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Abstract. The parameterized proxy principles were introduced by Brod-
sky and Rinot in a 2017 paper, as new foundations for the construction
of κ-Souslin trees in a uniform way that does not depend on the nature
of the (regular uncountable) cardinal κ. Since their introduction, these
principles have facilitated construction of Souslin trees with complex
combinations of features, and have enabled the discovery of completely
new scenarios in which Souslin trees must exist. Furthermore, the proxy
principles have found new applications beyond the construction of trees.

This paper opens with a comprehensive exposition of the proxy prin-
ciples. We motivate their very definition, emphasizing the utility of each
of the parameters and the consequent flexibility that they provide. We
then survey the findings surrounding them, presenting a rich spectrum of
unrelated models and configurations in which the proxy principles are
known to hold, and showcasing a gallery of Souslin trees constructed
from the principles.

The last two sections of the paper offer new results. In particular, for
every positive integer n, we give a construction of a λ+-Souslin tree all
of whose n-derived trees are Souslin, but whose (n+ 1)-power is special.

1. Introduction

In his trailblazing paper analyzing the fine structure of the constructible
hierarchy, appearing more than fifty years ago, Jensen proved [Jen72, The-
orem 6.2] that in Gödel’s constructible universe L, there exists a κ-Souslin
tree for every regular uncountable cardinal κ that is not weakly compact.
Jensen’s proof goes through two newly-minted combinatorial principles, di-
amond (♦) and square (�), introduced in §5–6 of that paper. The isolation
and formulation of these new axioms have made the combinatorial proper-
ties of L accessible to generations of set theorists, enabling combinatorial
constructions of complicated objects and leading to the settling of open
problems in fields including topology, measure theory, and group theory.

Let κ denote a regular uncountable cardinal. Recall that a coherent C-
sequence over κ is a sequence 〈Cα | α < κ〉 such that, for every limit ordinal
α < κ:

• Cα is a club subset of α; and
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• Cα ∩ ᾱ = Cᾱ for every ᾱ ∈ acc(Cα).1

An easy way to obtain such a sequence is to fix at the outset some club D
in κ, and then let Cα := D∩α for every α ∈ acc(D) and Cα := α\sup(D∩α)
for any other α. More interesting, however, are principles asserting the
existence of coherent C-sequences satisfying some non-triviality condition.
For example:

• Jensen’s square principle �λ of [Jen72, §5.1] asserts the existence of a
coherent C-sequence over λ+, 〈Cα | α < λ+〉, such that otp(Cα) ≤ λ
for every α < λ+.
• For a stationary set E ⊆ acc(κ), the principle described in the con-

clusion of [Jen72, Theorem 6.1], which is commonly denoted �(E),
asserts the existence of a coherent C-sequence over κ, 〈Cα | α < κ〉,
that avoids E, meaning that acc(Cα) ∩ E = ∅ for every α < κ.
• Todorčević’s square principle �(κ) [Tod87] asserts the existence of

a coherent C-sequence over κ, 〈Cα | α < κ〉, that is unthreadable —
meaning that there is no club D ⊆ κ such that D∩α = Cα for every
α ∈ acc(D).

In the decades ensuing since [Jen72], many variants of both diamond and
square have appeared — strengthening, weakening, or adapting each one
as needed to solve various combinatorial problems.2 Strong combinations of
square and diamond such as Gray’s principle ♦λ from [Gra80] and its further
strengthening ♦+

λ from [RS17] have appeared as well. Square principles
are primarily concerned with coherence, whereas diamond principles are
prediction principles, asserting that objects of size κ can be predicted by
means of their initial segments.

The construction of complicated combinatorial objects such as κ-Souslin
trees requires both prediction and coherence. Classical constructions of
Souslin trees have followed Jensen’s lead in requiring the ♦-sequence’s pre-
dictions to occur in some nonreflecting stationary set E, which must then
be avoided by the square sequence in order not to interfere with building
higher levels of the tree. There are particular scenarios where the coherence
requirements are transparent, such as for κ = ℵ1 where �ℵ0 holds trivially,
and we thus find many classical constructions tailored to such cases alone.

Examining the classical literature, one sees that construction of a κ-Souslin
tree with an additional property (such as complete or regressive; rigid or ho-
mogeneous; specializable or non-specializable; admitting an ascent path or
omitting an ascending path; free or uniformly coherent) often depends on
the nature of the cardinal κ (be it a successor of a regular, a successor of

1For any set C of ordinals, acc(C) stands for the set {β ∈ C | sup(C ∩ β) = β > 0}
of its accumulation points. In particular, for an ordinal γ, acc(γ) stands for the set of
non-zero limit ordinals below γ.

2Variants of square are surveyed in [ML12]. Variants of diamond are surveyed
in [Rin11], including the close connection between diamond principles and cardinal
arithmetic.
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a singular, or an inaccessible — in some cases even depending on whether
κ is the successor of a singular cardinal of countable or of uncountable co-
finality). To obtain the additional features, constructions include extensive
bookkeeping, counters, timers, coding and decoding, whose particular na-
ture makes it difficult to transfer the process from one type of cardinal to
another.

What happens if we want to replace an axiom known to imply the exis-
tence of a κ0-Souslin tree with strong properties by an axiom from which a
plain κ1-Souslin tree can be constructed? Do we have to revisit each sce-
nario and tailor each of these particular constructions in order to derive a
tree with strong properties?

The parameterized proxy principles were introduced by Brodsky and
Rinot in [BR17a] with the goal of overcoming this problem by offering new
foundations for constructing κ-Souslin trees for an arbitrary regular uncount-
able cardinal κ. So far, they have been used to construct κ-Souslin trees
in [BR17a, BR17b, BR19b, BR19c, BR21, RYY23a, RYY23b, Yad23]. The
core feature of the proxy principles is that the non-triviality of a square-like
sequence is ensured by a hitting requirement — a weak form of prediction,
to be explained in Section 2 — that is tailored for the desired construc-
tion, rather than by the classical non-triviality conditions which were not
flexible enough to obtain the optimal conclusions in many cases. This tailor-
ing enables uniform construction of κ-Souslin trees and other combinatorial
objects, oblivious to the nature of κ.

By incorporating such a hitting feature into the square-like proxy prin-
ciple, one can reduce the requirements on the ♦-sequence: In [BR17a],
χ-complete κ-Souslin trees were constructed using ♦(κ) instead of ♦(E)
for some non-reflecting stationary subset E of Eκ≥χ,3 and in [BR21], ♦(κ)

was further relaxed to the arithmetic hypothesis κ<κ = κ.

Since their introduction, the proxy principles have found new applications
beyond the construction of Souslin trees. In conjunction with ♦, we observe
the following:

• In [BR19a], these principles were used to construct distributive Aron-
szajn trees, as well as special trees with a non-special projection.
• In [Kru23], these principles were used to a construct a large pairwise

far family of Aronszajn trees.
• In [Sha23], these principles were used to construct minimal non-σ-

scattered linear orders.

Furthermore, as a result of incorporating the hitting feature into the
square-like sequence, applications of the proxy principles in the absence of
an arithmetic hypothesis, let alone a prediction principle, have emerged, as
follows:

3Eκ≥χ denotes the set {α < κ | cf(α) ≥ χ}. The sets Eκ>χ, Eκχ, Eκ6=χ, Eκ<χ, and Eκ≤χ are

defined analogously.
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• In [LHR19], these principles were used to construct a highly chro-
matic graph all of whose smaller subgraphs are countably chromatic.
• In [IR23, Lemma 5.9], these principles were used to construct Ulam-

type matrices.
• In [RS23, §5], these principles were used to construct a Dowker space

whose square is still Dowker;
• In [RZ23, §7], these principles were used to construct a C-sequence

suitable for conducting walks on ordinals.4

Alongside the wealth of applications of the proxy principles, we turn our
attention to the obvious question: How do these new proxy principles com-
pare to the classical combinatorial axioms? In [BR17a, BR21], a bridge to
the classical foundations was built, establishing that all previously known
♦-based constructions of κ-Souslin trees may be redirected through the new
foundations. Concurrently, in [BR17a, LH17, Rin17, RS17, LHR19, BR19a,
BR19b, BR19c, Rin19, BR21, Rin22], instances of the proxy principles have
been shown to hold in many unrelated configurations, so that any conclusion
derived from those instances is known to hold in completely new, unrelated
scenarios. Significantly, in addition to scenarios conforming to the spirit
of V = L, it is shown that some instances of the proxy principles may
consistently hold above large cardinals, at a cardinal satisfying stationary
reflection, or in models of strong forcing axioms such as Martin’s Maxi-
mum. Furthermore, various notions of forcing inadvertently add instances
of the proxy principles. Thus, any application of the proxy principle will
automatically be known to hold in a rich spectrum of unrelated models.

Altogether, the proxy principles provide a successful disconnection be-
tween the combinatorial constructions and the study of the hypotheses them-
selves. This project thus has two independent tasks: Deriving rich applica-
tions of the proxy principles, and proving instances of the proxy principles
in various scenarios.

1.1. This paper. The main goal of this paper is to make the proxy princi-
ples accessible to anyone with experience in combinatorial set theory. Until
now, the various definitions and related results have been scattered through-
out multiple lengthy papers, making it difficult for the interested researcher
to adopt these principles as a starting point for deriving desired results. At
this point, we believe that the proxy principles have attained a significant
level of maturity, and we hope that by presenting this comprehensive ex-
position we can engage the reader and encourage them to join us in our
adventure of applying the proxy principles to obtain optimal results.

We now present the breakdown of the current paper, as follows.
In Section 2, we give a simple example from infinite graph theory that

motivates the very need for a parameterized proxy principle, and then pa-
tiently discuss each of the eight parameters of the proxy principle P(. . .).

4By walking along the outcome C-sequence, the extreme instance Pr1(κ, κ, κ, κ) of
Shelah’s strong coloring principle was shown to be consistent.
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By the end of this section, the reader will hopefully agree that all of the
parameters are quite natural indeed.

In Section 3, we gather configurations in which instances of the proxy
principle hold, as established in the literature.

In Section 4, we list various types of Souslin trees that have been con-
structed using the proxy principles, indicate where each of these results may
be found in the literature and what vector of parameters is known to be
sufficient for the relevant construction.

The last two sections of this paper are dedicated to new proxy-based
constructions of Souslin trees. In Section 5, we present a proxy-based con-
struction of a large family of pairwise-Souslin trees. A sample corollary of
the latter reads as follows.

Theorem A. Assuming P(κ, 2,v, κ), if there exists a κ-Kurepa tree, then
there exists a κ-Aronszajn tree T admitting κ+-many κ-Souslin subtrees such
that the product of any finitely many of them is again Souslin.

We shall also show that this result is optimal in the sense that the tree T
itself cannot be κ-Souslin.

In Section 6, we present a proxy-based construction of a Souslin tree
whose square is special. More generally:

Theorem B. For an infinite cardinal λ, assuming Pλ(λ+, 2,v, λ+), for
every positive integer n, there exists a λ+-Souslin tree T satisfying the fol-
lowing:

• all n-derived trees of T are Souslin;
• the (n+ 1)-power of T is special.

Such an ℵ1-tree (i.e., the case λ = ω) was constructed by Abraham and
Shelah in [AS93, §2] building on the approach from [DJ74, JJ74] of taking
generics over countable models; hence the construction does not generalize
to λ singular. A construction for λ singular (and n = 1) was given by
Abraham, Shelah and Solovay in [ASS87] exploiting the fact that �λ for λ
singular may be witnessed by a C-sequence 〈Cα | α < λ+〉 with otp(Cα) < λ
for all α < λ+. As such, it does not apply to λ regular. The construction
that will be given here is the first that works uniformly for λ both regular
and singular.

1.2. Notation and conventions. Throughout this paper, κ denotes a reg-
ular uncountable cardinal, and Hκ denotes the collection of all sets of hered-
itary cardinality less than κ. The Greek letters λ,Λ, µ, ν, χ, θ, ϑ will denote
(possibly finite) cardinals, and α, β, γ, δ, ε, ε, ι, σ, ς, ξ will denote ordinals.
The class of all infinite regular (resp. singular) cardinals is denoted by REG
(resp. SING), and we write Reg(κ) for REG ∩ κ. For a set X, write [X]θ

for the collection of all subsets of X of size θ, and define [X]<θ in a similar
fashion.

In order to maintain the flow of the text, we decided not to pause to
give the definitions of standard objects, giving them in footnotes, instead.
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For the reader’s benefit, an index of all of these definitions is provided on
Page 44.

2. What are the proxy principles, anyway?

2.1. Motivation. Recall that a graph G is a pair (V,E) where E ⊆ [V ]2,
and that the chromatic number of G, denoted Chr(G), is the least cardinal
θ for which there exists a coloring c : V → θ such that for every {x, y} ∈ E,
c(x) 6= c(y). We say that a graph G is countably chromatic iff Chr(G) ≤ ℵ0;
otherwise, it is uncountably chromatic.

A Hajnal–Máté graph is a graph G = (V,E) in which V = ω1 and, for
every α < ω1, the set Aα := {β < α | {α, β} ∈ E} is either finite or a cofinal
subset of α of order-type ω.

Martin’s axiom at the level of ℵ1 implies that all Hajnal–Máté graphs are
countably chromatic (see [Fre84, Proposition 31G]), and the same assertion
is also consistent with the continuum hypothesis (see [ADS78, Theorem 2.1]).
So, what does it take for G to be uncountably chromatic? It can be verified
that the following are equivalent:

(1) G is uncountably chromatic;
(2) For every sequence 〈Bn | n < ω〉 of uncountable subsets of ω1, there

exists some α < ω1 such that Aα meets Bn for every n < ω;
(3) For every sequence 〈Bn | n < ω〉 of uncountable subsets of ω1, there

are stationarily many α < ω1 such that sup(Aα ∩Bn) = α for every
n < ω.

The above connection between the hitting property of ~A = 〈Aα | α < ω1〉
and the chromatic number of the associated graph generalizes, as follows.

Let ~A = 〈Aα | α ∈ S〉 be a ladder system over some subset S of a regular un-
countable cardinal κ.5 Derive a graph G := (κ,E) by letting E := {{α, β} |
α ∈ S, β ∈ Aα}. Then, for every cardinal θ, Chr(G) > θ provided that for

every sequence ~B = 〈Bi | i < θ〉 of cofinal subsets of κ, there exists some
α ∈ S such that

∧
i<θ Aα ∩Bi 6= ∅.

Now, what happens if one wants, say, a ladder-system graph on ω2 of
chromatic number ω2 such that, in addition, all of its smaller subgraphs
are countably chromatic?6 This quest for incompactness highlights a second
feature that a ladder system may possess, namely, coherence. However,
coherence properties are typically imposed upon ladder systems in which
the αth ladder is moreover a closed subset of α; these are better known as
C-sequences. For two sets of ordinals x, y, write x v y iff x = y ∩ ε for
some ordinal ε. A C-sequence 〈Cα | α < κ〉 is coherent iff for all α < κ and
ᾱ ∈ acc(Cα), it is the case that Cᾱ v Cα. In order to obtain a graph that

5This means that for every α ∈ S, Aα is a subset of α and there is no β < α such that
Aα ⊆ β.

6This is a nontrivial requirement. By [FL88], it is consistent that every graph of size
and chromatic number ω2 has a subgraph of size and chromatic number ω1.
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may satisfy the desired incompactness property, we impose an additional
constraint on the pairs in E, as follows:7

Definition 2.1 (The C-sequence graph, [Rin15, LHR19]). Given a C-sequence
~C = 〈Cα | α < κ〉, and a subset G ⊆ acc(κ), the graph G(~C) is the pair
(G,E), where

E := {{α, γ} ∈ [G]2 | γ ∈ Cα, min(Cγ) > sup(Cα ∩ γ) ≥ min(Cα)}.

Remark 2.2. For every pair γ < α of vertices that are adjacent in G(~C), it
is the case that γ is an element of nacc(Cα).8

Consider G(~C) for a given C-sequence ~C = 〈Cα | α < κ〉 and subset

G ⊆ acc(κ). For an ordinal δ < κ, let G(~C) � δ denote the initial-segment

graph (G ∩ δ, E ∩ [δ]2). The next fact tells us, in particular, that if ~C is

coherent, then every proper initial segment of G(~C) is countably chromatic.

Fact 2.3 ([LHR19, Lemma 2.11(1)]). Let χ ∈ Reg(κ). If Cᾱ v Cα for all

α ∈ G and ᾱ ∈ acc(Cα) ∩ Eκχ, then Chr(G(~C) � δ) ≤ χ for every δ < κ.

Next, what does it take for the whole of G(~C) to have a large chromatic

number? Based on what we saw earlier, one may guess that Chr(G(~C)) > θ

provided that for every sequence ~B = 〈Bi | i < θ〉 of cofinal subsets of κ,
there exists some α ∈ G such that Cα meets each of the Bi’s. However, due
to the particular nature of E (recall Definition 2.1), here we would want Cα
to meet each of the Bi’s in two consecutive points. Specifically:

Fact 2.4 ([LHR19, Lemma 2.13]). For an infinite θ < κ, Chr(G(~C)) > θ,

provided that for every sequence ~B = 〈Bi | i < θ〉 of cofinal subsets of κ,
there exists an α ∈ G with min(Cα) ≥ min(B0) such that, for every i < θ,
there are β, γ ∈ Cα ∩Bi such that γ = min(Cα \ (β + 1)).

Altogether, to obtain a graph of the form G(~C) satisfying a desired in-
compactness property — large chromatic number for the whole graph, along
with small chromatic number for its proper initial segments — it suffices to

begin with a C-sequence ~C satisfying a coherence property as in the hypoth-
esis of Fact 2.3 along with a hitting property as in the hypothesis of Fact 2.4.
An axiom asserting the existence of a sequence satisfying a combination of
coherence and hitting properties is what we call a proxy principle.

2.2. The proxy principles. In order to capture the considerations of the
previous subsection while maintaining the flexibility to vary both the co-
herence and hitting features as needed to prove various desired results, one

7See [LHR19, Remark 2.6] for the history of Definition 2.1 and its connection to the
Hajnal–Máté graphs.

8For any set C of ordinals, nacc(C) denotes the set C \ acc(C) of its non-accumulation
points.
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would like to introduce a concise parameterized notation for the proxy prin-
ciples. We would like to be able to express something along the following
lines:

• There exists a system 〈Cα | α < κ〉 with each Cα a nonempty collec-
tion of closed cofinal subsets of α;
• There is a prescribed bound for how many sets are there at each

level, e.g., |Cα| = 1 for every α < κ (as in the examples we have seen
thus far), or more generally, for some fixed cardinal µ, |Cα| < µ for
every α < κ;9

• The elements of any level are compatible with the ones from below,
i.e., there is a prescribed binary coherence relation R (such as v)
such that, for every α < κ, every C ∈ Cα, and every ᾱ ∈ acc(C),
there exists a D ∈ Cᾱ with D R C;
• For some prescribed cardinal θ, every family B ⊆ [κ]κ of size θ gets

“hit” at some level α, i.e., each C ∈ Cα meets each B ∈ B. Looking
at Fact 2.4, we may also want the α of interest to come from some
prescribed set G, and we may want a meeting that is successful
twice in a row, or, more generally, σ many times in a row for some
prescribed ordinal σ.

The above considerations lead us to the definition of the parameterized
proxy principle. First, let us establish some notational conventions that we
shall use throughout the rest of the paper:

• κ is a regular uncountable cardinal;
• χ is an infinite regular cardinal ≤ κ;
• ν and µ are cardinals such that 2 ≤ ν ≤ µ ≤ κ+;
• R is a binary relation over [κ]<κ;
• θ is a cardinal ≤ κ;
• S is a nonempty collection of stationary subsets of κ;
• ξ and σ are ordinals ≤ κ.

Definition 2.5 ([BR17a, BR21]). The proxy principle P−ξ (κ, µ,R, θ,S, ν, σ)

asserts the existence of a sequence ~C = 〈Cα | α < κ〉 such that the following
three requirements are satisfied:

(1) for every α < κ, Cα is a nonempty collection of less than µ many
closed subsets C of α with ssup(C) = α and otp(C) ≤ ξ;

(2) for all α < κ, C ∈ Cα and ᾱ ∈ acc(C), there is a D ∈ Cᾱ such that
D R C;

(3) for every sequence 〈Bi | i < θ〉 of cofinal subsets of κ, for every
S ∈ S, there exist stationarily many α ∈ S for which:10

9Compare this with Jensen’s weak square principle �∗λ [Jen72, §5.1] and Schimmer-
ling’s generalization �λ,µ [Sch95, §5]. The utility of multi-ladder systems, i.e., systems
in which there is more than one ladder assigned to each level, is demonstrated in [RS23,
Theorem 4.13].

10If min{θ, σ} > 0, then merely requiring that “there exists a nonzero α ∈ S” has an
equivalent effect. See the proof of [Dev79, Theorem 4.3].
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• |Cα| < ν, and
• for all C ∈ Cα and i < min{α, θ}:

(?) sup{β ∈ C | succσ(C \ β) ⊆ Bi} = α.

Remark 2.6. succσ(D) := {δ ∈ nacc(D) | 0 < otp(D ∩ δ) ≤ σ} is the set of
the first σ many successor elements of D, should they exist. In particular,
for every β ∈ C such that sup(otp(C \ β)) ≥ σ, succσ(C \ β) is nothing but
the next σ many successor elements of C above β. In the special case σ = 1,
requirement (?) above is equivalent to asserting that sup(nacc(C)∩Bi) = α.

One can consider the proxy principle’s eight parameters together as a
vector of parameters (ξ, κ, µ,R, θ,S, ν, σ), and then divide the vector’s com-
ponents into three groups, according to the clause of Definition 2.5 in which
each parameter first appears. The first three parameters ξ, κ, µ are in

Clause (1), which amounts to saying that ~C is a ξ-bounded C-sequence over
κ of width less than µ. The fourth parameter R appears in Clause (2),

which amounts to saying that ~C is R-coherent. The remaining parameters

capture the hitting characteristics of ~C: θ tells us how many sets can be hit
simultaneously, each element of S prescribes the location at which hitting
must take place, ν forces the width to be locally small upon a successful hit,
and σ sets a minimum for the number of serial successful meets.

The special case ξ = κ imposes no order-type restriction on ~C, in which
case we can freely omit it, writing P−(κ, · · · ) instead of P−ξ (κ, · · · ). A small

ξ is indeed stronger (see [Kön03, Lemma 3.13]), and imposing it enables
stronger properties in the constructed object (see [Sha23]). In case κ =
λ+ is a successor cardinal, it is tempting to view ξ := λ as the ultimate
requirement; however, there are scenarios in which a particular choice of ξ
with λ < ξ < λ+ turns out to be the optimal one (see [BR19c, §3.3]).

The special case µ = 2 implies that each Cα is a singleton, say {Cα}, in
which case we identify the C-sequence 〈{Cα} | α < κ〉 with the C-sequence
〈Cα | α < κ〉. On the other extreme is the case µ = κ+, which may seem
pointless, but is nevertheless valuable when combined with a small value for
ν (see [RZ23, Theorems 7.2 and 7.6]), or with an arithmetic hypothesis (see
[IR24, Theorem 5.14]).

The basic coherence relation R is the end-extension relation, v, intro-

duced in Subsection 2.1, indicating that ~C is a coherent C-sequence. A close
examination of proxy-based constructions reveals that full coherence is not
always necessary, and the v relation can be weakened in several ways, as
follows.

First, considering some C ∈
⋃
α<κ Cα and some ᾱ ∈ acc(C), it may be

that all we require is for some D ∈ Cᾱ to agree with C at the final approach
to ᾱ. If this is the case, then the construction will work just as well from a
v∗-coherent instance of the proxy principle, where D v∗ C iff there is some
ε < sup(D) such that D \ ε v C \ ε.
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In another direction, some proxy-based constructions can be designed to

require genuine coherence only for some of the clubs in ~C, or only at some of
their accumulation points.11 Indeed, there are contexts in which, for some
infinite cardinal χ, there is no need to require coherence for clubs of order-
type < χ, or possibly, there is no need to require coherence at accumulation
points of cofinality < χ. Thus, in such cases we may weaken v to either χv
or vχ, where for a coherence relation R:

• D χR C iff ((D R C) or (cf(sup(D)) < χ)), and
• D Rχ C iff ((D R C) or (otp(C) < χ and nacc(C) consists only of

successor ordinals)).12

The significance of such a weakening is that unlike coherent square sequences
that are typically refuted by reflection principles,13 vχ-coherent proxy prin-
ciples are compatible with a gallery of reflection principles and provide an
effective means of obtaining optimal incompactness results (see for instance
[BR17a, Corollary 1.20] and [LHR19, Theorem A]).

Note that the extreme case R = κv amounts to saying that no coherence
is needed at all, and we call it the trivial coherence relation. In this case,
every Cα may be shrunk to a singleton, yielding a proxy sequence with µ = 2.

In yet another direction, there are circumstances in which it is helpful to

indicate that ~C avoids a particular class of ordinals Ω, meaning that acc(C)∩
Ω = ∅ for every C ∈

⋃
α<κ Cα. This requirement is indicated by prepending

Ω as a superscript to the coherence relation R, thereby strengthening it
to ΩR.14 In the context of walks on ordinals, the utility of avoiding a
stationary subset of κ is demonstrated by [Tod07, Theorem 6.2.7] and [CL17,

Lemma 6.7]. In general, if ~C is a Ωv-coherent proxy sequence, then for any
α ∈ Ω, one is free to shrink Cα to a singleton, and this has important
ramifications (see [BR19c, Lemma 3.8] and [BR21, Corollary 4.27]).

The weakest nontrivial value for the hitting parameters is (θ,S, ν, σ) :=

(1, {κ}, µ, 1); this minimal amount of hitting ensures that ~C is unthread-
able,15 implying in particular that κ is not weakly compact (see [Tod87,
Theorem 1.8]).

We have already seen the utility of a large θ in the previous subsection,
and here the extreme case θ = κ is understood as a diagonal requirement,

11Recall Fact 2.3.
12The condition “nacc(C) consists only of successor ordinals” indicates that the club

C may be a “dummy club” that is not part of the genuine coherence structure of ~C. Thus,

any construction from ~C should ensure that the hitting does not occur at such a C.
13Such as large cardinals [CFM03, Theorem 4.1],[Fri06, Proposition 8], strong forcing

axioms [CM11, Theorem 1.2] and simultaneous reflection of stationary sets [HLH17, §2].
14By convention, this superscript-prepending is understood as being applied last, so

that, for instance, Ωvχ is to be parsed as Ω(vχ).
15That is, for every club D ⊆ κ, there is an α ∈ acc(D) such that D ∩ α /∈ Cα. This

is easily seen by applying Definition 2.5(3) to the cofinal set B0 := acc(D), as in the
proof of [BR17a, Lemma 3.2]. This proof also highlights the necessity for successor (i.e.,
non-accumulation) points of C in (?) of Definition 2.5(3).
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where each C in Cα is required to hit each Bi for all the i’s that are smaller
than α. When one constructs a χ-complete or a χ-free κ-Souslin tree, it is
natural to require Eκ≥χ to be in S (see [BR19b, Proposition 2.2] and [BR19c,

Theorem 4.12]). An extreme case is requiring S to contain all stationary
subsets of a given stationary S∗ ⊆ κ, e.g., S∗ := {α < κ | cf(α) = cf(|α|)}
as was done in [Kru23, Theorem 3.1]. An application of ν = 2 may be
found in [BR21, Theorem 6.17], where the narrowness requirement at the
hitting ordinals enables sealing potential automorphisms of a tree;16 another
application of ν = 2 is given by Corollary 5.7 below. The utility of σ > 1
is demonstrated by Fact 2.4 above. Applications of σ = ω may be found
throughout [BR17b]. Nota bene that in some cases σ = ω implies the
existence of a nonreflecting stationary subset of Eκω (see [LH17, Theorem 4.1]
for a primary scenario).

2.3. Monotonicity. The reader can verify that the proxy principle satisfies
monotonicity properties with respect to most of its parameters, as follows:

• Any sequence witnessing P−ξ (κ, µ,R, θ,S, ν, σ) remains a witness to

the principle if any of ξ, µ, or ν is increased; if θ or σ is decreased;
if R is weakened; if S is shrunk; or if any element of S is expanded.
• The case R = v coincides with R = Ω

χv for (Ω, χ) := (∅, ω); increas-

ing χ weakens each of the relations Ω
χv, Ω

χv∗, Ωvχ, and Ωv∗χ, while
expanding Ω strengthens the same relations.
• For R ∈ {v,v∗}, any χ, and any Ω, P−ξ (κ, µ,ΩRχ, · · · ) entails

P−ξ (κ, µ,Ω
χR, · · · ).

2.4. Simplifications. To make the parameterized proxy principle more ac-
cessible, a few of its main instances have been given abbreviations in the
literature. For S a stationary subset of κ, the abbreviations are as follows:

• �−ξ (S) denotes P−ξ (κ, 2,v, 1, {S}, 2, 1), i.e., the instance asserting

the existence of a coherent ξ-bounded C-sequence with a minimal
nontrivial hitting feature. Together with ♦(κ) this enables a very
simple construction of a κ-Souslin tree (see [BR21, §2.6–2.7]).
• �∗ξ(S) denotes P−ξ (κ, κ, χv∗, 1, {S}, κ, 1), where χ := min{cf(α) |
α ∈ S ∩ acc(κ)}. This is a weakening of �−ξ (S) in the spirit of

Jensen’s �∗ξ that is nonetheless sufficient for various constructions

(see [BR19b, Proposition 2.2]). In case that κ happens to be (<χ)-
closed,17 [BR21, Theorem 4.39] tells us that P−ξ (κ, κ, χv∗, 1, {S}, κ, 1)

is no weaker than P−ξ (κ, κ,v, 1, {S}, κ, 1).

In the special case where κ is the successor of a regular cardinal ξ

and S ⊆ Eξ
+

ξ , the principle �∗ξ(S) becomes P−ξ (κ, 2, κv, 1, {S}, 2, 1)

as stated in [Kru23, Definition 1.8]. This is because min{cf(α) | α ∈
16In fact, it is open whether a κ-Souslin tree constructed from an instance of the proxy

principle having ν > 2 can be secured to be rigid on a club.
17A cardinal κ is (<χ)-closed iff λ<χ < κ for every λ < κ.
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S} = ξ, and no club in a witness for �∗ξ(S) has accumulation points
of cofinality ≥ ξ, so here χv∗ coincides with the trivial coherence
relation κv, thereby allowing µ to be shrunk to 2.
• One may replace the stationary set S by a collection S of station-

ary sets, and/or add an indication for the width µ, e.g., writing
�−ξ (S, <µ) for P−ξ (κ, µ,v, 1,S, µ, 1).

Whenever possible and in order to reduce an unnecessary load, a con-
vention for the omission of parameters has been established. As already
mentioned earlier, if we omit the parameter ξ, then we mean that ξ = κ,
i.e., P−(κ, · · · ) stands for P−κ (κ, · · · ).18 Independently, we may omit a tail
of parameters, as follows:

• If we omit σ, then σ = “<ω”, which we will discuss shortly;
• If in addition we omit ν, then ν = µ;
• If in addition we omit S, then S = {κ};
• If in addition we omit θ, then θ = 1.

We are left with discussing our choice for a default value of σ.
Initially, in [BR17a, p. 1953], the authors stated that the omission of σ

would amount to putting σ = 1 as this seemed to be the weakest possible
value that is still useful. Later on, it was realized that this was an illusion,
since all the applications of P−(κ, . . .) at the time were in the context of
♦(κ), and in this context any instance P−ξ (κ, · · · , 1) may be witnessed by a

sequence simultaneously witnessing P−ξ (κ, · · · , n) for all n < ω; that is, ♦(κ)

implies that P−ξ (κ, · · · , 1) is no weaker than P−ξ (κ, · · · , <ω).19 Through the

work surrounding Fact 2.4, one learns to appreciate the possibility of having
P−ξ (κ, · · · , σ) holding with σ slightly greater than 1. The hitting feature

of Fact 2.4 — namely, requiring two consecutive meets of Cα with Bi, but
not insisting that the smaller of the two be a non-accumulation point of
Cα — may be expressed as something like “σ = 11

2”, but fortunately such
an awkward notation can be avoided, as [BR21, Theorem 4.15] shows that
P−ξ (κ, · · · , 11

2), P−ξ (κ, · · · , 2), and P−ξ (κ, · · · , <ω) are all logically equivalent.

With the revised convention of setting a default value of σ = “<ω” as in
[BR21, Convention 4.18], a door was opened to proxy-based constructions
of κ-Souslin trees using κ<κ = κ instead of ♦(κ) (see [BR21, Theorems 5.13
and 6.8]), and to the second batch of applications mentioned in the paper’s
introduction (see Page 3).20

Finally, in order to facilitate the use of the proxy principles in conjunction
with other common hypotheses, we adopt the following:

• Pξ(κ, µ,R, θ,S, ν, σ) denotes the conjunction of P−ξ (κ, µ,R, θ,S, ν, σ)

and ♦(κ);

18Likewise �−(S),�−(S),�∗(S) and �∗(S) stand for �−κ (S), . . . ,�∗κ(S), respectively.
19See [BR21, Theorem 4.16(1)] for a stronger result.
20Strictly speaking, σ = 1 suffices for the construction of the said Ulam-type matrix.
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• P•ξ(κ, µ,R, θ,S, ν) denotes the conjunction of P−ξ (κ, µ,R, θ,S, ν,<ω)

and κ<κ = κ.21

2.5. To bullet or not to bullet? In our applications of Pξ(κ, . . .), we shall
prefer to use a more versatile version ♦(Hκ) of ♦(κ), as follows:

Fact 2.7 ([BR17a, Lemma 2.2]). ♦(κ) is equivalent to the principle ♦(Hκ)
asserting the existence of a partition 〈Ri | i < κ〉 of κ and a sequence 〈Ωβ |
β < κ〉 of elements of Hκ such that for all i < κ, Ω ⊆ Hκ and p ∈ Hκ+, the
following set is stationary in κ:

Bi(Ω, p) := {β ∈ Ri | ∃M ≺ Hκ+ (p ∈M, β = κ ∩M,Ωβ = Ω ∩M)}.

The way that the combination of P−ξ (κ, . . .) and ♦(Hκ) is typically used

in recursive constructions of length κ is as follows: At limit stage α < κ,
one uses the ladders of Cα in order to climb up and eventually determine
the αth-level of the ultimate object. Clause (2) of Definition 2.5 ensures
that this climbing procedure will not reach a dead end. Finally, Clause (3)
of Definition 2.5 is invoked with sets Bi that arise from an application of
♦(Hκ), namely Bi := Bi(Ω, p) for an educated choice of Ω and p.

Looking at [BR21, Definition 5.9], we see that the principle P•ξ(κ, · · · ) can

be understood as a weakening of P−ξ (κ, · · · ) ∧ ♦(Hκ) that is tailored to hit

only sets Bi of the above particular form.
Strictly speaking, P•ξ(κ, · · · ) is weaker than Pξ(κ, · · · ),22 but due to the

nature of our constructions (as roughly described above), we do not know of
any application of Pξ(κ, · · · ) that cannot be transformed into an application
of the weaker principle P•ξ(κ, · · · ). In particular, all the κ-trees constructed

from Pξ(κ, · · · ) in Sections 5 and 6 below, may as well be constructed as-
suming P•ξ(κ, · · · ), instead.

2.6. For the adventurous readers. We mention that there are a few
additional values that can be assigned to the parameters of the proxy prin-
ciple. First, by letting ξ := <λ, we mean that all ladders in the witnessing
proxy sequence have order-type strictly less than λ. The fact that singu-
lar cardinals may admit a ladder system having small order-type every-
where was exploited by Shelah and his co-authors a long time ago (see, e.g.,
[BDS86, ASS87]). Second, by letting µ := ∞ we mean that |Cα| ≤ |α| for
every nonzero α < κ. Third, if we write <θ instead of θ, then we mean that
the proxy sequence witnesses θ = ϑ for all ϑ < θ simultaneously. An analo-
gous interpretation applies when writing <σ instead of σ. Fourth, by letting

21See Definition 5.9 and Corollary 5.14 of [BR21]. Note that here the value of σ is
hardcoded to be <ω; this is because the obvious generalization to σ ≥ ω (together with
µ < κ) will already imply that ♦(κ) holds (see [BR21, Proposition 5.17]).

22P•ω(ω1, 2,v, ω1) holds after adding a single Cohen real to a model of CH (see the
next section). If ♦(ω1) failed in the ground model, then by [Kun80, Exercise VII.H9] it
remains failing in the extension, so that Pω(ω1, . . .) will fail in the extension.
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σ := <∞, we mean to replace the assertion of Equation (?) of Definition 2.5
by:

∀σ < otp(C) sup{β ∈ C | succσ(C \ β) ⊆ Bi} = α.

Coming back to µ, we have a variation µind that aids in constructions of
κ-trees with a µ-ascent path (see Definition 4.7 below). It reads as follows.

Definition 2.8 ([BR21, §4.6]). The principle P−ξ (κ, µind,v, θ,S) asserts the

existence of a ξ-bounded C-sequence 〈Cα | α < κ〉 together with a sequence
〈i(α) | α < κ〉 of ordinals in µ, such that:

• for every α < κ, there exists a canonical enumeration 〈Cα,i | i(α) ≤
i < µ〉 of Cα satisfying that the sequence 〈acc(Cα,i) | i(α) ≤ i < µ〉
is ⊆-increasing with

⋃
i∈[i(α),µ) acc(Cα,i) = acc(α);

• for all α < κ, i ∈ [i(α), µ) and ᾱ ∈ acc(Cα,i), it is the case that
i ≥ i(ᾱ) and Cᾱ,i v Cα,i;
• for every sequence 〈Bτ | τ < θ〉 of cofinal subsets of κ, and every
S ∈ S, there are stationarily many α ∈ S such that for all C ∈ Cα
and τ < min{α, θ}, sup(nacc(C) ∩Bτ ) = α.

In addition to coherence as alluded to in the introduction, another concept
that is invisible at the level of κ = ℵ1 is that of a proxy-respecting tree.
This concept arises when one tries to construct a companion κ-tree S for a
given κ-tree T in such a way that the product tree S ⊗ T becomes special
[Yad23, §6] or Souslin [RYY23b, §5], or that the cofinal branches of T would
injectively embed into the automorphism group of S [Yad23, §7], or that
a designated reduced power of S would contain a copy of T [BR17b, §6].
The point is that if we were to construct the new κ-tree S using an instance
P−(· · · ) of the proxy principle, then it will be useful to be able to interpret
(even if artificially) the other κ-tree T as an outcome of a similar application
of P−(· · · ). This leads to the following definition (that makes use of some
concepts that are defined in Subsection 4.1 below).

Definition 2.9 ([BR17b]). A streamlined κ-tree T is P−ξ (κ, µ,R, θ,S, ν, σ)-

respecting if there exists a subset § ⊆ κ and a sequence of mappings 〈bC :
(T � C)→ αHκ ∪ {∅} | α < κ,C ∈ Cα〉 such that:

(1) for all α ∈ § and C ∈ Cα, Tα ⊆ Im(bC);

(2) ~C = 〈Cα | α < κ〉 witnesses P−ξ (κ, µ,R, θ, {S ∩ § | S ∈ S}, ν, σ);

(3) for all sets D v C from ~C and x ∈ T �D, bD(x) = bC(x) � sup(D).

Typically, a κ-Souslin tree obtained from an instance P−ξ (· · · ) of the

proxy principle using the so-called microscopic approach will be P−ξ (· · · )-
respecting. In addition, if κ = λ+ for an infinite regular cardinal λ, and
P−λ (κ, µ, λv, θ, {Eκλ}, ν, σ) holds, then every κ-tree is P−λ (κ, µ, λv, θ, {Eκλ}, ν, σ)-
respecting. Indeed, ♦(ℵ1) implies that all ℵ1-trees are P−ω (ℵ1, 2,v,ℵ1, {ℵ1})-
respecting. Unorthodox examples of respecting trees, including Kurepa trees
and the trees recording characteristics of walks on ordinals, may be found
in [RS17, §4].



PROXY PRINCIPLES IN COMBINATORIAL SET THEORY 15

2.7. What’s next? As mentioned in the paper’s Introduction, the proxy
principles provide a disconnection between the combinatorial constructions
and the study of the hypotheses themselves. This is a well-known approach
and is no different from other axioms such as ♦, � or the P-Ideal Dichotomy
(PID). In all of these cases, by matching any application of the axiom with
an appropriate configuration in which the axioms is known to hold, one ob-
tains a conclusion of possible interest. Arguably, one factor determining the
success of an axiom of this sort is the exact cut point at which the discon-
nection is introduced. We think that a good cut point is one in which the
study of applications and configurations is equally wealthy. With this view,
in the upcoming two sections we shall establish that the proxy is indeed
a successful axiom by demonstrating the rich findings in the two indepen-
dent sides of this project. At no point will we try to list all the resulting
conclusions, as their number has order of magnitude equal to the product
of the two. In particular, we leave to the reader the task of reconnecting
applications and configurations as needed or for the joy of verifying that all
classical ♦-based Souslin-tree constructions can now be redirected through
the proxy principle.23

3. Deriving instances of the proxy principle

In this section, we shall give three tables demonstrating that instances of
the proxy principles hold in many different configurations. Here, for S ⊆ κ,
NS+

κ � S stands for the collection of all stationary subsets of S, and Refl(S)
asserts that every stationary subset of S reflects at some ordinal in Eκ>ω. We

also write CHλ for the assertion that 2λ = λ+, and CH(λ) for the assertion
that 2<λ = λ.

23Bear in mind Subsection 2.3.
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Hypothesis Instance of proxy obtained Citation

♣(S) for κ = sup(S) P−(κ, 2, κv, 1, {S}, 2, κ) [BR17a, §5]
♣(S) for λ+ = sup(S) P−λ (λ+, 2, λv, 1, {S}, 2, λ+) [BR17a, Thm 5.1(1)]

♣(Eλ
+

λ ) for λ ∈ REG �∗λ(Eλ
+

λ ) [BR17a, Thm 5.1(1)]
♣(S) for ω1 = sup(S) P−ω (ℵ1, 2,v, 1, {S}, 2, ω1) [BR17a, Lem 3.3(1)]
♦(S) for κ = sup(S) P(κ, 2, κv, 1, {S}, 2, κ) [BR17a, §5]
♦(S) for λ+ = sup(S) Pλ(λ+, 2, λv, 1, {S}, 2, λ+) [BR17a, Thm 5.1(2)]

♦(S) for S ⊆ Eλ+

cf(λ), λ
+ = sup(S) Pλ(λ+, 2, λv, λ+, {Eλ+

cf(λ)}, 2, <λ) [BR17a, Thm 5.6]

♦(S) for ω1 = sup(S) Pω(ℵ1, 2,v,ℵ1, {S}, 2, <ω) [BR17a, Thm 3.7]
♦(S) for ω1 = sup(S) Pω2(ℵ1, 2,v,ℵ1, {S}, 2, <ω2) [BR17a, Thm 3.6]

♦∗(Eλ+

λ ) for λ ∈ REG Pλ(λ+, 2, λv, λ+,NS+
λ+ � Eλ

+

λ , 2, <∞) [BR21, §4.4]
♦(S) ∧ ¬Refl(S) for sup(S) = κ inaccessible P(κ, κ, Sv, 1, {S}, 2, κ) [BR21, Thm 4.26(1)]

♦λ for λ ≥ ℵ1 Pλ(λ+, 2,v, λ+, {Eλ+

cf(λ)}, 2, <λ) [BR17a, Thm 3.6]

�λ ∧ CHλ for λ ≥ ℵ1 Pλ(λ+, 2,v, <λ, {Eλ+

χ }, 2, <λ) for all χ ∈ Reg(λ) [BR17a, Cor 3.9]

�λ ∧ CHλ, λ ∈ REG \ {ℵ0} P(λ+, 2,v∗, 1, {Eλ+

λ }, 2, <ω) [BR17a, Cor 6.2(1)]
�(λ+) ∧ CHλ with λ = λℵ0 or λ ≥ iω �−(λ+) [Rin17, Cor 4.4, 4.7]
�(λ+) ∧ CHλ with b ≤ λ < ℵω �−(λ+) [Rin22, Cor 5.12]
�(λ+, <λ) ∧ CHλ ∧ CH(λ) with λ ≥ ℵ1 �∗(λ+) [Rin19, Thm 3.5]

�(λ+) ∧ GCH with λ ≥ ℵ1 �−(Eλ
+

χ ) for all χ ∈ Reg(λ) [Rin17, Cor 4.5]
�(λ+) ∧ CHλ ∧ CH(λ) for λ ∈ SING P(λ+, 2,v, λ+, {λ+}, 2, <ω) [BR19a, Cor 4.22]
�(E) ∧ ♦(E), κ = sup(E) ≥ ℵ2 P(κ, 2,v∗, 1, {S}, 2, <ω) for all S ∈ NS+

κ [BR21, Cor 4.19(2)]

CHλ ∧NS � Eλθ is saturated, λ = θ+, θ ∈ REG P(λ+, 2, λv∗, θ, {Eλ
+

λ }, 2, θ) [BR17a, Thm 6.4]

λ ∈ REG \ {ℵ0} ∧ CH(λ) ∧ CHλ ∧ ¬Refl(Eλ
+

6=λ) Pλ(λ+, λ+,v, <λ, {λ+}, 2, <λ) [BR19c, Thm A]

λ ∈ REG \ {ℵ0} ∧ CH(λ) ∧ CHλ ∧ ¬Refl(Eλ
+

6=λ) P(λ+, λ+,v∗, 1, {Eλ+

λ }, 2, <ω) [BR19c, Thm A]

λ ∈ SING ∧ CH(λ) ∧ CHλ ∧�∗λ ∧ ¬Refl(Eλ
+

6=cf(λ)) Pλ2(λ+, λ+,v, λ+, {λ+}, 2, <λ) [BR19c, Thm B]

V = L, κ not weakly compact P(κ, 2,v, κ,S, 2, ω) [BR17a, Cor 1.10(5)]

Table 3.1. Instances of proxy derived from combinatorial
hypotheses. In the last line, S stands for {Eκ≥χ | χ ∈ Reg(κ)∧
κ is (<χ)-closed}.

Remark 3.1. By [Rin17, Cororollary 4.13], �−(κ)∧♦(κ) implies that P(κ, 2,
v∗, 1, {S}) holds for every stationary S ⊆ κ.

Properties of forcing Properties of ground model Instance of proxy obtained Citation

Add(λ, 1) CH(λ) P−λ (λ+, 2, λv, λ+,NS+
λ+ � Eλ

+

λ , 2, <λ) [RZ23, Cor 7.4]

CH(λ) ∧�λ P−λ (λ+, 2,v, λ+,NS+
λ+ � Eλ

+

λ , 2, <λ) [Rin15, Thm 2.3]

CH(λ) ∧�λ ∧ CHλ P•λ(λ+, 2,v, λ+,NS+
λ+ � Eλ

+

λ , 2, <λ) [BR21, Thm 6.1(11)]

CH(λ) ∧�λ ∧ CHλ ∧ λ > ℵ0 Pλ(λ+, 2,v, λ+,NS+
λ+ � Eλ

+

λ , 2, <λ) [BR17a, Thm 4.2(2)]

(<λ)-distributive, κ-cc, CH(λ) and Pλ(λ+,∞,v, λ+,NS+
λ+ � Eλ

+

λ , 2, <∞) [BR19b, Prop 3.10]
collapsing κ to λ+ κ is strongly inaccessible > λ
λ+-cc, size ≤ λ+,

preserves regularity of λ, CH(λ) ∧ ♦(λ+) Pλ(λ+,∞,v, λ+,NS+
λ+ � Eλ

+

λ , 2, <∞) [BR19b, Thm 3.4]
not λλ-bounding
λ+-cc, size ≤ λ+, CH(λ) ∧ CHλ
forces cf(λ) < |λ| κ = λ+ ≥ ℵ2 and S = Eκλ P(κ,∞,v, κ,NS+

κ � S, 2, <∞) [BR19b, Thm 3.4]
(e.g., Prikry, Magidor, Radin)
Lévy-collapsing λ to χ λ<χ = λ > χ ∧ CHλ

κ = λ+ and S = Eκλ Pχ(κ,∞,v, κ,NS+
κ � S, 2, <∞) [BR19b, Prop 3.9]

Table 3.2. Instances of proxy obtained in forcing exten-
sions; in all cases λ, χ stand for infinite regular cardinals,
and the improvement from the parameter θ = 1 to θ = κ (or
θ = λ+) is secured by [BR21, Lemma 4.32].

Remark 3.2. In [LHR19, §3.3], one can find, for a pair χ < κ of infinite
regular cardinals, a χ-directed-closed and κ-strategically-closed forcing poset
for introducing a witness to P−(κ, 2,vχ, κ, (NS+

κ )V , 2, σ).
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Features of model Instance(s) of proxy satisfied Citation

Martin’s Maximum [BR17a, Cor 1.20]
∀λ ∈ SING ∩ cof(ω) ¬�∗λ ∀λ ∈ SING

Pλ(λ+, 2,vℵ2 , λ
+, {Eλ+

cf(λ)}, 2, <λ)

∀λ ∈ REG \ {ℵ0} ¬�λ,ℵ1 ∀λ ∈ REG \ {ℵ0}
∀λ ∈ REG \ {ℵ0} ♦(Eλ

+

λ ) Pλ(λ+, 2, λv, λ+, {Eλ+

λ }, 2, <λ)

λ supercompact, Pλ(λ+, 2,vλ, λ+, {Eλ+

λ }, 2, <λ) [BR17a, Cor 1.24]

Refl(Eλ
+

<λ),¬♦(Eλ
+

λ ), ¬�λ
χ supercompact, Pλ(λ+, 2,vχ, λ+, {Eλ+

cf(λ)}, 2, <λ) [BR17a, Cor 4.7]

λ = χ+ω, ¬�∗λ
Refl(λ+) for λ = ℵω Pℵω(ℵω+1,ℵ1,v,ℵω+1, {Eℵω+1

ℵn | n < ω}) [LH17, Thm 1.12]

and �−(NS+
λ+)

Refl(Eλ
+

<λ) for λ := ℵ1 �−(NS+
λ+) [LH17, Thm 1.12]

Table 3.3. Five models in which �λ fails, yet strong in-
stances of the proxy principle at λ+ hold.

4. A gallery of Souslin-tree constructions

As described in the paper’s Introduction, the original catalyst for the for-
mulation of the proxy principles was the desire for a uniform combinatorial
construction of κ-Souslin trees, and indeed the principles have served this
purpose successfully. In this section we showcase the various Souslin trees
that have been built using the proxy principles, and provide references to
where these constructions can be found.

4.1. The basics. The reader is probably familiar with the abstract defi-
nition of a tree as a poset (T,<T ) all of whose downward cones are well-
ordered. In this project, we opt to work with a particular form of trees which
we call streamlined in which elements of the tree are (transfinite) sequences,
and the tree-order is nothing but the initial-sequence ordering. This choice
does not restrict our study, but it does make some of the considerations
smoother.24 For instance, in such a tree T , the αth-level of T coincides with
the set Tα := {x ∈ T | dom(x) = α}, and we may likewise define T � C to
be {x ∈ T | dom(x) ∈ C}.

Definition 4.1 ([BR21, Definition 2.3]). A streamlined tree is a subset
T ⊆ <κHκ for some cardinal κ such that T is downward-closed, that is,
{t � β | β < dom(t)} ⊆ T for every t ∈ T . The height of T , denoted ht(T ),
is the least ordinal α such that Tα = ∅. The set of cofinal branches through
T , denoted B(T ), is the collection of all functions f with dom(f) = ht(T )
such that {f � β | β < dom(f)} ⊆ T .

24See [BR21, §2.3] for a comparison of streamlined trees with abstract trees, highlighting
the properties of streamlined trees, the advantages of constructing them, and the fact that
we lose no generality by restricting our attention to them.
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Following [BR21, Convention 2.6], we shall identify a streamlined tree T
with the abstract tree (T,().

Definition 4.2. (1) A streamlined κ-tree is a streamlined tree T ⊆
<κHκ such that 0 < |Tα| < κ for every α < κ.

(2) A streamlined κ-Aronszajn tree is a streamlined κ-tree T such that
B(T ) = ∅.

(3) A streamlined κ-Kurepa tree is a streamlined κ-tree T such that
|B(T )| > κ.25

(4) A streamlined κ-Souslin tree is a streamlined κ-Aronszajn tree T
with no antichains of size κ, that is, for every A ∈ [T ]κ, there are
distinct s, t ∈ A that are comparable.26

Section 2 of [BR21], entitled “How to construct a Souslin tree the right
way”, offers a comprehensive exposition of the subject of constructing κ-Souslin
trees and the challenges involved, culminating in Subsections 2.6–2.7 with a
detailed description of a very simple construction of a κ-Souslin tree, proving
the following basic result:

Fact 4.3 ([BR21, Proposition 2.18]). �−(κ)∧♦(κ) implies the existence of
a κ-Souslin tree.

In [BR17a, p. 1965], one finds a comparison between the classical non-
smooth approach to Souslin-tree construction (requiring nonreflecting sta-
tionary sets) and the modern approach using the proxy principles (enabling
construction of a κ-Souslin tree in models where every stationary subset of
κ reflects). Further advantages of the proxy principles in the context of
Souslin-tree construction are described in [BR21, §1].

By a slightly more elaborate construction, it is possible to weaken the
hypotheses of Fact 4.3 considerably, as follows:

Fact 4.4 ([BR21, Corollary 6.7]). P•(κ, κ,v∗, 1, {κ}, κ) implies the existence
of a κ-Souslin tree.

Recalling the meaning of �−(κ) and P•(. . .) as given in Subsection 2.4,
we see that the main improvements of Fact 4.4 over Fact 4.3 consist of
weakening the parameter µ from 2 to κ, as well as weakening the prediction
principle ♦(κ) to the arithmetic hypothesis κ<κ = κ.

4.2. Properties of trees. The literature is rich with additional properties
that κ-trees may posses. Let us discuss some of them.

Definition 4.5. A streamlined tree T of height κ is said to be:

25We follow the definition given in [Kun80, Definition 5.16], which is satisfactory for
our purposes. In some contexts, it may be useful to impose that a κ-Kurepa tree is slim
(see Definition 4.5 below), in order to exclude trivial examples such as the full binary tree
of height a strongly inaccessible cardinal (see [Dev84, p. 317]).

26For s, t ∈ T , we say that s and t are comparable iff s ⊆ t or t ⊆ s; otherwise they are
incomparable. An antichain A in T is a subset A ⊆ T such that for all s, t ∈ T , if s 6= t
then s and t are incomparable.
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• normal iff for all α < β < κ and x ∈ Tα, there is some y ∈ Tβ such

that x ( y;27

• binary iff T ⊆ <κ2;
• ς-splitting (for an ordinal ς < κ) iff every node in T admits at least
ς many immediate successors;28

• splitting iff it is 2-splitting;
• prolific iff, for all α < κ and x ∈ Tα, {xa〈ι〉 | ι < max{ω, α}} ⊆
Tα+1;
• slim iff |Tα| ≤ max{|α| ,ℵ0} for every ordinal α;
• χ-complete iff, for any (-increasing sequence η, of length < χ, of

elements of T , the limit of the sequence,
⋃

Im(η), is also in T .
• full iff for every α ∈ acc(κ), |B(T � α) \ Tα| ≤ 1;
• rigid iff its only automorphism is the trivial one;
• χ-coherent iff |{α ∈ dom(x) ∩ dom(y) | x(α) 6= y(α)}| < χ for all
x, y ∈ T ;
• coherent iff it is ω-coherent;
• uniformly homogeneous iff for all y ∈ T and x ∈ T � dom(y), the

union of x and y � (dom(y) \ dom(x)) (which is usually denoted by
x ∗ y) is in T ;
• uniformly coherent iff it is coherent and uniformly homogeneous;
• regressive iff there exists a map ρ : T → T satisfying the following:

– for every non-minimal x ∈ T , ρ(x) ( x;
– for all α ∈ acc(κ) and x 6= y from Tα, either (x, ρ(y)) or (ρ(x), y)

is a pair of incomparable nodes;
• special iff there exists a map ρ : T → T satisfying the following:

– for every non-minimal x ∈ T , ρ(x) ( x;
– for every y ∈ T , ρ−1{y} is covered by less than κ many an-

tichains;
• specializable iff there exists a forcing extension with the same cardi-

nal structure up to and including κ, in which T is special.
• almost-Kurepa iff it is a κ-tree and |B(T )| > κ holds in the forcing

extension by (T,⊇).

Any κ-Aronszajn tree contains a κ-subtree that is normal. Inspecting the
proofs of Facts 4.3 and 4.4, we observe that the constructed trees themselves
are normal, and indeed all Souslin trees showcased here are normal. As a
result of taking the simplest approach in the construction of Fact 4.3, the tree
also satisfies the property of being club-regressive, as explored in [BR17a,
Proposition 2.3].

27Trees with this property are also called well-pruned ; see [Kun80, Definition 5.10].
28For two nodes x, y in a streamlined tree T , we say that y is an immediate successor

of x iff x ( y and dom(y) = dom(x) + 1.
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Remark 4.6. Coherent trees are regressive; regressive trees are slim; slim
trees are not ℵ1-complete; a full splitting ℵ2-tree is neither slim nor ℵ1-
complete; the existence of a binary κ-Souslin tree is equivalent to the exis-
tence of a prolific κ-Souslin tree; prolific trees are ω-splitting.

Definition 4.7 ([BR17b, Definition 1.2]). Suppose that X is a streamlined
κ-tree, and F ⊆ P(µ) for some cardinal µ. An (F , X)-ascent path through a

streamlined κ-tree T is a system ~f = 〈fx | x ∈ X〉 such that for all x, y ∈ X:

(1) fx : µ→ Tdom(x) is a function;
(2) if x ( y, then {i < µ | fx(i) ( fy(i)} ∈ F ;
(3) if x 6= y and dom(x) = dom(y), then {i < µ | fx(i) 6= fy(i)} ∈ F .

If (X,() is isomorphic to (κ,∈), then ~f is simply said to be an F-ascent

path. If in addition F is equal to Fbd
µ = {Z ⊆ µ | sup(µ \ Z) < µ}, then ~f

is said to be a µ-ascent path.

Remark 4.8. A weakening of µ-ascent path was isolated by Lücke in [Lüc17]
and was named a µ-ascending path. By [Lüc17, Corollary 1.7], a special
λ+-Aronszajn tree cannot admit a µ-ascent path for µ < cf(λ).

Notation 4.9 (ith-component). For every function x : α→ τHκ and every
i < τ , we let (x)i : α→ Hκ stand for 〈x(β)(i) | β < α〉.

Definition 4.10 ([BR19c, Definition 4.4]). Suppose that T ⊆ <κHκ is a
streamlined tree, and τ is a nonzero ordinal.

• For a sequence ~s = 〈si | i < τ〉 of nodes of T , we let

T (~s) := {x ∈ <κ(τHκ) | ∀i < τ [(x)i ∪ si ∈ T ]};

• A τ -derived tree of T is a tree of the form T (~s) for some injective
sequence ~s = 〈si | i < τ〉 of nodes of T on which the map i 7→ dom(si)
is constant.

Definition 4.11. A streamlined κ-tree T is χ-free iff for every nonzero
τ < χ, all the τ -derived trees of T are κ-Souslin. T is free iff it is ω-free.

Remark 4.12. A λ-free λ+-tree is specializable; 3-free and full trees are both
rigid.

Definition 4.13 (The levels of vanishing branches, [RS23, RYY23b]). For
a streamlined κ-tree T :

• V −(T ) := {α ∈ acc(κ) | B(T � α) 6= Tα};
• V (T ) denotes the set of all α ∈ acc(κ) such that for every x ∈ T �α,

there exists f ∈ B(T � α) \ Tα with x ( f .

Remark 4.14. If T is uniformly homogeneous, then V −(T ) = V (T ); if T
is uniformly coherent, then V (T ) = Eκω; if V (T ) is cofinal in κ, then T is
normal; if T is normal, splitting and full, then V (T ) is empty.
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4.3. Slim vs. complete and binary vs. prolific. As demonstrated in [BR21,
§6.1], there is an obvious way of transforming any proxy-based construction
of a binary tree into a construction of a prolific tree, and vice versa. In
addition, there are abstract translations as in the appendix of [BR17b].

Likewise, there is a transparent way of transforming any proxy-based con-
struction of slim tree into a construction of a complete tree, and vice versa.
This is demonstrated by the construction of a χ-complete κ-Souslin tree
from �−(Eκ≥χ)∧♦(κ), where κ is (<χ)-closed, in [BR17a, Proposition 2.4].

By taking some extra care in the construction, [BR19b, Proposition 2.2]
shows that we can replace �−(Eκ≥χ) with the weaker instance �∗(Eκ≥χ). As
a rule of thumb, the construction of slim trees requires µ ≤ ℵ1; on the other
hand, for a χ-complete tree we require κ to be (<χ)-closed and also require
the parameter S to contain (some subset of) Eκ≥χ.

4.4. The tables. We now turn to present a few tables summarizing various
κ-Souslin trees constructed in the literature using instances of the proxy.
Note that the monotonicity features of the proxy principles suggest an in-
formal way of comparing two κ-trees T and S by viewing T as ‘weaker’ than
S provided that T can be obtained from a vector of parameters weaker than
the one necessary for the construction of S. This informal understanding
becomes more precise through the observation that the content of Remarks
4.6, 4.12 and 4.14 indeed corresponds with Subsection 2.3.

Throughout the tables in this section, χ stands for an infinite regular
cardinal such that κ is (<χ)-closed. Also, in many of the cited references
the trees are constructed from P(· · · ), but as explained in Subsection 2.5,
such constructions can always be carried out from the weaker P•(· · · ).

Table 4.1 presents κ-Souslin trees constructed from instances of the proxy
principle with the strong values µ = ν = 2 while maintaining the default
value σ = <ω.
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Citation R θ S Type of κ-Souslin tree

(1) [RYY23b, Thm 3.7] v∗ 1 {κ} V −(X) ⊆ V (T )
(2) [BR17a, Prop 2.4] v 1 {Eκ≥χ} χ-complete

(3) [BR17a, Prop 2.3] v 1 {κ} club-regressive
(4) [BR17a, Prop 2.5] v κ {κ} club-regressive, uniformly coherent
(5) [BR17b, Thm 6.2] v κ {Eκ≥χ} club-regressive, χ-free

(6) [Yad23, Thm 7.2] v κ {Eκ≥χ} having |B(X)|-many automorphisms

(7) [Yad23, Thm 7.2] v κ {Eκ≥χ} almost-Kurepa

(8) [RYY23b, Thm 5.9] ηv κ {Eκ≥χ} uniformly homogeneous, Eκ≥χ-regressive,

χ-complete, χ-coherent, X ⊗ T is κ-Souslin
and P−(κ, 2, ηv, κ, {Eκ≥χ}, 2)-respecting

Table 4.1. κ-Souslin trees T obtained from
P•(κ, 2,R, θ,S, 2). In (1), X stands for a streamlined
κ-tree. In (5), the original paper does not mention being
club-regressive, but this can easily be verified. In (6),
X stands for a P−(· · · )-respecting binary κ-tree. In (7),
we assume the existence of a P−(· · · )-respecting binary
κ-Kurepa tree. In (8), X stands for a P−(· · · )-respecting
κ-tree with no κ-sized antichains, and η ≤ χ.

Table 4.2 presents κ-Souslin trees with ascent paths constructed from
instances of the proxy principle with µ = ν = 2 together with the strong
value σ = ω. Here, Fηθ stands for {Z ⊆ θ | |θ \ Z| < η}.

Citation R θ S Type of κ-Souslin tree

(1) [BR17b, Thm 4.1] v 1 {κ} slim with Fωω -ascent path
(2) [BR17b, Thm 4.2] slim with (Fωω , X)-ascent path
(3) [BR17b, Thm 4.3] v 1 {Eκ≥χ} χ-complete with (Fωω , X)-ascent path

(4) [BR17b, Thm 5.1] vη θ {κ} slim with (Fηθ , X)-ascent path
(5) [BR17b, Thm 5.3] vη θ {Eκ≥χ} χ-complete with (Fηθ , X)-ascent path

(6) [BR17b, Thm 6.3] vη κ {Eκ≥χ} min{χ, η}-free, χ-complete

with an (Fηθ , X)-ascent path
(7) [BR17b, Thm 6.5] vη κ {Eκ≥χ} slim, χ-free with (Fηθ , X)-ascent path

Table 4.2. κ-Souslin trees obtained from
P(κ, 2,R, θ,S, 2, ω), where η ∈ Reg(κ). In (2) and (4),
X stands for a slim streamlined κ-tree. In (3) and (5), X
stands for a streamlined tree. In (4), (5) and (6), η ≤ θ < κ.
In (6), X stands for a P−(· · · )-respecting κ-tree. In (7), X
stands for a slim P−(· · · )-respecting κ-tree, and χ ≤ η.

Table 4.3 presents κ-Souslin trees constructed from instances of the proxy
principle where µ is weakened to κ but ν maintains its strong value, 2.
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Citation R θ S Type of κ-Souslin tree

(1) [BR21, Thm 6.17] χv 1 S∗ χ-complete, rigid,
∀Λ < λ, T has no Λ-ascending path

(2) [BR21, Thm 6.14] χv∗ 1 S∗ χ-complete,
∀Λ < λ, T has no Λ-ascending path

(3) [RYY23b, Thm 3.7] v 1 {κ} V (T ) ⊇ V (K) ∩ Eκ>ω
(4) [RYY23b, Thm 4.4] Ev 1 {E ∪ Eκ>χ} V (T ) ∩ Eκ≤χ = E = V −(T ) ∩ Eκ≤χ
(5) [BR21, Thm 6.27] χv κ {Eκ≥χ} χ-complete, χ-free

(6) [RYY23b, Thm 4.3] Sv 1 {κ} V (T ) ⊇ S
(7) [RYY23b, Thm 4.8] Sv 1 {S} V (T ) = S = V −(T )

Table 4.3. κ-Souslin trees T obtained from
P•(κ, κ,R, θ,S, 2). In (1) and (2), λ < κ is an infinite
cardinal, and S∗ := {Eκ≥χ ∩ Eκ>Λ | Λ < λ}. In (4),

E ⊆ acc(κ) ∩ Eκ≤χ is stationary. In (6) and (7), S ⊆ acc(κ).

In (7), we also assume that κ is strongly inaccessible.

Table 4.4 presents κ-Souslin trees constructed from instances of the proxy
principle where both µ and ν are relaxed to κ.

Citation µ R θ Type of κ-Souslin tree

[BR21, Thm 6.11] µind v 1 χ-complete with a µ-ascent path
[BR21, Thm 6.8] κ χv∗ 1 χ-complete
[BR21, Thm 6.32] κ χv κ χ-complete, uniformly homogeneous

Table 4.4. κ-Souslin trees obtained from P•(κ, κ,R, θ, {Eκ≥χ}, κ).

There are a few more tree constructions that do not fit the above tables.
We list them below and refer the reader to the original papers for any missing
definitions.

Fact 4.15 ([BR17b, Theorem 6.1]). Suppose that P(κ, 2,v, κ, {Eκ≥χ}, 2, ω)

holds, and κ is (<χ)-closed. For every infinite cardinal θ such that θ+ < χ,
there exists a prolific slim (χ, θ+)-free κ-Souslin tree with an injective Ffin

θ -
ascent path.

Fact 4.16 ([BR17b, Theorem 6.4]). Suppose that cf(ν) = ν < θ+ < χ < κ
are infinite cardinals, κ is (<χ)-closed, and P(κ, 2,v, κ, {Eκ≥χ}, 2, ω) holds.

Then there exists a prolific ν-free, (χ, θ+)-free, χ-complete κ-Souslin tree
with an injective Fνθ -ascent path.

Fact 4.17 ([BR17b, Theorem 6.6]). Suppose that cf(ν) = ν < θ+ < χ < κ
are infinite cardinals, κ is (<χ)-closed, and P(κ, 2,v, κ, {Eκ≥χ}, 2, ω) holds.

Then there exists a prolific slim ν-free, (χ, θ+)-free, κ-Souslin tree with an
injective Fνθ -ascent path.
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Fact 4.18 ([Yad23, Theorem 7.5]). Suppose that:

• S ⊆ Eκcf(θ) is a stationary subset of κ;

• P−(κ, κ, Sv, 1, {S}, 2) holds and is witnessed by a sequence 〈Cα |
α < κ〉 such that B := {α ∈ acc(κ) | |Cα| = 1} covers Eκ>cf(θ), and

acc(
⋃
Cα) ⊆ B for every α ∈ B;

• κ<κ = κ.

Then there exists a κ-Souslin tree with a θ-ascent path.

Fact 4.19 ([RYY23a, Theorem 4.4]). Suppose that:

• κ is a strongly inaccessible cardinal;
• S ⊆ Eκ>ω is stationary, and ♦∗S(κ-trees) holds;
• P−(κ, 2,v, 1, {S}) holds.

Then there is a family T of 2κ many streamlined, normal, binary, split-
ting, full κ-trees such that

⊗
T ′ is κ-Souslin for every nonempty T ′ ∈ [T ]<κ.

Fact 4.20 ([RYY23a, Theorem 5.1]). Suppose that:

• κ = λ+ = 2λ for λ a regular uncountable cardinal;
• �Bλ and ♦(λ) both hold;
• P−(κ, 2,vλ, κ, {Eκλ}) holds.

Then there is a family T of 2κ many streamlined, normal, binary, split-
ting, full κ-trees such that

⊗
T ′ is κ-Souslin for every nonempty T ′ ∈ [T ]<λ.

5. A large family of Souslin trees

In [Zak81], Zakrzewski constructed from ♦(ℵ1) a family of 2ℵ1 many
ℵ1-Souslin trees such that the product of any finitely (nonzero) many of
them is again Souslin. The main result of this section (Theorem 5.5 below)
generalizes Zakrzewski’s theorem in various ways. First, let us recall the
definition of product of trees.

Definition 5.1. For a sequence of streamlined trees 〈T j | j < τ〉, the
product tree

⊗
j<τ T

j is defined to be the poset T = (T,<T ), where:

• T := {~x ∈
∏
j<τ T

j | j 7→ dom(~x(j)) is constant}, and

• ~x <T ~y iff ~x(j) ( ~y(j) for every j < τ .

Remark 5.2. The tree T is easily seen to be isomorphic to a streamlined
tree via Notation 4.9, but in order to ease on the reader, we stick here to
the classical representation of products.

Second, to motivate Theorem 5.5, we state a sample corollary that does
not mention products. In what follows, two κ-trees S, T are almost-disjoint
iff their intersection has size less than κ.

Corollary 5.3. If ♦+(ℵ1) holds, then there exists a streamlined ℵ1-Aronszajn
tree T admitting ℵ2-many pairwise almost-disjoint ℵ1-Souslin subtrees.
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Proof. Recall that ♦+(ℵ1) entails the existence of an ℵ1-Kurepa tree. In
addition, by [BR17a, Corollary 1.10], ♦(ℵ1) implies P(ℵ1, 2,v,ℵ1). Thus,
by Corollary 5.7 below (using κ = ℵ1 and f = ℵ2), there exists an ℵ1-
Aronszajn admitting ℵ2-many ℵ1-subtrees such that the product of any two
of them is Souslin. Finally, it is a classical theorem of Kurepa [Kur52] that
the square of a κ-tree cannot be a κ-Souslin tree; therefore, if S and T are
κ-trees whose product is κ-Souslin, then there exists no κ-tree R that is
embeddable in both S and T , so that in particular, |S ∩ T | < κ. �

Looking at the preceding corollary, one may wonder whether the conclu-
sion be strengthened to make the ultimate tree Souslin, as well. The next
proposition shows that this is impossible.

Proposition 5.4. If 〈T η | η < κ〉 is a pairwise almost-disjoint sequence of
streamlined κ-subtrees of a given κ-tree T , then T is not a κ-Souslin tree.

Proof. We commence with a well-known fact.

Claim 5.4.1. Suppose that S is a streamlined κ-subtree of a streamlined
κ-Souslin tree T . Then there exists some s ∈ S such that {t ∈ T | s ⊆ t} is
a subset of S.

Proof. Suppose not. In particular, for every α < κ, we may find a pair
(sα, tα) such that:

• sα ∈ Sα;
• tα ∈ T \ S with sα ⊆ tα.

Fix a sparse enough set A ∈ [κ]κ such that for every pair α < β of ordinals
from A, dom(tα) < β. Since T is Souslin, we may pick a pair α < β of
ordinals from A such that tα ⊆ tβ. As also sβ ⊆ tβ and dom(tα) < dom(sβ),
it follows that tα ⊆ sβ. But sβ belongs to the streamlined tree S, which
must mean that tα ∈ S, contradicting the choice of tα. �

Towards a contradiction, suppose that T is a κ-Souslin tree. It follows
from the claim that for every η < κ, we may pick some sη ∈ T such that
{t ∈ T | sη ⊆ t} is a subset of T η. As T is a κ-Souslin tree, the set
N := {s ∈ T | |{t ∈ T | s ⊆ t}| < κ} has size less than κ. Thus since T is a
κ-Souslin tree, we may then find η < ρ < κ such that sη ⊆ sρ and sρ /∈ N .
So {t ∈ T | sρ ⊆ t} is a subset of T η ∩ T ρ, contradicting the fact that T η

and T ρ are almost-disjoint. �

We now arrive at the main technical result of this section. To recover
Zakrzewski’s theorem, consider the case κ := ℵ1, K := <κ2 and S := {κ}.
Theorem 5.5. Suppose:

• K ⊆ <κHκ is a normal streamlined tree of height κ;
• S is a nonempty collection of stationary subsets of κ;
• P(κ, κ,v, κ,S, 2) holds.

Then there exists a sequence 〈T η | η ∈ B(K)〉 of prolific normal stream-
lined κ-Souslin trees satisfying all of the following:
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(1) For every nonzero cardinal τ such that κ is τ -closed and such that
there exists § ∈ S for which § \ Eκ>τ is nonstationary, for every
injective sequence 〈ηj | j < τ〉 of elements of B(K), the product tree⊗

j<τ T
ηj is again κ-Souslin;

(2) The union T :=
⋃
{T η | η ∈ B(K)} of these trees has no κ-branches;

(3) If K is a κ-tree, then T is a κ-Aronszajn tree.

Proof. Fix a sequence ~C = 〈Cα | α < κ〉 witnessing P−(κ, κ,v, κ,S, 2).
Without loss of generality, 0 ∈

⋂
0<α<κ

⋂
Cα. As ♦(κ) holds, fix sequences

〈Ωβ | β < κ〉 and 〈Ri | i < κ〉 together witnessing ♦(Hκ), as in Fact 2.7.
Let π : κ → κ be such that β ∈ Rπ(β) for all β < κ. Let C be some well-
ordering of Hκ of order-type κ, and let φ : κ↔ Hκ witness the isomorphism
(κ,∈) ∼= (Hκ,C). Put ψ := φ ◦ π.

We shall construct a sequence 〈Lη | η ∈ K〉 such that, for all α < κ and
η ∈ Kα:

(i) Lη ∈ [ακ]<κ;
(ii) for every β < α, Lη�β = {t � β | t ∈ Lη}.

By convention, for every α ∈ acc(κ + 1) such that 〈Lη | η ∈ K � α〉 has
already been defined, and for every η ∈ Kα, we shall let T η :=

⋃
β<α L

η�β,

so that T η is a tree of height α whose βth level is Lη�β for all β < α.

The construction of the sequence 〈Lη | η ∈ K〉 is by recursion on dom(η).

We start by letting L∅ := {∅}. Next, for every α < κ such that 〈Lη | η ∈ Kα〉
has already been defined, for every η ∈ Kα+1, we let

Lη := {ta〈ι〉 | t ∈ Lη�α, ι < max{ω, α}}.
Suppose now that α ∈ acc(κ) is such that 〈Lη | η ∈ K � α〉 has already

been defined. For each C ∈ Cα, we shall define a matrix

BC = 〈bα,C∩β,ηx | β ∈ C, η ∈ Kβ, x ∈ T η � C ∩ (β + 1)〉

ensuring that x ⊆ bα,D̄,η̄x ⊆ bα,D,ηx ∈ Lη whenever η̄ ⊆ η.29 Then, for all C ∈
Cα, η ∈ Kα and x ∈ T η �C, it will follow that bC,ηx :=

⋃
β∈C\dom(x) b

α,C∩β,η�β
x

is an element of B(T η) extending x, and we shall let

(?) Lη := {bC,ηx | C ∈ Cα, x ∈ T η � C}.
Let C ∈ Cα. We now turn to define the components of the matrix BC by

recursion on β ∈ C. So suppose that β ∈ C is such that

BC<β := 〈bα,C∩β̄,ηx | β̄ ∈ C ∩ β, η ∈ Kβ̄, x ∈ T η � C ∩ (β̄ + 1)〉
has already been defined.

I For all η ∈ Kβ and x ∈ T η such that dom(x) = β, let bα,C∩β,ηx := x.
I For all η ∈ Kβ and x ∈ T η such that dom(x) < β, there are two main

cases to consider:

29This also implies that the matrix is continuous, i.e., for β ∈ acc(Cα) η ∈ Kβ and

x ∈ T η � (Cα ∩ β), it is the case that bα,ηx =
⋃
{bα,η�β̄x | β̄ ∈ Cα ∩ β \ dom(x)}.
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II Suppose that β ∈ nacc(C) and denote β− := sup(C ∩ β).
III If β ∈ acc(κ) and there exists a nonzero cardinal τ such that all of

the following hold:

(1) There exists a sequence 〈ηj | j < τ〉 of elements ofKβ, and a maximal
antichain A in the product tree

⊗
j<τ T

ηj such that Ωβ = {(〈ηj � ε |
j < τ〉, A ∩ τ (εκ)) | ε < β};30

(2) ψ(β) is a sequence 〈xj | j < τ〉 such that xj ∈ T ηj�β
−
� (C ∩ β−) for

every j < τ ;
(3) There exists a unique j < τ such that ηj = η and xj = x.

In this case, by Clauses (1) and (2), the following set is nonempty

QC,β := {~t ∈
∏

j<τ
Lηj | ∃~s ∈ A∀j < τ [(~s(j) ∪ bα,C∩β

−,ηj�β−
xj ) ⊆ ~t(j)]},

so we let ~t := min(QC,β,C), and then we let bα,C∩β,ηx := ~t(j) for the unique

index j of Clause (3). It follows that bα,C∩β
−,η�β−

x ⊆ ~t(j) = bα,C∩β,ηx .

III Otherwise, let bα,C∩β,ηx be the C-least element of Lη\{Ωβ} extending

bα,C∩β
−,η�β−

x . As our trees thus far are normal and splitting (in fact, prolific),
this is well-defined.
II Suppose that β ∈ acc(C). Then we define bα,C∩β,ηx :=

⋃
{bα,C∩β̄,η�β̄x |

β̄ ∈ C ∩ β \ dom(x)}. We must show that the latter belongs to Lη. Since
~C is coherent and β ∈ acc(C), it is the case that C ∩ β ∈ Cβ, so, by (?),

it suffices to prove that bα,C∩β,ηx = bC∩β,ηx . Proving the latter amounts to

showing that bα,C∩δ,η�δx = bβ,C∩δ,η�δx for all δ ∈ C ∩ β \ dom(x). This is taken
care of by the following claim.

Claim 5.5.1. BC<β = BC∩β. That is, the following matrices coincide:

• 〈bα,C∩β̄,ρy | β̄ ∈ C ∩ β, ρ ∈ Kβ̄, y ∈ T ρ � C ∩ (β̄ + 1)〉;
• 〈bβ,C∩β̄,ρy | β̄ ∈ C ∩ β, ρ ∈ Kβ̄, y ∈ T ρ � C ∩ (β̄ + 1)〉.

Proof. For the scope of this proof we denote C ∩β by D. Now, by induction
on δ ∈ D, we prove that

〈bα,D∩δ,ρy | ρ ∈ Kδ, y ∈ T ρ�D∩(δ+1)〉 = 〈bβ,D∩δ,ρy | ρ ∈ Kδ, y ∈ T ρ�D∩(δ+1)〉.

The base case δ = min(D) = 0 is immediate since bα,∅∅ = ∅ = bβ,∅∅ . The
limit case δ ∈ acc(D) follows from the continuity of the matrices under
discussion as remarked in Footnote 29, with the exception of those y’s such

that dom(y) = δ, but in this case, bα,D∩δ,ρy = y = bβ,D∩δ,ρy for all ρ ∈ Kδ.
Finally, assuming that δ− < δ are two successive elements of D such that

〈bα,D∩δ−,ρy | ρ ∈ Kδ− , y ∈ T ρ �D ∩ (δ− + 1)〉

= 〈bβ,D∩δ−,ρy | ρ ∈ Kδ− , y ∈ T ρ �D ∩ (δ− + 1)〉,

30As β ∈ acc(κ), it is the case that τ , 〈ηj | j < τ〉 and A are uniquely determined by
Ωβ .
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we argue as follows. Given ζ ∈ Kδ and z ∈ T ζ � D ∩ (δ + 1), there are a

few possible options. If dom(z) = δ, then bα,D∩δ,ζz = z = bβ,D∩δ,ζz , and we
are done. If dom(z) < δ, then dom(z) ≤ δ− and, by the above construction,

for every γ ∈ {α, β}, the value of bγ,D∩δ,ζz is completely determined by δ,

〈Lρ | ρ ∈ K � (δ + 1)〉, Ωδ, D, ψ(δ), ζ, x, and 〈bγ,D∩δ
−,ρ

y | ρ ∈ Kδ− , y ∈
T ρ � (D ∩ δ−)〉 in such a way that our inductive assumptions imply that

bα,D∩δ,ζz = bβ,D∩δ,ζz . �

This completes the definition of the matrix BC , from which we derive

bC,ηx :=
⋃
β∈C\dom(x) b

α,C∩β,η�β
x for all η ∈ Kα and x ∈ T η � C. Finally, we

define Lη as per (?).

Claim 5.5.2. For all η ∈ Kα, C ∈ Cα, and t ∈ {bC,ηx | x ∈ T η � C}, there

exists a tail of ε ∈ C such that t = bC,ηt�ε .

Proof. This follows from the canonical nature of the construction, and the
analysis is similar to the proof of Claim 5.5.1. We leave it to the reader. �

At the end of the above process, for every η ∈ B(K), we have obtained a
streamlined prolific κ-tree T η :=

⋃
α<κ L

η�α whose αth level is Lη�α.

Claim 5.5.3. Suppose:

• τ is nonzero cardinal such that κ is τ -closed;
• § ∈ S is such that § \ Eκ>τ is nonstationary;
• 〈ηj | j < τ〉 is an injective sequence of elements of B(K).

The product tree
⊗

j<τ T
ηj is a κ-Souslin tree.

Proof. For the sake of this proof, denote
⊗

j<τ T
ηj by T = (T,<T ). As

κ is τ -closed, T is a (splitting, normal) κ-tree. Thus, to show that it is a
κ-Souslin tree, it suffices to establish that it has no antichains of size κ. To
this end, let A be a maximal antichain in T.

Set Ω := {(〈ηj � ε | j < τ〉, A ∩ τ (εκ)) | ε < κ}. As an application of
♦(Hκ), using the parameter p := {φ,A,Ω, 〈T ηj | j < τ〉}, we get that for
every i < κ, the following set is cofinal (in fact, stationary) in κ:

Bi := {β ∈ Ri ∩ acc(κ) | ∃M ≺ Hκ+ (p ∈M, β = κ ∩M,Ωβ = Ω ∩M)}.

Note that, for every β ∈
⋃
i<κBi, it is the case that T � β ⊆ φ[β].

Fix a large enough δ < κ for which the map j 7→ ηj � δ is injective over τ .

By the choice of ~C, we may now find an ordinal α ∈ § ∩ Eκ>τ above δ such
that Cα is a singleton, say Cα = {Cα}, and, for all i < α,

sup(nacc(Cα) ∩Bi) = α.

In particular, T � α ⊆ φ[α]. Set η̄j := ηj � α for each j < τ , and note that
T � α =

⊗
j<τ T

η̄j .

Subclaim 5.5.3.1. A ⊆ T � α. In particular, |A| < κ.
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Proof. It suffices to show that every element of Tα extends some element
of the antichain A. To this end, let ~y = 〈yj | j < τ〉 be an arbitrary
element of Tα. By (?), for each j < τ , we may find some xj ∈ T η̄j � Cα
such that yj = b

Cα,η̄j
xj . By Claim 5.5.2 and the fact that α ∈ Eκ>τ , we

may assume the existence of a large enough γ ∈ Cα \ (δ + 1) such that
dom(xj) = γ for all j < τ . In particular, ~x := 〈xj | j < τ〉 is an element
of T � α ⊆ φ[α]. Fix some i < α such that φ(i) = ~x, and then pick a
large enough β ∈ nacc(Cα)∩Bi for which β− := sup(Cα ∩ β) is bigger than
γ. Note that ψ(β) = φ(π(β)) = φ(i) = ~x, 〈η̄j � β | j < τ〉 is an injective
sequence, and

δ < γ < β− < β < α.

Let M≺ Hκ+ be a witness for β being in Bi. Clearly,

• T ∩M = T � β =
⊗

j<τ T
η̄j�β,

• A ∩M = A ∩ (T � β) is a maximal antichain in T � β, and
• Ωβ = Ω ∩M = {(〈ηj � ε | j < τ〉, A ∩ τ (εκ)) | ε < β}.

It thus follows that for every j < τ , b
α,Cα∩β,η̄j�β
xj = ~t(j), where ~t =

min(QCα,β,C). In particular, we may fix some ~s ∈ A such that, for ev-
ery j < τ ,

(~s(j) ∪ bα,Cα∩β
−,η̄j�β−

xj ) ⊆ ~t(j) = b
α,Cα∩β,η̄j�β
xj ⊆ b

Cα,η̄j
xj = yj .

So ~s <T ~y. As ~s is an element of A, we are done. �

This completes the proof. �

As a final step, we consider the tree T :=
⋃
{T η | η ∈ B(K)}. Evidently,

the αth level of T is the union of |Kα| many sets of size less than κ. Thus,
if K is a κ-tree, then so is T .

Claim 5.5.4. T has no κ-branches.

Proof. Towards a contradiction, suppose that f ∈ B(T ). Fix an i < α such
that φ(i) = ∅. As an application of ♦(Hκ), we get that the following set is
cofinal in κ:

Bi := {β ∈ Ri | f � β = Ωβ}.
By the choice of ~C, we may now find an ordinal α ∈ acc(κ) such that Cα is
a singleton, say Cα = {Cα}, and

sup(nacc(Cα) ∩Bi) = α.

Recalling (?), fix η ∈ Kα and x ∈ T η �Cα such that f �α = bCα,ηx . Pick a
large enough β ∈ nacc(Cα)∩Bi for which β− := sup(Cα ∩ β) is bigger than

dom(x). As ψ(β) = φ(π(β)) = φ(i) = ∅, it is the case that bα,Cα∩β,η�βx is an

element of Lη�β \ {Ωβ}. In particular, bCα,ηx �β 6= Ωβ, contradicting the fact

that bCα,ηx = f � α and Ωβ = f � β. �

This completes the proof. �
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Remark 5.6. It is tedious yet not impossible to verify that for every nonzero
cardinal τ such that κ is τ -closed and such that there exists § ∈ S for which
§\Eκ>τ is nonstationary, for every injective sequence 〈ηj | j < τ〉 of elements
of B(K), not only that the product tree

⊗
j<τ T

ηj is κ-Souslin, but in fact,

all of its τ -derived trees are κ-Souslin. In particular, for every η ∈ B(K),
T η is a free κ-Souslin tree.

We now arrive at the following strong form of Theorem A:

Corollary 5.7. Suppose that P(κ, κ,v, κ, {κ}, 2) holds. For every infinite
cardinal f, if there exists a κ-tree with f-many branches, then there exists a
binary κ-Aronszajn tree admitting f-many κ-Souslin subtrees such that the
product of any finitely (nonzero) many of them is again Souslin.

Proof. By a standard fact (see [BR21, Lemma 2.5]), if there exists a κ-tree
with f-many branches, then there exists one K that is streamlined. Now,
appeal to Theorem 5.5 withK and S := {κ}, bearing in mind Subsection 4.3.

�

6. A free Souslin tree with a special power

Throughout this section, κ = λ+ for a fixed infinite cardinal λ, and C
stands for some well-ordering of Hκ. Recall that Qλ := <ωλ \ {∅}, where
q <Qλ p iff either p ⊆ q or q(n) < p(n) for the least n < ω such that
q(n) 6= p(n). It is easy to see that Qλ has no first or last elements, that
in-between any two elements of Qλ there are λ-many elements, and that
every subset of Qλ of size less than cf(λ) has an upper bound. These and
other properties of Qλ and its connection to trees are surveyed in [HS16,
Section 3].

Definition 6.1. A tree T of height λ+ is special iff it may be covered by λ
many antichains.

Note that the preceding definition of special trees at successor cardi-
nals coincides with the general definition given in Subsection 4.2, following
[Tod07, Definition 6.1.1],31 and that every special λ+-tree is a λ+-Aronszajn
tree that is not Souslin. The existence of a special λ+-tree is equivalent to
the existence of a λ+-tree T admitting an order-preserving map f : T → Qλ,
i.e., f is strictly increasing over the chains of T .

Definition 6.2. For a streamlined tree T and a nonzero cardinal χ:

• Denote Tχ := {~x ∈
⋃
α<κ

χTα | ~x is injective}. The ordering <Tχ of

Tχ is defined as follows:32

~x <Tχ ~y ⇐⇒
∧
i<χ

~x(i) ⊆ ~y(i).

31For a proof of this equivalence, see [Tod85, Theorem 14] or [Bro14, Theorem 16].
32If T is a κ-tree and κ is χ-closed, then (Tχ, <Tχ) is again a κ-tree.
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• For ~x ∈ Tχ, ∆(~x) stands for the least δ < κ such that 〈~x(i) � (δ+1) |
i < χ〉 is injective.

Motivated by Notation 4.9, for every y ∈ τ (αHκ), we let t(y) denote the
unique function from α to τHκ to satisfy (t(y))i = y(i) for every i < τ .

Notation 6.3. For every T ∈ Hκ, denote β(T ) := 0 unless there is β < κ
such that T ⊆ ≤βHκ and T * <βHκ, in which case, we let β(T ) := β for
this unique β.

We collect here a couple of actions from [BR21, §6.2] which we will be
used in the upcoming construction. The readers can verify to themselves
that additional actions from the same reference can be incorporated into the
upcoming proof.

Definition 6.4. (1) The default extension function, extend : (Hκ)2 →
Hκ, is defined as follows. Let extend(x, T ) := x, unless

Q := {z ∈ Tβ(T ) | x ⊆ z}

is nonempty,33 in which case, we let extend(x, T ) := min(Q,Cκ).
(2) The function for sealing antichains, anti : (Hκ)3 → Hκ, is defined as

follows. Let anti(x, T,f) := extend(x, T ), unless

Q := {z ∈ Tβ(T ) | ∃y ∈ f(x ∪ y ⊆ z)}
is nonempty, in which case, we let anti(x, T,f) := min(Q,Cκ).

The following is obvious.

Lemma 6.5. Suppose T,f, b ∈ Hκ, where T is a normal subtree of ≤β(T )Hκ.
For every x ∈ T , anti(x, T,f) is an element of Tβ(T ) extending x. �

Hereafter, χ denotes some cardinal in [2, ω]. The next batch of definitions
is motivated by the Abraham-Shelah-Solovay construction from [ASS87, §4].
Note, however, that the approach taken here is eventually quite different
than the one from [ASS87], since it works uniformly for both λ singular and
regular cardinals.

Definition 6.6. Define three maps ϕ0, ϕ1, ϕ2 : Qλ → Qλ. For every q ∈ Qλ,
the definitions of ϕ0(q), ϕ1(q), ϕ2(q) depend on whether q has length 1 or
more, as follows:

• ϕ0(q) :=

{
〈ξ + 1, 0, 0〉, if q = 〈ξ〉;
pa〈ξ + 1, 0〉, if q = pa〈ξ〉.

• ϕ1(q) :=

{
〈ξ + 1, 0〉, if q = 〈ξ〉;
pa〈ξ + 1〉, if q = pa〈ξ〉.

• ϕ2(q) :=

{
〈ξ + 1〉, if q = 〈ξ〉;
p, if q = pa〈ξ〉.

33Recall that Tβ stands for {x ∈ T | dom(x) = β}.
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Remark 6.7. For every q ∈ Qλ:

• q <Qλ ϕ0(q) <Qλ ϕ1(q) <Qλ ϕ2(q);
• ϕ2(q) = ϕ2(ϕ1(q));
• ϕ1(q) = ϕ2(ϕ0(q)).

Definition 6.8 (Elevators). For a streamlined tree T , a map f : Tχ → Qλ,
two maps ϕ,ψ : Qλ → Qλ, and ordinals β < α, we say that a function
e : Tβ → Tα is a (ϕ,ψ)-elevator iff the two hold:

(1) y ⊆ e(y) for every y ∈ Tβ, and
(2) for every 〈yi | i < χ〉 ∈ (Tβ)χ,

(ϕ ◦ f)(〈e(yi) | i < χ〉) = (ψ ◦ f)(〈yi | i < χ〉).

A map e satisfying just Clause (1) will be simply referred to as an elevator.

Definition 6.9 (Coordination). Let T be a streamlined tree, and let f be a
function from Tχ to Qλ. For a pair of ordinals β < α, we say that Tβ and Tα
are coordinated (with respect to f) iff for all n < χ and 〈zj | j < n〉 ∈ (Tα)n

such that ∆(〈zj | j < n〉) < β, the following three hold:

(i) there exists a (ϕ2, ϕ1)-elevator e1 : Tβ → Tα such that e1(zj �β) = zj
for all j < n;

(ii) there exists a (ϕ2, ϕ2)-elevator e2 : Tβ → Tα such that e2(zj �β) = zj
for all j < n;

(iii) if α = β + 1, then for every m < 3, there exists an (id, ϕm)-elevator
e : Tβ → Tα such that e(zj � β) = zj for all j < n.

We are now ready to prove the main result of this section, which also
yields Theorem B.

Theorem 6.10. Suppose that Pλ(λ+, 2,v, λ+) holds. Let χ ∈ [2, ω] with
χ < cf(λ). Then there exists a χ-free, λ-splitting, club-regressive, stream-
lined λ+-Souslin tree T such that Tχ is special.

Proof. Recall that κ = λ+. Fix ~C = 〈Cα | α < κ〉 witnessing P−λ (κ, 2,v, κ).
For every α ∈ acc(κ), let

Dα := {0} ∪ {η + 1 | η ∈ nacc(Cα)} ∪ acc(Cα),

so that Dα is a club in α for which nacc(Dα) ⊆ nacc(α). Evidently, ~D =
〈Dα | α ∈ acc(κ)〉 is yet another v-coherent C-sequence.

As ♦(κ) holds, fix sequences 〈Ωβ | β < κ〉 and 〈Ri | i < κ〉 together
witnessing ♦(Hκ), as in Fact 2.7. Let π : κ → κ be such that β ∈ Rπ(β)

for all β < κ. Let C be some well-ordering of Hκ of order-type κ, and let
φ : κ↔ Hκ witness the isomorphism (κ,∈) ∼= (Hκ,C). Put ψ := φ ◦ π.

By recursion on α < κ, we shall construct 〈(Tα, fα) | α < κ〉 such that Tα
will end up being the αth-level of the ultimate tree T , and fα : (Tα)χ → Qλ

will form the αth-level of the specializing map of Tχ. We shall also make
sure that for all β < α < κ, Tβ and Tα be coordinated.
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By convention, for every α < κ such that 〈(Tβ, fβ) | β < κ〉 has already
been defined, for every C ⊆ α, we shall let T � C :=

⋃
β∈C Tβ.

The recursion starts by setting T0 := {∅} and letting f0 be the empty
function. Next, given α < κ such that (Tα, fα) has already been successfully
defined, set Tα+1 := {ta〈ι〉 | t ∈ Tα, ι < λ}. Before we can define fα+1 :
(Tα+1)χ → Qλ, we shall need the following claim.

Claim 6.10.1. Let Sα+1 := {s ∈ <χTα+1 | s is injective and ∆(s) < α}.
Then there exists a matrix 〈As,m | s ∈ Sα+1, m < 3〉 such that, for every
(s,m) ∈ Sα+1 × 3, the following three hold:

(1) Im(s) ⊆ As,m ⊆ Tα+1;
(2) for every y ∈ Tα, there exists a unique z ∈ As,m extending y;
(3) for every (s′,m′) ∈ Sα+1 × 3, if (s,m) 6= (s′,m′), then |As,m ∩

As′,m′ | < χ.

Proof. Let 〈sγ | γ < λ〉 enumerate Sα+1. We define 〈Asγ ,m | γ < λ, m < 3〉
by recursion on (λ× 3, <lex). We start by letting:

As0,0 := Im(s0) ∪ {ya〈0〉 | y ∈ Tα \ {(z � α) | z ∈ Im(s0)}}.

Next, given (γ,m) ∈ λ × 3 such that Asβ ,i has already been defined for all
(β, i) <lex (γ,m), let Asγ ,m be the following set:

Im(sγ) ∪
{
ya〈ιy〉

∣∣∣∣ y ∈ Tα \ {(z � α) | z ∈ Im(sβ)} &
ιy := min{ι < λ | ∀(β, i) <lex (γ,m) [ya〈ι〉 /∈ Asβ ,i]}

}
.

It is clear that the above construction takes care of Clauses (1) and (2).
To verify Clause (3), fix a pair (β, i) <lex (γ,m) of elements of λ × 3. If
|Asβ ,i∩Asγ ,m| ≥ χ, then we may fix z ∈ Asβ ,i∩Asγ ,m\Im(sγ). It follows that

z = ya〈ι〉 for some y ∈ Tα and ι < λ such that, in particular, ya〈ι〉 /∈ Asβ ,i.
This is a contradiction. �

Fix a matrix 〈As,m | s ∈ Sα+1, m < 3〉 as in the preceding claim. To
define fα+1 : (Tα+1)χ → Qλ, let 〈wi | i < χ〉 ∈ (Tα+1)χ. There are three
cases to consider:
I If ∆(〈wi | i < χ〉) = α, then let fα+1(〈wi | i < χ〉) := 〈0〉.
I If ∆(〈wi | i < χ〉) < α and {wi | i < χ} ⊆ As,m for some (s,m) ∈

Sα+1 × 3, then by Clause (3) of the above claim, the pair (s,m) is unique,
so we let

fα+1(〈wi | i < χ〉) := (ϕm ◦ fα)(〈wi � α | i < χ〉).
I Otherwise, since Qλ has no maximal elements, let fα+1(〈wi | i < χ〉)

be some q ∈ Qλ which is bigger than fα(〈wi � α | i < χ〉).
Altogether, for every 〈wi | i < χ〉 ∈ (Tα+1)χ such that ∆(〈wi | i < χ〉) <

α, fα(〈wi � α | i < χ〉) <Qλ fα+1(〈wi | i < χ〉).

Claim 6.10.2. (1) Tα and Tα+1 are coordinated;
(2) For every β < α, Tβ and Tα+1 are coordinated.
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Proof. (1) Let n < χ and 〈zj | j < n〉 ∈ (Tα+1)n with ∆(〈zj | j < n〉) < α.
In particular, s := 〈zj | j < n〉 is in Sα+1. We go over the clauses of
Definition 6.9 in reverse order:

(iii) Given m < 3, define an elevator e : Tα → Tα+1 by letting for every
y ∈ Tα, e(y) be the unique z ∈ As,m extending y. As Im(s) = {zj |
j < n} ⊆ As,m, for every j < n, e(zj � α) must be zj . We claim
that e is an (id, ϕm)-elevator. Indeed, for any 〈yi | i < χ〉 ∈ (Tα)χ,
{e(yi) | i < χ} ⊆ As,m, so by the definition of fα+1:

fα+1(〈e(yi) | i < χ〉) = (ϕm ◦ fα)(〈yi | i < χ〉)).
(ii) By Clause (iii), we may fix an (id, ϕ1)-elevator e2 : Tα → Tα+1 such

that e2(zj � α) = zj for all j < n. By Remark 6.7, it is also a
(ϕ2, ϕ2)-elevator.

(i) By Clause (iii), we may fix an (id, ϕ0)-elevator e1 : Tα → Tα+1 such
that e1(zj � α) = zj for all j < n. By Remark 6.7, it is also a
(ϕ2, ϕ1)-elevator.

(2) Fix β < α. Let n < χ and 〈zj | j < n〉 ∈ (Tα+1)n with ∆(〈zj |
j < n〉) < β. We go over the clauses of Definition 6.9:

(i) By Clause (1) of this claim, fix a (ϕ2, ϕ2)-elevator e : Tα → Tα+1

such that e(zj � α) = zj for all j < n. In addition, as Tβ and
Tα are coordinated, fix a (ϕ2, ϕ1)-elevator e1 : Tβ → Tα such that
e1(zj � β) = zj � α for all j < n. Set E1 := e ◦ e1. Then E1(zj � β) =
e(e1(zj �β)) = e(zj �α) = zj for all j < n. In addition, for all y ∈ Tβ,
y ⊆ e1(y) ⊆ e(e1(y)) = E1(y). Finally, for every 〈yi | i < χ〉 ∈ (Tβ)χ,

(ϕ2 ◦ fα+1)(〈E1(yi) | i < χ〉) = (ϕ2 ◦ fα+1)(〈e(e1(yi)) | i < χ〉)
= (ϕ2 ◦ fα)(〈e1(yi) | i < χ〉)
= (ϕ1 ◦ fβ)(〈yi | i < χ〉).

So, E1 is a (ϕ2, ϕ1)-elevator as sought.
(ii) Replace 1 by 2 throughout the above proof.
(iii) This case is irrelevant. �

Next, suppose that we have reached an α ∈ acc(κ) such that 〈(Tβ, fβ) |
β < α〉 has already been successfully defined. For each x ∈ T �Dα, we shall
define a branch bαx through

⋃
β<α Tβ, and then let

(?) Tα := {bαx | x ∈ T �Dα}
The branch bαx will be obtained as the limit

⋃
Im(bαx) of a sequence

〈bαx(β) | β ∈ Dα \ dom(x)〉 of nodes such that:

• for every β ∈ Dα \ dom(x), bαx(β) ∈ Tβ;
• for every pair β < β′ of ordinals in Dα \dom(x), x ⊆ bαx(β) ⊆ bαx(β′);
• for every β ∈ acc(Dα \ dom(x)), bαx(β) =

⋃
(Im(bαx � β)).

The construction is by recursion on β ∈ Dα.
I For β := min(Dα), it is the case that β = 0 and so Tβ = {x} for x := ∅.

Therefore, we set bαx(β) := x.



PROXY PRINCIPLES IN COMBINATORIAL SET THEORY 35

I Suppose that we are given a nonzero β ∈ nacc(Dα) such that bαx �β has
already been defined for all x ∈ T � (Dα∩β). We need to define bαx(β) for all
x ∈ T � (Dα ∩ (β + 1)). For every x ∈ Tβ, we just let bαx(dom(x)) := x. Our
next task is defining bαx(β) for x ∈ T � (Dα ∩ β). To this end, we introduce
the following pieces of notation.

Notation 6.10.1. Denote β− := sup(Dα∩β) and note that by the definition
of Dα, it is the case that β = η + 1 for a unique η ∈ Cα \ β−. Now, let Eαβ
denote the collection of all (id, ϕ1)-elevators e : Tβ− → Tβ to satisfy that

if there exists an n < χ such that ψ(η) ∈ (T � (Dα ∩ β−))n, then letting
T̄ := (T � β + 1)(ψ(η)) (using Definition 4.10), for every j < n,

e(bαψ(η)(j)(β
−)) = (anti(t(〈bαψ(η)(j)(β

−) | j < n〉), T̄ ,Ωη))j .

Note that the definitions of β−, η and Eαβ are all determined by no more
than the following objects:

• 〈(Tγ , fγ) | γ ≤ β〉,
• ψ(η),
• Dα ∩ β, and possibly also on
• 〈bαψ(η)(j)(β

−) | j < n〉 and Ωη.

Claim 6.10.3. Eαβ is nonempty.

Proof. If there exists some n < χ such that ψ(η) ∈ (T � (Dα ∩ β−))n, then
let

z := anti(t(〈bαψ(η)(j)(β
−) | j < n〉), T̄ ,Ωη).

Otherwise, just set (n, z) := (0, ∅).
Next, as Tβ− and Tη are coordinated, we may fix a (ϕ2, ϕ1)-elevator e1 :

Tβ− → Tη such that e1(bαψ(η)(j)(β
−)) = (z)j � η for all j < n. As Tη and

Tβ are coordinated, and β = η + 1, we may also fix an (id, ϕ2)-elevator
e2 : Tη → Tβ such that e2((z)j � η) = (z)j for all j < n. Set e := e2 ◦ e1.
Clearly, e(bαψ(η)(j)(β

−)) = (z)j for all j < n. In addition, for every 〈yi |
i < χ〉 ∈ (Tβ−)χ,

fβ(〈e(yi) | i < χ〉) = fβ(〈e2(e1(yi)) | i < χ〉)
= (ϕ2 ◦ fη)(〈e1(yi) | i < χ〉)
= (ϕ1 ◦ fβ−)(〈yi | i < χ〉).

So, e demonstrates that Eαβ is nonempty. �

Let e := min(Eαβ ,C), and then define bαx(β) := e(bαx(β−)) for every x ∈
T � (Dα ∩ β).
I Suppose that we are given a β ∈ acc(Dα) such that bαx � β has already

been defined for all x ∈ T � (Dα ∩ β). For every x ∈ T � (Dα ∩ (β + 1)), we
let

bαx(β) :=

{
x, if x ∈ Tβ;⋃

Im(bαx � β), if x ∈ T � (Dα ∩ β).
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In order to argue that bαx(β) is indeed an element of Tβ, it suffices to prove
the following claim.

Claim 6.10.4. For every x ∈ T � (Dα ∩ β), bαx(β) = bβx.

Proof. It suffices to show that for every x ∈ T �(Dα∩β), for every γ ∈ (Dα∩
β) \ dom(x), it is the case that bαx(γ) = bβx � γ. Recalling that β ∈ acc(Dα)

and that ~D is coherent, we infer that Dα∩β = Dβ. Thus, it suffices to show
that for every x ∈ T � Dβ, for every γ ∈ Dβ \ dom(x), it is the case that

bαx(γ) = bβx(γ). The proof is by induction, as follows:

I The base case γ = 0 is obvious, as bα∅ (0) = ∅ = bβ∅ (0).

I Suppose that γ− < γ are successive elements of Dβ and that, for every

x ∈ (Dβ ∩ γ), bαx(γ−) = bβx(γ−). By our construction, it is the case that

bαx(γ) := eα(bαx(γ−)) for eα := min(Eαγ ,C) and that bβx(γ) := eβ(bβx(γ−)) for

eβ := min(Eβγ ,C). Reading the comment right after Definition 6.10.1, it is

clear that in this case Eαγ = Eβγ , and so eα = eβ and bαx(γ) = bβx(γ).
I For γ ∈ acc(Dβ) such that the two sequences agree up to γ, it is the

case that they have the same unique limit. �

We are done defining 〈bαx | x ∈ T �Dα〉, and so we define Tα as per (?).

Claim 6.10.5. For every x ∈ T � Dα, for every γ ∈ Dα \ dom(x), bαx =
bαbαx (γ).

Proof. By the canonical nature of the above construction. �

Now, to define fα : (Tα)χ → Qλ, let 〈wi | i < χ〉 ∈ (Tα)χ be arbitrary.
For each i < χ, find xi ∈ T �Dα of minimal height such that bαxi = wi. Set
γ := sup{dom(xi) | i < χ}. There are two main cases to consider:

I If γ = α, then cf(α) ≤ χ. Now, there are two subcases here:
II If there exists some ε < α such that 〈wi � ε | i < χ〉 is injective,

then fix such an ε, and since cf(α) ≤ χ < cf(λ), the set F :=
{fδ(〈xi � δ | i < χ〉 | ε < δ < α} is bounded in Qλ; fix q to be
some bound of F , and let fα(〈wi | i < χ〉) := q.

II If there exists no such ε < α, then it is harmless to just let
fα(〈wi | i < χ〉) := 〈0〉.

I If γ < α, then denote (ϕ1 ◦fγ)(〈wi �γ | i < χ〉) by pa〈ξ〉. Now, again
there are two subcases:
II If otp(Dα) = λ, then let fα(〈wi | i < χ〉) := p.
II If otp(Dα) < λ, then let fα(〈wi | i < χ〉) := pa〈ξ + σ〉 for the

least σ < λ such that otp(Dα ∩ γ) + 1 + σ = otp(Dα).

This completes the definition of the function fα. We must verify that⋃
β≤α fβ is order-preserving, and that Tβ and Tα are coordinated for ev-

ery β < α. It will be easier to show once we have established the following
claim.
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Claim 6.10.6. Let 〈wi | i < χ〉 ∈ (Tα)χ. For each i < χ, find xi ∈ T �Dα of
minimal height such that bαxi = wi. Suppose that γ := sup{dom(xi) | i < χ}
is smaller than α, and let pa〈ξ〉 denote (ϕ1 ◦ fγ)(〈wi � γ | i < χ〉). Then:

(1) For every β ∈ Dα \ γ,

(ϕ2 ◦ fβ)(〈wi � β | i < χ〉) = p;

(2) For every β ∈ Dα \ (γ + 1),

fβ(〈wi � β | i < χ〉) = pa〈ξ + σ〉,
for the least σ such that otp(Dα ∩ γ) + 1 + σ = otp(Dα ∩ β).

Proof. (1) The conclusion for β > γ follows from Clause (2) below. As for
β = γ, note that by Remark 6.7,

(ϕ2 ◦ fβ)(〈wi � β | i < χ〉) = (ϕ2 ◦ ϕ1 ◦ fβ)(〈wi � β | i < χ〉) = ϕ2(pa〈ξ〉) = p.

(2) For each i < χ, write yi := wi � γ, and note that bαyi = wi by
Claim 6.10.5. We now prove the claim by induction on β ∈ Dα \ (γ + 1):

Base: Suppose β = min(Dα\(γ+1)), so that σ := 0 satisfies otp(Dα∩
γ) + 1 + σ = otp(Dα ∩ β). Recalling the construction, there exists
some (id, ϕ1)-elevator e : Tγ → Tβ (coming from Eαβ ) such that

bαx(β) = e(bαx(γ)) for every x ∈ Tγ . Thus,

fβ(〈bαyi(β) | i < χ〉) = (ϕ1 ◦ fγ)(〈bαyi(γ) | i < χ〉)
= (ϕ1 ◦ fγ)(〈yi | i < χ〉)
= (ϕ1 ◦ fγ)(〈wi � γ | i < χ〉)

= pa〈ξ〉

= pa〈ξ + σ〉,
since σ = 0.

Successor step: Suppose β ∈ nacc(Dα) is such that β− := sup(Dα ∩
β) is bigger than γ and satisfies

fβ−(〈bαyi(β
−) | i < χ〉) = pa〈ξ + σ〉,

for the least σ such that otp(Dα∩γ)+1+σ = otp(Dα∩β−). Recalling
the construction, there exists some (id, ϕ1)-elevator e : Tβ− → Tβ
such that bαx(β) = e(bαx(β−)) for every x ∈ Tβ− . Thus,

fβ(〈bαyi(β) | i < χ〉) = (ϕ1 ◦ fβ−)(〈bαyi(β
−) | i < χ〉)

= ϕ1(pa〈ξ + σ〉)

= pa〈ξ + σ + 1〉,
as sought.

Limit step: Suppose β ∈ acc(Dα \ γ). By Claim 6.10.4, 〈bαyi(β) |
i < χ〉 = 〈bβyi | i < χ〉. By the coherence of ~D and since in particular
otp(Dβ) = otp(Dα ∩ β) < otp(Dα) ≤ λ, the definition of fβ(〈wi � β |
i < χ〉) goes through the following considerations. For each i < χ,
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find x̄i ∈ T �Dβ of minimal height such that bβx̄i = wi � β, and then
set γ̄ := sup{dom(x̄i) | i < χ}. As bαyi �β = wi �β for every i < χ, we
infer that γ̄ ≤ γ. To see that also γ̄ ≥ γ, note that for every i < χ, by

Claim 6.10.4, bαx̄i �β = bβx̄i , and hence bαx̄i �γ = bβx̄i �γ = wi �γ = yi,
and then Claim 6.10.5 implies that bαx̄i = bαyi = wi.

Now, since γ̄ = γ, it is the case that fβ(〈wi�β | i < χ〉) := pa〈ξ+σ〉
for the least σ < λ such that otp(Dβ ∩ γ) + 1 + σ = otp(Dβ). But
Dβ = Dα∩β and hence σ is the least to satisfy otp(Dα∩γ)+1+σ =
otp(Dα ∩ β). �

Claim 6.10.7. Let 〈wi | i < χ〉 ∈ (Tα)χ. Then fβ(〈wi � β | i < χ〉) <Qλ
fα(〈wi | i < χ〉) for every β ∈ [∆(〈wi | i < χ〉), α).

Proof. By the induction hypothesis on 〈(Tβ, fβ) | β < α〉, to show that
fβ(〈wi�β | i < χ〉) <Qλ fα(〈wi | i < χ〉) for a tail of β < α, it suffices to prove
that this is the case for cofinally many β < α. For each i < χ, find xi ∈ T �Dα

of minimal height such that bαxi = wi. Set γ := sup{dom(xi) | i < χ}, so
that γ ∈ Dα ∪ {α}. By the definition of fα, we may avoid trivialities and
assume that γ < α. In this case, we let pa〈ξ〉 denote (ϕ1 ◦ fγ)(〈wi � γ |
i < χ〉), and observe that by Claim 6.10.6(2), it suffices to prove that for
every σ such that otp(Dα ∩ γ) + 1 + σ < otp(Dα),

pa〈ξ + σ〉 <Qλ fα(〈wi | i < χ〉).

However, the definition of fα makes it clear that this is indeed the case. �

Claim 6.10.8. Let ε < α. Then Tε and Tα are coordinated.

Proof. Let n < χ and 〈zj | j < n〉 ∈ (Tα)n with ∆(〈zj | j < n〉) < ε. Before
going over the clauses of Definition 6.9, let us first establish the following
crucial subclaim.

Subclaim 6.10.8.1. There are β ∈ (ε, α) and a (ϕ2, ϕ2)-elevator e : Tβ →
Tα such that 〈e(zj � β) | j < n〉 = 〈zj | j < n〉.

Proof. For each j < n, fix x̄j ∈ T �Dα of minimal height such that zj = bαx̄j .

As n is finite, we may let β := min(Dα \max{dom(x̄j), ε+ 1 | j < n}).
I If otp(Dα) < λ, then define an elevator e : Tβ → Tα via e(y) := bαy . By

Claim 6.10.5, e(zj � β) = zj for every j < n.
To see that e is a (ϕ2, ϕ2)-elevator, let 〈yi | i < χ〉 ∈ (Tβ)χ. For each

i < χ, denote wi := e(yi), and find xi ∈ T � Dα of minimal height such
that bαxi = wi. As wi = bαyi , Claim 6.10.5 implies that dom(xi) ≤ dom(yi),

so that γ := sup{dom(xi) | i < χ} satisfies γ ≤ β < α. Let pa〈ξ〉 denote
(ϕ1 ◦ fγ)(〈wi � γ | i < χ〉).

On one hand, since β ∈ Dα \γ, Claim 6.10.6(1) asserts that (ϕ2 ◦fβ)(〈wi �
β | i < χ〉) = p. On the other hand, by the definition of fα, it is the case
that fα(〈wi | i < χ〉) = pa〈ξ + σ〉 for some σ < λ, and hence (ϕ2 ◦ fα)(〈wi |
i < χ〉) = p. Altogether, (ϕ2 ◦ fα)(〈wi | i < χ〉) = (ϕ2 ◦ fβ)(〈wi � β | i < χ〉).
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I If otp(Dα) = λ, then as Tβ and Tβ+1 are coordinated, let us fix an
(id, ϕ0)-elevator e0 : Tβ → Tβ+1 such that e0(zj � β) = zj � (β + 1) for every
j < n. Set δ := min(Dα \ (β + 2)). As Tβ+1 and Tδ are coordinated, fix a
(ϕ2, ϕ2)-elevator e2 : Tβ+1 → Tδ such that e2(zj � (β + 1)) = zj � δ for every
j < n. Finally, define an elevator e : Tβ → Tα via e(y) := bαe2(e0(y)). By

Claim 6.10.5, e(zj � β) = zj for every j < n.
To see that e is a (ϕ2, ϕ2)-elevator, let 〈yi | i < χ〉 ∈ (Tβ)χ. For each i < χ,

denote wi := e(yi) and find xi ∈ T �Dα of minimal height such that bαxi = wi.
As wi = bαe2(e0(yi))

, Claim 6.10.5 implies that dom(xi) ≤ dom(e2(e0(yi))), so

that γ := sup{dom(xi) | i < χ} satisfies γ ≤ δ < α.
Now, by the definition of fα, letting pa〈ξ〉 denote (ϕ1◦fγ)(〈wi�γ | i < χ〉),

it is the case that fα(〈wi | i < χ〉) = p. In addition, since δ ∈ Dα \ γ,
Claim 6.10.6(1) asserts that (ϕ2 ◦ fδ)(〈wi � δ | i < χ〉) = p.

By Remark 6.7 and the choice of e0 and e2:

(ϕ2 ◦ fβ)(〈wi � β | i < χ〉) = (ϕ2 ◦ ϕ2 ◦ ϕ0 ◦ fβ)(〈wi � β | i < χ〉)
= (ϕ2 ◦ ϕ2 ◦ fβ+1)(〈e0(wi � β) | i < χ〉)
= (ϕ2 ◦ ϕ2 ◦ fβ+1)(〈wi � β + 1 | i < χ〉)
= (ϕ2 ◦ ϕ2 ◦ fδ)(〈e2(wi � β + 1)) | i < χ〉)
= (ϕ2 ◦ ϕ2 ◦ fδ)(〈wi � δ | i < χ〉)
= ϕ2(p) = (ϕ2 ◦ fα)(〈wi | i < χ〉),

as sought. �

Let β and e : Tβ → Tα be given by the subclaim. We now go over the
clauses of Definition 6.9:

(i) By the induction hypothesis thus far, Tε and Tβ are coordinated, so
we may fix a (ϕ2, ϕ1)-elevator e1 : Tε → Tβ such that e1(zj �ε) = zj �β
for all j < n. Set E1 := e ◦ e1. Then E1(zj � ε) = e(e1(zj � ε)) =
e(zj �β) = zj for all j < n. In addition, for every y ∈ Tε, y ⊆ e1(y) ⊆
e(e1(y)) = E1(y). Finally, for every 〈yi | i < χ〉 ∈ (Tε)

χ,

(ϕ2 ◦ fα)(〈E1(yi) | i < χ〉) = (ϕ2 ◦ fα)(〈e(e1(yi)) | i < χ〉)
= (ϕ2 ◦ fβ)(〈e1(yi) | i < χ〉)
= (ϕ1 ◦ fε)(〈yi | i < χ〉).

So, E1 is a (ϕ2, ϕ1)-elevator as sought.
(ii) Replace 1 by 2 throughout the above proof.
(iii) α is a limit ordinal, so the requirement is satisfied vacuously. �

At the end of the above process, we have obtained a κ-tree T :=
⋃
α<κ Tα

whose χ-power is special, as witnessed by f :=
⋃
α<κ fα. The proof that T

is club-regressive is identical to that of [BR17a, Claim 2.3.4], thus we are
left with proving that T is a χ-free. To this end, let ~s = 〈sj | j < n〉 ∈ Tn be
given for some nonzero n < χ, and suppose that A is a maximal antichain
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in T (~s). Let ε denote the unique element of {dom(sj) | j < n}. Consider
the club E := {α ∈ acc(κ \ ε) | T � α ⊆ φ[α]}.

Using ♦(Hκ), for each i < κ, the following set is stationary in κ:

Bi := {η ∈ Ri | A ∩ (T (~s) � η) = Ωη is a maximal antichain in T (~s) � η}.
Finally, using the hitting feature of the proxy sequence, pick some α ∈ E

such that, for all i < α,

sup(nacc(Cα) ∩Bi) = α.

Claim 6.10.9. A ⊆ T (~S) � α. In particular, |A| < κ.

Proof. Let w be an arbitrary element of the αth level of T (~S), and we shall
show that it extends an element of A. Recalling (?), for each j < n, we may
fix some xj ∈ T �Dα such that (w)j = bαxj . As n is finite, by Claim 6.10.5,

we may assume the existence of some γ ∈ Dα \ ε such that sj ⊆ xj and

dom(xj) = γ for all j < n. In particular, the trees T (~S) and T̄ := T (〈xj |
j < n〉) agree on all levels ≥ γ.

Next, as α ∈ E, we may find some i < α with φ(i) = 〈xj | j < n〉.
Pick a large enough η ∈ nacc(Cα) ∩ Bi such that sup(Dα ∩ η) > γ. Denote
β := η + 1 and β− := sup(Dα ∩ β), so that γ < β− ≤ η < β with β ∈ Dα.

Recalling Notation 6.10.1, let e := min(Eαβ ,C), so that bαxj (β) = e(bαxj (β
−))

for every j < n. As ψ(η) = φ(π(η)) = φ(i) = 〈xj | j < n〉 and the latter is
indeed an element of (T � (Dα ∩ β−))n, we get that for every j < n,

e(bαxj (β
−)) = (anti(t(〈bαxj (β

−) | j < n〉), T̄ � β + 1,Ωη))j .

By the choice of η, A∩ (T (~s) � η) = Ωη is a maximal antichain in T (~s) � η,
and since T (~s) � [β−, η) = T̄ � [β−, η), the following set is nonempty:

Q := {z ∈ T̄β | ∃y ∈ Ωη (t(〈bαxj (β
−) | j < n〉) ∪ y ⊆ z)}.

Denote z := min(Q,Cκ), and let y ∈ Ωη be a witness for z ∈ Q. Recalling
Definition 6.4, this means that for every j < n,

(w)j � β = bαxj (β) = e(bαxj (β
−)) = (z)j ,

and hence y ⊆ z ⊆ w. As y ∈ Ωη ⊆ A, we infer that w indeed extends an
element of A. �

This completes the proof. �

Corollary 6.11. Suppose that λ is a singular cardinal such that �λ and
2λ = λ+ both hold. Then for every positive integer n, there exists a λ+-
Souslin streamlined tree T satisfying the two:

• all n-derived trees of T are Souslin;
• the (n+ 1)-power of T is special.

Proof. By [BR17a, Corollary 3.10], for a singular cardinal λ, Pλ(λ+, 2,v, λ+)
is equivalent to the conjunction of �λ and 2λ = λ+. Now, appeal to Theo-
rem 6.10. �
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It is not hard to see that assuming λ = λ<λ, every λ+-tree whose square
is special is in particular specializable. We do not know of an example of a
specializable λ+-Souslin tree for λ singular, and so we ask whether the tree
given by Corollary 6.11 is (or can be tweaked to be) specializable.
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