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Abstract. In a paper from 1987, Komjáth and Weiss proved that for every

regular topological space X of character less than b, if X → (top ω + 1)1ω ,
then X → (top α)1ω for all α < ω1. In addition, assuming ♦, they constructed

a space X of size continuum, of character b, satisfying X → (top ω + 1)1ω ,

but not X → (top ω2 + 1)1ω . Here, a counterexample space with the same
characteristics is obtained outright in ZFC.

1. Introduction

For two topological spaces X,Y and a cardinal θ, the arrow notation

X → (top Y )1
θ

asserts that for every coloring c : X → θ, there exists an homeomorphism φ from
Y to X such that c is constant over Im(φ).

In [KW87], Komjáth and Weiss studied the partition relation X → (top α)1
ω,

where α is a countable ordinal endowed with the usual order topology. The first
result of their paper is a pump-up theorem for regular topological spaces of character
less than b;1 the theorem asserts that for any such space X, if X → (top ω + 1)1

ω,
then moreover X → (top α)1

ω for all α < ω1.2

To show that the bound b cannot be improved, Theorem 4 of [KW87] gives
an example, assuming ♦, of a regular topological space X of size and character
ℵ1 such that X → (top ω + 1)1

ω, but not X → (top ω2 + 1)1
ω. Question 2 of the

same paper asks whether there is a ZFC example of a regular space X satisfying
X → (top ω + 1)1

ω and failing X → (top α)1
ω for some countable ordinal α > ω2.

The first main result of this note answers this question in the affirmative.

Theorem A. There exists a zero-dimensional regular space X of size continuum,
of character b, satisfying X → (top ω + 1)1

ω, but not X → (top ω2 + 1)1
1.

In [CFJ23], the Komjáth-Weiss counterexample was addressed from a different
angle. There, a weakening of ♦ called ♣F was introduced and shown to be sufficient
for the construction of the same ℵ1-sized example. Furthermore, it is established
there that ♣F is consistent with the failure of CH. Here, we provide an alternative
way to get an ℵ1-sized countexample space together with a large continuum:
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1Recall that b denotes the least size of an unbounded submfaily of ωω, where a subfamily

F ⊆ ωω is bounded if, for some function g : ω → ω, {n < ω | f(n) ≤ g(n)} is finite for all f ∈ F .
2The published proof had a small gap that was later rectified in [CFJ23] based on a suggestion

of Weiss.
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Theorem B. After forcing to add any number of Cohen reals, there exists a zero-
dimensional regular space X of size ℵ1, of character b, satisfying X → (top ω + 1)1

ω,
but not X → (top ω2 + 1)1

1.

The preceding is a special case of a general theorem that identifies a class of
notions of forcing that inevitably add consequences of higher analogs of ♣F . These
notions of forcing include Cohen forcing, but also Prikry and Magidor forcing.

1.1. Notation and conventions. For a regular cardinal κ, we denote by Hκ the
collection of all sets of hereditary cardinality less than κ. Eκχ denotes the set
{α < κ | cf(α) = χ}, and Eκ≥χ, Eκ<χ, Eκ6=χ, etc. are defined analogously.

For a set of ordinals a, we write ssup(a) := sup{α+ 1 | α ∈ a}, acc+(a) := {α <
ssup(a) | sup(a ∩ α) = α > 0}, acc(a) := a ∩ acc+(a), and nacc(a) := a \ acc(a).

2. Topological spaces based on trees

Following [BR21], we say that T is a streamlined tree iff there exists some cardinal
κ such that T ⊆ <κHκ and, for all t ∈ T and α < dom(t), t � α ∈ T . For a subset
E ⊆ κ, we let T �E := {t ∈ T | dom(t) ∈ E}. For a subset T ′ ⊆ T , a ladder system

over T ′ is a sequence ~A = 〈At | t ∈ T ′〉 such that, for every t ∈ T ′, At is a cofinal
subset of t↓ := {s ∈ T | s ( t} with otp(At) = cf(dom(t)). For every ladder system
~A = 〈At | t ∈ T ′〉, we attach a symmetric relation E ~A ⊆ [T ]2, as follows:

E ~A = {{s, t} | t ∈ T ′, s ∈ At}.

Theorem 2.1. Suppose that:

• T ⊆ <κHκ is a streamlined tree;

• ~A is a ladder system over T ′ = T � Eκω;
• The graph (T,E ~A) is uncountably chromatic.

Then there exists a zero-dimensional topology τ on T such that X := (T, τ) is a
regular space of character b satisfying X → (top (ω+1))1

ω and X 9 (top (ω2 +1))1
1.

Proof. Let ~A = 〈At | t ∈ T ′〉 denote the above ladder system. We now build another
ladder system 〈Bt | t ∈ T ′〉 with the property that At ∩ T ′ ⊆ Bt ⊆ T � (Eκ1 ∪ Eκω)
for all t ∈ T ′. To this end, for each t ∈ T ′, we consider three options:

I If At ∩ T ′ is infinite, then let Bt := At ∩ T ′.
I If At ∩T ′ is finite, but t ∈ T � (Eκω ∩ acc+(Eκω)), then let Bt be some cofinal

subset of t↓ ∩ Eκω of order-type ω, with At ∩ T ′ ⊆ Bt.
I Otherwise, let Bt be some cofinal subset of t↓ of order-type ω all of whose

nodes s with cf(dom(s)) 6= 1 are the ones from At ∩ T ′.
Next, for every t ∈ T and every i < ω, we consider two cases depending on

whether Bt(i) — the ith-element of Bt — belongs to T ′:

I If Bt(i) ∈ T ′, then let 〈at,i(j) | j < ω〉 be a strictly increasing sequence of
nodes converging to Bt(i). We also require that at,i+1(0) be bigger than
Bt(i) for all i < ω.

I Otherwise, let 〈at,i(j) | j < ω〉 be the constant sequence whose sole element
is Bt(i) � (max(dom(Bt(i)))).
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Figure 1: Illustration of the ladders assigned to a node t ∈ T � Eκω ∩ acc+(Eκω).
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Claim 2.1.1. There exist a family F ⊆ ωω of size b such that:

• for every A ∈ [ω]ω, for every function g : A → ω, there exists f ∈ F for
which {n ∈ A | g(n) ≤ f(n)} is infinite;
• F is closed under pointwise maximum, i.e., for all f, g ∈ F , the function
n 7→ max{f(n), g(n)} is in F , as well.

Proof. This is well-known, but we include an argument anyway. By [Rin22, Propo-
sition 2.4], mf (ω, ω, ω, ω) = b, hence, we may fix a family H of functions from ω
to [ω]<ω such that, for every A ∈ [ω]ω, and every function g : A → ω, there exists
h ∈ H for which {n ∈ A | g(n) ∈ h(n)} is infinite. Now, let F denote the smallest
subfamily of ωω that covers {sup ◦ h | h ∈ H} and that is closed under pointwise
maximum.3 Clearly, F is as sought. �

Let F be given by the claim. For all s, t ∈ T , denote (s, t] := {x ∈ T | s ⊆ x ( t}.
We shall now define a topology τ over T by defining a system 〈Nt | t ∈ T 〉 of local
bases. For every t ∈ T \ T ′, set Nt := {{t}}. For every t ∈ T ′, set Nt := {Nt(f, j) |
f ∈ F , j < ω}, where

Nt(f, j) = {t} ∪
⊎
{(at,i(f(i)), Bt(i)] | j ≤ i < ω}.

Since F is closed under pointwise maximum, Nt is indeed closed under inter-
sections. In addition, for every element s of a neighborhood Nt(f, j), there exists
N ∈ Ns with N ⊆ Nt(f, j). Specifically:

• If s ∈ T \ T ′, then N := {s} does the job;
• If s ∈ T ′ \ {t}, then there exists a unique i ∈ ω \ j such that s ∈

(at,i(f(i)), Bt(i)], and so by picking a large enough k to satisfy (at,i(f(i)) ⊆
Bs(k), we get that Ns(g, k + 1) ⊆ Nt(f, j) for any choice of g ∈ F .

As
⋂
Nt = {t} for every t ∈ T , we altogether conclude that X = (T, τ) is a T1

topological space. As |Nt| ≤ |F × ω| = b for every t ∈ T , we get that χ(X) ≤ b.
Since X is T1, to show that X is regular, it suffices to prove that the space X is
zero-dimensional.

Claim 2.1.2. Every N ∈
⋃
t∈T Nt is τ -closed.

Proof. Let t ∈ T ′, f ∈ F , j < ω, and we shall show that that Nt(f, j) is τ -closed.
To this end, let s ∈ T \Nt(f, j).
I If s /∈ T ′, then {s} is a neighborhood of s disjoint from Nt(f, j).
I If s ∈ T ′ and s ⊆ Bt(0), then Ns(g, 0) is readily disjoint from Nt(f, j) for any

choice of g ∈ F .
I If s ∈ T ′ and Bt(i) ⊆ s ⊆ Bt(i+ 1), then find a large enough k < ω such that

Bt(i) ⊆ Bs(k), and note that Ns(g, k+ 1) is disjoint from Nt(f, j) for any choice of
g ∈ F .

3We use sup instead of max, since sup(x) is meaningful for any set x, including x = ∅.
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I If s ∈ T ′ and s /∈ t↓, then r := s ∩ t is an element of T that constitutes the
meet of s and t. Find a large enough k such that r ⊆ Bs(k) and note that for any
choice of g ∈ F , Ns(g, k + 1) is disjoint from t↓, and hence from Nt(f, j). �

Claim 2.1.3. X → (top (ω + 1))1
ω.

Proof. Let c : T → ω be a given a coloring. It suffices to find a t ∈ T ′ such that
{s ∈ BT | c(s) = c(t)} is infinite. Towards a contradiction, suppose that {s ∈ BT |
c(s) = c(t)} is finite for every t ∈ T ′. It follows that we may define a function
d : T → ω × 2× ω by recursion on the levels of T , as follows:

d(t) :=

{
〈c(t), 1,max{0, n+ 1 | ∃s ∈ Bt [c(s) = c(t) & d(s) = 〈c(s), 1, n〉]}〉, if t ∈ T ′

〈c(t), 0, 0〉, otherwise.

Recalling that (T,E ~A) is uncountably chromatic, we may now find {s, t} ∈ E ~A
such that d(s) = d(t). By possibly switching the roles of s and t, we may assume
that t ∈ T ′ and s ∈ At. As t ∈ T ′, it follows that d(t) = (c(t), 1,m) for some
m < ω. As d(s) = d(t), it follows that c(s) = c(t) and s ∈ T ′, and hence s ∈ Bt.
But then the definition of d(t) implies that the third coordinate of d(t) is bigger
than the corresponding one of d(s). This is a contradiction. �

Claim 2.1.4. X 9 (top (ω2 + 1))1
1.

Proof. Towards a contradiction, suppose that φ : ω2 + 1 → X is an homeomor-
phism. For every n < ω, since ω · (n + 1) is an accumulation point of the interval
An := (ω · n, ω · (n+ 1)), the singleton {φ(ω · (n + 1))} cannot be τ -open, so that
the node tn := φ(ω · (n+ 1)) must be in T ′ and φ[An] must contain an infinite se-
quence converging to tn. Likewise, {tn | n < ω} must contain an infinite sequence
converging to the node tω := φ(ω2). It thus follows that there exists a strictly
increasing and continuous map ψ : ω2 + 1 → ω2 + 1 such that φ ◦ ψ is a strictly
increasing and continuous map from ω2 + 1 to T . For notational simplicity, we
assume ψ is the identity, so that 〈tn | n < ω〉 is a strictly increasing sequence of
nodes in T ′ converging to tω. In particular, tω ∈ T � (Eκω ∩ acc+(Eκω)).

As otp(Btω ) = ω < ω2 = otp(φ[ω2]), we may fix a map d : ω → φ[ω2] \ Bt such
that 〈d(n) | n < ω〉 is a strictly increasing increasing sequence of nodes converging
to tω. Consequently, the following set is infinite:

A := {i ∈ ω \ {0} | (Bt(i− 1), Bt(i)] has an element of Im(d)}.

It follows that for every i ∈ A, we may let

mi := max{m < ω | Bt(i− 1) ( d(m) ⊆ Bt(i)}.

Define a function g : A→ ω defined via

g(i) := min{j < ω | d(mn) ⊆ at,i(j)}.

Recalling that F was given by Claim 2.1.1, we now pick f ∈ F such that I :=
{n ∈ A | g(n) ≤ f(n)} is infinite. For every i ∈ I, it is the case that

Bt(i− 1) ( d(mi) ⊆ at,i(g(i)) ⊆ at,i(f(i)) ( Bt(i).

Therefore, for every node s in the set D := {d(mi) | i ∈ I}, there exists an i ∈ I
such that D ∩ (Bt(i − 1), Bt(i)] = {s}. So D is an infinite discrete subset of the
compact set φ[ω2 + 1]. This is a contradiction. �
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It now follows from [KW87, Theorem 1] that χ(X) ≥ b. Altogether, the space
X is as sought. �

We are now ready to prove Theorem A.

Corollary 2.2. There exists a zero-dimensional regular space X of size continuum,
of character b, satisfying X → (top ω + 1)1

ω, but not X → (top ω2 + 1)1
1.

Proof. By Theorem 2.1, it suffices to find a streamlined tree T ⊆ <ω1ω1 of size con-

tinuum, and a ladder system ~A over T ′ := T � acc(ω1) such that the graph (T,E ~A)
is uncountably chromatic. A tree with the same key features was constructed by
D. Soukup in [Sou15, Theorem 3.5], though it was not streamlined. By abstract
nonsense considerations (see [BR21, Lemma 2.5]), this should not make any differ-
ence. As the argument in [BR21] does not deal with the adjacent ladder system,
we spell out the details in here.

Soukup’s tree is the tree T (S) := {x ⊆ ω1 | acc+(x) ⊆ x ⊆ S} for an arbitrary
choice of a stationary and co-stationary subset S of ω1, ordered by the end-extension

relation, v. It comes equipped with a sequence ~C = 〈Cx | x ∈ T (S)〉 such that Cx is
either a finite subset of x↓ or a cofinal subset of x↓ of order-type ω. In addition, the
corresponding graph (T (S), {{y, x} | x ∈ T (S), y ∈ Cx}) is uncountably chromatic.

As S is stationary, T (S) contains infinite sets. As S is co-stationary, every
element of T (S) is countable. Altogether |T (S)| = 2ℵ0 . As every x ∈ T (S) is a
closed countable set of countable ordinals, its corresponding collapsing map πx :
otp(x) → x is an element of

⋃
β∈nacc(ω1)

βω1. In addition, for every pair x @ y of

nodes in T (S), it is the case that πx ⊂ πy. Thus, altogether,

T := {πx � α | x ∈ T (S), α < ω1}
is a streamlined tree satisfying:

• x 7→ πx forms an order-isomorphism from (T (S),v) to (T � nacc(ω1),⊆);
• every element of T � acc(ω1) admits a unique immediate successor.4

We shall now define the ladder system ~A = 〈At | t ∈ T ′〉, for T ′ := T � acc(ω1),
as follows. Given t ∈ T � acc(ω1), let xt denote the unique element of T (S) such
that πxt

is the immediate successor of t. Now consider the following possibilities:
I If |Cxt | < ℵ0, then let At be an arbitrary cofinal subset of t↓ of order-type ω.
I Otherwise, Cxt is a cofinal subset of (xt)↓ of order-type ω, and hence

At := {πy � sup(otp(y)) | y ∈ Cxt
}

is a cofinal subset of t↓ of order-type ω.

Claim 2.2.1. The graph (T,E ~A) is uncountably chromatic.

Proof. Let c : T → ω be given, and we shall find s ⊂ t such that c(s) = c(t).
As in the proof of Claim 2.1.3, by recursion on the levels of the tree we may

construct a coloring d : T (S)→ ω satisfying the following for every x ∈ T (S):

(1) If Cx is finite, then d(x) is an odd positive integer that does not belong to
{d(y) | y ∈ Cx};

(2) If Cx is infinite, then d(x) = c(πx � sup(otp(x))) · 2.

As the graph (T (S), {{y, x} | x ∈ T (S), y ∈ Cx}) is uncountably chromatic, we
now pick a pair y @ x of nodes in T (S) such that d(y) = d(x). Denote:

4Indeed, the immediate successor of a node t ∈ T � acc(ω1) is πx for x := Im(t)∪{sup(Im(t))}.
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• t := πx � sup(otp(x)), and
• s := πy � sup(otp(y)).

As d(x) = d(y), by the choice of d, Cx cannot be finite, so the only other option
is that Cx is a cofinal subset of x↓ of order-type ω. In particular, x↓ cannot have a
maximal element, and hence otp(x) = α+ 1 for some α ∈ acc(ω1). Therefore, πx is
an immediate successor of the above node t, so that t ∈ T � acc(ω1) and xt = x. It
thus follows from the definition of At that s ∈ At.

Finally, as Cx is not finite, d(x) = c(t) ·2. From d(y) = d(x) being even, we then
infer that d(y) = c(s) · 2. Altogether, c(s) = c(t), as sought. �

This completes the proof. �

3. Forcing highly chromatic Hajnal-Máté graphs

A Hajnal-Máté graph is a graph of the form G = (κ,E), where κ is a cardinal,
E is a subset of [κ]2, and for every pair β < γ of ordinals from κ, sup{α < β |
{β, γ} ∈ E} < β. The existence of an uncountably chromatic Hajnal-Máté graph

over ω1 gives rise to a tree T and a ladder system ~A satisfying the hypotheses of
Theorem 2.1 by identifying ω1 with the streamlined tree T := <ω11.

In this section, we highlight a class of notions of forcing that inevitably add
highly chromatic Hajnal-Máté graphs.

Definition 3.1. Let P = (P,≤) denote a notion of forcing, and λ denote an infinite
regular cardinal.

• P is λλ-bounding iff for every g ∈ λλ ∩ V P, there exists some f ∈ λλ ∩ V
such that g(α) ≤ f(α) for all α < λ;
• P satisfies the λ+-stationary chain condition (λ+-stationary-cc, for short) iff

for every sequence 〈pδ | δ < λ+〉 of conditions in P there are a club D ⊆ λ+

and a regressive map h : D ∩ Eλ+

λ → λ+ such that for all γ, δ ∈ dom(h), if
h(γ) = h(δ), then pγ and pδ are compatible.

Theorem 3.2. Suppose that λ is an infinite regular cardinal, and P is a λ+-
stationary-cc notion of forcing satisfying at least one of the following:

(1) P preserves the regularity of λ, and is not λλ-bounding;
(2) P forces that cf(λ) < |λ|. In addition, cf(NSλ,⊆) = λ+;
(3) In V P, there exists a cofinal subset Λ ⊆ λ such that for every function

f ∈ λλ ∩ V , there exists some ξ ∈ Λ with f(ξ) < min(Λ \ (ξ + 1)).

Then, in V P, there exists a sequence 〈Cδ | δ ∈ Eλ
+

λ 〉 satisfying the following:

• For every δ ∈ Eλ+

λ , Cδ is a club in δ of order-type λ;

• For every coloring c : Eλ
+

λ → λ, there are γ, δ ∈ Eλ+

λ such that γ ∈ Cδ and
c(γ) = c(δ).

Proof. By [BR19, Proposition 3.1], Clause (3) follows from Clauses (1) and (2), so
hereafter, we shall assume Clause (3).

Work in V . Write ∆ := Eλ
+

λ . For each δ ∈ ∆, let πδ : λ→ δ denote the inverse
collapse of some club in δ, and let ψδ : λ↔ δ be some bijection.

Next, let G be P-generic over V , and work in V [G]. By Clause (3) and the proof
of [BR19, Lemma 3.2], we may fix a club Λ ⊆ λ of order-type cf(λ), such that for
every function f ∈ λλ ∩ V , sup{ξ ∈ Λ | f(ξ) < min(Λ \ (ξ + 1))} = λ.
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Let δ ∈ ∆. Clearly, Bδ := πδ[Λ] is a club in δ of order-type cf(λ). Next, let Cδ
be the ordinal closure below δ of the following set

Bδ ∪
⋃
{ψδ[α+] ∩ (πδ(α), πδ(α

+)) | α ∈ Λ & α+ = min(Λ \ (α+ 1))}.

Note that, for every pair β < β+ of successive elements of πδ[Λ], Cδ ∩ (β, β+) is
covered by the closure of ψδ[otp(Λ ∩ β+)], which is a set of size < λ. Therefore,
otp(Cδ) ≤ λ.

Claim 3.2.1. For every Γ ∈ [λ+]λ
+

from V , for every δ ∈ acc+(Γ) ∩∆, it is the
case that sup(Cδ ∩ Γ) = δ.

Proof. Let Γ ∈ [λ+]λ
+

in V . Let δ ∈ ∆∩acc+(Γ) and ε < δ; we shall find γ ∈ Γ∩Cδ
above ε. As δ ∈ acc+(Γ), we may define a function f0 : λ→ λ via

f0(α) := min{α′ < λ | (πδ(α), πδ(α
′)) ∩ Γ 6= ∅}.

Then, we may define a function f1 : λ→ λ via:

f1(α) := min{i < λ | ψδ(i) ∈ (πδ(α), πδ(f0(α))) ∩ Γ}.

Define f : λ → λ via f(α) := max{f0(α), f1(α)}. As Γ ∈ V , the function f is in
λλ ∩ V , and hence A := {ξ ∈ Λ | f(ξ) < min(Λ \ (ξ + 1))} is cofinal in λ. Pick a
large enough α ∈ A such that πδ(α) ≥ ε. Denote α+ := min(Λ \ (α + 1)). Then
α′ := f0(α) and i := f1(α) are both less than < α+. So

ψδ(i) ∈ ψδ[α+] ∩ (πδ(α), πδ(α
+)) ∩ Γ,

meaning that ψδ(i) is an element of Cδ ∩ Γ above ε. �

Work in V . Suppose that p is a condition forcing that ċ is a name for a function
from ∆ to λ. For each δ ∈ ∆, let pδ be a condition extending p and deciding ċ(δ)

to be, say, τδ. Fix a club D ⊆ λ+ and a regressive map h : D ∩ Eλ+

λ → λ+ such
that for all γ, δ ∈ dom(h), if h(γ) = h(δ) then pγ and pδ are compatible.

Find (τ, η) ∈ λ× λ+ for which

Γ := {δ ∈ ∆ ∩D | τδ = τ & h(δ) = η}

is stationary. As acc+(Γ) is a club (in V ), Claim 3.2.1 provides us with a δ ∈ Γ
such that sup(Cδ ∩ Γ) = δ. Pick γ ∈ Cδ ∩ Γ. As h(δ) = η = h(γ), we may pick
some q extending pδ and pγ . Then, q is an extension of p forcing that γ, δ ∈ ∆ and
c(γ) = τ = c(δ). �

Corollary 3.3. If λ is a measurable cardinal, then in the forcing extension by
Prikry forcing using a normal measure on λ, there exists a Hajnal-Máté graph over
λ+ of chromatic number λ+. �

Corollary 3.4. After forcing to add any number of Cohen reals, there is an un-
countably chromatic Hajnal-Máté graph over ω1. �

Putting the preceding together with Theorem 2.1, we obtain Theorem B:

Corollary 3.5. After forcing to add any number of Cohen reals, there exists
a zero-dimensional regular space X of size ℵ1, of character b, satisfying X →
(top ω + 1)1

ω, but not X → (top ω2 + 1)1
1. �
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