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MÁRK POÓR AND ASSAF RINOT

Abstract. In a paper from 1980, Shelah constructed an uncountable group all

of whose proper subgroups are countable. Assuming the continuum hypothesis,

he constructed an uncountable group G that moreover admits an integer n
satisfying that for every uncountable X ⊆ G, every element of G may be

written as a group word of length n in the elements of X. The former is called

a Jónsson group and the latter is called a Shelah group.
In this paper, we construct a Shelah group on the grounds of ZFC alone, that

is, without assuming the continuum hypothesis. More generally, we identify a

combinatorial condition (coming from the theories of negative square-bracket
partition relations and strongly unbounded subadditive maps) sufficient for

the construction of a Shelah group of size κ, and prove that the condition
holds true for all successors of regular cardinals (such as κ = ℵ1,ℵ2,ℵ3, . . .).
This also yields the first consistent example of a Shelah group of size a limit

cardinal.

1. Introduction

For a prime number p, the Prüfer p-group

{x ∈ C | ∃n ∈ N (xp
n

= 1)}
is an example of an infinite subgroup of (C, ·) all of whose proper subgroups are fi-
nite. In [Ols80], Ol’̌sanskĭı constructed finitely generated non-cyclic infinite groups
in which every nontrivial proper subgroup is a finite cyclic group (the Tarski mon-
sters). In [She80], answering a question of Kurosh, Shelah constructed an uncount-
able group in which every nontrivial proper subgroup is countable. All of those
are examples of so-called Jónsson groups, i.e., an infinite group G having no proper
subgroups of full size. An even more striking concept is that of a boundedly-Jónsson
group, that is, a group G admitting a positive integer n such that for every X ⊆ G
of full size, it is the case that Xn = G, i.e., every element of G may be written as a
group word of length exactly n in the elements of X. In [She80], Shelah constructed
a boundedly-Jónsson group of size ℵ1 with the aid of Continuum Hypothesis (CH).
More generally, Shelah proved that 2λ = λ+ yields a boundedly-Jónsson group of
size λ+. By now, the concept of boundedly-Jónsson groups is named after him:

Definition 1.1. A group G is n-Shelah if Xn = G for every X ⊆ G of full size.
A group is Shelah if it is n-Shelah for some positive integer n.

Along the years, variations of this concept were studied quite intensively, and
from various angles. A group G is said to be Cayley bounded with respect to a subset
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S ⊆ G if there exists a positive integer nS such that G =
⋃nS
i=1(S∪S−1)i, i.e., every

element of G may be written as a group word of length at most nS in the elements of
S and inverses of elements of S. Extending the work of Macpherson and Neumann
[MN90], Bergman proved [Ber06] that the permutation group Sym(Ω) of an infi-
nite set Ω is Cayley bounded with respect to all of its generating sets. Soon after,
the notion Bergman property was coined as the assertion of being Cayley bounded
with respect to all generating sets. Since then it has received a lot of attention,
see [DG05, DH05, Tol06a, Tol06b, RR07, DHU08, DT09, MMR09, BTV12, TZ12].
More recent examples include the work of Dowerk [Dow20] on von Neumann alge-
bras with unitary groups possessing the property of n-strong uncountable cofinality
(i.e., having a common Cayley bound n for all generating sets, and the group is
not the union of an infinite countable strictly increasing sequence of subgroups),
and Shelah’s work on locally finite groups [She20]. It is worth mentioning that the
notion of strong uncountable cofinality has also geometric reformulations, e.g, by
Cornulier [dC06], Pestov (see [Ros09, Theorem 1.2]) and Rosendal [Ros09, Propo-
sition 3.3].

Shelah’s 1980 construction from CH was of a 6640-Shelah group. It left open two
independent questions:1

(1) Can CH be used to construct an n-Shelah group for a small number of n?
(2) Is CH necessary for the construction of an n-Shelah group?

Recently, in [Ban22], Banakh addressed the first question, using CH to construct
a 36-Shelah group. Even more recently, Corson, Ol’̌sanskĭı and Varghese [COV23]
addressed the second question, constructing the first ZFC example of a Jónsson
group of size ℵ1 to have the Bergman property. Unfortunately, the new example
stops short from being Shelah, as every generating set S of this group has its own
nS . In this paper, an affirmative answer to the second question is finally given,
where a Shelah group of size ℵ1 is constructed within ZFC.

Theorem A. For every infinite regular cardinal λ, there exists a 10120-Shelah
group of size λ+. In particular, there exist Shelah groups of size ℵ1,ℵ2,ℵ3, . . ..

The proof of Theorem A reflects advances both in small cancellation theory and
in the study of infinite Ramsey theory. Towards it, we prove a far-reaching extension
of Hesse’s amalgamation lemma, and we obtain two maps, one coming from the
theory of negative square-bracket partition relations, the other coming from the
theory of strongly subadditive functions, and the two maps have the property that
they may be triggered simultaneously, making them ‘active’ over each other.

The connection to infinite Ramsey theory should not come as a surprise. First,
note that an n-Shelah group of size ℵ0 does not exist, since such a group would have
induced a coloring c : [N]n → k for a large enough integer k admitting no infinite
homogeneous set, in particular contradicting Ramsey’s theorem ℵ0 → (ℵ0)nk .2

1See https://mathoverflow.net/questions/313516/ for a MathOverflow discussion initiated by
Taras Banakh in October 2018. However, the second question was brought to the second author’s

attention in an email exchange with Ol’ga Sipacheva back in May 2006.
2For a (finite or infinite) cardinal λ, the Hungarian arrow notation λ → (λ)nk stands for the

assertion that for every set X of size λ, whenever the family [X]n of all n-sized subsets of X is

partitioned into k-many cells [X]n =
⊎k

i=1 Pi, then there exists a subset Y ⊆ X of full size all of

whose n-sized subsets belong to the same cell, i.e., [Y ]n ⊆ Pi for one of the i’s. Equivalently, for

every coloring c : [X]n → k, there exists a subset Y ⊆ X of full size that is c-homogeneous, i.e.,
c � [Y ]n is constant. For more details, see the proof of Corollary 5.24 below.
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A deeper connection to (additive) Ramsey theory is in the fact that the existence
of a Jónsson group of size κ is equivalent to a very strong failure of the higher analog
of Hindman’s finite sums theorem [Hin74]. Indeed, by [FR17, Corollary 2.8], if there
exists a Jónsson group of size κ, then for every Abelian group G of size κ, there
exists a map c : G → G such that for every X ⊆ G of full size, c � FS(X) is
surjective, i.e.,

{c(x1 + · · ·+ xn) | n ∈ N, {x1, . . . , xn} ∈ [X]n} = G.

Conversely, if G is an Abelian group of size κ admitting a map c : G→ G as above,
then the structure (G,+, c) is easily an example of a so-called Jónsson algebra
[Jón72] of size κ, which by Corson’s work [Cor22] implies the existence of a Jónsson
group of size κ.

The fact that the elimination of CH goes through advances in the theory of
partition calculus of uncountable cardinals should not come as a surprise, either.
To give just one example, we mention that three decades after Juhász and Hajnal
[HJ74] constructed an L-space with the aid of CH, Moore [Moo06] gave a ZFC
construction of an L-space by establishing a new unbalanced partition relation for
the first uncountable cardinal.

Having discussed Shelah groups of size ℵ0 and of size a successor cardinal, the
next question is whether it is possible to construct a Shelah group of size an un-
countable limit cardinal. To compare, a natural ingredient available for transfinite
constructions of length a successor cardinal κ = λ+ is the existence of λ-filtrations
of all ordinals less than κ. We overcome this obstruction at the level of a limit
cardinal κ by employing subadditive strongly unbounded maps e : [κ]2 → λ having
arbitrarily large gaps between λ and κ. This way, we obtain the first consistent
example of a Shelah group of size a limit cardinal. More generally:

Theorem B. For every regular uncountable cardinal κ satisfying the combinatorial
principle �(κ), there exists a Shelah group of size κ.

By a seminal work of Jensen [Jen72], in Gödel’s model of set theory known
as the constructible universe [Göd40], the combinatorial principle �(κ) holds for
every regular uncountable cardinal κ that is not weakly compact. As the reader
may anticipate, a cardinal κ is weakly compact if it is a regular uncountable cardinal
satisfying the higher analog of Ramsey’s theorem κ→ (κ)2

2 . Altogether, we arrive
at the following optimal result:

Theorem C. In Gödel’s constructible universe, for every regular uncountable car-
dinal κ, the following are equivalent:

• There exists a Shelah group of size κ;
• Ramsey’s partition relation κ→ (κ)2

2 fails.

We conclude the introduction by discussing additional features that the groups
constructed here possess. A group is said to be topologizable if it admits a nondis-
crete Hausdorff group topology; otherwise, it is nontopologizable. The first consis-
tent instance of a nontopologizable group was the group constructed by Shelah in
[She80] using CH. Shortly after, an uncountable ZFC example was given by Hesse
[Hes79]. Then a countable such group was given by Ol’̌sanskĭı [Ols12, Theorem 31.5]
(an account of his construction may be found in [Adi06, §13.4]). Ol’̌sanskĭı’s group
is periodic; a torsion-free example was given by Klyachko and Trofimov in [KT05].
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The Shelah group we construct in this paper is torsion-free and nontopologizable.
The latter follows combining the property of Shelah-ness together with the fact
that there will be a filtration of the group consisting of malnormal subgroups (see
Definition 3.3). Moreover, our group contains a nonalgebraic unconditionally closed
set, which can be shown by proving that small sets can be covered by a topologizable
subgroup, similarly to the argument by Sipacheva [Sip06, Lemmas 1 and A.4].

1.1. Can’t you do better than n = 10120? We believe a better n is achievable,
but that is not the focus of this paper. In this paper, we establish a two-dimensional
construction scheme for producing a group G of cardinality κ as a limit of a co-
herent system of subgroups 〈Gγ,i | γ < κ, i < θ〉, where Gγ+1,i+1 is obtained as a
particular amalgamation of the groups Gγ,i and Gγ,i+1 over Gγ+1,i. The number
n = 10120 comes from our amalgamation lemma, and so by plugging in alterna-
tive amalgamation lemmas to our construction scheme, we expect groups of various
characteristics may be produced, including n-Shelah groups with n < 10120.

1.2. Organization of this paper. In Section 2, we fix our notations and conven-
tions, and provide some necessary background from small cancellation theory.

In Section 3, we prove an amalgamation lemma that will serve as a building
block in our two-dimensional recursive construction of a Shelah group.

In Section 4, we provide set-theoretic sufficient conditions for the existence of
two types of maps to exist, and moreover be active over each other. The first
type comes from the classical theory of negative square-bracket partition relations
[EHR65, §18], and enables to eliminate the need for CH in the construction of a She-
lah group of size ℵ1. The second type comes from the theory of subadditive strongly
unbounded functions [LR23], and enables to push the construction to higher cardi-
nals including limit cardinals. At the level of successors of regulars, both of these
colorings are obtained in ZFC using the method of walks on ordinals [Tod07] that
did not exist at the time Shelah’s paper [She80] was written.

In Section 5, we provide a transfinite construction of a Shelah group guided by
the colorings given by Section 4, and using the amalgamation lemma of Section 3.

2. Preliminaries

2.1. Notations and conventions. Under ordinals we always mean von Neumann
ordinals, and for a set X the symbol |X| always refers to the smallest ordinal with
the same cardinality. For a set X the symbol P(X) denotes the power set of
X, while if θ is a cardinal we use the standard notation [X]θ for {Y ∈ P(X) |
|Y | = θ}, similarly for [X]<θ and [X]≤θ. We let Hθ denote the collection of all sets
of hereditary cardinality less than θ. A set D is a club in a cardinal κ iff D ⊆ κ
and for every ε < κ, sup(D ∩ ε) ∈ D ∪ {0} and D \ ε 6= ∅. For a function f and a
subset A ⊆ dom(f), we either write f [A] or f“A for {f(a) | a ∈ A}. By a sequence
we mean a function on an ordinal, where for a sequence s = 〈sα | α < dom(s)〉 the
length of s (in symbols `(s)) denotes dom(s). We denote the empty sequence by
〈〉. For a set X and an ordinal α we use αX = {s | `(s) = α, Im(s) ⊆ X}.

2.2. Small cancellation theory. The main algebraic tool we are going to use is
small cancellation theory. In this regard the paper is self-contained, but for more
details and proofs the interested reader can consult [LS77] and [She80, §1].
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Definition 2.1. Given groups H,K,L such that K∩L = H (as sets), in particular
H ≤ K,L, then one constructs the free amalgamation of K and L over H as

K ∗H L = FK∪L/N,

where FK∪L is the free group generated by the elements of K ∪ L, and

N = < EK ∪ EL >K∗HL,
i.e., N is the normal subgroup generated by EK ∪ EL, where for G ∈ {K,L},

EG = {g1g2g
−1
3 | g1, g2, g3 ∈ G, g1g2 = g3}.

We invoke basic results about the structure of groups of the form K ∗H L.

Definition 2.2. If g = g∗0g
∗
1 . . . g

∗
n−1 ∈ K ∗H L, where g∗i ∈ K ∪L, then we call the

sequence of g∗i ’s the canonical form of the group element of g, if

• either n = 1, or
• n > 1, and for each i < n

(1) g∗i /∈ H,
(2) i+ 1 < n → (g∗i ∈ K ⇐⇒ g∗i+1 ∈ L),

The canonical form is unique in the following sense.

Lemma 2.3. Suppose that g∗0g
∗
1 . . . g

∗
n−1 = g∗∗0 g∗∗1 . . . g∗∗m−1 ∈ K ∗H L are canonical

representations of the same element. Then n = m, and there exist h0, h1, h2, . . . , hn ∈
H with h0 = hn = 1l, and

(∀i < n)[g∗∗i = h−1
i g∗i hi+1].

Definition 2.4. Fix g ∈ K ∗H L distinct from 1l, and the canonical representation
g = g∗0g

∗
1 . . . g

∗
n−1. We say that g∗0g

∗
1 . . . g

∗
n−1 is weakly cyclically reduced if

• n = 1, or
• n is even, or
• g∗n−1g

∗
0 /∈ H, equivalently, g has no conjugate that has a canonical repre-

sentation shorter than n− 1.

Observation 2.5.

(1) If g∗0g
∗
1 . . . g

∗
n−1 is a canonical representation of an element g 6= 1l, n ≥ 2,

then g has a conjugate g′ that has a canonical representation of length
m = 1, or m = 2k for some k ≥ 1. Moreover, each conjugate g′′ of g has
length at least m.

(2) If g∗0g
∗
1 . . . g

∗
n−1 is a canonical representation of an element g 6= 1l, n is even,

and g′ is a weakly cyclically reduced conjugate of g, then g′ has a canonical
representation in the following form:

g′ = x′ig
∗
i+1g

∗
i+2 . . . g

∗
n−1g

∗
0 . . . g

∗
i−1x

′′
i ,

where:
• for all g∗i ∈ K, x′i, x

′′
i ∈ K and K |= x′′i x

′
i = g∗i ,

• for all g∗i ∈ L, x′i, x
′′
i ∈ L and L |= x′′i x

′
i = g∗i .

In particular, the length of any canonical representation of g′ is either n or
n+ 1.

Recalling Lemma 2.3 it is not difficult to see that this is a property of the
element of K ∗H L, i.e., it does not depend on the particular choice of the canonical
representation g∗0g

∗
1 . . . g

∗
n−1.
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Definition 2.6. Let H ≤ K,L be groups such that L∩K = H, and fix R ⊆ K∗HL.
We say that R is symmetrized if for every g ∈ R:

(1) g−1 ∈ R, and
(2) for each g′ that is conjugate to g and weakly cyclically reduced, g′ ∈ R.

Definition 2.7. Let X ⊆ K ∗H L, and χ ∈ (0, 1). We say that X satisfies C ′(χ),
if whenever

(1) g∗n−1g
∗
n−2 . . . g

∗
0 , g
∗∗
0 g∗∗1 . . . g∗∗m−1 ∈ X,

(2) g∗n−1g
∗
n−2 . . . g

∗
1g
∗
0 · g∗∗0 g∗∗1 . . . g∗∗m−1 6= 1l,

(3) ` < n,m, and
(4) g∗`−1g

∗
`−2 . . . g

∗
0g
∗∗
0 g∗∗1 . . . g∗∗`−1 ∈ H,

then ` < min(n,m) · χ.

Definition 2.8. Let H,K,L be as in Definition 2.1, and let g ∈ K ∗H L. We say
that the word w0w1 . . . wm−1 is a part of g, if

(1) w0w1 . . . wm−1 ∈ K ∗H L is in canonical form,
(2) for some weakly cyclically reduced conjugate g′ of g, the word 〈w0, w1, . . . , wm−1〉

is a subword of a canonical representation of g′ (i.e., for some canonical
representation v0v1 . . . vn−1 of g′ and some k ≤ n −m, we have vk = w0,
vk+1 = w1, . . . , vk+m−2 = wm−2, vk+m−1 = wm−1.)

We cite the following lemma, which is our key technical tool borrowed from small
cancellation theory.

Lemma 2.9. Let H ≤ K,L be groups, K∩L = H, k a positive integer, and assume
that R ⊆ K ∗H L is symmetrized and satisfies C ′( 1

k ).

Then, letting N = < R >K∗HL be the normal subgroup generated by R, for every
weakly cyclically reduced w ∈ N , there exist r ∈ R and a part p of r, which is also
a part of w, and `(p) > k−3

k `(r).

Corollary 2.10. If H,K,L,R are as in Lemma 2.9, then for the canonical projec-
tion map π : K ∗H L→ (K ∗H L)/N , it is the case that π �K and π �L are injective,
and π“K ∩ π“L = π“H (where K,L are identified with the subgroups of K ∗H L).

3. Finding the right amalgam

The main result of this section is Lemma 3.4 below. It originates to the lemma
by G. Hesse appearing in the Appendix of [She80]. The lemma will serve as a
building block in the recursive construction of Section 5.

Definition 3.1. Let %(x, y) denote the word xyx2yx3y . . . x80y.

Note that `(%(x, y)) = 3320.

Definition 3.2. For all j < ω and x, y, we shall define a word %j(x, y) over the
alphabet {x, y}. First, define a sequence 〈nj | j < ω〉 of integers via nj = 3320j .
Then, let %j(x, y) = %(xnj , ynj ), so that %0 = %.

Definition 3.3. Let G ≤ H be a pair of groups.

• Define an equivalence relation ∼G over H via

a ∼G b iff a ∈ Gb±1G.

• We say that G is a malnormal subgroup of H, and denote it by G ≤m H,
if for all g ∈ G \ {1l} and h ∈ H \G, it is the case that h−1gh /∈ G.
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Note that ≤m is a transitive relation.

Lemma 3.4. Let H ≤ K, H ≤m L be groups, K ∩L = H and suppose that we are
given a system of quadruples

S = {(hσ, aσ, bσ, b′σ) | σ ∈ Σ} ⊆ H × (K \H)× (L \H)× (L \H)

that satisfies the following two:

(1) for every σ ∈ Σ, bσ 6∼H b′σ;
(2) for all σ 6= σ∗ in Σ, at least one of the following holds:

(�)a aσ 6∼H aσ∗ (in K);
(�)b bσ 6∼H bσ∗ ;
(�)c bσ = bσ∗ and aσ 6= aσ∗ ;
(�)d there are subgroups Hσ ≤ H and Kσ ≤ K such that all of the following

hold:
(i) Kσ ∩H = Hσ;

(ii) aσ, aσ∗ ∈ Kσ \H = Kσ \Hσ;
(iii) bσ 6∼Hσ bσ∗ (although typically bσ ∼H bσ∗);
(iv) bσ 6∼H b′σ∗ ;
(v) (Kσ \H) · (H \Kσ) · (Kσ \H) ⊆ (K \H).

Then, letting R be the symmetric closure of {h−1
σ %(bσaσ, b

′
σaσ) | σ ∈ Σ}, M =

K ∗H L, N = RM the generated normal subgroup and M∗ = M/N , all of the
following hold:

(A) R satisfies the condition C ′( 1
10), consequently, the group M∗ embeds both

K and L with
M∗ |= K ∩ L = H

and K∪L generates M∗. Moreover, the set R+ defined to be the symmetric
closure of

{h−1
σ %(bσaσ, b

′
σaσ), %j(bσaσ, b

′
σaσ) | σ ∈ Σ, j ∈ ω \ {0}}

also satisfies C ′( 1
10);

(B) K ≤m M∗, and if H ≤m K, then L ≤m M∗;
(C) for all b, b∗ ∈ L \H and z ∈ K \H, if b ∼H b∗, then M∗ |= b∗z 6∼K bzbz;
(D) if b, b′ ∈ L \ H, a ∈ K \ H, then M∗ |= bab′ /∈ K, ba /∈ K (and similarly

the parallel statement with with interchanging K and L);
(E) if a 6∼H′ a′, and L′ ≤ L is such that L′ ∩K = L′ ∩H = H ′, then a 6∼L′ a′

holds too (in M∗);
(F ) similarly, if b 6∼H′ b′ for a subgroup H ′ ≤ H, and K ′ ≤ K is such that

K ′ ∩ L = K ′ ∩H = H ′, then b 6∼K′ b′ holds (in M∗);
(G) If K and L are torsion-free, then so is M∗.

Proof. First we note that for all a ∈ K \H, b, b′ ∈ L \H, the word %(ba, b′a) is an
alternating word (over the union of K \H and L \H) of length 6640.

(A) By Corollary 2.10 (and R ⊆ R+), it is enough to argue that R+ satisfies
C ′( 1

10 ). To this end, fix two elements g 6= g∗ in R+, as well as some
canonical representations

g = g0g1 · · · gn−1,
g∗ = g∗0g

∗
1 · · · g∗m−1.

By Clause (2) of Observation 2.5, there are i, i∗ ∈ ω such that n ∈ {6640ni, 6641ni+
1}, m ∈ {6640ni∗ , 6641ni∗ + 1}.
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Let l ∈ ω, and assume that

(?)
∧
k≤l

(K ∗H L |= g−1
k−1g

−1
k · · · g

−1
0 g∗0g

∗
1 · · · g∗k−1 ∈ H),

so we have to show that l ≤ 664 ·min(ni, ni∗).
Assume on the contrary that l > 664 ·ni. We can choose σ, σ∗ ∈ Σ, such

that g is a weakly cyclically reduced conjugate of r = (h−1
σ %ni(bσaσ, b

′
σaσ))ε

if ni = 0, or of r = (%ni(bσaσ, b
′
σaσ))ε (for some ε ∈ {1,−1}) and similarly

for g∗, r∗ and σ∗, ε∗. If we fix the canonical representations

r = u0u1 · · ·u6640ni−1,

where uj ∈ {bσ, b′σ, aσ, h−1
σ bσ}, and similarly

r∗ = u∗0u
∗
1 · · ·u∗6640ni∗−1,

then again recalling Observation 2.5(2), we can assume that there exist
j < 6640ni, j

∗ < 6640ni∗ , such that whenever 0 < k ≤ 6640ni, then
gk = uεj+εk and if 0 < k ≤ 6640ni∗ , then g∗k = uε

∗

j∗+ε∗k.
We firstly observe that i = i∗, since otherwise if, say, i < i∗ did hold,

then for some 1 ≤ k, k′ ≤ 81ni with uj+εk = bεσ, uj+εk′ = (b′σ)ε, while

u∗j+εk = u∗j+εk′ ∈ {bε
∗

σ∗ , (b
′
σ∗)

ε∗}, and so by (?) we get

bεσ = uj+εk ∼H u∗j+εk = u∗j+εk′ ∼H uj+εk′ = (b′σ)ε,

contradicting bσ 6∼H b′σ. From now on n will denote the common value of
ni = ni∗ .

Now note that bσ ∼H b∗σ: there is a k with 1 ≤ k ≤ 10n such that
uj+εk ∈ {bεσ, (h−1

i bσ)ε}, and u∗j∗+ε∗k ∈ {bε
∗

σ∗ , (h
−1
σ∗ bσ∗)

ε∗}, so by (?) for

some h ∈ H we have b−εi hbε
∗

σ∗ ∈ H, implying that bσ ∼H bσ∗ . Similarly, for

some k•, 1 ≤ k• ≤ 2n, uj+εk• = aεσ, and u∗j∗+ε∗k• = aε
∗

σ∗ , and by the same
line of reasoning aσ ∼H aσ∗ .

We clearly get that
(�) either (�)c, or (�)d, or σ = σ∗ holds, and in each case bσ 6∼H b′σ∗ .

Now, note that if j 6= j∗ or ε 6= ε∗, then there exists k with 1 ≤ k < 500n
such that uj+εk ∈ {bεσ, (h−1

σ bσ)ε}, and u∗j∗+ε∗k = (b′σ∗)
ε∗ = (b′σ)ε

∗
, and for

some h ∈ H we have b−εσ h(b′σ∗)
ε∗ ∈ H (or (h−1

σ bσ)−εh(b′σ∗)
ε∗), so bσ ∼H

b′σ∗ , contradicting (�). Therefore hereafter we can assume that j = j∗ and
ε = ε∗.

We now divide our analysis into a few cases and subcases:
I If either (�)c or σ = σ∗, then necessarily bσ = bσ∗ and b′σ = b′σ∗ . But

now for some k with 1 ≤ k ≤ 10n, gk = g∗k = bσ, so for

h = g−1
k−1g

−1
k−2 · · · g

−1
0 g∗0g

∗
1 . . . g

∗
k−1 ∈ H

we have

gkhg
−1
k ∈ H,

but then H ≤m L together with bσ ∈ L \H imply that h = 1l.
II If σ = σ∗, then invoking Observation 2.5(2) again (and recalling

that g and g∗ are cyclically reduced conjugates of h−1
σ %(bσaσ, b

′
σaσ)),

it is straightforward to check that j = j∗ and ε = ε∗ imply
g = g∗, which is a contradiction.
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II If σ 6= σ∗ and aσ 6= aσ∗ , then gkhg
−1
k = 1l implies that

gk+1(gkhg
−1
k )(g∗k+1)−1 = aia

−1
σ′ 6= 1l,

and in the following step (conjugating by bσ = bσ′ again) we get
a contradiction.

I If the pair σ, σ∗ satisfies condition (�)d, then we argue as follows.
First we claim that the there exists a k with 1 ≤ k < 10n + 2 such
that following three hold:
(�)1 gk = uj+εk = aεσ,
(�)2 g∗k = u∗j+εk = aεσ∗ ,

(�)3 h = g−1
k−1g

−1
k−2 · · · g

−1
0 g∗0g

∗
1 · · · g∗k−1 ∈ H \K ′ = H \H ′.

As before, for some k• < 10n we have uj+εk• = aεσ, and u∗j+εk• = aεσ∗ ,
uj+ε(k•+1) = bεσ, and u∗j+ε(k•+1) = bεσ∗ . Suppose that

h = g−1
k•−1g

−1
k•−2 · · · g

−1
0 g∗0g

∗
1 · · · g∗k•−1 ∈ H ′.

Then h′ = a−εσ haεσ∗ ∈ K ′H ′K ′ = K ′, and by our indirect assumptions
a−εσhaεσ ∈ H, so h′ lies in the intersection K ′ ∩H = H ′. Now

u−εj+ε(k•+1)h
′uεj+ε(k•+1) = b−εσ h′bεσ∗ ∈ b−εσ H ′bεσ∗ ,

so by (�)d (iii) this product is not in H ′, thus we can assume that
some k < 10n+ 2 satisfies (�)1–(�)3.
But then using aσ, aσ∗ ∈ K ′ \H ′,

g−1
k g−1

k · · · g
−1
0 g∗0g

∗
1 · · · g∗k

= a−εσ haεσ∗ ∈ (K ′\H)·(H\H ′)·(K ′\H) ⊆ K\H.

This is a contradiction.
(B) Fix g, g′ ∈ K \ {1l} ⊆ M∗, and z ∈ M∗ \ K, with a canonical form z =

z0z1 · · · zm−1 satisfying it does not contain any subsequence zσ0zσ0+1 . . . zσ0+j−1

that is a subsequence of a canonical form of an element r ∈ R, where
j > 6640

2 + 1 (we can assume this, since otherwise we could insert the entire
sequence of the inverse of this fixed canonical form of r). Now suppose that
zgz−1g′ = 1l holds in M∗, i.e.,

M |= zgz−1g′ ∈ N.

W.l.o.g. z0, zm−1 ∈ L (thus m is odd), since otherwise we can replace g
with zm−1gz

−1
m−1 ∈ K \ {1l}, and g′ with z−1

0 g′z0 ∈ K \ {1l}. This means

that the product z0z1 · · · zm−1gz
−1
m−1 · · · z

−1
0 g′ is in a weakly cyclically re-

duced form, so a cyclic conjugation contains a long (> 7/10) subword of
some canonical form of an r ∈ R. By our assumptions on z (not contain-
ing more than half of a canonical representation of r) this has to involve
either g or g′, in fact either the word zjzj+1 . . . zm−1gz

−1
m−1z

−1
m−2 . . . z

−1
j or

z−1
j∗
z−1
j∗−1 . . . z

−1
0 g′z0z1 . . . zj∗ contains a long (> 2/10 fraction) subword of

a canonical form of some r ∈ R. But this is impossible since in any r =
r0r1 . . . rn−1 ∈ R (n ∈ {6640, 6641}) at any fixed t ∈ [ 6640

10 , 6640·9
10 ] there ex-

ists k < 250 such that (for some σ ∈ Σ) rt−k ∈ Hb±1
σ H, rt+k ∈ H(b′σ)±1H,

and so rt−k 6∼H rt+k, while zk, z−1
k are clearly ∼H -related.
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(C) Suppose otherwise, e.g. for some k, k′ ∈ K either

y = (b∗z)k(z−1b−1z−1b−1)k′ = 1l in M∗,

or
y = (b∗z)k(bzbz)k′ = 1l .

Observe that after performing the cancellations in the free amalgam M
and writing y = y0y1 . . . ym−1 as a reduced (alternating) word, in both
cases (regardless of whether k, k′ ∈ H) there is at most one j for which
yj ∈ L\H and yj 6∼H b. Now possibly replacing y0y1 · · · ym−1 with a weakly
cyclically reduced conjugate of it (if the reduced form of y0y1 · · · ym−1 is
not weakly cyclically reduced) this clause remains true (and the resulting
word similarly belongs to N in M). It is not difficult to see, that there
exists at least one j′ such that yj′ ∼H b. Again, y0y1 · · · ym−1 (or a cyclical
permutation of it) contains a long subword of a canonical form of some
r ∈ R, but any such subword (if longer than 400) contains at least two-two
occurrences of bσ and b′σ (for some σ ∈ Σ), and b cannot be ∼H -equivalent
with both bσ and b′σ (since bσ 6∼H b′σ).

(D) This is the same as above. Assuming that M∗ |= bab′ ∈ K, then for some
a′ ∈ K, M∗ |= bab′a′ = 1l, so

M |= bab′a′ ∈ N.
Now if a′ ∈ K ′ \ H, then the word bab′a′ is weakly cyclically reduced, so
any weakly cyclically reduced conjugate to it is of length either 4 or 5, and
clearly cannot contain a long subword of any r ∈ R.

If a′ ∈ H, then depending on whether b′′ = b′a′b ∈ H, we have that
either b−1(bab′a′)b = ah ∈ K \ H is weakly cyclically reduced (so M |=
bab′a′ /∈ b−1Nb), or b−1bab′a′b = ab′a′b = ab′′ (where b′′ /∈ H), which is
weakly cyclically reduced, and similarly cannot lie in N .

Let a, a′ ∈ K \H be such that a 6∼H′ a′, and fix l, l′ ∈ L′. Suppose that
M∗ |= ala′l′ = 1l, that is,

M |= w = ala′l′ ∈ N.
We can write w as a reduced word. If l ∈ H, then l ∈ H ′, and since a 6∼H′ a′
we have ala′ ∈ K \H, so either w = (ala′)l′ is a product of an element of
K \ H and L \ H (if l′ /∈ H), or (ala′)l′ ∈ (K \ H) · H = K \ H, we are
done.

So w.l.o.g. l /∈ H. (Similarly, M∗ |= a′l′al = 1l implies that w.l.o.g. l′ /∈
H). So any weakly cyclically reduced conjugate of w ∈ M has length at
most 5, and contains at least 2 entries from K \ H. But w ∈ N implies
that some weakly cyclically reduced conjugate contains a long subword of
some r ∈ R, which is clearly impossible.

(E) The proof of (E) works here too.
(F ) Let g ∈ M∗, n ∈ ω, n > 1 be such that g 6= 1l, M∗ |= gn = 1l. Recalling

Observation 2.5, we can write g as an alternating product of elements of
K \H and L \H

g = g0g1 · · · g2m−1.

W.l.o.g. there exists no conjugate ygy−1 of g, and g′ with g′(ygy−1)−1 ∈ N
such that g′ has a shorter canonical representation than 2m, since we can
replace g with g′ and get a torsion element. Therefore there is no r ∈ R,
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σ0 < 2m with the sequence gσ0
gσ0+1 . . . g2m−1g0g1 . . . gσ0−1 containing a

subsequence of a canonical representation of r of length j > 6640
2 + 1.

Now, since

M |= (g0g1 · · · g2m−1)n ∈ N,
there exists a cyclic conjugate of (g0g1 · · · g2m−1)n and a subsequence s0s1 . . . sj
of it that is also a subsequence of a canonical form of some s ∈ R with
j ≥ 7

10 · 6640. Our assumptions above on g0g1 · · · g2m−1 easily implies

2m ≤ 6640

2
+ 1,

thus

2m+
2

10
· 6640− 1 ≤ j,

clearly 2m+ 330 ≤ j. This way we get that s` ∼H s`+2m for each ` ≤ 330,
but as s is a cyclically reduced conjugate of h−1

σ %(bσaσ, b
′
σaσ) or of its inverse

(for some σ ∈ Σ), we get that for some ` ∈ [1, 330] s` ∈ Hb±1
σ H, s`+2m ∈

H(b′σ)±1H, thus s` 6∼H s`+2m. This is a contradiction. �Lemma 3.4

4. A set-theoretic interlude

In this section, χ, θ, µ, λ and κ all denote nonzero cardinals. Recall that [κ]2

stands for the collection of all unordered pairs {α, β} of ordinals in κ, but here we
identify it with the collection of all ordered pairs (α, β) with α < β.

Definition 4.1. A map d : [κ]2 → θ is subadditive if the following inequalities hold
for all α < β < γ < κ:

(1) d(α, γ) ≤ max{d(α, β), d(β, γ)};
(2) d(α, β) ≤ max{d(α, γ), d(β, γ)}.

Notation 4.2. Whenever the map d : [κ]2 → θ is clear from the context, we define
for all γ < κ and i ≤ θ, the following sets:

• Dγ
<i = {β < γ | d(β, γ) < i}, and

• Dγ
≤i = {β < γ | d(β, γ) ≤ i}.

Lemma 4.3. If d : [κ]2 → θ is subadditive, then for all γ < κ, i ≤ θ, and β ∈ Dγ
<i,

it is the case that Dγ
<i ∩ β = Dβ

<i.

Proof. Suppose that d : [κ]2 → θ is subadditive, and let γ, i and β be as above.

I By Definition 4.1(1), for every α ∈ Dβ
<i, d(α, γ) ≤ max{d(α, β), d(β, γ)}, so,

since α ∈ Dβ
<i and β ∈ Dγ

<i, we infer that d(α, γ) < i and α ∈ Dγ
<i ∩ β.

I By Definition 4.1(2), for every α ∈ Dγ
<i ∩ β, d(α, β) ≤ max{d(α, γ), d(β, γ)},

so, since α, β ∈ Dγ
<i, we infer that d(α, β) < i and α ∈ Dβ

<i. �

Theorem 4.4. Suppose that λ is an infinite regular cardinal. Then there exist two
maps c : [λ+]2 → λ+ and d : [λ+]2 → λ such that:

• d is subadditive;

• for every A ∈ [λ+]λ
+

, there exists a club D ⊆ λ+ such that for every δ ∈ D,
for every β ∈ λ+ \ δ, for every ξ < δ, for every i < λ, there are cofinally
many α < δ such that α ∈ A, c(α, β) = ξ and d(α, β) > i.



12 MÁRK POÓR AND ASSAF RINOT

Proof. Let d be the function ρ : [λ+]2 → λ defined in [Tod07, §9.1]. By [Tod07,
Lemma 9.1.1], d is subadditive. By [Tod07, Lemma 9.1.2], d is also locally small,
i.e., |Dγ

≤i| < λ for all γ < λ+ and i < λ.

Next, by [RT13], we may fix a coloring c : [λ+]2 → λ+ witnessing λ+ 9
[λ+;λ+]2λ+ . By [IR22, Lemma 3.16], this means that for every A ∈ [λ+]λ

+

, there
exists an ε < λ+ such that, for all β ∈ λ+ \ ε and ξ < ε, there exists α ∈ A∩ ε such
that c(α, β) = ξ.

We now verify that c and d are as sought.

Claim 4.4.1. Let A ∈ [λ+]λ
+

. Then there exists a club D ⊆ λ+ such that for every
δ ∈ D, for every β ∈ λ+ \ δ, for every ξ < δ, for every i < λ, there are cofinally
many α < δ such that α ∈ A, c(α, β) = ξ and d(α, β) > i.

Proof. Let 〈Mγ | γ < λ+〉 be a sequence of elementary submodels of Hλ++ , each of
size λ, such that {A, e} ∈ M0, such that Mγ ∈ Mγ+1 for every γ < λ+, and such
that Mδ =

⋃
γ<δMγ for every limit nonzero δ < λ+. It follows that C = {γ < λ+ |

Mγ ∩ λ+ = γ} is a club in λ+.
We claim that the following club is as sought:

D = {δ < λ+ | otp(C ∩ δ) = λδ}.

To this end, let δ ∈ D, β ∈ λ+ \ δ, ξ < δ, i < λ, and η < δ. We shall find an
α ∈ A ∩ δ above η such that c(α, β) = ξ and d(α, β) > i.

For every γ ∈ C \ ξ, the set Aγ = A \ γ is in [λ+]λ
+ ∩Mγ+1, and hence there

exists ε ∈ λ+∩Mγ+1 such that, for all β′ ∈ λ+\ε and ξ′ < ε, there exists α′ ∈ Aγ∩ε
such that c(α′, β′) = ξ′. In particular, we may pick αγ ∈ A ∩Mγ+1 \ γ such that
c(αγ , β) = ξ. It follows that γ 7→ αγ is a strictly increasing function from C ∩ δ to
A ∩ δ. As δ ∈ D, we infer that A′ = {α ∈ A ∩ δ | η < α & c(α, β) = ξ} has size

λ. As d is locally small, we may now pick α ∈ A′ \Dβ
≤i. Then α ∈ A ∩ δ above η,

d(α, β) > i and c(α, β) = ξ, as sought. �

This completes the proof. �

Remark 4.5. The preceding result does not generalize to the case when λ is a
singular cardinal. Indeed, it follows from [LR23, Lemma 3.38] that if λ is the
singular limit of strongly compact cardinals, then for every infinite cardinal θ ≤ λ,

for every subadditive map d : [λ+]2 → θ, there must exist an A ∈ [λ+]λ
+

such that
sup{d(α, β) | α < β in A} < θ.

Definition 4.6 ([She88]). Pr1(κ, κ, θ, χ) asserts the existence of a coloring c :
[κ]2 → θ such that for every σ < χ, every pairwise disjoint subfamily A ⊆ [κ]σ

of size κ, and every τ < θ, there are a, b ∈ A with sup(a) < min(b) such that
c[a× b] = {τ}.

Definition 4.7 ([LR18]). U(κ, µ, θ, χ) asserts the existence of a coloring d : [κ]2 →
θ such that for every σ < χ, every pairwise disjoint subfamily A ⊆ [κ]σ of size κ, and
every τ < θ, there exists B ∈ [A]µ such that, for all a, b ∈ B with sup(a) < min(b),
it is the case that min(d[a× b]) ≥ τ .

Theorem 4.8. Suppose that:

• θ < κ are infinite regular cardinals;
• c : [κ]2 → κ is a coloring witnessing Pr1(κ, κ, κ, 4);
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• d : [κ]2 → θ is a subadditive coloring witnessing U(κ, 2, θ, 2).

Then, for every A ∈ [κ]κ, there exists a club D ⊆ κ such that for every δ ∈ D,
for every β ∈ κ \ δ, for every ξ < δ, for every i < θ, there are cofinally many α < δ
such that α ∈ A, c(α, β) = ξ and d(α, β) > i.

Proof. We start by verifying a special case.

Claim 4.8.1. Let A ∈ [κ]κ, ξ < κ and i < θ. There exists γ < κ such that for
every β ∈ κ \ γ, there exists α ∈ A ∩ γ such that c(α, β) = ξ and d(α, β) > i.

Proof. For every ε < κ, A \ ε is in [κ]κ, and as d : [κ]2 → θ witnesses U(κ, 2, θ, 2), it
is the case that d“[A \ ε]2 is cofinal in θ. It thus follows that we may fix a κ-sized
pairwise disjoint subfamily A of [A]2 such that d(a) > i for all a ∈ A. Nota bene
that for all β < κ and a ∈ A ∩ P(β), there must exist some α ∈ a such that
d(α, β) > i, because, by subadditivity,

i < d(a) ≤ max{d(min(a), β), d(max(a), β)}.
Therefore, it now suffice to prove that there exists some γ < κ such that for every
β ∈ κ \ γ, there exists a ∈ A ∩ P(γ) such that c[a × {β}] = {ξ}. Towards a
contradiction, suppose that this is not the case. For every γ < κ, fix βγ ∈ κ\γ such
that there exists no a ∈ A ∩ P(γ) such that c[a× {β}] = {ξ}. For each γ < κ, set
aγ = {βγ} ∪ a for some a ∈ A such that min(a) > βγ . Fix a club C ⊆ κ such that
for every γ ∈ C, for every γ̄ < γ, max(aγ̄) < γ. It follows that A′ = {aγ | γ ∈ C}
is a collection of κ-many pairwise disjoint elements of [κ]3. So, since c witnesses
Pr1(κ, κ, κ, 4), we may find a, b ∈ A′ with max(a) < min(b) such that c[a×b] = {ξ}.
Pick γ̄, γ in C such that a = aγ̄ and b = aγ . From max(aγ̄) < min(aγ), it follows
that γ̄ < γ, and

max(aγ̄) < γ ≤ βγ = min(aγ).

In particular, a′ = aγ̄ \{βγ} is an element of A∩P(γ) and c[a′×{βγ}] = {ξ}. This
is a contradiction. �

Now, given A ∈ [κ]κ, let 〈Mγ | γ < κ〉 be a sequence of elementary submodels of
Hκ+ , each of size less than κ, such that {A, c, d} ∪ θ ⊆ M0, such that Mγ ∈ Mγ+1

for every γ < κ, and such that Mδ =
⋃
γ<δMγ for every limit nonzero δ < κ. We

claim that the following club is as sought:

D = {δ < κ |Mδ ∩ κ = δ}.
To see it, let β ∈ κ \ δ, ξ < δ, i < θ, and ε < δ; we must find α ∈ A with ε ≤ α < δ
such that c(α, β) = ξ and d(α, β) > i. The set A′ = A \ ε is in [κ]κ ∩Mδ, and so
are ξ and i. It thus follows from Claim 4.8.1 that there exists γ ∈ κ∩Mδ such that
for every β′ ∈ κ \ γ, there exists α ∈ A′ ∩ γ such that c(α, β′) = ξ and d(α, β′) > i.
As γ < δ ≤ β, it follows that there exists α ∈ A′ ∩ γ such that c(α, β) = ξ and
d(α, β) > i. Evidently, ε ≤ α < δ. �

In reading the next definition, recall that for a set X of ordinals, acc(X) stands
for the set of all nonzero ξ ∈ X such that sup(X ∩ ξ) = ξ.

Definition 4.9 ([BR19]). For infinite regular cardinals θ < κ, the principle�(κ,vθ)
asserts the existence of a sequence ~C = 〈Cα | α < κ〉 satisfying the following:

• for every α < κ, Cα is a closed subset of α with sup(Cα) = sup(α);
• for all α < κ and ᾱ ∈ acc(Cα), if otp(Cα) ≥ θ, then Cᾱ = Cα ∩ ᾱ;
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• for every club D in κ, there exists some α ∈ acc(D) such that D ∩α 6= Cα.

Note that �(κ,vϑ) implies �(κ,vθ) whenever ϑ < θ. The strongest instance
�(κ,vω) is commonly denoted by �(κ).

Corollary 4.10. Suppose that θ < κ are infinite regular cardinals.
If either �(κ,vθ) holds or if there exists a uniformly coherent κ-Souslin tree,

then there exist two maps c : [κ]2 → κ and d : [κ]2 → θ such that:

• d is subadditive;
• for every A ∈ [κ]κ, there exists a club D ⊆ κ such that for every δ ∈ D, for

every β ∈ κ \ δ, for every ξ < δ, for every i < θ, there are cofinally many
α < δ such that α ∈ A, c(α, β) = ξ and d(α, β) > i.

Proof. By Theorem 4.4, we may assume that θ+ < κ. Also, by Theorem 4.8, it
suffices to find a map c : [κ]2 → κ witnessing Pr1(κ, κ, κ, 4), and a subadditive map
d : [κ]2 → θ witnessing U(κ, 2, θ, 2).

By [Rin14, Theorem B], �(κ) implies Pr1(κ, κ, κ, θ). Inspecting the proof of
[Rin14, Theorem 3.3] makes it clear that the same conclusion already follows from
�(κ,vθ). In addition, by [LR23, Theorem A], �(κ,vθ) yields a subadditive witness
to U(κ, 2, θ, 2).

Next, by [LR23, Corollary 3.29], the existence of a uniformly coherent κ-Souslin
tree yields a subadditive witness to U(κ, 2, θ, 2). It is also well-known that the
existence of a uniformly coherent κ-Souslin tree induces a witness to Pr1(κ, κ, κ, ω).

�

Remark 4.11. Coming back to the limitation highlighted in Remark 4.5, we point
out that the conclusion of Corollary 4.10 is nevertheless compatible with a bounded
amount of large cardinals. The point is that �(κ,vθ) may be added by means of
a θ-directed-closed and κ-strategically-closed forcing, so by Laver’s indestructibil-
ity theorem, �(κ,vθ) is compatible with θ being supercompact. Parallelly, the
existence of a uniformly coherent κ-Souslin tree is compatible with κ possessing a
generically-large cardinal property that refutes �(κ,vθ) for all θ < κ (see [LR21,
Theorem 3.3]).

5. A construction of a Shelah group

This section is devoted to proving the core result of this paper. The assumptions
of the upcoming theorem are motivated by the results of the previous section.

Theorem 5.1. Suppose:

• θ < κ is a pair of infinite regular cardinals;
• c : [κ]2 → κ is a coloring;
• d : [κ]2 → θ is a subadditive coloring;
• for every A ∈ [κ]κ, there exists a club B ⊆ κ such that for every β ∈ B

there exists γ ∈ A above β such that for all ξ < β and i < θ, there are
cofinally many α < β such that α ∈ A, c(α, γ) = ξ and d(α, γ) > i.

Then there exists a torsion-free Shelah group G of size κ.

Before embarking on the proof, we make a few promises and unfold some of their
consequences.



A SHELAH GROUP IN ZFC 15

5.1. Promises and their consequences. We start by listing our promises:

(p)1 We shall recursively construct distinguished group elements 〈xα | α < κ〉
generating the whole group G. For every subset A ⊆ κ, GA will denote the
group generated by {xα | α ∈ A}, so that G∅ = {1l} and Gκ = G;

(p)2 For every γ ≤ κ, the underlying set of Gγ will be an initial segment of κ;
(p)3 For all γ < κ and i < θ, GDγ<i∪{γ} is torsion-free;3

(p)4 For all γ < κ and i < θ, GDγ<i∪{γ} ∩GDγ≤i = GDγ<i ;

(p)5 For all γ < κ and i < θ, GDγ<i ≤m GDγ<i∪{γ};

(p)6 For all γ ∈ [1, κ) and i ∈ [1, θ), GDγ≤i∪{γ} is the group M∗ given by

Lemma 3.4 when invoked with the groups
• H = GDγ<i ,

• K = GDγ≤i ,

• L = GDγ<i∪{γ},

and an appropriate (possibly empty) system S.

At the outset, we also agree on the following pieces of notation.

Notation 5.2. For every subset A ⊆ κ, we shall denote by ≡A the relation ∼GA
of Definition 3.3. That is, g ≡A h iff there are y0, y1 ∈ GA and ε ∈ {1,−1} such
that g = y0 · hε · y1.

Notation 5.3. For all γ < κ and g ∈ Gγ , let

iγg = min{i < θ | g ∈ GDγ≤i}.

We shall also record the first appearance of an element g ∈ Gκ \ {1l}, by letting

αg = min{α < κ | g ∈ Gα+1}.

Since g ∈ Gαg∪{αg} and αg =
⋃
i<θD

αg
≤i , it also makes sense to define

ig = min{i < θ | g ∈ GDαg≤i∪{αg}}.

As for g = 1l, since G0 = G∅ = {1l}, we agree to let α1l = −1 and i1l = 0.

Remark 5.4. By possibly replacing d : [κ]2 → θ with the map (α, β) 7→ 1 + d(α, β),
we may assume that 0 /∈ Im(d). This tactic assumption will ensure that for every
g ∈ G, if ig = 0, then either g = 1l or g is an element of the cyclic group 〈xαg 〉.

Notation 5.3 induces a well-ordering ≺ of G, as follows.

Definition 5.5. For g 6= h in G, we shall let g ≺ h if one of the following holds:

• αg < αh;
• αg = αh and ig < ih;
• αg = αh and ig = ih and g ∈ h.4

Note that min(G,≺) = 1l.

Lemma 5.6. For all γ < κ and i ≤ θ, GDγ<i∪{γ} ∩Gγ = GDγ<i .

3Recall Notation 4.2.
4Recall (p)2.
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Proof. Let γ < κ and i ≤ θ. As Gγ =
⋃
j<θ GDγ<j , it suffices to prove that for every

j ∈ (i, θ],

(I) GDγ<i∪{γ} ∩GDγ<j = GDγ<i .

The case j = i + 1 is immediate from (p)4, and the case in which j is a limit
ordinal follows from the fact that GDγ<j =

⋃
l<j GDγ<l for j limit. So, suppose that

j ∈ (i + 1, θ) is such that (I) holds. By (p)4, GDγ<j∪{γ} ∩ GDγ≤j = GDγ<j holds, as

well. Since GDγ<i∪{γ} ⊆ GDγ<i∪{γ}, altogether,

GDγ<i∪{γ} ∩GDγ≤j = GDγ<i∪{γ} ∩GDγ<j∪{γ} ∩GDγ≤j
= GDγ<i∪{γ} ∩GDγ<j
= GDγ<i ,

as sought. �

By the preceding, and since Dγ
<0 = ∅, the group 〈xγ〉 generated by xγ will have

a trivial intersection with Gγ . Another consequence of the preceding is as follows.

Corollary 5.7. For every γ < κ, Gγ ≤m Gγ+1.

Proof. Let g ∈ Gγ \ {1l} and h ∈ Gγ+1 \Gγ for a given γ < κ. Find a large enough
i < θ such that g ∈ GDγ<i and h ∈ GDγ<i∪{γ} \GDγ<i . Then, by (p)5,

h−1gh ∈ GDγ<i∪{γ} \GDγ<i .

Finally, Lemma 5.6 yields that h−1gh /∈ Gγ . �

The next consequence of our promises is the upcoming Lemma 5.9. In order to
state it, we agree to say that a set A ⊆ κ is absorbent if for every γ ∈ A, there
exists some i ≤ θ such that A ∩ γ = Dγ

<i. To exemplify:

Proposition 5.8. For all γ < κ and i ≤ θ, Dγ
<i is absorbent.

Proof. By Lemma 4.3. �

Lemma 5.9. Suppose that A,A′ are absorbent subsets of κ.

(1) For every g ∈ GA \ {1l}, D
αg
≤ig ∪ {αg} ⊆ A;

(2) For all γ < κ, i < θ, and g ∈ GDγ<i∪{γ}, we have ig < i;

(3) For all γ < κ and g ∈ Gγ \ {1l}, we have iγg = max{d(αg, γ), ig};
(4) GA ∩GA′ = GA∩A′ .

Proof. (1) Let g ∈ GA \ {1l}. Denote by γ ∈ A the minimal ordinal such that
g ∈ GA∩(γ+1). In particular, g /∈ GA∩γ and αg ≤ γ. As A is absorbent, we
may now fix i ≤ θ such that A ∩ γ = Dγ

<i. Consequently, g ∈ GDγ<i∪{γ}. If

αg < γ, then g ∈ GDγ<i∪{γ} ∩Gγ , which, by Lemma 5.6 is equal to GDγ<i = GA∩γ ,

contradicting the fact that g /∈ GA∩γ . So, αg = γ, and hence g ∈ GDαg<i∪{αg}. As

GDαg<i∪{αg}
=

⋃
j<iGDγ≤j∪{γ}, the definition of ig implies that ig < i. Altogether,

D
αg
≤ig ∪ {αg} ⊆ D

γ
<i ∪ {γ} ⊆ A.

(2) Let γ < κ, i < θ, and g ∈ GDγ<i∪{γ}. By Clause (1), D
αg
≤ig∪{αg} ⊆ D

γ
<i∪{γ}.

If αg = γ, then the inclusion implies that ig < i. Otherwise, αg ∈ Dγ
<i, and then

Lemma 4.3 implies that

D
αg
≤ig = (D

αg
≤ig ∪ {αg}) ∩ αg ⊆ D

γ
<i ∩ αg = D

αg
<i ,
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so, again ig < i.
(3) Let γ < κ and g ∈ Gγ \ {1l}. Clearly, αg < γ. Also, recalling Notation 5.3,

g ∈ GDγ
≤iγg

. So, Clause (1) together with Proposition 5.8 imply that D
αg
≤ig ∪{αg} ⊆

Dγ
≤iγg

. In particular, d(αg, γ) ≤ iγg , and, by Lemma 4.3, also

D
αg
≤ig = (D

αg
≤ig ∪ {αg}) ∩ αg ⊆ D

γ
≤iγg
∩ αg = D

αg
≤iγg

,

and hence ig ≤ iγg . This shows that i = max{d(αg, γ), ig} is ≤ iγg . On the other

hand, since αg ∈ Dγ
≤d(αg,γ) ⊆ D

γ
≤i, Lemma 4.3 implies that

D
αg
≤ig ⊆ D

αg
≤i = Dγ

≤i ∩ αg,

and hence g ∈ GDαg≤i∪{αg} ⊆ D
γ
≤i. Consequently, iγg ≤ i.

(4) By Clause (1), for every g ∈ GA ∩ GA′ , either g = 1l (and then g ∈ G∅ ⊆
GA∩A′), or D

αg
≤ig ∪ {αg} ⊆ A ∩ A′, and then g ∈ GDαg≤ig∪{αg}

⊆ GA∩A′ by the

definition if ig and αg. The other inclusion is trivial. �

Corollary 5.10. For all β ≤ γ < κ with γ ≥ θ, for all j < i < θ, for all
g, h ∈ GDγ<j∪{γ}, if g ≡Dγ<i∩β h, then g ≡Dγ<j∩β h.

Proof. Let β ≤ γ < κ such that γ ≥ θ and let j < i < θ. Suppose that g, h ∈
GDγ<j∪{γ} are such that g 6≡Dγ<j∩β h and we shall prove by induction on l ∈ [j, i]

that

(II) g 6≡Dγ<l∩β h.

The case l = j is trivial, and the case in which l is a limit ordinal follows from
continuity. So, suppose that l ∈ [j, i) is such that (II) holds, and we shall prove
that g 6≡Dγ≤l∩β h.

By (p)6, the group GDγ≤l∪{γ} was given by Lemma 3.4, when invoked with H =

GDγ<l , K = GDγ≤l and L = GDγ<l∪{γ}. Consider K ′ = GDγ≤l∩β , which is a subgroup

of K, and then let H ′ = K ′ ∩ L. By Lemma 5.9(4),

H ′ = GDγ≤l∩β ∩GDγ<l∪{γ} = GDγ<l∩β ,

meaning that (II) asserts that g 6∼H′ h.
As g, h ∈ GDγ<j∪{γ} ⊆ L, and H ′ = K ′ ∩ L = K ′ ∩ H (since K ∩ L = H),

Clause (F ) of Lemma 3.4 implies that g 6∼K′ h. That is, g 6≡Dγ≤l∩β h, as sought. �

Notation 5.11. As a last step of preparation, we fix a surjection ~π = (π0, π1, π2,
π3, π4) from κ to κ×κ×κ×κ×{1,−1}, i.e., for all η0, η1, η2, η3 ∈ κ and ε ∈ {1,−1}
there exists a ξ < κ such that

~π(ξ) = (π0(ξ), π1(ξ), π2(ξ), π3(ξ), π4(ξ)) = (η0, η1, η2, η3, ε).

5.2. The recursive construction. We are now ready to start the recursive pro-
cess. We start by letting x0 generate an infinite cyclic group (i.e., Z), and we
assume this group G1 has underlying set ω. Hereafter, we shall not worry about
(p)2, since it is clear it may be secured. Next, suppose that γ ∈ [1, κ) is such that
Gγ has already been defined and satisfies all of our promises. Note that (p)3 implies
that for every β < γ the group Gβ+1 =

⋃
i<θ GDβ<i∪{β}

is torsion-free, and so is

Gγ =
⋃
β<γ Gβ+1. To construct Gγ+1, we first let xγ = min(κ \ Gγ), and now we

need to describe the group relationship between xγ and the elements of Gγ . We
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will define 〈GDγ<i∪{γ} | i < θ〉 by recursion on i < θ, in such a way that all of our

promises are kept.
Here we go. As Dγ

<0 = Dγ
≤0 = ∅ (recall Remark 5.4), we mean GDγ≤0

= {1l},
and we let GDγ≤0

∪{γ} = G{γ} be the infinite group Z generated by xγ . Note that

{1l} = GDγ≤0
≤m GDγ≤0

∪{γ} vacuously holds. Moving on, suppose that i < θ is

such that GDγ<i∪{γ} has already been defined. For all j ≤ i and β ≤ γ, let Eγ<j,β
be the restriction of the equivalence relation ≡(Dγ<j∩β) to GDγ<j∪{γ}. Next, use

Definition 5.5 to define a transversal T γ<j,β for those equivalence classes of Eγ<j,β
that lie in GDγ<j∪{γ} \Gγ = GDγ<j∪{γ} \GDγ<j , as follows

T γ<j,β = {min([g]Eγ<j,β ,≺) | g ∈ GDγ<j∪{γ} \Gγ}.

Lemma 5.12. For all j ≤ i and α ≤ β ≤ γ:

(1) Eγ<i,β �GDγ<j∪{γ} = Eγ<j,β;

(2) T γ<j,β ⊆ T
γ
<i,β;

(3) T γ<i,α ⊇ T
γ
<i,β.

Proof. (1) By Corollary 5.10.
(2) Let t ∈ T γ<j,β . By Clause (1),

[t]Eγ<i,β ∩GDγ<j∪{γ} = [t]Eγ<j,β .

As G(Dγ<j∩β)h
±1G(Dγ<j∩β) ⊆ Gγ for every h ∈ Gγ , it is the case that [g]Eγ<j,β is

disjoint from Gγ for every g ∈ GDγ<j∪{γ} \Gγ . In particular, t ∈ Gγ+1 \Gγ , so that

it = iγ+1
t < j. For every g ∈ [t]Eγ<i,β \ GDγ<j∪{γ} we have ig = iγ+1

g ≥ j > it, and

then Definition 5.5 implies that t ≺ g. Altogether,

min([t]Eγ<i,β ,≺) = min([t]Eγ<j,β ,≺) = t.

(3) This is clear from the definition of T γ<i,α, T γ<i,β , as the equivalence relation

Eγ<j,α is a refinement of Eγ<j,β . �

Our next goal is to the define the system S = {(hσ, aσ, bσ, b′σ) | σ ∈ Σ} that will
yield the definition of GDγ≤i , as per (p)6. We start with a rough approximation Σ++

of Σ, we then refine it to Σ+ ⊆ Σ++, and finally we find the appropriate Σ ⊆ Σ+.

Definition 5.13. Let:

• Σ++ = {(a, t) | a ∈ GDγ≤i \GDγ<i , αa ∈ D
γ
≤i \D

γ
<i, t ∈ T

γ
<i,αa

};
• Σ+ = {(a, t) ∈ Σ++ | ∀l < 4 [πl(c(αa, γ)) ∈ Gγ ]}.

Definition 5.14. For each σ = (a, t) ∈ Σ+, we attach the following objects:
. aσ = a;
. tσ = t;
. hσ = π0(c(αa, γ));
. yσ,0 = π1(c(αa, γ));
. yσ,1 = π2(c(αa, γ));
. zσ = π3(c(αa, γ));
. εσ = π4(c(αa, γ));
. bσ = yσ,0 · tεσ · yσ,1 · zσ;
. b′σ = bσ · bσ;
. Kσ = GDγ≤i ∩G(αa+1).
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We then let Σ be the set of all σ ∈ Σ+ for which all of the following hold:

(1) max{αyσ,0 , αyσ,1 , αzσ} < αaσ ;
(2) max{it, iγyσ,0 , i

γ
yσ,1} < iγzσ < i;

(3) hσ ∈ GDγ<i .

Remark 5.15. Clause (1) implies that yσ,0, yσ,1, zσ ∈ Gαaσ , and Clause (2) implies
that, for some j < i, yσ,0, yσ,1 ∈ GDγ<j , t ∈ GDγ<j∪{γ}, and zσ /∈ GDγ<j .

Definition 5.16. Denote H = GDγ<i , K = GDγ≤i , L = GDγ<i∪{γ}, and

S = {(hσ, aσ, bσ, b′σ) | σ ∈ Σ}.

Lemma 5.17. H ≤ K, H ≤m L, K∩L = H and S ⊆ H×(K\H)×(L\H)×(L\H).

Proof. It is clear that H = GDγ<i ≤ GDγ≤i = K. By (p)5, H ≤m L, and by (p)4,

K ∩ L = H.
Next, let σ ∈ Σ. By Definition 5.14(3), hσ ∈ H. Since σ ∈ Σ++, aσ ∈ K \H.

Recall that t ∈ T γ<i,α ⊆ GDγ<i∪{γ}\Gγ = L\Gγ . By Lemma 5.9(4), H = L∩Gγ , and

hence t ∈ L \H. By Definition 5.14(2), yσ,0, yσ,1, zσ are in H ≤ L, so, altogether,
bσ and b′σ are in L, as well. Since t /∈ H, we get that bσ /∈ H. Finally, to see
that b′σ /∈ H, it suffices to verify that b′σ ∈ GDγ≤j∪{γ} \ GDγ≤j for some j < i, since

H = GDγ<i ≤ Gγ , and GDγ≤j∪{γ} ∩Gγ = GDγ≤j by Lemma 5.9(4).

By the definition of Σ and since yσ,0, yσ,1 ∈ GDγ
<i
γ
zσ

, we have that yσ,0 ·tεσ ·yσ,1 ∈
GDγ

<i
γ
zσ
∪{γ} \ GDγ

<i
γ
zσ

and zσ ∈ GDγ
≤iγzσ

\ GDγ
<i
γ
zσ

. By (p)6, GDγ
≤iγzσ∪{γ}

has been

obtained by invoking Lemma 3.4 (note that iγzσ ≥ 1 necessarily) with K̄ = GDγ
≤iγzσ

,

L̄ = GDγ
<i
γ
zσ
{γ}, and H̄ = GDγ

<i
γ
zσ

, and then Clause (D) of that lemma implies that

(yσ,0 · tεσ · yσ,1) · zσ · (yσ,0 · tεσ · yσ,1) /∈ K̄ = GDγ
≤iγzσ

,

and then the fact that zσ ∈ GDγ
≤iγzσ

implies that

b′σ = (yσ,0 · tεσ · yσ,1) · zσ · (yσ,0 · tεσ · yσ,1) · zσ /∈ K = GDγ
≤iγzσ

,

as sought. �

Lemma 5.18. For every σ ∈ Σ, bσ 6∼H b′σ.

Proof. Let σ = (a, t) in Σ. Set

j = max{it, iγyσ,0 , i
γ
yσ,1}.

From σ ∈ Σ, we infer that j < iγzσ < i, and

yσ,0, yσ,1 ∈ GDγ≤j ⊆ GDγ≤j∪{γ}.

Recall that t ∈ T γ<i,α ⊆ GDγ<i∪{γ} \Gγ , therefore

yσ,0 · tεσ · yσ,1 ∈ GDγ≤j∪{γ} ≤ GDγ<iγzσ ∪{γ}
.

By Lemma 5.9(4), GDγ
<i
γ
zσ

= GDγ
<i
γ
zσ
∪{γ} ∩Gγ , so since t /∈ Gγ ,

yσ,0 · tεσ · yσ,1 ∈ GDγ
<i
γ
zσ
∪{γ} \GDγ

<i
γ
zσ

.
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By (p)6, GDγ
≤iγzσ∪{γ}

has been obtained by invoking Lemma 3.4 (note that iγzσ ≥

1 necessarily) with K̄ = GDγ
≤iγzσ

, L̄ = GDγ
<i
γ
zσ
{γ}, and H̄ = GDγ

<i
γ
zσ

, and then

Clause (C) of that lemma together with the facts that yσ,0 · tεσ · yσ,1 ∈ L̄ \ H̄ and
zσ ∈ K̄ \ H̄ imply that for b = b∗ = yσ,0 · tεσ · yσ,1 and z = zσ, it is the case that
b∗z 6∼K̄ bzbz. That is,

bσ 6∼GDγ
≤iγzσ

b′σ,

which is the same as ¬(bσ E
γ
<iγzσ+1,γ

b′σ). By Lemma 5.12(1),

Eγ<i,γ �GDγ
<i
γ
zσ+1

∪{γ} = Eγ
<iγzσ+1,γ

and hence bσ 6∼GDγ
<i
∩γ
b′σ. which concludes our proof (since GDγ<i∩γ = H). �

Lemma 5.19. For all σ 6= σ∗ in Σ, at least one of the following holds:

(�)a aσ 6∼H aσ∗ ;
(�)b bσ 6∼H bσ∗ ;
(�)c bσ = bσ∗ and aσ 6= aσ∗ ;
(�)d all of the following hold:

(i) αaσ = αaσ∗ (so Kσ = Kσ∗);
(ii) aσ, aσ∗ ∈ Kσ \H;

(iii) bσ 6∼Hσ bσ∗ , where Hσ = Kσ ∩H;
(iv) bσ 6∼H b′σ∗ ;
(v) K |= (Kσ \H) · (H \Kσ) · (Kσ \H) ⊆ (K \H).

Proof. We start with two general claims.

Claim 5.19.1. Suppose a, a∗ ∈ GDγ≤i are such that αa < αa∗ < γ and αa, αa∗ ∈
Dγ
≤i \D

γ
<i. Then a 6∼H a∗.

Proof. Since αa, αa∗ ∈ Dγ
≤i \D

γ
<i, Lemma 5.9(1) implies that a and a∗ are not in

GDγ<i . We shall prove by induction on β ∈ [αa∗ , γ] that:

(III) a /∈ GDγ<i∩β(a∗)±1GDγ<i∩β .

The base case β = αa∗ follows from the following constellation:

• a ∈ GDγ≤i ∩Gαa+1 = GDγ≤i∩(αa+1) ⊆ Gαa+1 ⊆ Gαa∗ ,

• a∗ ∈ Gαa∗+1 \Gαa∗ , and
• GDγ<i∩αa∗ ⊆ Gαa∗ .

The case that β is a limit follows from continuity, so suppose that β ∈ [αa∗ , γ]
satisfies (III), and we shall show that

a /∈ GDγ<i∩(β+1)(a
∗)±1GDγ<i∩(β+1).

To avoid trivialities, we may assume that β ∈ Dγ
<i, so that, by Lemma 4.3,

Dγ
<i ∩ β = Dβ

<i and Dγ
≤i ∩ β = Dβ

≤i. Therefore, αa, αa∗ ∈ Dβ
≤i \ D

β
<i. So

Notation 5.3 together with Lemma 5.9(4) imply that a ∈ GDγ≤i∩(αa+1) ⊆ GDβ≤i
and a∗ ∈ GDγ≤i∩(αa∗+1) ⊆ GDβ≤i

. As αa, αa∗ /∈ Dβ
<i, Lemma 5.9(1) implies that

a, a∗ /∈ GDβ<i . Altogether,

iβa = i = iβa∗ .
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Now β > αa∗ ≥ 0 and i ≥ 1, since β ∈ Dγ
<i, so (p)6 tells us that GDβ≤i∪{β}

was

constructed by invoking Lemma 3.4 with H̄ = GDβ<i
, K̄ = GDβ≤i

and L̄ = GDβ<i∪{β}
.

By Lemma 5.9,

L̄ ∩ K̄ = GDβ<i∪{β}
∩GDβ≤i = GDβ<i

= H̄,

so, taking (III) into account, Clause (E) of Lemma 3.4 implies that

a /∈ L̄(a∗)±1L̄.

However, L̄ = GDβ<i∪{β}
= GDγ<i∩(β+1), so we are done. �Claim 5.19.1

Claim 5.19.2. Suppose that α ∈ Dγ
≤i\D

γ
<i, g ∈ GDγ<i\Gα, and a, a∗ ∈ GDγ≤i∩(α+1)\

Gα. Then a · g · a∗ /∈ GDγ<i .

Proof. It suffices to prove that for each β ∈ Dγ
<i\α, for no g ∈ GDγ<i∩(β+1)\GDγ<i∩β

do there exist a, a∗ ∈ GDγ≤i∩(α+1) \Gα with a · g · a∗ ∈ GDγ<i∩(β+1).

Suppose not, so that a · g · a∗ ∈ GDγ<i∩(β+1), where β ≥ α + 1 ≥ 1. Now in the

same line of reasoning as in Claim 5.19.1, a, a∗ ∈ GDγ≤i∩(α+1), and Dγ
<i ∩ β = Dβ

<i,

Dγ
≤i ∩ (β + 1) = Dβ

≤i ∪ {β}. Again, this yields

• a ∈ GDβ≤i \GDβ<i , and

• a∗ ∈ GDβ≤i \GDβ<i .

It is enough to prove that a · g · a∗ /∈ GDβ<i∪{β}, as

GDγ<i∩(β+1) = GDβ<i∪{β}
.

But (recalling β ≥ 1, and i ≥ 1 which is true since β ∈ Dγ
<i) GDβ≤ξ∪{β}

was

obtained by invoking Lemma 3.4 with H̄ = GDβ<i
, K̄ = GDβ≤i

, L̄ = GDβ<i∪{β}

(where g ∈ L̄ \ H̄), so just apply (the parallel of) Clause (D). �Claim 5.19.2

Suppose now that σ = (a, t) and σ∗ = (a∗, t∗) are two distinct elements of Σ.
We assume that alternatives (�)a–(�)c fail, and we shall verify alternative (�)d.
Note that our assumptions have the following immediate consequences.

Claim 5.19.3. bσ ∼H bσ∗ , t 6= t∗, and αa = αa∗ .

Proof. The first part follows from the failure of alternative (�)b, and the last part
follows from failure of alternative (�)a together with Claim 5.19.1.

In addition, if t were to equal t∗, Definition 5.14 (using αa = αa∗) would have
implied that alternative (�)c holds. So t 6= t∗. �Lemma 5.19

It thus follows from Definition 5.14 that

(hσ, yσ,0, yσ1
, zσ,Kσ) = (hσ∗ , yσ∗,0, yσ∗1 , zσ∗ ,Kσ∗).

Consequently,

max{it, it∗ , iγyσ,0 , i
γ
yσ∗,0

, iγyσ,1 , i
γ
yσ∗,1
} < iγzσ ,

and hence the next two elements are in GDγ
<i
γ
zσ∪{γ}

:

• b = yσ,0 · tεσ · yσ,1,
• b∗ = yσ∗,0 · (t∗)εσ∗ · yσ∗,1,
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moreover,

(IV) b, b∗ /∈ GDγ
<i
γ
zσ

,

since yσ,0, yσ,1, yσ∗,0, yσ∗,1 ∈ GDγ
<i
γ
zσ

. Note that

Kσ = GDγ≤i ∩G(αa+1) = GDγ≤i∩(αa+1),

and

Hσ = Kσ ∩H = GDγ≤i∩(αa+1) ∩GDγ<i = GDγ<i∩αa

by Lemma 5.9(4).
As σ ∈ Σ, it is also the case that zσ ∈ GDγ

≤iγzσ
≤ GDγ<i = H and

yσ,0 · tεσ · yσ,1 = bσ · z−1
σ ,

so that b ∼H bσ. Likewise, b∗ ∼H bσ∗ . Recalling that bσ ∼H bσ∗ , altogether

b ∼H b∗.

Now, (p)6 tells us that GDγ
≤iγzσ

∪{γ} was constructed by invoking Lemma 3.4 with

H̄ = GDγ
<i
γ
zσ

, K̄ = GDγ
≤iγzσ

and L̄ = GDγ
<i
γ
zσ
∪{γ}. Trivially, zσ /∈ H̄. In addition,

b, b∗ /∈ H̄ by (IV). Thus Clause (C) of that lemma implies that b∗ ·zσ∗ 6∼K̄ b·zσ ·b·zσ,
and hence b′σ 6∼K̄ bσ∗ . Finally, b′σ 6∼H bσ∗ (i.e., b′σ 6∼GDγ

<i

bσ∗) by Lemma 5.12(1).

On the other hand, by the definition of T γ<i,αaσ , we get that t 6∼Kσ∩H t∗. As

Kσ ∩ H = GDγ≤i∩(αaσ+1) ∩ GDγ<i = GDγ<i∩(αaσ+1) = GDγ<i∩αaσ , we also get that

bσ 6∼Kσ∩H bσ∗ , since zσ = zσ∗ , yσ,0, yσ,1 ∈ GDγ<i∩αaσ (by recalling the definition of

Σ). At this stage, it remains to check Clause (v), but this follows from Claim 5.19.2.
�Lemma 5.19

By Lemmas 5.17, 5.18 and 5.19, the tuple (H,K,L, S) satisfies all of the as-
sumptions of Lemma 3.4. Adhering to (p)6, we then let GDγ≤i∪{γ} be the outcome

M∗ of Lemma 3.4 when invoked with this tuple. By Clause (A) of that lemma,
K,L ≤M∗,

M∗ |= K ∩ L = H,

and M∗ is generated by K∪L = GDγ≤i∪GDγ<i∪{γ}. This means that M∗ is generated

by the set of generators {xβ | β ∈ Dγ
≤i ∪ {γ}}, and hence (p)4 is preserved. Also,

Clause (B) implies that K ≤m M∗, hence (p)5 is preserved, as well.
Our promise (p)3 implies that L = GDγ<i∪{γ} and⋃

β<γ

Gβ+1 =
⋃
β<γ

⋃
j<θ

GDβ<j∪{β}

are both torsion-free. In particular, K, being a subgroup of Gγ =
⋃
β<γ Gβ+1 is

torsion-free, as well. It now follows from Clause (G) of Lemma 3.4 that we have
maintained (p)3.

This completes the description of the recursive construction of our group G.
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5.3. Verification. We now turn to show thatG is an n-Shelah group for n = 10120.

Lemma 5.20. Let Z ∈ [G]κ. Then Z10120 = G.

Proof. By possibly thinning out (using the pigeonhole principle), we may assume
the existence of some j < θ such that iz = j for all z ∈ Z. Set A = {αz |
z ∈ Z \ {1l}}, so that A ∈ [κ]κ. For each α ∈ A, pick zα ∈ Z such that αzα = α.

Recalling the hypothesis of Theorem 5.1, we now let B be a club in κ such that
for every β ∈ B, there exists γ ∈ A above β such that

(V) ∀ξ < β∀i < θ [sup{α ∈ A ∩ β | c(α, γ) = ξ & d(α, γ) > i} = α].

Recalling (p)2 and the surjection ~π of Notation 5.11, the following is yet another
club in κ:

C = {β < κ | Gβ = β & ~π[β] = β × β × β × β × {−1, 1}}.
Now, let h be an arbitrary element of G, and we shall show that h is in Z10120.

Pick a large enough β ∈ B ∩ C such that h ∈ Gβ , and then pick γ ∈ A above β
satisfying (V). As izγ = j, we consider the unique t ∈ T γ<j+1,β such that t Eγ<j+1,β

zγ . By the choice of t, we may pick

(VI) y0, y1 ∈ GDγ<j+1∩β

and ε ∈ {−1, 1} such that

zγ = y0 · tε · y1.

It follows that max{iγy0 , i
γ
y1} ≤ j, and as t ∈ T γ<j+1,β ⊆ GDγ<j+1∪{γ}, Lemma 5.9(2)

implies that it ≤ j, as well.
As γ was chosen to satisfy (V), we may fix ᾱ ∈ A ∩ β with d(ᾱ, γ) > j. Set

z = zᾱ and note that, by Lemma 5.9(3),

(VII) max{it, iγy0 , i
γ
y1} ≤ j < d(ᾱ, γ) ≤ iγz .

As αz = ᾱ < β, we may find a large enough ζ < β such that y0, y1, z ∈ Gζ+1.
Altogether, y0, y1, z ∈ GDγ

≤iγz
∩(ζ+1).

As β ∈ C and z ∈ Gβ , it follows from (VI) that we may find a ξ < β such that

(π0(ξ), π1(ξ), π2(ξ), π3(ξ), π4(ξ)) = (h, y0, y1, z, ε).

Utilizing (V) once more, we now pick α ∈ A ∩ β above max{αh, ζ} such that
c(α, γ) = ξ and d(α, γ) > max{iγh, iγz}. Consider i = d(α, γ), and note that by
(VII),

max{it, iγy0 , i
γ
y1 , izα , i

γ
h, i

γ
z} < d(α, γ) = i,

so that

(VIII) y0, y1, h, z ∈ GDγ<i ∩Gα.

Next, consider the group elements a = zα, b = zγ · z, and b′ = b · b, and the pair
σ∗ = (a, t).

Claim 5.20.1. σ∗ is in Σ++ of Definition 5.13.

Proof. From d(α, γ) = i, we get that Dγ
<i ∩ (α + 1) = Dγ

<i ∩ α. By Lemma 4.3,
Dα
≤izα ⊆ D

α
≤d(α,γ) = Dγ

≤i ∩ α, and hence zα ∈ GDγ≤i . So, if zα were to be in GDγ<i ,

then since αzα = α, Lemma 5.9(4) would imply that

zα ∈ GDγ<i ∩Gα+1 = GDγ<i∩(α+1) = GDγ<i∩α ⊆ Gα,
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contradicting the fact that αzα = α. Altogether, zα ∈ GDγ≤i \GDγ<i .
Next, since t ∈ T γ<j+1,β and α < β, Lemma 5.12(3) implies that t ∈ T γ<j+1,α. In

addition, since i = d(α, γ) > iγz > j, Lemma 5.12(2) implies that t ∈ T γ<i,α. Also,

i = d(α, γ) amounts to saying that αzα = α ∈ Dγ
≤i \ D

γ
<i, so we have established

that σ∗ ∈ Σ++. �

Looking at Definition 5.14, we see that:

• aσ∗ = a = zα = a
• tσ∗ = t = t = t
• hσ∗ = π0(c(αa, γ)) = π0(ξ) = h
• yσ∗,0 = π1(c(αa, γ)) = π1(ξ) = y0

• yσ∗,1 = π2(c(αa, γ)) = π2(ξ) = y1

• zσ∗ = π3(c(αa, γ)) = π3(ξ) = z
• εσ∗ = π4(c(αa, γ)) = π4(ξ) = ε
• bσ∗ = yσ∗,0 · tεσ∗ · yσ∗,1 · zσ∗ = zγ · z = b
• b′σ∗ = bσ∗ · bσ∗ = zγ · z · zγ · z = b′

• Kσ∗ = GDγ≤i ∩G(αa+1) = GDγ≤i ∩G(α+1) = GDγ≤i∩(α+1)

Table 1. Evaluations

It thus follows from (VIII) that πl(c(αa, γ)) ∈ Gγ for every l < 4, so that
σ∗ is moreover in Σ+, as per Definition 5.13. Looking at Conditions (1)–(3) of
Definition 5.14, we see that σ∗ is a member of Σ, as well: conditions (1) and (3)
follow from (VIII), and condition (2) follows from (VII) and the fact that iγz < i.

Claim 5.20.2. h−1%(b · a, b′ · a) = 1l holds in GDγ≤i∪{γ}.

Proof. Recall that the group GDγ≤i∪{γ} was obtained as the output group M∗

of Lemma 3.4, when invoked with (H,K,L, S) of Definition 5.16. Specifically,
H = GDγ<i , K = GDγ≤i , L = GDγ<i∪{γ} and S = {(hσ, aσ, bσ, b′σ) | σ ∈ Σ} of Defi-

nition 5.14. But M∗ is M/N , where M is the free amalgam K ∗H L, and N is the
least normal subgroup containing {h−1

σ %(bσ · aσ, b′σ · aσ) | σ ∈ Σ}, hence for each
σ ∈ Σ we have h−1

σ %(bσ · aσ, b′σ · aσ) ∈ N , and clearly

GDγ≤i∪{γ} = M∗ = M/N |= h−1
σ %(bσ · aσ, b′σ · aσ) = 1l .

By Table 1, b = bσ∗ , b
′ = b′σ∗ , a = aσ∗ , and h = hσ∗ , hence h−1%(b ·a, b′ ·a) = 1l. �

Recall that for all x, y ∈ G, %(x, y) is a word of length 3320 over the alphabet
{x, y}, so since %(ba, b′a) = h, the fact that zα, zγ and z all come from the initial
set Z implies that

%(zγ · z · zα , zγ · z · zγ · z · zα) ∈ Z9720+400.

Thus, we have verified that h is in Z10120. �

Lemma 5.21. (1) G admits no T1 topology other than the discrete topology;
(2) G \ {1l} is a nonalgebraic unconditionally closed set (i.e., closed in each

Hausdorff group topology).
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Proof. (1) This is a standard consequence of the malnormality of the Gγ ’s (γ < κ).
Suppose that τ is some T1 topology on G. Fix g ∈ G distinct from 1l. Then
U = G\{g} is τ -open, so there is a τ -open neighborhood V of 1l for which V n ⊆ U ,
where n is the integer for which G is n-Shelah. Note that if |V | = κ, then V n = G,
which is a contradiction, so it must be the case that |V | < κ. But then V ⊆ Gγ for
some large enough γ < κ. Now Gγ ≤m Gγ+1 by Corollary 5.7, so for any choice of
h ∈ Gγ+1 \Gγ , it is the case that (h−1V h) ∩ V = {1l} is a τ -open neighborhood of
1l, and hence τ is discrete.

(2) We need to show that for no system {wi | i ∈ I} of words over G∪{x} (where
x is an abstract variable outside G) do we have

G \ {1l} =
⋂

i∈I
{g ∈ G | fwi(g) = 1l},

where the value of fwi(g) ∈ G is given by substituting each occurrence of the symbol
x in wi ∈ <ω(G∪{x}) with g, and calculating the value in G. It is easy to see that
it suffices to prove that for no such word w does the following equation holds true:

(IX) G \ {1l} = {g ∈ G | fw(g) = 1l}.

Suppose that w satisfies (IX), and fix a finite subset B ⊆ G with w ∈ <ω(B∪{x}).
As |B| < θ, we may find γ ∈ [1, κ) and i ∈ [1, θ) such that

B ⊆ GDγ≤i∪{γ},

so for each g ∈ GDγ≤i∪{γ} that is not the identity fw(g) = 1l.

We are going to prove (provided that Σ from Definition 5.14 in the construction
of GDγ≤i∪{γ} is not empty) that the group GDγ≤i∪{γ} is topologizable (with a nondis-

crete T1 topology), which will imply that GDγ≤i∪{γ} \ {1l} is closed (with respect to

this nontrivial topology), contradicting that the topology was nondiscrete.
To this end, it is enough to argue that there exists a sequence 〈N∗k | k ∈ ω〉 of

normal subgroups of GDγ≤i∪{γ} such that for each k do N∗k+1 ≤ N∗k ,
⋂
k∈ω N

∗
k = {1l}

and {1l} � N∗k hold. Now recall how GDγ≤i∪{γ} was constructed in Subsection 5.2

(appealing to Lemma 3.4 there):

GDγ≤i∪{γ} = (GDγ<i∪{γ} ∗GDγ<i GD
γ
≤i

)/N,

where N was the normal closure of {h−1
σ %(bσaσ, b

′
σaσ) | σ ∈ Σ} (Σ is from Defini-

tion 5.14). Let N0 denote this N . Observe that it is enough to define a sequence
〈Nk | k ∈ ω \ {0}〉 of normal subgroups in GDγ<i∪{γ} ∗GDγ<i GD

γ
≤i

that satisfies

Nk+1 ≤ Nk for k ≥ 1,
⋂
k∈ω Nk = N0 and N0 � Nk.

Recall that in Definition 3.2, we have the sequence 〈n` | ` < ω〉 defined via
n` = 3320`, and that we let %`(x, y) = %(xn` , yn`) (in particular, %0 = %), and

Rk = {h−1
σ %0(bσaσ, b

′
σaσ), %`(bσaσ, b

′
σaσ) | ` ≥ k, σ ∈ Σ}.

Set Nk to be the normal closure of Rk. Now the following will complete the
proof:

Claim 5.21.1. (1) For all σ ∈ Σ and k > 0,

GDγ<i∪{γ} ∗GDγ<i GD
γ
≤i
|= %k(bσaσ, b

′
σaσ) ∈ Nk \N0,
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(2) R1 satisfies C ′( 1
10 ), moreover, if a group element g ∈ GDγ<i∪{γ} ∗GDγ<i GD

γ
≤i

has a canonical representation of length < 7
10 ·(nk ·6640)−1 for some k ≥ 1,

and g /∈ N0, then g /∈ Nk.

Proof. Let us start with verifying the second clause. R1 satisfies C ′( 1
10 ) just by the

moreover part of (A) from Lemma 3.4. Suppose k ∈ ω, g ∈ GDγ<i∪{γ} ∗GDγ<i GD
γ
≤i

is such that g /∈ N0, and g has a canonical representation of length

(X) ` <
7

10
· (nk · 6640)− 1.

W.l.o.g. we can assume that whenever g′ ∈ GDγ<i∪{γ} ∗GDγ<i GD
γ
≤i

satisfies

g′ ∈ {hgh−1N0 | h ∈ GDγ<i∪{γ} ∗GDγ<i GD
γ
≤i
},

then the length of g’s canonical representation does not exceed that of g′ (by pos-
sibly replacing g with a g′ with a shorter representation, since g ∈ Nk \ N0 ⇒
g′ ∈ Nk \ N0 by the normality of N0, and Nk). Suppose on the contrary that
g ∈ Nk. Now Lemma 2.9 implies that for a weakly cyclically reduced conjugate g′

of g g′ has a canonical representation w = w0 ·w1 · . . . ·wj−1, which, as a word con-
tains a subword s0 ·s1 ·. . .·sm−1 that is a subword of a representation r0 ·r1 ·. . .·rn−1

of some r in the symmetric closure of Rk, and m ≥ 7
10n. (W.l.o.g. we can assume

that si = ri for i < m, by possibly replacing r with a cyclical conjugate of it, as Rk
is closed under such operations.)

Now clearly m ≤ j, and j ≤ `+ 1 (by Definition 2.4), so it follows from m ≥ 7
10n

that ` + 1 ≥ 7
10n. But n ∈ {6640 · n0, 6640 · n0 + 1, 6640 · ni, 6640 · ni + 1 | i ≥ k}

since the lengths of the words in Rk form the set {6640 · n0, 6640 · ni | i ≥ k}, r
is a weakly cyclically reduced conjugate of some r′ ∈ Rk, and this conjugation can
only increase the length by at most one (by Observation 2.5 (2)). Therefore, by
(X) n = 6640 · n0 holds necessarily, and

r0 · r1 · . . . · rn−1 ∈ N0.

Finally, observe that substituting

(r−1
n−1 · r

−1
n−2 · . . . · r

−1
0 ) · (r0 · r1 · . . . · rm−1) = r−1

n−1 · r
−1
n−2 · . . . · r−1

m

instead of r0 ·r1 ·. . .·rm−1 in w yields an element in {hgh−1N0 | h ∈ GDγ<i∪{γ}∗GDγ<i
GDγ≤i} with a shorter representation (than that of g), a contradiction.

The first clause is immediate noting that the second clause implies %k(bσaσ, b
′
σaσ) /∈

Nk+1. �

This completes the proof. �

Corollary 5.22. For every infinite regular cardinal λ, there exists a torsion-free
Shelah group of size λ+.

Proof. Invoke Theorem 5.1 with the pair (κ, θ) = (λ+, λ), using Theorem 4.4. �

Corollary 5.23. For every regular uncountable cardinal κ, if �(κ) holds, then
there exists a torsion-free Shelah group of size κ.

Proof. By Theorem 5.1 together with Corollary 4.10. �

Corollary 5.24. In Gödel’s constructible universe, for every regular uncountable
cardinal κ, the following are equivalent:
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• there exists a torsion-free Shelah group of size κ;
• there exists a Shelah group of size κ;
• κ is not weakly compact.

Proof. By [Jen72, Theorem 6.1], in Gödel’s constructible universe, every regular
uncountable κ is either weakly compact, or �(κ) holds. By Corollary 5.23, it thus
suffices to prove that weakly compact cardinals do not carry a Shelah group. To
this end, suppose there is an n-Shelah group of size κ.

Claim 5.24.1. There is a system ~f = 〈fj | j < nn〉 of functions from [κ]n to nn+1
such that

⋃
j<nn fj“[X]n = nn + 1 for every X ∈ [κ]κ.

Proof. Fix an n-Shelah group G with underlying set κ. Let 〈ψj | j < nn〉 list all
possible maps from n to n. For every j < nn, define hj : [κ]n → κ by letting for
every n-tuple (g0, g1, . . . , gn−1) of elements of G, enumerated in ∈-increasing order:

hj(g0, g1, . . . , gn−1) = gψj(0) · gψj(1) · · · gψj(n−1).

Evidently, for every infinite X ⊆ κ,
⋃
j<nn hj“[X]n is nothing but the set of all

group words of length n in the elements of X. So, since G is an n-Shelah group
with underlying set κ, for every X ⊆ κ of full size,

⋃
j<nn hj“[X]n = κ.

For every j < nn, let fj : [κ]n → (nn + 1) be the color-blind version of hj
obtained via

fj(u) = min(hj(u), nn).

Then,
⋃
j<nn fj“[X]n = nn + 1 for every X ∈ [κ]κ. �

Let ~f be given by the claim. Define c : [κ]n → nn(nn + 1) via:

c(u) = 〈fj(u) | j < nn〉.
Since κ is weakly compact, κ→ (κ)nk holds for every cardinal k < κ, in particular,

for k = (nn + 1)n
n

. So, we may find a set X ∈ [κ]κ such that c � [X]n is constant
with value, say, 〈mj | j < nn〉. Pick an m ∈ nn + 1 distinct from mj for all j < nn.

Then m /∈
⋃
j<nn fj“[Z]n, contradicting the choice of ~f . �
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