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Ramsey’s theorem

The arrow notation
Let λ→ (λ)2κ denote the assertion:
For every function f : [λ]2 → κ, there exists a subset H ⊆ λ s.t.:

I |H| = λ;

I f � [H]2 is constant.
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Ramsey’s theorem (Cont.)

Theorem (Ramsey, 1929)

ω → [ω]22.

Ramsey’s theorem is very pleasing. Unfortunately, it does not
generalize to higher cardinals.

Theorem (Sierpiński, 1933)

ω1 6→ [ω1]22.

Sierpiński’s theorem is pleasing on its own! It tells us that [ω1]2

admits a rather wild 2-valued coloring.
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Generalizing Sierpiński

Theorem (Sierpiński, 1933)

ω1 6→ [ω1]22.

So, there exists a coloring f : [ω1]2 → 2 such that [X ]2 attains all
colors for every uncountable X ⊆ ω1. This raises the question of
whether an analogous statement concerning a coloring with more
than two colors is valid.

Question: May the cardinal arithmetic hypothesis be eliminated?
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Theorem (Sierpiński, 1933)

ω1 6→ [ω1]22.

So, there exists a coloring f : [ω1]2 → 2 such that [X ]2 attains all
colors for every uncountable X ⊆ ω1. This raises the question of
whether an analogous statement concerning a coloring with more
than two colors is valid.

Theorem (Erdös-Hajnal-Rado, 1965)

CH entails ω1 6→ [ω1]2ω1
.

Question: May the cardinal arithmetic hypothesis be eliminated?

4 / 24



Generalizing Sierpiński
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ω1 6→ [ω1]2ω.

5 / 24



Generalizing Sierpiński in ZFC
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The rectangular square-bracket relation

Negative square-bracket relation

λ 6→ [λ]2κ asserts the existence of a function f : [λ]2 → κ such that
for every subset X ⊆ λ: if |X | = λ, then f � [X ]2 is onto κ.

Negative rectangular square-bracket relation

λ 6→ [λ;λ]2κ asserts the existence of a function f : [λ]2 → κ s.t. for
every subsets X ,Y : if |X | = |Y | = λ, then f � (X ~ Y ) is onto κ.
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The rectangular square-bracket relation (Cont.)

Theorem (Erdös-Hajnal-Rado, 1965)

CH entails ω1 6→ [ω1]2ω1
.

Theorem (Todorčević, 1987)

ω1 6→ [ω1]2ω1
holds in ZFC.
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Negative square-bracket for higher cardinals
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The rectangular square-bracket relation for higher cardinals

Theorem (Erdös-Hajnal-Rado, 1965)

2λ = λ+ entails λ+ 6→ [λ+;λ+]2λ+ .
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The rectangular square-bracket relation for higher cardinals

Theorem (Erdös-Hajnal-Rado, 1965)

2λ = λ+ entails λ+ 6→ [λ+;λ+]2λ+ .

Theorem (Todorčević, 1987)

λ+ 6→ [λ+]2λ+ holds for every infinite regular λ.

Open Problems

1. Does λ+ 6→ [λ+]2λ+ hold for every singular cardinal λ?

2. Does λ+ 6→ [λ+]2λ+ entail λ+ 6→ [λ+;λ+]2λ+?
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A Solution to Problem #2

10 / 24



Main result: comparing squares with rectangles

Theorem
The following are equivalent for all cardinals λ, κ:

I λ+ 6→ [λ+]2κ
I λ+ 6→ [λ+;λ+]2κ

The above is a corollary of the following ZFC theorem.

Main technical result
Every infinite cardinal λ admits a function rts : [λ+]2 → [λ+]2 s.t.:
for every cofinal subsets X ,Y of λ+, there exists a cofinal subset
Z ⊆ λ+ such that rts[X ~ Y ] ⊇ Z ~ Z .
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Shelah’s study of strong colorings
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Comparing classic concepts with modern one

Our main technical result was the missing link to the following.

Corollary (Eisworth+Shelah+R.)

TFAE for every uncountable cardinal λ:

I λ+ 6→ [λ+]2λ+

I Pr0(λ+, λ+, ω)

Definition (Shelah)

Pr0(λ+, λ+, ω) asserts the existence of a function f : [λ+]2 → λ+

satisfying the following.
For every n < ω, every g : n × n→ λ+, and every collection
A ⊆ [λ+]n of mutually disjoint sets, of size λ+,
there exists some x , y ∈ A with max(x) < min(y) such that

f (x(i), y(j)) = g(i , j) for all i , j < n.
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Surprise, Surprise!!
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Ingredients of the proof

Case 1. Successors of singulars

15 / 24



Successor of singulars — in ZFC

The proof of the existence of a function rts : [λ+]2 → [λ+]2 for a
singular λ is the heart of the matter.

The definition of the function
and the verification of its properties involves the following:

I Shelah’s club guessing theorems, and Eisworth’s theorem on
the existence of off-center club guessing matrices for singular
cardinals of countable cofinality;

I A generalization of Todorčević method of walks on ordinals,
where each ordinal α admits a sequence of clubs,
〈C i

α | i < cf(λ)〉, rather than a single one;

I Oscillation theory of pcf scales, plus coding, from which one
can get essentially-generic guidelines on which clubs to visit
throughout the generalized walks, and moreover, which
ordinals to pick from these walks.
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Ingredients of the proof

Case 2. Successors of regulars
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Successors of regulars — in ZFC

Let λ denote a regular cardinal. Then:

1. (Todorčević, 1987) λ+ 6→ [λ+]2λ+ [Partitioning pairs of countable ordinals]

2. (Shelah, 1987) λ+ 6→ [λ+;λ+]2λ+ , if λ > 2ℵ0 [Sh:280]

3. (Shelah, 1991) λ+ 6→ [λ+;λ+]2λ+ , if λ > ℵ1 [Sh:327]

4. (Shelah, 1996) λ+ 6→ [λ+;λ+]2λ+ , if λ = ℵ1 [Sh:572]

5. (Moore, 2006) λ+ 6→ [λ+;λ+]2λ+ , if λ = ℵ0 [A solution to the L space

problem]

Corollary (Shelah+Moore)

λ+ 6→ [λ+;λ+]2λ+ holds for every regular cardinal λ.

Remark
The proofs of 3,4,5 are entirely different, and it was unknown
whether a uniform proof of 3 + 4 + 5 exists.
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Successors of regulars

Corollary (Shelah+Moore)

λ+ 6→ [λ+;λ+]2λ+ holds for every regular cardinal λ.

Recently, in a joint work with Todorčević, we found a uniform
proof of the above.

1. Moore’s proof involves the definition of a function
o : [ω1]2 → ω that witnesses ω1 6→ [ω1;ω1]2ω. (Then, a
stretching argument yields ω1 6→ [ω1;ω1]2ω1

.)
2. We found a generalization of Moore’s definition that yields a

function o : [λ+]2 → ω witnessing λ+ 6→ [λ+;λ+]2ω for every
regular λ;

3. We then compose the generalized o with the classic function
Tr : [λ+]2 → <ωλ+, and argue that this witnesses
λ+ 6→ [λ+;λ+]2λ+ .

4. While λ+ 6→ [λ+;λ+]2ω has been established previously using
other functions, the generalized o is the first function that is
known to have this successful composition property.
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Thank you!

The slides of this talk may be found at the following address:
http://assafrinot.com/talks/asl2012
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More on successor of singulars — in ZFC

Theorem (Shelah, 1990’s)

λ+ 6→ [λ+;λ+]2cf(λ) holds for every singular cardinal λ.

Theorem (Shelah, 1990’s)

If λ is a singular cardinal of uncountable cofinality, then Eλ+

cf(λ)
carries a club-guessing sequence of a very strong form.

Theorem (Eisworth, 2010)

If λ is a singular cardinal of countable cofinality, then Eλ+
ω1

carries a
club-guessing matrix of a very strong form.

Still Open

Whether λ+ 6→ [λ+]2λ+ hold for all singular λ, in ZFC.
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Transforming Rectangles into Squares — in ZFC

Main technical result
For every singular cardinal λ, there exists a function
rts : [λ+]2 → [λ+]2 such that for every cofinal subsets X ,Y of λ+,
there exists a cofinal subset Z ⊆ λ+ such that rts[X ~Y ] ⊇ Z ~Z .

Remark: our proof builds heavily on previous arguments of Shelah,
Todorčević, and most notably — Eisworth.

The definition of rts

I Fix a matrix of local clubs 〈C i
α | α < λ+, i < cf(λ)〉 that

incorporates a club-guessing sequence/matrix.

I Adapt Shelah’s proof of λ+ 6→ [λ+;λ+]2cf(λ), to get a function

f : [λ+]2 → <ω cf(λ)× <ω cf(λ) with strong properties.

I Given α < β < λ+, consider (σ, η) = f (α, β);

I Let β0 := β, and βn+1 := min(C
σ(n)
βn
\ α) for all n ∈ dom(σ);
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Transforming Rectangles into Squares — in ZFC

Main technical result
For every singular cardinal λ, there exists a function
rts : [λ+]2 → [λ+]2 such that for every cofinal subsets X ,Y of λ+,
there exists a cofinal subset Z ⊆ λ+ such that rts[X ~Y ] ⊇ Z ~Z .

Remark: our proof builds heavily on previous arguments of Shelah,
Todorčević, and most notably — Eisworth.
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Todorčević, and most notably — Eisworth.

The definition of rts

I Fix a matrix of local clubs 〈C i
α | α < λ+, i < cf(λ)〉 that

incorporates a club-guessing sequence/matrix.

I Adapt Shelah’s proof of λ+ 6→ [λ+;λ+]2cf(λ), to get a function

f : [λ+]2 → <ω cf(λ)× <ω cf(λ) with strong properties.

I Given α < β < λ+, consider (σ, η) = f (α, β);

I Let β0 := β, and βn+1 := min(C
σ(n)
βn
\ α) for all n ∈ dom(σ);

22 / 24



Transforming Rectangles into Squares — in ZFC

Main technical result
For every singular cardinal λ, there exists a function
rts : [λ+]2 → [λ+]2 such that for every cofinal subsets X ,Y of λ+,
there exists a cofinal subset Z ⊆ λ+ such that rts[X ~Y ] ⊇ Z ~Z .

Remark: our proof builds heavily on previous arguments of Shelah,
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Transforming Rectangles into Squares (Cont.)

The definition of rts

I Fix a matrix of local clubs 〈C i
α | α < λ+, i < cf(λ)〉 that

incorporates a club-guessing sequence/matrix;

I Fix a function f : [λ+]2 → <ω cf(λ)× <ω cf(λ) with strong
coloring properties;

I Given α < β < λ+, consider (σ, η) = f (α, β);

I Let β0 := β, and βn+1 := min(C
σ(n)
βn
\ α) for all n ∈ dom(σ);

I Let γ := max{sup(C
σ(n)
βn
∩ α) | n ∈ dom(σ)};

I Let α0 := α, and αm+1 := min(C
η(m)
αm \ γ + 1) for m ∈ dom(η)

I Put rts(α, β) := (αdom(η), βdom(σ)).

The definition of rts is quite natural in this context, and so the
main point is to verify that the definition does the job.
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Why does rts work

I For every cofinal subset X ⊆ λ+, every ordinal δ < λ+, and
every type p in the language of the matrix-based walks, let
Xp(δ) := {α ∈ X | the pair (δ, α) realizes the type p};

I Denote SX
p := {δ < λ+ | sup(Xp(δ)) = sup(X )};

I Use the fact that the chosen matrix incorporates club guessing
to argue that for every cofinal subsets of λ+, X and Y , there
exists a type p, for which SX

p ∩ SY
p is stationary;

I Use the fact that f oscillates quite nicely on rectangles
X ~ Y , so that it can produce sequences (σ, η) with
successful guidelines on which columns of the matrix to advise
throughout the walks, and at which step of the walks to stop.
This insures that the type p gets realized quite frequently;

I Conclude that rts[X ~ Y ] ⊇ [SX
p ∩ SY

p ∩ C ]2 for the club C of
ordinals of the form M ∩ λ+, for elementary submodels
M ≺ Hχ of size λ, that contains all relevant objects.
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