A COUNTEREXAMPLE RELATED TO A THEOREM OF KOMJÁTH AND WEISS

RODRIGO CARVALHO AND ASSAF RINOT
This paper is dedicated to István Juhász on the occasion of his 80th birthday

Abstract

In a paper from 1987, Komjáth and Weiss proved that for every regular topological space X of character less than \mathfrak{b}, if $X \rightarrow(\text { top } \omega+1)_{\omega}^{1}$, then $X \rightarrow(\operatorname{top} \alpha)_{\omega}^{1}$ for all $\alpha<\omega_{1}$. In addition, assuming \diamond, they constructed a space X of size continuum, of character \mathfrak{b}, satisfying $X \rightarrow(\text { top } \omega+1)_{\omega}^{1}$, but not $X \rightarrow\left(\operatorname{top} \omega^{2}+1\right)_{\omega}^{1}$. Here, a counterexample space with the same characteristics is obtained outright in ZFC.

1. Introduction

For two topological spaces X, Y and a cardinal θ, the arrow notation

$$
X \rightarrow(\operatorname{top} Y)_{\theta}^{1}
$$

asserts that for every coloring $c: X \rightarrow \theta$, there exists an homeomorphism ϕ from Y to X such that c is constant over $\operatorname{Im}(\phi)$.

In [KW87], Komjáth and Weiss studied the partition relation $X \rightarrow(\operatorname{top} \alpha)_{\omega}^{1}$, where α is a countable ordinal endowed with the usual order topology. The first result of their paper is a pump-up theorem for regular topological spaces of character less than $\mathfrak{b} ;^{1}$ the theorem asserts that for any such space X, if $X \rightarrow(\operatorname{top} \omega+1)_{\omega}^{1}$, then moreover $X \rightarrow(\operatorname{top} \alpha)_{\omega}^{1}$ for all $\alpha<\omega_{1} .{ }^{2}$

To show that the bound \mathfrak{b} cannot be improved, Theorem 4 of [KW87] gives an example, assuming \diamond, of a regular topological space X of size and character \aleph_{1} such that $X \rightarrow(\operatorname{top} \omega+1){ }_{\omega}^{1}$, but not $X \rightarrow\left(\operatorname{top} \omega^{2}+1\right){ }_{\omega}^{1}$. Question 2 of the same paper asks whether there is a ZFC example of a regular space X satisfying $X \rightarrow(\operatorname{top} \omega+1){ }_{\omega}^{1}$ and failing $X \rightarrow(\operatorname{top} \alpha)_{\omega}^{1}$ for some countable ordinal $\alpha>\omega^{2}$. The first main result of this note answers this question in the affirmative.
Theorem A. There exists a zero-dimensional regular space X of size continuum, of character \mathfrak{b}, satisfying $X \rightarrow(\operatorname{top} \omega+1)_{\omega}^{1}$, but not $X \rightarrow\left(\operatorname{top} \omega^{2}+1\right)_{1}^{1}$.

In [CFJ23], the Komjáth-Weiss counterexample was addressed from a different angle. There, a weakening of \diamond called $\boldsymbol{\AA}_{F}$ was introduced and shown to be sufficient for the construction of the same \aleph_{1}-sized example. Furthermore, it is established there that $\boldsymbol{\phi}_{F}$ is consistent with the failure of CH. Here, we provide an alternative way to get an \aleph_{1}-sized countexample space together with a large continuum:

[^0]Theorem B. After forcing to add any number of Cohen reals, there exists a zerodimensional regular space X of size \aleph_{1}, of character \mathfrak{b}, satisfying $X \rightarrow(\operatorname{top} \omega+1){ }_{\omega}^{1}$, but not $X \rightarrow\left(\text { top } \omega^{2}+1\right)_{1}^{1}$.

The preceding is a special case of a general theorem that identifies a class of notions of forcing that inevitably add consequences of higher analogs of $\boldsymbol{\mathscr { \varphi }}_{F}$. These notions of forcing include Cohen forcing, but also Prikry and Magidor forcing.
1.1. Notation and conventions. For a regular cardinal κ, we denote by H_{κ} the collection of all sets of hereditary cardinality less than $\kappa . \quad E_{\chi}^{\kappa}$ denotes the set $\{\alpha<\kappa \mid \operatorname{cf}(\alpha)=\chi\}$, and $E_{\geq \chi}^{\kappa}, E_{<\chi}^{\kappa}, E_{\neq \chi}^{\kappa}$, etc. are defined analogously.

For a set of ordinals a, we write $\operatorname{ssup}(a):=\sup \{\alpha+1 \mid \alpha \in a\}, \operatorname{acc}^{+}(a):=\{\alpha<$ $\operatorname{ssup}(a) \mid \sup (a \cap \alpha)=\alpha>0\}, \operatorname{acc}(a):=a \cap \operatorname{acc}^{+}(a)$, and nacc $(a):=a \backslash \operatorname{acc}(a)$.

2. Topological spaces based on trees

Following [BR21], we say that T is a streamlined tree iff there exists some cardinal κ such that $T \subseteq{ }^{<\kappa} H_{\kappa}$ and, for all $t \in T$ and $\alpha<\operatorname{dom}(t), t \upharpoonright \alpha \in T$. For a subset $E \subseteq \kappa$, we let $T \upharpoonright E:=\{t \in T \mid \operatorname{dom}(t) \in E\}$. For a subset $T^{\prime} \subseteq T$, a ladder system over T^{\prime} is a sequence $\vec{A}=\left\langle A_{t} \mid t \in T^{\prime}\right\rangle$ such that, for every $t \in T^{\prime}$, A_{t} is a cofinal subset of $t_{\downarrow}:=\{s \in T \mid s \subsetneq t\}$ with otp $\left(A_{t}\right)=\operatorname{cf}(\operatorname{dom}(t))$. For every ladder system $\vec{A}=\left\langle A_{t} \mid t \in T^{\prime}\right\rangle$, we attach a symmetric relation $E_{\vec{A}} \subseteq[T]^{2}$, as follows:

$$
E_{\vec{A}}=\left\{\{s, t\} \mid t \in T^{\prime}, s \in A_{t}\right\} .
$$

Theorem 2.1. Suppose that:

- $T \subseteq{ }^{<\kappa} H_{\kappa}$ is a streamlined tree;
- \vec{A} is a ladder system over $T^{\prime}=T \upharpoonright E_{\omega}^{\kappa}$;
- The graph $\left(T, E_{\vec{A}}\right)$ is uncountably chromatic.

Then there exists a zero-dimensional topology τ on T such that $X:=(T, \tau)$ is a regular space of character \mathfrak{b} satisfying $X \rightarrow(\operatorname{top}(\omega+1))_{\omega}^{1}$ and $X \rightarrow\left(\operatorname{top}\left(\omega^{2}+1\right)\right)_{1}^{1}$.

Proof. Let $\vec{A}=\left\langle A_{t} \mid t \in T^{\prime}\right\rangle$ denote the above ladder system. We now build another ladder system $\left\langle B_{t} \mid t \in T^{\prime}\right\rangle$ with the property that $A_{t} \cap T^{\prime} \subseteq B_{t} \subseteq T \upharpoonright\left(E_{1}^{\kappa} \cup E_{\omega}^{\kappa}\right)$ for all $t \in T^{\prime}$. To this end, for each $t \in T^{\prime}$, we consider three options:

- If $A_{t} \cap T^{\prime}$ is infinite, then let $B_{t}:=A_{t} \cap T^{\prime}$.
- If $A_{t} \cap T^{\prime}$ is finite, but $t \in T \upharpoonright\left(E_{\omega}^{\kappa} \cap \operatorname{acc}^{+}\left(E_{\omega}^{\kappa}\right)\right)$, then let B_{t} be some cofinal subset of $t_{\downarrow} \cap E_{\omega}^{\kappa}$ of order-type ω, with $A_{t} \cap T^{\prime} \subseteq B_{t}$.
- Otherwise, let B_{t} be some cofinal subset of t_{\downarrow} of order-type ω all of whose nodes s with $\operatorname{cf}(\operatorname{dom}(s)) \neq 1$ are the ones from $A_{t} \cap T^{\prime}$.
Next, for every $t \in T$ and every $i<\omega$, we consider two cases depending on whether $B_{t}(i)$ - the $i^{\text {th }}$-element of B_{t} - belongs to T^{\prime} :
- If $B_{t}(i) \in T^{\prime}$, then let $\left\langle a_{t, i}(j) \mid j<\omega\right\rangle$ be a strictly increasing sequence of nodes converging to $B_{t}(i)$. We also require that $a_{t, i+1}(0)$ be bigger than $B_{t}(i)$ for all $i<\omega$.
- Otherwise, let $\left\langle a_{t, i}(j) \mid j<\omega\right\rangle$ be the constant sequence whose sole element is $B_{t}(i) \upharpoonright\left(\max \left(\operatorname{dom}\left(B_{t}(i)\right)\right)\right)$.

Figure 1: Illustration of the ladders assigned to a node $t \in T \upharpoonright E_{\omega}^{\kappa} \cap \operatorname{acc}^{+}\left(E_{\omega}^{\kappa}\right)$.
Claim 2.1.1. There exist a family $\mathcal{F} \subseteq{ }^{\omega} \omega$ of size \mathfrak{b} such that:

- for every $A \in[\omega]^{\omega}$, for every function $g: A \rightarrow \omega$, there exists $f \in \mathcal{F}$ for which $\{n \in A \mid g(n) \leq f(n)\}$ is infinite;
- \mathcal{F} is closed under pointwise maximum, i.e., for all $f, g \in \mathcal{F}$, the function $n \mapsto \max \{f(n), g(n)\}$ is in \mathcal{F}, as well.

Proof. This is well-known, but we include an argument anyway. By [Rin22, Proposition 2.4], $m_{f}(\omega, \omega, \omega, \omega)=\mathfrak{b}$, hence, we may fix a family \mathcal{H} of functions from ω to $[\omega]^{<\omega}$ such that, for every $A \in[\omega]^{\omega}$, and every function $g: A \rightarrow \omega$, there exists $h \in \mathcal{H}$ for which $\{n \in A \mid g(n) \in h(n)\}$ is infinite. Now, let \mathcal{F} denote the smallest subfamily of ${ }^{\omega} \omega$ that covers $\{\sup \circ h \mid h \in \mathcal{H}\}$ and that is closed under pointwise maximum. ${ }^{3}$ Clearly, \mathcal{F} is as sought.

Let \mathcal{F} be given by the claim. For all $s, t \in T$, denote $(s, t]:=\{x \in T \mid s \subseteq x \subsetneq t\}$. We shall now define a topology τ over T by defining a system $\left\langle\mathcal{N}_{t} \mid t \in T\right\rangle$ of local bases. For every $t \in T \backslash T^{\prime}$, set $\mathcal{N}_{t}:=\{\{t\}\}$. For every $t \in T^{\prime}$, set $\mathcal{N}_{t}:=\left\{N_{t}(f, j) \mid\right.$ $f \in \mathcal{F}, j<\omega\}$, where

$$
N_{t}(f, j)=\{t\} \cup \biguplus\left\{\left(a_{t, i}(f(i)), B_{t}(i)\right] \mid j \leq i<\omega\right\}
$$

Since \mathcal{F} is closed under pointwise maximum, \mathcal{N}_{t} is indeed closed under intersections. In addition, for every element s of a neighborhood $N_{t}(f, j)$, there exists $N \in \mathcal{N}_{s}$ with $N \subseteq N_{t}(f, j)$. Specifically:

- If $s \in T \backslash T^{\prime}$, then $N:=\{s\}$ does the job;
- If $s \in T^{\prime} \backslash\{t\}$, then there exists a unique $i \in \omega \backslash j$ such that $s \in$ $\left(a_{t, i}(f(i)), B_{t}(i)\right]$, and so by picking a large enough k to satisfy $\left(a_{t, i}(f(i)) \subseteq\right.$ $B_{s}(k)$, we get that $N_{s}(g, k+1) \subseteq N_{t}(f, j)$ for any choice of $g \in \mathcal{F}$.
As $\bigcap \mathcal{N}_{t}=\{t\}$ for every $t \in T$, we altogether conclude that $X=(T, \tau)$ is a T_{1} topological space. As $\left|\mathcal{N}_{t}\right| \leq|\mathcal{F} \times \omega|=\mathfrak{b}$ for every $t \in T$, we get that $\chi(X) \leq \mathfrak{b}$. Since X is T_{1}, to show that X is regular, it suffices to prove that the space X is zero-dimensional.

Claim 2.1.2. Every $N \in \bigcup_{t \in T} \mathcal{N}_{t}$ is τ-closed.
Proof. Let $t \in T^{\prime}, f \in \mathcal{F}, j<\omega$, and we shall show that that $N_{t}(f, j)$ is τ-closed. To this end, let $s \in T \backslash N_{t}(f, j)$.

- If $s \notin T^{\prime}$, then $\{s\}$ is a neighborhood of s disjoint from $N_{t}(f, j)$.
- If $s \in T^{\prime}$ and $s \subseteq B_{t}(0)$, then $N_{s}(g, 0)$ is readily disjoint from $N_{t}(f, j)$ for any choice of $g \in \mathcal{F}$.
- If $s \in T^{\prime}$ and $B_{t}(i) \subseteq s \subseteq B_{t}(i+1)$, then find a large enough $k<\omega$ such that $B_{t}(i) \subseteq B_{s}(k)$, and note that $N_{s}(g, k+1)$ is disjoint from $N_{t}(f, j)$ for any choice of $g \in \mathcal{F}$.

[^1]- If $s \in T^{\prime}$ and $s \notin t_{\downarrow}$, then $r:=s \cap t$ is an element of T that constitutes the meet of s and t. Find a large enough k such that $r \subseteq B_{s}(k)$ and note that for any choice of $g \in \mathcal{F}, N_{s}(g, k+1)$ is disjoint from t_{\downarrow}, and hence from $N_{t}(f, j)$.

Claim 2.1.3. $X \rightarrow(\operatorname{top}(\omega+1))_{\omega}^{1}$.
Proof. Let $c: T \rightarrow \omega$ be a given a coloring. It suffices to find a $t \in T^{\prime}$ such that $\left\{s \in B_{T} \mid c(s)=c(t)\right\}$ is infinite. Towards a contradiction, suppose that $\left\{s \in B_{T} \mid\right.$ $c(s)=c(t)\}$ is finite for every $t \in T^{\prime}$. It follows that we may define a function $d: T \rightarrow \omega \times 2 \times \omega$ by recursion on the levels of T, as follows:
$d(t):= \begin{cases}\left\langle c(t), 1, \max \left\{0, n+1 \mid \exists s \in B_{t}[c(s)=c(t) \& d(s)=\langle c(s), 1, n\rangle]\right\}\right\rangle, & \text { if } t \in T^{\prime} \\ \langle c(t), 0,0\rangle, & \text { otherwise } .\end{cases}$
Recalling that $\left(T, E_{\vec{A}}\right)$ is uncountably chromatic, we may now find $\{s, t\} \in E_{\vec{A}}$ such that $d(s)=d(t)$. By possibly switching the roles of s and t, we may assume that $t \in T^{\prime}$ and $s \in A_{t}$. As $t \in T^{\prime}$, it follows that $d(t)=(c(t), 1, m)$ for some $m<\omega$. As $d(s)=d(t)$, it follows that $c(s)=c(t)$ and $s \in T^{\prime}$, and hence $s \in B_{t}$. But then the definition of $d(t)$ implies that the third coordinate of $d(t)$ is bigger than the corresponding one of $d(s)$. This is a contradiction.

Claim 2.1.4. $X \nrightarrow\left(\operatorname{top}\left(\omega^{2}+1\right)\right)_{1}^{1}$.
Proof. Towards a contradiction, suppose that $\phi: \omega^{2}+1 \rightarrow X$ is an homeomorphism. For every $n<\omega$, since $\omega \cdot(n+1)$ is an accumulation point of the interval $A_{n}:=(\omega \cdot n, \omega \cdot(n+1))$, the singleton $\{\phi(\omega \cdot(n+1))\}$ cannot be τ-open, so that the node $t_{n}:=\phi(\omega \cdot(n+1))$ must be in T^{\prime} and $\phi\left[A_{n}\right]$ must contain an infinite sequence converging to t_{n}. Likewise, $\left\{t_{n} \mid n<\omega\right\}$ must contain an infinite sequence converging to the node $t_{\omega}:=\phi\left(\omega^{2}\right)$. It thus follows that there exists a strictly increasing and continuous map $\psi: \omega^{2}+1 \rightarrow \omega^{2}+1$ such that $\phi \circ \psi$ is a strictly increasing and continuous map from $\omega^{2}+1$ to T. For notational simplicity, we assume ψ is the identity, so that $\left\langle t_{n} \mid n<\omega\right\rangle$ is a strictly increasing sequence of nodes in T^{\prime} converging to t_{ω}. In particular, $t_{\omega} \in T \upharpoonright\left(E_{\omega}^{\kappa} \cap \operatorname{acc}^{+}\left(E_{\omega}^{\kappa}\right)\right)$.

As $\operatorname{otp}\left(B_{t_{\omega}}\right)=\omega<\omega^{2}=\operatorname{otp}\left(\phi\left[\omega^{2}\right]\right)$, we may fix a map $d: \omega \rightarrow \phi\left[\omega^{2}\right] \backslash B_{t}$ such that $\langle d(n) \mid n<\omega\rangle$ is a strictly increasing increasing sequence of nodes converging to t_{ω}. Consequently, the following set is infinite:

$$
A:=\left\{i \in \omega \backslash\{0\} \mid\left(B_{t}(i-1), B_{t}(i)\right] \text { has an element of } \operatorname{Im}(d)\right\} .
$$

It follows that for every $i \in A$, we may let

$$
m_{i}:=\max \left\{m<\omega \mid B_{t}(i-1) \subsetneq d(m) \subseteq B_{t}(i)\right\}
$$

Define a function $g: A \rightarrow \omega$ defined via

$$
g(i):=\min \left\{j<\omega \mid d\left(m_{n}\right) \subseteq a_{t, i}(j)\right\}
$$

Recalling that \mathcal{F} was given by Claim 2.1.1, we now pick $f \in \mathcal{F}$ such that $I:=$ $\{n \in A \mid g(n) \leq f(n)\}$ is infinite. For every $i \in I$, it is the case that

$$
B_{t}(i-1) \subsetneq d\left(m_{i}\right) \subseteq a_{t, i}(g(i)) \subseteq a_{t, i}(f(i)) \subsetneq B_{t}(i)
$$

Therefore, for every node s in the set $D:=\left\{d\left(m_{i}\right) \mid i \in I\right\}$, there exists an $i \in I$ such that $D \cap\left(B_{t}(i-1), B_{t}(i)\right]=\{s\}$. So D is an infinite discrete subset of the compact set $\phi\left[\omega^{2}+1\right]$. This is a contradiction.

It now follows from [KW87, Theorem 1] that $\chi(X) \geq \mathfrak{b}$. Altogether, the space X is as sought.

We are now ready to prove Theorem A.
Corollary 2.2. There exists a zero-dimensional regular space X of size continuum, of character \mathfrak{b}, satisfying $X \rightarrow(\operatorname{top} \omega+1)_{\omega}^{1}$, but not $X \rightarrow\left(\operatorname{top} \omega^{2}+1\right)_{1}^{1}$.
Proof. By Theorem 2.1, it suffices to find a streamlined tree $T \subseteq{ }^{<\omega_{1}} \omega_{1}$ of size continuum, and a ladder system \vec{A} over $T^{\prime}:=T \upharpoonright \operatorname{acc}\left(\omega_{1}\right)$ such that the graph $\left(T, E_{\vec{A}}\right)$ is uncountably chromatic. A tree with the same key features was constructed by D. Soukup in [Sou15, Theorem 3.5], though it was not streamlined. By abstract nonsense considerations (see [BR21, Lemma 2.5]), this should not make any difference. As the argument in [BR21] does not deal with the adjacent ladder system, we spell out the details in here.

Soukup's tree is the tree $T(S):=\left\{x \subseteq \omega_{1} \mid \operatorname{acc}^{+}(x) \subseteq x \subseteq S\right\}$ for an arbitrary choice of a stationary and co-stationary subset S of ω_{1}, ordered by the end-extension relation, \sqsubseteq. It comes equipped with a sequence $\vec{C}=\left\langle C_{x} \mid x \in T(S)\right\rangle$ such that C_{x} is either a finite subset of x_{\downarrow} or a cofinal subset of x_{\downarrow} of order-type ω. In addition, the corresponding graph $\left(T(S),\left\{\{y, x\} \mid x \in T(S), y \in C_{x}\right\}\right)$ is uncountably chromatic.

As S is stationary, $T(S)$ contains infinite sets. As S is co-stationary, every element of $T(S)$ is countable. Altogether $|T(S)|=2^{\aleph_{0}}$. As every $x \in T(S)$ is a closed countable set of countable ordinals, its corresponding collapsing map π_{x} : $\operatorname{otp}(x) \rightarrow x$ is an element of $\bigcup_{\beta \in \operatorname{nacc}\left(\omega_{1}\right)}{ }^{\beta} \omega_{1}$. In addition, for every pair $x \sqsubset y$ of nodes in $T(S)$, it is the case that $\pi_{x} \subset \pi_{y}$. Thus, altogether,

$$
T:=\left\{\pi_{x} \upharpoonright \alpha \mid x \in T(S), \alpha<\omega_{1}\right\}
$$

is a streamlined tree satisfying:

- $x \mapsto \pi_{x}$ forms an order-isomorphism from $(T(S), \sqsubseteq)$ to $\left(T \upharpoonright \operatorname{nacc}\left(\omega_{1}\right), \subseteq\right)$;
- every element of $T \upharpoonright \operatorname{acc}\left(\omega_{1}\right)$ admits a unique immediate successor. ${ }^{4}$

We shall now define the ladder system $\vec{A}=\left\langle A_{t} \mid t \in T^{\prime}\right\rangle$, for $T^{\prime}:=T \upharpoonright \operatorname{acc}\left(\omega_{1}\right)$, as follows. Given $t \in T \upharpoonright \operatorname{acc}\left(\omega_{1}\right)$, let x_{t} denote the unique element of $T(S)$ such that $\pi_{x_{t}}$ is the immediate successor of t. Now consider the following possibilities:

- If $\left|C_{x_{t}}\right|<\aleph_{0}$, then let A_{t} be an arbitrary cofinal subset of t_{\downarrow} of order-type ω.
- Otherwise, $C_{x_{t}}$ is a cofinal subset of $\left(x_{t}\right)_{\downarrow}$ of order-type ω, and hence

$$
A_{t}:=\left\{\pi_{y} \upharpoonright \sup (\operatorname{otp}(y)) \mid y \in C_{x_{t}}\right\}
$$

is a cofinal subset of t_{\downarrow} of order-type ω.
Claim 2.2.1. The graph $\left(T, E_{\vec{A}}\right)$ is uncountably chromatic.
Proof. Let $c: T \rightarrow \omega$ be given, and we shall find $s \subset t$ such that $c(s)=c(t)$.
As in the proof of Claim 2.1.3, by recursion on the levels of the tree we may construct a coloring $d: T(S) \rightarrow \omega$ satisfying the following for every $x \in T(S)$:
(1) If C_{x} is finite, then $d(x)$ is an odd positive integer that does not belong to $\left\{d(y) \mid y \in C_{x}\right\} ;$
(2) If C_{x} is infinite, then $d(x)=c\left(\pi_{x} \upharpoonright \sup (\operatorname{otp}(x))\right) \cdot 2$.

As the graph $\left(T(S),\left\{\{y, x\} \mid x \in T(S), y \in C_{x}\right\}\right)$ is uncountably chromatic, we now pick a pair $y \sqsubset x$ of nodes in $T(S)$ such that $d(y)=d(x)$. Denote:

[^2]- $t:=\pi_{x} \upharpoonright \sup (\operatorname{otp}(x))$, and
- $s:=\pi_{y} \upharpoonright \sup (\operatorname{otp}(y))$.

As $d(x)=d(y)$, by the choice of d, C_{x} cannot be finite, so the only other option is that C_{x} is a cofinal subset of x_{\downarrow} of order-type ω. In particular, x_{\downarrow} cannot have a maximal element, and hence $\operatorname{otp}(x)=\alpha+1$ for some $\alpha \in \operatorname{acc}\left(\omega_{1}\right)$. Therefore, π_{x} is an immediate successor of the above node t, so that $t \in T \upharpoonright \operatorname{acc}\left(\omega_{1}\right)$ and $x_{t}=x$. It thus follows from the definition of A_{t} that $s \in A_{t}$.

Finally, as C_{x} is not finite, $d(x)=c(t) \cdot 2$. From $d(y)=d(x)$ being even, we then infer that $d(y)=c(s) \cdot 2$. Altogether, $c(s)=c(t)$, as sought.

This completes the proof.

3. Forcing highly chromatic Hajnal-Máté graphs

A Hajnal-Máté graph is a graph of the form $G=(\kappa, E)$, where κ is a cardinal, E is a subset of $[\kappa]^{2}$, and for every pair $\beta<\gamma$ of ordinals from κ, $\sup \{\alpha<\beta \mid$ $\{\beta, \gamma\} \in E\}<\beta$. The existence of an uncountably chromatic Hajnal-Máté graph over ω_{1} gives rise to a tree T and a ladder system \vec{A} satisfying the hypotheses of Theorem 2.1 by identifying ω_{1} with the streamlined tree $T:={ }^{<} \omega_{1} 1$.

In this section, we highlight a class of notions of forcing that inevitably add highly chromatic Hajnal-Máté graphs.

Definition 3.1. Let $\mathbb{P}=(P, \leq)$ denote a notion of forcing, and λ denote an infinite regular cardinal.

- \mathbb{P} is ${ }^{\lambda} \lambda$-bounding iff for every $g \in{ }^{\lambda} \lambda \cap V^{\mathbb{P}}$, there exists some $f \in{ }^{\lambda} \lambda \cap V$ such that $g(\alpha) \leq f(\alpha)$ for all $\alpha<\lambda$;
- \mathbb{P} satisfies the λ^{+}-stationary chain condition $\left(\lambda^{+}\right.$-stationary-cc, for short) iff for every sequence $\left\langle p_{\delta} \mid \delta<\lambda^{+}\right\rangle$of conditions in \mathbb{P} there are a club $D \subseteq \lambda^{+}$ and a regressive map $h: D \cap E_{\lambda}^{\lambda^{+}} \rightarrow \lambda^{+}$such that for all $\gamma, \delta \in \operatorname{dom}(h)$, if $h(\gamma)=h(\delta)$, then p_{γ} and p_{δ} are compatible.

Theorem 3.2. Suppose that λ is an infinite regular cardinal, and \mathbb{P} is a λ^{+}_ stationary-cc notion of forcing satisfying at least one of the following:
(1) \mathbb{P} preserves the regularity of λ, and is not ${ }^{\lambda} \lambda$-bounding;
(2) \mathbb{P} forces that $\operatorname{cf}(\lambda)<|\lambda|$. In addition, $\operatorname{cf}\left(\mathrm{NS}_{\lambda}, \subseteq\right)=\lambda^{+}$;
(3) In $V^{\mathbb{P}}$, there exists a cofinal subset $\Lambda \subseteq \lambda$ such that for every function $f \in{ }^{\lambda} \lambda \cap V$, there exists some $\xi \in \Lambda$ with $f(\xi)<\min (\Lambda \backslash(\xi+1))$.
Then, in $V^{\mathbb{P}}$, there exists a sequence $\left\langle C_{\delta} \mid \delta \in E_{\lambda}^{\lambda^{+}}\right\rangle$satisfying the following:

- For every $\delta \in E_{\lambda}^{\lambda^{+}}, C_{\delta}$ is a club in δ of order-type λ;
- For every coloring $c: E_{\lambda}^{\lambda^{+}} \rightarrow \lambda$, there are $\gamma, \delta \in E_{\lambda}^{\lambda^{+}}$such that $\gamma \in C_{\delta}$ and $c(\gamma)=c(\delta)$.

Proof. By [BR19, Proposition 3.1], Clause (3) follows from Clauses (1) and (2), so hereafter, we shall assume Clause (3).

Work in V. Write $\Delta:=E_{\lambda}^{\lambda^{+}}$. For each $\delta \in \Delta$, let $\pi_{\delta}: \lambda \rightarrow \delta$ denote the inverse collapse of some club in δ, and let $\psi_{\delta}: \lambda \leftrightarrow \delta$ be some bijection.

Next, let G be \mathbb{P}-generic over V, and work in $V[G]$. By Clause (3) and the proof of [BR19, Lemma 3.2], we may fix a club $\Lambda \subseteq \lambda$ of order-type $\operatorname{cf}(\lambda)$, such that for every function $f \in{ }^{\lambda} \lambda \cap V, \sup \{\xi \in \Lambda \mid f(\xi)<\min (\Lambda \backslash(\xi+1))\}=\lambda$.

Let $\delta \in \Delta$. Clearly, $B_{\delta}:=\pi_{\delta}[\Lambda]$ is a club in δ of order-type $\operatorname{cf}(\lambda)$. Next, let C_{δ} be the ordinal closure below δ of the following set

$$
B_{\delta} \cup \bigcup\left\{\psi_{\delta}\left[\alpha^{+}\right] \cap\left(\pi_{\delta}(\alpha), \pi_{\delta}\left(\alpha^{+}\right)\right) \mid \alpha \in \Lambda \& \alpha^{+}=\min (\Lambda \backslash(\alpha+1))\right\}
$$

Note that, for every pair $\beta<\beta^{+}$of successive elements of $\pi_{\delta}[\Lambda], C_{\delta} \cap\left(\beta, \beta^{+}\right)$is covered by the closure of $\psi_{\delta}\left[\operatorname{otp}\left(\Lambda \cap \beta^{+}\right)\right]$, which is a set of size $<\lambda$. Therefore, $\operatorname{otp}\left(C_{\delta}\right) \leq \lambda$.

Claim 3.2.1. For every $\Gamma \in\left[\lambda^{+}\right]^{\lambda^{+}}$from V, for every $\delta \in \operatorname{acc}^{+}(\Gamma) \cap \Delta$, it is the case that $\sup \left(C_{\delta} \cap \Gamma\right)=\delta$.

Proof. Let $\Gamma \in\left[\lambda^{+}\right]^{\lambda^{+}}$in V. Let $\delta \in \Delta \cap \operatorname{acc}^{+}(\Gamma)$ and $\epsilon<\delta$; we shall find $\gamma \in \Gamma \cap C_{\delta}$ above ϵ. As $\delta \in \operatorname{acc}^{+}(\Gamma)$, we may define a function $f_{0}: \lambda \rightarrow \lambda$ via

$$
f_{0}(\alpha):=\min \left\{\alpha^{\prime}<\lambda \mid\left(\pi_{\delta}(\alpha), \pi_{\delta}\left(\alpha^{\prime}\right)\right) \cap \Gamma \neq \emptyset\right\}
$$

Then, we may define a function $f_{1}: \lambda \rightarrow \lambda$ via:

$$
f_{1}(\alpha):=\min \left\{i<\lambda \mid \psi_{\delta}(i) \in\left(\pi_{\delta}(\alpha), \pi_{\delta}\left(f_{0}(\alpha)\right)\right) \cap \Gamma\right\}
$$

Define $f: \lambda \rightarrow \lambda$ via $f(\alpha):=\max \left\{f_{0}(\alpha), f_{1}(\alpha)\right\}$. As $\Gamma \in V$, the function f is in ${ }^{\lambda} \lambda \cap V$, and hence $A:=\{\xi \in \Lambda \mid f(\xi)<\min (\Lambda \backslash(\xi+1))\}$ is cofinal in λ. Pick a large enough $\alpha \in A$ such that $\pi_{\delta}(\alpha) \geq \epsilon$. Denote $\alpha^{+}:=\min (\Lambda \backslash(\alpha+1))$. Then $\alpha^{\prime}:=f_{0}(\alpha)$ and $i:=f_{1}(\alpha)$ are both less than $<\alpha^{+}$. So

$$
\psi_{\delta}(i) \in \psi_{\delta}\left[\alpha^{+}\right] \cap\left(\pi_{\delta}(\alpha), \pi_{\delta}\left(\alpha^{+}\right)\right) \cap \Gamma
$$

meaning that $\psi_{\delta}(i)$ is an element of $C_{\delta} \cap \Gamma$ above ϵ.
Work in V. Suppose that p is a condition forcing that \dot{c} is a name for a function from Δ to λ. For each $\delta \in \Delta$, let p_{δ} be a condition extending p and deciding $\dot{c}(\delta)$ to be, say, τ_{δ}. Fix a club $D \subseteq \lambda^{+}$and a regressive map $h: D \cap E_{\lambda}^{\lambda^{+}} \rightarrow \lambda^{+}$such that for all $\gamma, \delta \in \operatorname{dom}(h)$, if $h(\gamma)=h(\delta)$ then p_{γ} and p_{δ} are compatible.

Find $(\tau, \eta) \in \lambda \times \lambda^{+}$for which

$$
\Gamma:=\left\{\delta \in \Delta \cap D \mid \tau_{\delta}=\tau \& h(\delta)=\eta\right\}
$$

is stationary. As $\operatorname{acc}^{+}(\Gamma)$ is a club (in V), Claim 3.2.1 provides us with a $\delta \in \Gamma$ such that $\sup \left(C_{\delta} \cap \Gamma\right)=\delta$. Pick $\gamma \in C_{\delta} \cap \Gamma$. As $h(\delta)=\eta=h(\gamma)$, we may pick some q extending p_{δ} and p_{γ}. Then, q is an extension of p forcing that $\gamma, \delta \in \Delta$ and $c(\gamma)=\tau=c(\delta)$.

Corollary 3.3. If λ is a measurable cardinal, then in the forcing extension by Prikry forcing using a normal measure on λ, there exists a Hajnal-Máté graph over λ^{+}of chromatic number λ^{+}.

Corollary 3.4. After forcing to add any number of Cohen reals, there is an uncountably chromatic Hajnal-Máté graph over ω_{1}.

Putting the preceding together with Theorem 2.1, we obtain Theorem B:
Corollary 3.5. After forcing to add any number of Cohen reals, there exists a zero-dimensional regular space X of size \aleph_{1}, of character \mathfrak{b}, satisfying $X \rightarrow$ $($ top $\omega+1){ }_{\omega}^{1}$, but not $X \rightarrow\left(\operatorname{top} \omega^{2}+1\right)_{1}^{1}$.

4. Acknowledgments

The first author was supported by the European Research Council (grant agreement ERC-2018-StG 802756). The second author was partially supported by the Israel Science Foundation (grant agreement 203/22) and by the European Research Council (grant agreement ERC-2018-StG 802756).

Some of the results of this paper were presented by the first author at the Winter School in Abstract Analysis meeting in Štěkeň, Czech Republic, January 2023. He thanks the organizers for the opportunity to speak and the participants for their feedback.

References

[BR19] Ari Meir Brodsky and Assaf Rinot. More notions of forcing add a Souslin tree. Notre Dame J. Form. Log., 60(3):437-455, 2019.
[BR21] Ari Meir Brodsky and Assaf Rinot. A microscopic approach to Souslin-tree constructions. Part II. Ann. Pure Appl. Logic, 172(5):Paper No. 102904, 65, 2021.
[CFJ23] Rodrigo Carvalho, Gabriel Fernandes, and Lúcia R. Junqueira. Partitions of topological spaces and a new club-like principle. Proc. Amer. Math. Soc., 151(4):1787-1800, 2023.
[KW87] Péter Komjáth and William Weiss. Partitioning topological spaces into countably many pieces. Proc. Amer. Math. Soc., 101(4):767-770, 1987.
[Rin22] Assaf Rinot. On the ideal J[א]. Ann. Pure Appl. Logic, 173(2):Paper No. 103055, 13pp, 2022.
[Sou15] Dániel T. Soukup. Trees, ladders and graphs. J. Combin. Theory Ser. B, 115:96-116, 2015.

Department of Mathematics, Bar-Ilan University, Ramat-Gan 5290002, Israel.
Department of Mathematics, Bar-Ilan University, Ramat-Gan 5290002, Israel.
URL: http://www.assafrinot.com

[^0]: Date: A preprint as of June 27, 2023. For the latest version, visit http://p.assafrinot.com/61.
 2010 Mathematics Subject Classification. Primary 54G20. Secondary 03E02.
 ${ }^{1}$ Recall that \mathfrak{b} denotes the least size of an unbounded submfaily of ${ }^{\omega} \omega$, where a subfamily $\mathcal{F} \subseteq{ }^{\omega} \omega$ is bounded if, for some function $g: \omega \rightarrow \omega,\{n<\omega \mid f(n) \leq g(n)\}$ is finite for all $f \in \mathcal{F}$.
 ${ }^{2}$ The published proof had a small gap that was later rectified in [CFJ23] based on a suggestion of Weiss.

[^1]: ${ }^{3}$ We use sup instead of max, since $\sup (x)$ is meaningful for any set x, including $x=\emptyset$.

[^2]: ${ }^{4}$ Indeed, the immediate successor of a node $t \in T \upharpoonright \operatorname{acc}\left(\omega_{1}\right)$ is π_{x} for $x:=\operatorname{Im}(t) \cup\{\sup (\operatorname{Im}(t))\}$.

