \Delta(d_{\alpha,0}, d_{\beta,j'})$, and hence $\Delta(d_{\xi,0}, d_{\beta,j'}) = \eta$. Set $\tau := \hat{d}_{\beta,j'}(\eta)$. As $Y \subseteq \alpha \cap A_{\beta,j'}$, altogether $Y \subseteq \{\xi < \alpha \mid e(\xi, \beta) \le \tau\}$. As $\alpha \in \mathbb{S} \subseteq \partial(e)$, Y is bounded in α . This is a contradiction.

This completes the proof.

3.1. Variations. A second reading of the proof of Theorem 3.3 makes it clear that the conclusion remains valid even after relaxing Clause (3) in the hypothesis to $\operatorname{cov}(\operatorname{cf}(\mathcal{T}_c, \supseteq), \lambda, \theta, 2) \leq \kappa$. In the other direction, by waiving Clause (3) completely, the above proof yields the following:

Theorem 3.4. Suppose $\lambda < \kappa$ is a pair of infinite regular cardinals, and \mathbb{S} is a nonreflecting stationary subset of E_{λ}^{κ} .

If there exists a strongly unbounded coloring $c : \lambda \times \kappa \to \lambda$, then there exists a club $C \subseteq \kappa$ and a matrix $\langle A^i_{\alpha} | \alpha \in \mathbb{S} \cap C, i < \alpha \rangle$ such that:

- (1) For every $\alpha \in \mathbb{S} \cap C$, $\langle A^i_{\alpha} | i < \alpha \rangle$ is a sequence of pairwise disjoint cofinal subsets of α ;
- (2) For every stationary $S \subseteq S$, there are stationarily many $\alpha \in S \cap C$ such that $\sup(A^i_{\alpha} \cap S) = \alpha$ for all $i < \alpha$;
- (3) For all $(\alpha, \alpha') \in [\mathbb{S} \cap C]^2$, $i < \alpha$ and $i' < \alpha'$, $\sup(A^i_\alpha \cap A^{i'}_{\alpha'}) < \alpha$.

In the special case that $\kappa = \lambda^+$ or $\lambda^{<\lambda} = \lambda$, one can take C to be whole of κ . \Box

Let $A_{AD^*}(S, \mu, <\theta)$ denote the strengthening of $A_{AD}(S, \mu, <\theta)$ obtained by replacing Clause (3) of Definition 1.1 by:

(3*) For all $A \neq A'$ from $\bigcup_{S \in S} \bigcup_{\alpha \in S} \mathcal{A}_{\alpha}$, $|A \cap A'| < \operatorname{cf}(\sup(A))$.

In the special case that $\kappa = \lambda^+$, one can use in the proof of Theorem 3.3 a *locally* small coloring $e : [\kappa]^2 \to \lambda$ (such as the map ρ_1 from [Tod07, §6.2]), and then get:

Theorem 3.5. Suppose:

(1) λ is an infinite regular cardinal,

(2) there exists a tight strongly unbounded coloring $c : \lambda \times \lambda^+ \to \lambda$, and

(3) S is a partition of $E_{\lambda}^{\lambda^+}$ into stationary sets.

Then $A_{\mathrm{AD}^*}(\mathcal{S}, \lambda, <\lambda)$ holds.

4. Theorem B

In this section, we give two sufficient conditions for a strong form of \clubsuit_{AD} to hold. The strong form under discussion is a double strengthening of $A_{AD}(S, \mu, <\kappa)$, and it reads as follows.

Definition 4.1. Let \mathcal{S} be a collection of stationary subsets of a regular uncountable cardinal κ , and μ be a nonzero cardinal $< \kappa$. The principle $\clubsuit_{AD^*}(\mathcal{S},\mu,\kappa)$ asserts the existence of a sequence $\langle \mathcal{A}_{\alpha} \mid \alpha \in \bigcup \mathcal{S} \rangle$ such that:

- (1) For every $\alpha \in \operatorname{acc}(\kappa) \cap \bigcup S$, \mathcal{A}_{α} is a pairwise disjoint family of μ many cofinal subsets of α ;
- (2) For every sequence $\langle B_i \mid i < \kappa \rangle$ of cofinal subsets of κ , for every $S \in \mathcal{S}$, there are stationarily many $\alpha \in S$ such that, for all $A \in \mathcal{A}_{\alpha}$ and $i < \alpha$, $\sup(A \cap B_i) = \alpha;$
- (3) For all $A \neq A'$ from $\bigcup_{S \in S} \bigcup_{\alpha \in S} \mathcal{A}_{\alpha}$, $|A \cap A'| < \operatorname{cf}(\sup(A))$.

An inspection of the proof [CGW20, §3] yields the following useful fact:

Fact 4.2 ([CGW20]). For an infinite cardinal λ , the following are equivalent:

- (1) (λ^+) holds, i.e., there exists a sequence $\langle x_\beta \mid \beta < \lambda^+ \rangle$ of elements of $[\lambda^+]^{\lambda}$ such that, for every cofinal $X \subseteq \lambda^+$, there exists $\beta < \lambda^+$ such that $x_\beta \subseteq X$;
- (2) There exists a sequence $\langle x_{\beta} | \beta < \lambda^+ \rangle$ of elements of $[\lambda^+]^{\lambda}$ satisfying the following. For every sequence $\langle A_{\alpha} \mid \alpha < \lambda^+ \rangle$ of elements of $[\lambda^+]^{\leq \lambda}$ such that $|A_{\alpha} \cap A_{\beta}| < \lambda$ for all $\alpha < \beta < \lambda^+$, for every cofinal $X \subseteq \lambda^+$, there exists $\beta < \lambda^+$ such that $x_\beta \subseteq X$ and, for every $a \in [\lambda^+]^{\langle \operatorname{cf}(\lambda)}, |x_\beta \setminus \bigcup_{\alpha \in a} A_\alpha| = \lambda$.

Theorem 4.3. Suppose that (λ^+) holds for an infinite regular cardinal λ .

For every partition S of $E_{\lambda}^{\lambda^+}$ into stationary sets, $\clubsuit_{AD^*}(S, \lambda, \lambda^+)$ holds.

Proof. Let $\vec{x} = \langle x_{\beta} \mid \beta < \lambda^+ \rangle$ be given by Fact 4.2(2). Fix a bijection $\pi : \lambda \leftrightarrow \lambda \times \lambda$ and then let π_0, π_1 be the unique maps from λ to λ to satisfy $\pi(j) = (\pi_0(j), \pi_1(j))$ for all $j < \lambda$. For all nonzero $\alpha < \lambda^+$, fix a surjection $e_\alpha : \lambda \to \alpha$.

Define a sequence $\langle A_{\alpha} \mid \alpha < \lambda^+ \rangle$ by recursion on $\alpha < \lambda^+$, as follows. Set $A_{\alpha} := \emptyset$. Next, given a nonzero $\alpha < \lambda^+$ such that $\langle A_{\bar{\alpha}} \mid \bar{\alpha} < \alpha \rangle$ has already been defined, put

$$J_{\alpha} := \{ j < \lambda \mid |x_{e_{\alpha}(\pi_0(j))} \cap \alpha \setminus \bigcup \{ A_{e_{\alpha}(j')} \mid j' \leq j \} | = \lambda \}.$$

Then, pick an injective sequence $\langle \xi_{\alpha,j} \mid j \in J_{\alpha} \rangle$ such that, for each $j \in J_{\alpha}$,

$$\xi_{\alpha,j} \in x_{e_{\alpha}(\pi_0(j))} \cap \alpha \setminus \bigcup \{A_{e_{\alpha}(j')} \mid j' \leq j\}.$$

If $\{\xi_{\alpha,j} \mid j \in J_{\alpha} \& \pi_1(j) = i\}$ happens to be cofinal in α for every $i < \lambda$, then we say that α is *good*, and let

- $A^i_{\alpha} := \{\xi_{\alpha,j} \mid j \in J_{\alpha} \& \pi_1(j) = i\}$ for every $i < \lambda$, and $A_{\alpha} := \{\xi_{\alpha,j} \mid j \in J_{\alpha}\}.$

Otherwise, we just let A_{α} be any cofinal subset of α of order-type $cf(\alpha)$, and let $\langle A_{\alpha}^{i} | i < cf(\alpha) \rangle$ be any partition of A_{α} into cofinal subsets of α .

Claim 4.3.1. For all $\bar{\alpha} < \alpha < \lambda^+$, $|A_{\bar{\alpha}} \cap A_{\alpha}| < \lambda$.

Proof. If α is not good, then $\operatorname{otp}(A_{\alpha}) = \operatorname{cf}(\alpha) \leq \lambda$, and the conclusion follows. Next, suppose that α is good. Find $j' < \lambda$ such that $e_{\alpha}(j') = \bar{\alpha}$. Then $A_{\bar{\alpha}} \cap A_{\alpha} \subseteq \{\xi_{\alpha,j} \mid j \in J_{\alpha} \cap j'\}$

Next, given a cofinal $X \subseteq \lambda^+$, for every $\epsilon < \lambda^+$, by Claim 4.3.1 and the choice of \vec{x} , we may let β_{ϵ} denote the least $\beta < \lambda^+$ to satisfy both $x_{\beta} \subseteq X \setminus \epsilon$ and $|x_{\beta} \setminus \bigcup_{\alpha \in a} A_{\alpha}| = \lambda$ for every $a \in [\lambda^+]^{<\lambda}$.

Fix a set $E \in [\lambda^+]^{\lambda^+}$ on which the map $\epsilon \mapsto \beta_{\epsilon}$ is strictly increasing. Consider the club

 $D := \{ \delta \in \operatorname{acc}^+(E) \mid \forall \epsilon \in E \cap \delta \ (\beta_\epsilon \cup x_{\beta_\epsilon} \subseteq \delta) \}.$

Claim 4.3.2. Let $\delta \in D$. For every $i < \lambda$, $\sup(A^i_{\delta} \cap X) = \delta$.

Proof. Let $i < \lambda$ and let $\epsilon < \delta$. We shall show that there exists $j \in J_{\delta}$ such that $\xi_{\delta,j}$ is an element of $A^i_{\delta} \cap X \setminus \epsilon$.

Here we go. By possibly increasing ϵ , we may assume that $\epsilon \in E \cap \delta$. Set $k := e_{\delta}^{-1}(\beta_{\epsilon})$, and pick the unique $j < \lambda$ such that $\pi(j) = (k, i)$. Then

$$x_{e_{\delta}(\pi_{0}(j))} \cap \delta \setminus \bigcup \{A_{e_{\delta}(j')} \mid j' \leq j\} = x_{\beta_{\epsilon}} \setminus \bigcup_{\alpha \in a} A_{\alpha}$$

for the set $a := e_{\delta}[j+1]$ which is an element of $[\lambda^+]^{<\lambda}$. Consequently, $j \in J_{\delta}$, and since $\pi_1(j) = i, \xi_{\delta,j}$ is an element of $x_{\beta_{\epsilon}} \subseteq X \setminus \epsilon$ that lies in A^i_{δ} . \Box

It follows that for every partition \mathcal{S} of $E_{\lambda}^{\lambda^{+}}$ into stationary sets, $\langle \{A_{\delta}^{i} \mid i < \lambda\} \mid \delta \in E_{\lambda}^{\lambda^{+}} \rangle$ witnesses $A_{\mathrm{AD}^{*}}(\mathcal{S}, \lambda, \lambda^{+})$.

Lemma 4.4. Suppose that $A_{AD^*}(\{S\}, \mu, \lambda^+)$ holds for some stationary subset S of a successor cardinal λ^+ . Then $A_{AD^*}(S, \mu, \lambda^+)$ holds for some partition S of S into λ^+ many stationary sets.

Proof. Let $\langle \{A_{\alpha}^{i} \mid i < \mu\} \mid \alpha \in S \rangle$ be an array witnessing that $\clubsuit_{AD^{*}}(\{S\}, \mu, \lambda^{+})$ holds. Let \mathcal{I} denote the collection of all $T \subseteq S$ such that $\langle \{A_{\alpha}^{i} \mid i < \mu\} \mid \alpha \in T \rangle$ fails to witness that $\clubsuit_{AD^{*}}(\{T\}, \mu, \lambda^{+})$ holds. It is not hard to see that \mathcal{I} is a λ^{+} -complete proper ideal on S. By Ulam's theorem, then, \mathcal{I} is not weakly λ^{+} saturated, meaning that we may fix a partition S of S into λ^{+} -many \mathcal{I}^{+} -sets. Then $\langle \{A_{\alpha}^{i} \mid i < \mu\} \mid \alpha \in S \rangle$ witnesses that $\clubsuit_{AD^{*}}(S, \mu, \lambda^{+})$ holds. \Box

Definition 4.5 ([MHD04]). $\Diamond(\mathfrak{b})$ asserts that for every Borel map $F : {}^{<\omega_1}2 \to {}^{\omega}\omega$, there exists a function $g : \omega_1 \to {}^{\omega}\omega$ with the property that for every function $f : \omega_1 \to 2$, the set $\{\alpha < \omega_1 \mid F(f \upharpoonright \alpha) \leq^* g(\alpha)\}$ is stationary.

Corollary 4.6. Suppose that $\diamondsuit(\mathfrak{b})$ holds. Then:

- (1) $A_{AD^*}(S, 1, \omega_1)$ holds for some partition S of ω_1 into uncountably many stationary sets;
- (2) There exist 2^{\aleph_1} many pairwise nonhomeomorphic Dowker spaces of size \aleph_1 .

Proof. (1) By [MHD04, Theorem 5.5], $\Diamond(\mathfrak{b})$ implies that $\mathbf{A}_{AD^*}(\{\omega_1\}, 1, \omega_1)$ holds. Now, the conclusion follows from Lemma 4.4.

(2) By Clause (1) and Theorem A.1 below.

A. Appendix: Many Dowker spaces

In this section, κ denotes a regular uncountable cardinal. By [RS23, §3], if $\mathbf{A}_{AD}(\mathcal{S}, 1, 2)$ holds for a partition \mathcal{S} of some nonreflecting stationary subset of κ into infinitely many stationary sets, then there exists a Dowker space of size κ . Here, we demonstrate the advantage of \mathcal{S} being large.

Theorem A.1. Suppose that $A_{AD}(S, 1, 2)$ holds, where S is a partition of a nonreflecting stationary subset of κ into infinitely many stationary sets. Denote $\mu := |\mathcal{S}|$. Then there are 2^{μ} many pairwise nonhomeomorphic Dowker spaces of size κ .

Proof. Fix an injective enumeration $\langle S_n^{\zeta} | \zeta < \mu, n < \omega \rangle$ of the elements of \mathcal{S} . As $A_{AD}(S, 1, 2)$ holds, we may fix a sequence $\langle A_{\alpha} \mid \alpha \in \bigcup S \rangle$ such that:

- (i) For every $\alpha \in \bigcup S$, A_{α} is a subset of α , and for every $\alpha' \in \alpha \cap \bigcup S$, $\sup(A_{\alpha'} \cap A_{\alpha}) < \alpha';$
- (ii) For all $B_0, B_1 \in [\kappa]^{\kappa}$ and $(\zeta, n) \in \mu \times \omega$, the following set is stationary:

$$G(S_n^{\zeta}, B_0, B_1) := \{ \alpha \in S_n^{\zeta} \mid \sup(A_\alpha \cap B_0) = \sup(A_\alpha \cap B_1) = \alpha \}.$$

For every nonempty $Z \subseteq \mu$, we shall want to define a topological space \mathbb{X}^Z . To this end, fix a nonempty $Z \subseteq \mu$. For every $n < \omega$, let $S_{n+1}^Z := \biguplus_{\zeta \in Z} S_{n+1}^{\zeta}$, and then let $S_0^Z := \kappa \setminus \biguplus_{n < \omega} S_{n+1}^Z$. For every $\alpha < \kappa$, let $n^Z(\alpha)$ denote the unique $n < \omega$ such that $\alpha \in S_n^Z$. For each $n < \omega$, let $W_n^Z := \bigcup_{i \le n} S_i^Z$. Then, define a sequence $\vec{L^Z} = \langle L^Z_\alpha \mid \alpha < \kappa \rangle$ via:

$$L^{Z}_{\alpha} := \begin{cases} W^{Z}_{n^{Z}(\alpha)-1} \cap A_{\alpha}, & \text{if } n^{Z}(\alpha) > 0 \& \sup(W^{Z}_{n^{Z}(\alpha)-1} \cap A_{\alpha}) = \alpha; \\ \emptyset, & \text{otherwise.} \end{cases}$$

Denote $S^Z := \{ \alpha \in \operatorname{acc}(\kappa) \mid \sup(L^Z_\alpha) = \alpha \}$. Finally, let $\mathbb{X}^Z = (\kappa, \tau^Z)$ be the ladder-system space determined by $\vec{L^Z}$, that is, a subset $U \subseteq \kappa$ is τ^Z -open iff, for every $\alpha \in U \cap S^Z$, $\sup(L^Z_{\alpha} \setminus U) < \alpha$.

Claim A.1.1. Let Z and Z' be nonempty subsets of μ . Then:

- (1) For all $n < \omega$ and $\alpha \in S_{n+1}^Z$, $L_{\alpha}^Z \subseteq W_n^Z$; (2) If $Z \setminus Z'$ is nonempty, then $S^Z \setminus S^{Z'}$ is stationary; (3) For all $\alpha \neq \alpha'$ from S^Z , $\sup(L_{\alpha}^Z \cap L_{\alpha'}^Z) < \alpha$;
- (4) For all $B_0, B_1 \in [\kappa]^{\kappa}$, there exists $m < \omega$ such that, for every $n \in \omega \setminus m$, the following set is stationary:

$$\{\alpha \in S_n^Z \mid \sup(L_\alpha^Z \cap B_0) = \sup(L_\alpha^Z \cap B_1) = \alpha\};\$$

(5) S^Z is a nonreflecting stationary set.

Proof. (1) Clear.

(2) Suppose that $Z \setminus Z' \neq \emptyset$, and pick $\zeta \in Z \setminus Z'$. As $W_0^Z = S_0^Z \supseteq S_0^{\zeta}$, the former (2) SG_{F} is contract Z (2) SG_{F} (covers the stationary set $G(S_{1}^{\zeta}, W_{0}^{Z}, \kappa)$. (3) For all $\alpha \neq \alpha'$ from S^{Z} , $\sup(L_{\alpha}^{Z} \cap L_{\alpha'}^{Z}) \leq \sup(A_{\alpha} \cap A_{\alpha'}) < \alpha$.

(4) Pick $\zeta \in Z$. Given two cofinal subsets B_0, B_1 of κ , find $m_0, m_1 < \omega$ be such that $|B_0 \cap S_{m_0}^Z| = |B_1 \cap S_{m_1}^Z| = \kappa$. Set $m := \max\{m_0, m_1\} + 1$. Then, for every $n \in \omega \setminus m$,

$$G(S_n^{\zeta}, B_0 \cap S_{m_0}^Z, B_1 \cap S_{m_1}^Z) \subseteq \{ \alpha \in S_n^Z \mid \sup(L_{\alpha}^Z \cap B_0) = \sup(L_{\alpha}^Z \cap B_1) = \alpha \}$$

and hence the latter is stationary

and hence the latter is stationary.

(5) By Clause (4), S^Z is stationary. As $S^Z \subseteq \bigcup_{n \leq \omega} S^Z_{n+1} \subseteq \bigcup S$, and since $\bigcup S$ is a nonreflecting stationary set, so is S^Z .

By the preceding claim, and the results of [RS23, §3], for every nonempty $Z \subseteq \mu$, \mathbb{X}^Z is a Dowker space. Thus we are left with proving the following:

Claim A.1.2. Suppose that Z and Z' are two distinct nonempty subsets of μ . Then \mathbb{X}^{Z} and $\mathbb{X}^{Z'}$ are not homeomorphic.

Proof. Without loss of generality, we may pick $\zeta \in Z \setminus Z'$. Towards a contradiction, suppose that $f: \kappa \leftrightarrow \kappa$ forms an homeomorphism from \mathbb{X}^Z to $\mathbb{X}^{Z'}$. As f is a bijection, there are club many $\alpha < \kappa$ such that $f^{-1}[\alpha] = \alpha$. By Claim A.1.1(2), then, we may pick some $\alpha \in S^Z \setminus S^{Z'}$ such that $f^{-1}[\alpha] = \alpha$. Set $\beta := f(\alpha)$.

If β ∉ S^{Z'}, then U := {β} is a τ^{Z'}-open neighborhood of β.
If β ∈ S^{Z'}, then β > α + 1 and the ordinal interval U := [α + 1, β + 1] is a $\tau^{Z'}$ -open neighborhood of β .

In both cases, $U \subseteq \kappa \setminus \alpha$, so that $f^{-1}[U] \subseteq f^{-1}[\kappa \setminus \alpha] = \kappa \setminus \alpha$. As f is continuous and U is a $\tau^{Z'}$ -open neighborhood of $f(\alpha)$, $f^{-1}[U]$ must be a τ^{Z} -open neighborhood of α , contradicting the fact that $f^{-1}[U]$ is disjoint from L^{Z}_{α} .

This completes the proof.

ACKNOWLEDGMENTS

The first author is partially supported by the European Research Council (grant agreement ERC-2018-StG 802756) and by the Israel Science Foundation (grant agreement 203/22). The second author is supported by the European Research Council (grant agreement ERC-2018-StG 802756).

References

- [Bal96] Zoltan T. Balogh. A small Dowker space in ZFC. Proc. Amer. Math. Soc., 124(8):2555-2560, 1996.
- [CGW20] William Chen, Shimon Garti, and Thilo Weinert. Cardinal characteristics of the continuum and partitions. Israel J. Math., 235(1):13-38, 2020.
- James Cummings and Saharon Shelah. Cardinal invariants above the continuum. An-[CS95]nals of Pure and Applied Logic, 75:251-268, 1995. math.LO/9509228.
- Peter de Caux. A collectionwise normal weakly θ -refinable Dowker space which is neither [dC77]irreducible nor realcompact. In Topology Proceedings, Vol. I (Conf., Auburn Univ., Auburn, Ala., 1976), pages 67-77, 1977.
- [Dow51] C. H. Dowker. On countably paracompact spaces. Canadian J. Math., 3:219–224, 1951.
- Chris Good. Large cardinals and small Dowker spaces. Proc. Amer. Math. Soc., [Goo95] 123(1):263-272, 1995.
- Tanmay Inamdar and Assaf Rinot. Was Ulam right? II: Small width and general ideals. [IR22] http://assafrinot.com/paper/53, 2022. Submitted March 2022.
- [JKR76] I. Juhász, K. Kunen, and M. E. Rudin. Two more hereditarily separable non-Lindelöf spaces. Canad. J. Math., 28(5):998-1005, 1976.
- [KS98] Menachem Kojman and Saharon Shelah. A ZFC Dowker space in $\aleph_{\omega+1}$: an application of PCF theory to topology. Proc. Amer. Math. Soc., 126(8):2459-2465, 1998.
- [LHR23] Chris Lambie-Hanson and Assaf Rinot. Knaster and friends III: Subadditive colorings. J. Symbolic Logic, 2023. Accepted June 2022.
- Justin Tatch Moore, Michael Hrušák, and Mirna Džamonja. Parametrized \Diamond principles. [MHD04] Trans. Amer. Math. Soc., 356(6):2281-2306, 2004.
- [RS23] Assaf Rinot and Roy Shalev. A guessing principle from a Souslin tree, with applications to topology. Topology Appl., 323(C):Paper No. 108296, 29pp, 2023.

- [Rud74] Mary Ellen Rudin. Souslin trees and Dowker spaces. In Topics in topology (Proc. Collog., Keszthely, 1972), pages 557–562. Colloq. Math. Soc. János Bolyai, Vol. 8, 1974.
- [Rud90] Mary Ellen Rudin. Some conjectures. In Open problems in topology, pages 183–193. North-Holland, Amsterdam, 1990.
- [Rud72] Mary Ellen Rudin. A normal space X for which $X \times I$ is not normal. Fund. Math., 73(2):179–186, 1971/72.
- [She83] Saharon Shelah. Models with second order properties. IV. A general method and eliminating diamonds. *Annals of Pure and Applied Logic*, 25:183–212, 1983.
- [She00] Saharon Shelah. The generalized continuum hypothesis revisited. Israel Journal of Mathematics, 116:285–321, 2000.
- [She10] Saharon Shelah. Diamonds. Proceedings of the American Mathematical Society, 138:2151–2161, 2010. 0711.3030.
- [Sze94] Paul J. Szeptycki. A Dowker space from a Lusin set. Topology Appl., 58(2):173–179, 1994.
- [Tod89] Stevo Todorčević. Partition problems in topology, volume 84 of Contemporary Mathematics. American Mathematical Society, Providence, RI, 1989.
- [Tod07] Stevo Todorcevic. Walks on ordinals and their characteristics, volume 263 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2007.
- [Wei81] William Weiss. Small Dowker spaces. Pacific J. Math., 94(2):485–492, 1981.

DEPARTMENT OF MATHEMATICS, BAR-ILAN UNIVERSITY, RAMAT-GAN 5290002, ISRAEL. *URL*: http://www.assafrinot.com

Department of Mathematics, Bar-Ilan University, Ramat-Gan 5290002, Israel. URL: https://roy-shalev.github.io/

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO, CANADA, M5S 2E4. INSTITUT DE MATHÉMATIQUES DE JUSSIEU, UMR 7586, 2 pl. JUSSIEU, CASE 7012, 75251 PARIS CEDEX 05, FRANCE. MATHEMATICAL INSTITUTE SANU, KNEZA MIHAILA 36, 11001 BELGRADE, SERBIA.

Email address: stevo@math.toronto.edu Email address: stevo.todorcevic@imj-prg.fr Email address: stevo@mi.sanu.ac.rs