The extent of the failure of

 Ramsey's theorem at successor cardinals

 Ramsey's theorem at successor cardinals}

2012 North American Annual Meeting of the ASL
University of Wisconsin Madison
31-March-2012

Assaf Rinot
University of Toronto Mississauga \&
The Fields Institute for Research in Mathematical Sciences

Ramsey's theorem

The arrow notation
Let $\lambda \rightarrow(\lambda)_{\kappa}^{2}$ denote the assertion:
For every function $f:[\lambda]^{2} \rightarrow \kappa$, there exists a subset $H \subseteq \lambda$ s.t.:

- $|H|=\lambda$;
- $f \upharpoonright[H]^{2}$ is constant.

Ramsey's theorem

The arrow notation
Let $\lambda \rightarrow(\lambda)_{\kappa}^{2}$ denote the assertion:
For every function $f:[\lambda]^{2} \rightarrow \kappa$, there exists a subset $H \subseteq \lambda$ s.t.:

- $|H|=\lambda$;
- $f \upharpoonright[H]^{2}$ is constant.

Theorem (Ramsey, 1929)
$\omega \rightarrow(\omega)_{2}^{2}$ holds.

Ramsey's theorem

The arrow notation
Let $\lambda \rightarrow[\lambda]_{\kappa}^{2}$ denote the assertion:
For every function $f:[\lambda]^{2} \rightarrow \kappa$, there exists a subset $H \subseteq \lambda$ s.t.:

- $|H|=\lambda ;$
- $f \upharpoonright[H]^{2}$ is not onto κ.

Ramsey's theorem

The arrow notation
Let $\lambda \rightarrow[\lambda]_{\kappa}^{2}$ denote the assertion:
For every function $f:[\lambda]^{2} \rightarrow \kappa$, there exists a subset $H \subseteq \lambda$ s.t.:

- $|H|=\lambda ;$
- $f \upharpoonright[H]^{2}$ is not onto κ.

Theorem (Ramsey, 1929)
$\omega \rightarrow[\omega]_{2}^{2}$ holds.

Ramsey's theorem (Cont.)

Theorem (Ramsey, 1929)

$\omega \rightarrow[\omega]_{2}^{2}$.

Ramsey's theorem is very pleasing. Unfortunately, it does not generalize to higher cardinals.

Ramsey's theorem (Cont.)

Theorem (Ramsey, 1929)
$\omega \rightarrow[\omega]_{2}^{2}$.

Ramsey's theorem is very pleasing. Unfortunately, it does not generalize to higher cardinals.

Theorem (Sierpiński, 1933)
$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{2}^{2}$.

Ramsey's theorem (Cont.)

Theorem (Ramsey, 1929)
$\omega \rightarrow[\omega]_{2}^{2}$.

Ramsey's theorem is very pleasing. Unfortunately, it does not generalize to higher cardinals.
Theorem (Sierpiński, 1933)
$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{2}^{2}$.
Sierpiński's theorem is pleasing on its own! It tells us that $\left[\omega_{1}\right]^{2}$ admits a rather wild 2 -valued coloring.

Generalizing Sierpiński

Theorem (Sierpiński, 1933)

$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{2}^{2}$.
So, there exists a coloring $f:\left[\omega_{1}\right]^{2} \rightarrow 2$ such that $[X]^{2}$ attains all colors for every uncountable $X \subseteq \omega_{1}$. This raises the question of whether an analogous statement concerning a coloring with more than two colors is valid.

Generalizing Sierpiński

Theorem (Sierpiński, 1933)
$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{2}^{2}$.
So, there exists a coloring $f:\left[\omega_{1}\right]^{2} \rightarrow 2$ such that $[X]^{2}$ attains all colors for every uncountable $X \subseteq \omega_{1}$. This raises the question of whether an analogous statement concerning a coloring with more than two colors is valid.
Theorem (Erdös-Hajnal-Rado, 1965)
CH entails $\omega_{1} \nrightarrow\left[\omega_{1}\right]_{\omega_{1}}^{2}$.

Generalizing Sierpiński

Theorem (Erdös-Hajnal-Rado, 1965)
CH entails $\omega_{1} \nrightarrow\left[\omega_{1}\right]_{\omega_{1}}^{2}$.
Question: May the cardinal arithmetic hypothesis be eliminated?

Generalizing Sierpiński in ZFC

Theorem (Sierpiński, 1933) $\omega_{1} \nrightarrow\left[\omega_{1}\right]_{2}^{2}$.

Generalizing Sierpiński in ZFC

Theorem (Sierpiński, 1933)
$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{2}^{2}$.
Theorem (Blass, 1972)
$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{3}^{2}$.

Generalizing Sierpiński in ZFC

Theorem (Sierpiński, 1933)
$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{2}^{2}$.
Theorem (Blass, 1972)
$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{3}^{2}$.
Theorem (Galvin-Shelah, 1973)
$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{4}^{2}$.

Generalizing Sierpiński in ZFC

Theorem (Sierpiński, 1933)
$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{2}^{2}$.
Theorem (Blass, 1972)
$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{3}^{2}$.
Theorem (Galvin-Shelah, 1973)
$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{4}^{2}$.
Theorem (Todorčević, 1987)
$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{\omega}^{2}$.

Generalizing Sierpiński in ZFC

Theorem (Sierpiński, 1933)
$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{2}^{2}$.
Theorem (Blass, 1972)
$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{3}^{2}$.
Theorem (Galvin-Shelah, 1973)
$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{4}^{2}$.
Theorem (Todorčević, 1987)
$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{\omega_{1}}^{2}$.

The rectangular square-bracket relation

Negative square-bracket relation
$\lambda \nRightarrow[\lambda]_{\kappa}^{2}$ asserts the existence of a function $f:[\lambda]^{2} \rightarrow \kappa$ such that for every subset $X \subseteq \lambda$: if $|X|=\lambda$, then $f \upharpoonright[X]^{2}$ is onto κ.

The rectangular square-bracket relation

Negative square-bracket relation
$\lambda \nrightarrow[\lambda]_{\kappa}^{2}$ asserts the existence of a function $f:[\lambda]^{2} \rightarrow \kappa$ such that for every subset $X \subseteq \lambda$: if $|X|=\lambda$, then $f \upharpoonright[X]^{2}$ is onto κ.

Negative rectangular square-bracket relation $\lambda \nRightarrow[\lambda ; \lambda]_{\kappa}^{2}$ asserts the existence of a function $f:[\lambda]^{2} \rightarrow \kappa$ s.t. for every subsets X, Y : if $|X|=|Y|=\lambda$, then $f \upharpoonright(X \circledast Y)$ is onto κ.

The rectangular square-bracket relation (Cont.)

Theorem (Erdös-Hajnal-Rado, 1965)
CH entails $\omega_{1} \nrightarrow\left[\omega_{1}\right]_{\omega_{1}}^{2}$.
Theorem (Todorčević, 1987)
$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{\omega_{1}}^{2}$ holds in ZFC.

The rectangular square-bracket relation (Cont.)

Theorem (Erdös-Hajnal-Rado, 1965)
CH entails $\omega_{1} \nrightarrow\left[\omega_{1} ; \omega_{1}\right]_{\omega_{1}}^{2}$.
Theorem (Todorčević, 1987)
$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{\omega_{1}}^{2}$ holds in ZFC.

The rectangular square-bracket relation (Cont.)

Theorem (Erdös-Hajnal-Rado, 1965)
CH entails $\omega_{1} \nrightarrow\left[\omega_{1} ; \omega_{1}\right]_{\omega_{1}}^{2}$.
Theorem (Todorčević, 1987)
$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{\omega_{1}}^{2}$ holds in ZFC.
Theorem (Moore, 2006)
$\omega_{1} \nrightarrow\left[\omega_{1} ; \omega_{1}\right]_{\omega_{1}}^{2}$ holds in ZFC.

Negative square-bracket for higher cardinals

The rectangular square-bracket relation for higher cardinals

Theorem (Erdös-Hajnal-Rado, 1965)
$2^{\lambda}=\lambda^{+}$entails $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$.

The rectangular square-bracket relation for higher cardinals

Theorem (Erdös-Hajnal-Rado, 1965)
$2^{\lambda}=\lambda^{+}$entails $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$.
Theorem (Todorčević, 1987)
$\lambda^{+} \nRightarrow\left[\lambda^{+}\right]_{\lambda^{+}}^{2}$ holds for every infinite regular λ.

The rectangular square-bracket relation for higher cardinals

Theorem (Erdös-Hajnal-Rado, 1965)
$2^{\lambda}=\lambda^{+}$entails $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$.
Theorem (Todorčević, 1987)
$\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\lambda^{+}}^{2}$ holds for every infinite regular λ.
Open Problems

1. Does $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\lambda^{+}}^{2}$ hold for every singular cardinal λ ?
2. Does $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\lambda^{+}}^{2}$ entail $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$?

A Solution to Problem \#2

Main result: comparing squares with rectangles

Theorem
The following are equivalent for all cardinals λ, κ :

- $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\kappa}^{2}$
- $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\kappa}^{2}$

Main result: comparing squares with rectangles

Theorem
The following are equivalent for all cardinals λ, κ :

- $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\kappa}^{2}$
- $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\kappa}^{2}$

The above is a corollary of the following ZFC theorem.
Main technical result
Every infinite cardinal λ admits a function rts : $\left[\lambda^{+}\right]^{2} \rightarrow\left[\lambda^{+}\right]^{2}$ s.t.: for every cofinal subsets X, Y of λ^{+}, there exists a cofinal subset $Z \subseteq \lambda^{+}$such that $r t s[X \circledast Y] \supseteq Z \circledast Z$.

Shelah's study of strong colorings

Comparing classic concepts with modern one

Our main technical result was the missing link to the following.
Corollary (Eisworth + Shelah + R.)
TFAE for every uncountable cardinal λ :

- $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\lambda^{+}}^{2}$
- $\operatorname{Pr}_{0}\left(\lambda^{+}, \lambda^{+}, \omega\right)$

Definition (Shelah)

$\operatorname{Pr}_{0}\left(\lambda^{+}, \lambda^{+}, \omega\right)$ asserts the existence of a function $f:\left[\lambda^{+}\right]^{2} \rightarrow \lambda^{+}$ satisfying the following.
For every $n<\omega$, every $g: n \times n \rightarrow \lambda^{+}$, and every collection $\mathcal{A} \subseteq\left[\lambda^{+}\right]^{n}$ of mutually disjoint sets, of size λ^{+}, there exists some $x, y \in A$ with $\max (x)<\min (y)$ such that

$$
f(x(i), y(j))=g(i, j) \text { for all } i, j<n .
$$

Surprise, Surprise!!

Ingredients of the proof

Case 1. Successors of singulars

Successor of singulars - in ZFC

The proof of the existence of a function $r t s:\left[\lambda^{+}\right]^{2} \rightarrow\left[\lambda^{+}\right]^{2}$ for a singular λ is the heart of the matter.

Successor of singulars - in ZFC

The proof of the existence of a function $r t s:\left[\lambda^{+}\right]^{2} \rightarrow\left[\lambda^{+}\right]^{2}$ for a singular λ is the heart of the matter. The definition of the function and the verification of its properties involves the following:

- Shelah's club guessing theorems, and Eisworth's theorem on the existence of off-center club guessing matrices for singular cardinals of countable cofinality;

Successor of singulars - in ZFC

The proof of the existence of a function $r t s:\left[\lambda^{+}\right]^{2} \rightarrow\left[\lambda^{+}\right]^{2}$ for a singular λ is the heart of the matter. The definition of the function and the verification of its properties involves the following:

- Shelah's club guessing theorems, and Eisworth's theorem on the existence of off-center club guessing matrices for singular cardinals of countable cofinality;
- A generalization of Todorčević method of walks on ordinals, where each ordinal α admits a sequence of clubs, $\left\langle C_{\alpha}^{i} \mid i<\operatorname{cf}(\lambda)\right\rangle$, rather than a single one;

Successor of singulars - in ZFC

The proof of the existence of a function $r t s:\left[\lambda^{+}\right]^{2} \rightarrow\left[\lambda^{+}\right]^{2}$ for a singular λ is the heart of the matter. The definition of the function and the verification of its properties involves the following:

- Shelah's club guessing theorems, and Eisworth's theorem on the existence of off-center club guessing matrices for singular cardinals of countable cofinality;
- A generalization of Todorčević method of walks on ordinals, where each ordinal α admits a sequence of clubs, $\left\langle C_{\alpha}^{i} \mid i<\operatorname{cf}(\lambda)\right\rangle$, rather than a single one;
- Oscillation theory of pcf scales, plus coding, from which one can get essentially-generic guidelines on which clubs to visit throughout the generalized walks, and moreover, which ordinals to pick from these walks.

Ingredients of the proof

Case 2. Successors of regulars

Successors of regulars - in ZFC

Let λ denote a regular cardinal. Then:

1. (Todorčević, 1987) $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\lambda^{+}}^{2}$ [Partitioning pairs of countable ordinals]

Successors of regulars - in ZFC

Let λ denote a regular cardinal. Then:

1. (Todorčević, 1987) $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\lambda^{+}}^{2}$ [Partitioning pairs of countable ordinals]
2. (Shelah, 1987) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda>2^{\aleph_{0}}{ }_{[S h: 280]}$

Successors of regulars - in ZFC

Let λ denote a regular cardinal. Then:

1. (Todorčević, 1987) $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\lambda^{+}}^{2}$ [Partitioning pairs of countable ordinals]
2. (Shelah, 1987) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda>2^{\aleph_{0}}{ }_{[S h: 280]}$
3. (Shelah, 1991) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda>\aleph_{1}[$ Sh:327]

Successors of regulars - in ZFC

Let λ denote a regular cardinal. Then:

1. (Todorčević, 1987) $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\lambda^{+}}^{2}$ [Partitioning pairs of countable ordinals]
2. (Shelah, 1987) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda>2^{\aleph_{0}}{ }_{[S h: 280]}$
3. (Shelah, 1991) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda>\aleph_{1}$ [Sh:327]
4. (Shelah, 1996) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda=\aleph_{1}$ [Sh:572]

Successors of regulars - in ZFC

Let λ denote a regular cardinal. Then:

1. (Todorčević, 1987) $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\lambda^{+}}^{2}$ [Partitioning pairs of countable ordinals]
2. (Shelah, 1987) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda>2^{\aleph_{0}}{ }_{[S h: 280]}$
3. (Shelah, 1991) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda>\aleph_{1}$ [Sh:327]
4. (Shelah, 1996) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda=\aleph_{1}$ [Sh:572]
5. (Moore, 2006) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda=\aleph_{0}[A$ solution to the L space problem]

Successors of regulars - in ZFC

Let λ denote a regular cardinal. Then:

1. (Todorčević, 1987) $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\lambda^{+}}^{2}$ [Partitioning pairs of countable ordinals]
2. (Shelah, 1987) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda>2^{\aleph_{0}}{ }_{[5 h: 280]}$
3. (Shelah, 1991) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda>\aleph_{1}$ [Sh:327]
4. (Shelah, 1996) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda=\aleph_{1}$ [sh:572]
5. (Moore, 2006) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda=\aleph_{0}$ [A solution to the L space problem]

Corollary (Shelah+Moore)
$\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$ holds for every regular cardinal λ.

Successors of regulars - in ZFC

Let λ denote a regular cardinal. Then:

1. (Todorčević, 1987) $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\lambda^{+}}^{2}$ [Partitioning pairs of countable ordinals]
2. (Shelah, 1987) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda>2^{\aleph_{0}}{ }_{[5 h: 280]}$
3. (Shelah, 1991) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda>\aleph_{1}$ [Sh:327]
4. (Shelah, 1996) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda=\aleph_{1[5 h: 572]}$
5. (Moore, 2006) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda=\aleph_{0}[A$ solution to the L space problem]

Corollary (Shelah+Moore)
$\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$ holds for every regular cardinal λ.
Remark
The proofs of $3,4,5$ are entirely different, and it was unknown whether a uniform proof of $3+4+5$ exists.

Successors of regulars

Corollary (Shelah+Moore)

$\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$ holds for every regular cardinal λ.
Recently, in a joint work with Todorčević, we found a uniform proof of the above.

Successors of regulars

Corollary (Shelah+Moore)
$\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$ holds for every regular cardinal λ.
Recently, in a joint work with Todorčević, we found a uniform proof of the above.

1. Moore's proof involves the definition of a function $0:\left[\omega_{1}\right]^{2} \rightarrow \omega$ that witnesses $\omega_{1} \nrightarrow\left[\omega_{1} ; \omega_{1}\right]_{\omega}^{2}$. (Then, a stretching argument yields $\omega_{1} \nrightarrow\left[\omega_{1} ; \omega_{1}\right]_{\omega_{1}}^{2}$.)

Successors of regulars

Corollary (Shelah+Moore)
$\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$ holds for every regular cardinal λ.
Recently, in a joint work with Todorčević, we found a uniform proof of the above.

1. Moore's proof involves the definition of a function $o:\left[\omega_{1}\right]^{2} \rightarrow \omega$ that witnesses $\omega_{1} \nrightarrow\left[\omega_{1} ; \omega_{1}\right]_{\omega}^{2}$. (Then, a stretching argument yields $\omega_{1} \nrightarrow\left[\omega_{1} ; \omega_{1}\right]_{\omega_{1}}^{2}$.)
2. We found a generalization of Moore's definition that yields a function $0:\left[\lambda^{+}\right]^{2} \rightarrow \omega$ witnessing $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\omega}^{2}$ for every regular λ;

Successors of regulars

Corollary (Shelah+Moore)

$\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$ holds for every regular cardinal λ.
Recently, in a joint work with Todorčević, we found a uniform proof of the above.

1. Moore's proof involves the definition of a function $o:\left[\omega_{1}\right]^{2} \rightarrow \omega$ that witnesses $\omega_{1} \nrightarrow\left[\omega_{1} ; \omega_{1}\right]_{\omega}^{2}$. (Then, a stretching argument yields $\omega_{1} \nrightarrow\left[\omega_{1} ; \omega_{1}\right]_{\omega_{1}}^{2}$.)
2. We found a generalization of Moore's definition that yields a function $0:\left[\lambda^{+}\right]^{2} \rightarrow \omega$ witnessing $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\omega}^{2}$ for every regular λ;
3. We then compose the generalized o with the classic function $\operatorname{Tr}:\left[\lambda^{+}\right]^{2} \rightarrow{ }^{<\omega} \lambda^{+}$, and argue that this witnesses
$\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$.

Successors of regulars

Corollary (Shelah+Moore)

$\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$ holds for every regular cardinal λ.
Recently, in a joint work with Todorčević, we found a uniform proof of the above.

1. Moore's proof involves the definition of a function $o:\left[\omega_{1}\right]^{2} \rightarrow \omega$ that witnesses $\omega_{1} \nrightarrow\left[\omega_{1} ; \omega_{1}\right]_{\omega}^{2}$. (Then, a stretching argument yields $\omega_{1} \nrightarrow\left[\omega_{1} ; \omega_{1}\right]_{\omega_{1}}^{2}$.)
2. We found a generalization of Moore's definition that yields a function $0:\left[\lambda^{+}\right]^{2} \rightarrow \omega$ witnessing $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\omega}^{2}$ for every regular λ;
3. We then compose the generalized o with the classic function $\operatorname{Tr}:\left[\lambda^{+}\right]^{2} \rightarrow{ }^{<\omega} \lambda^{+}$, and argue that this witnesses $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$.
4. While $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\omega}^{2}$ has been established previously using other functions, the generalized o is the first function that is known to have this successful composition property.

Thank you!

The slides of this talk may be found at the following address: http://assafrinot.com/talks/asl2012

More on successor of singulars - in ZFC

Theorem (Shelah, 1990's)
$\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\operatorname{cf}(\lambda)}^{2}$ holds for every singular cardinal λ.

More on successor of singulars - in ZFC

Theorem (Shelah, 1990's)
$\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\mathrm{cf}(\lambda)}^{2}$ holds for every singular cardinal λ.
Theorem (Shelah, 1990's)
If λ is a singular cardinal of uncountable cofinality, then $E_{\mathrm{cf}(\lambda)}^{\lambda^{+}}$ carries a club-guessing sequence of a very strong form.

Theorem (Eisworth, 2010)
If λ is a singular cardinal of countable cofinality, then $E_{\omega_{1}}^{\lambda^{+}}$carries a club-guessing matrix of a very strong form.

More on successor of singulars - in ZFC

Theorem (Shelah, 1990's)
$\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\mathrm{cf}(\lambda)}^{2}$ holds for every singular cardinal λ.
Theorem (Shelah, 1990's)
If λ is a singular cardinal of uncountable cofinality, then $E_{\mathrm{cf}(\lambda)}^{\lambda^{+}}$ carries a club-guessing sequence of a very strong form.

Theorem (Eisworth, 2010)
If λ is a singular cardinal of countable cofinality, then $E_{\omega_{1}}^{\lambda^{+}}$carries a club-guessing matrix of a very strong form.

Still Open

Whether $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\lambda^{+}}^{2}$ hold for all singular λ, in ZFC.

Transforming Rectangles into Squares - in ZFC

Main technical result

For every singular cardinal λ, there exists a function $r t s:\left[\lambda^{+}\right]^{2} \rightarrow\left[\lambda^{+}\right]^{2}$ such that for every cofinal subsets X, Y of λ^{+}, there exists a cofinal subset $Z \subseteq \lambda^{+}$such that $r t s[X \circledast Y] \supseteq Z \circledast Z$. Remark: our proof builds heavily on previous arguments of Shelah, Todorčević, and most notably - Eisworth.

Transforming Rectangles into Squares - in ZFC

Main technical result
For every singular cardinal λ, there exists a function $r t s:\left[\lambda^{+}\right]^{2} \rightarrow\left[\lambda^{+}\right]^{2}$ such that for every cofinal subsets X, Y of λ^{+}, there exists a cofinal subset $Z \subseteq \lambda^{+}$such that $r t s[X \circledast Y] \supseteq Z \circledast Z$.
Remark: our proof builds heavily on previous arguments of Shelah, Todorčević, and most notably - Eisworth.
The definition of r ts

- Fix a matrix of local clubs $\left\langle C_{\alpha}^{i} \mid \alpha<\lambda^{+}, i<\operatorname{cf}(\lambda)\right\rangle$ that incorporates a club-guessing sequence/matrix.

Transforming Rectangles into Squares - in ZFC

Main technical result
For every singular cardinal λ, there exists a function $r t s:\left[\lambda^{+}\right]^{2} \rightarrow\left[\lambda^{+}\right]^{2}$ such that for every cofinal subsets X, Y of λ^{+}, there exists a cofinal subset $Z \subseteq \lambda^{+}$such that $r t s[X \circledast Y] \supseteq Z \circledast Z$.
Remark: our proof builds heavily on previous arguments of Shelah, Todorčević, and most notably - Eisworth.
The definition of r ts

- Fix a matrix of local clubs $\left\langle C_{\alpha}^{i} \mid \alpha<\lambda^{+}, i<\operatorname{cf}(\lambda)\right\rangle$ that incorporates a club-guessing sequence/matrix.
- Adapt Shelah's proof of $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\mathrm{cf}(\lambda)}^{2}$, to get a function $f:\left[\lambda^{+}\right]^{2} \rightarrow{ }^{<\omega} \operatorname{cf}(\lambda) \times{ }^{<\omega} \operatorname{cf}(\lambda)$ with strong properties.

Transforming Rectangles into Squares - in ZFC

Main technical result

For every singular cardinal λ, there exists a function $r t s:\left[\lambda^{+}\right]^{2} \rightarrow\left[\lambda^{+}\right]^{2}$ such that for every cofinal subsets X, Y of λ^{+}, there exists a cofinal subset $Z \subseteq \lambda^{+}$such that $r t s[X \circledast Y] \supseteq Z \circledast Z$.
Remark: our proof builds heavily on previous arguments of Shelah, Todorčević, and most notably - Eisworth.
The definition of r ts

- Fix a matrix of local clubs $\left\langle C_{\alpha}^{i} \mid \alpha<\lambda^{+}, i<\operatorname{cf}(\lambda)\right\rangle$ that incorporates a club-guessing sequence/matrix.
- Adapt Shelah's proof of $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\mathrm{cf}(\lambda)}^{2}$, to get a function $f:\left[\lambda^{+}\right]^{2} \rightarrow{ }^{<\omega} \operatorname{cf}(\lambda) \times{ }^{<\omega} \operatorname{cf}(\lambda)$ with strong properties.
- Given $\alpha<\beta<\lambda^{+}, \operatorname{consider}(\sigma, \eta)=f(\alpha, \beta)$;

Transforming Rectangles into Squares - in ZFC

Main technical result

For every singular cardinal λ, there exists a function $r t s:\left[\lambda^{+}\right]^{2} \rightarrow\left[\lambda^{+}\right]^{2}$ such that for every cofinal subsets X, Y of λ^{+}, there exists a cofinal subset $Z \subseteq \lambda^{+}$such that $r t s[X \circledast Y] \supseteq Z \circledast Z$. Remark: our proof builds heavily on previous arguments of Shelah, Todorčević, and most notably - Eisworth.
The definition of r ts

- Fix a matrix of local clubs $\left\langle C_{\alpha}^{i} \mid \alpha<\lambda^{+}, i<\operatorname{cf}(\lambda)\right\rangle$ that incorporates a club-guessing sequence/matrix.
- Adapt Shelah's proof of $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\mathrm{cf}(\lambda)}^{2}$, to get a function $f:\left[\lambda^{+}\right]^{2} \rightarrow{ }^{<\omega} \operatorname{cf}(\lambda) \times{ }^{<\omega} \operatorname{cf}(\lambda)$ with strong properties.
- Given $\alpha<\beta<\lambda^{+}$, consider $(\sigma, \eta)=f(\alpha, \beta)$;
- Let $\beta_{0}:=\beta$, and $\beta_{n+1}:=\min \left(C_{\beta_{n}}^{\sigma(n)} \backslash \alpha\right)$ for all $n \in \operatorname{dom}(\sigma)$;

Transforming Rectangles into Squares (Cont.)

The definition of r ts

- Fix a matrix of local clubs $\left\langle C_{\alpha}^{i} \mid \alpha<\lambda^{+}, i<\operatorname{cf}(\lambda)\right\rangle$ that incorporates a club-guessing sequence/matrix;
- Fix a function $f:\left[\lambda^{+}\right]^{2} \rightarrow{ }^{<\omega} \operatorname{cf}(\lambda) \times{ }^{<\omega} \operatorname{cf}(\lambda)$ with strong coloring properties;
- Given $\alpha<\beta<\lambda^{+}$, consider $(\sigma, \eta)=f(\alpha, \beta)$;
- Let $\beta_{0}:=\beta$, and $\beta_{n+1}:=\min \left(C_{\beta_{n}}^{\sigma(n)} \backslash \alpha\right)$ for all $n \in \operatorname{dom}(\sigma)$;

Transforming Rectangles into Squares (Cont.)

The definition of $r t s$

- Fix a matrix of local clubs $\left\langle C_{\alpha}^{i} \mid \alpha<\lambda^{+}, i<\operatorname{cf}(\lambda)\right\rangle$ that incorporates a club-guessing sequence/matrix;
- Fix a function $f:\left[\lambda^{+}\right]^{2} \rightarrow{ }^{<\omega} \operatorname{cf}(\lambda) \times{ }^{<\omega} \operatorname{cf}(\lambda)$ with strong coloring properties;
- Given $\alpha<\beta<\lambda^{+}$, consider $(\sigma, \eta)=f(\alpha, \beta)$;
- Let $\beta_{0}:=\beta$, and $\beta_{n+1}:=\min \left(C_{\beta_{n}}^{\sigma(n)} \backslash \alpha\right)$ for all $n \in \operatorname{dom}(\sigma)$;
- Let $\gamma:=\max \left\{\sup \left(C_{\beta_{n}}^{\sigma(n)} \cap \alpha\right) \mid n \in \operatorname{dom}(\sigma)\right\}$;

Transforming Rectangles into Squares (Cont.)

The definition of $r t s$

- Fix a matrix of local clubs $\left\langle C_{\alpha}^{i} \mid \alpha<\lambda^{+}, i<\operatorname{cf}(\lambda)\right\rangle$ that incorporates a club-guessing sequence/matrix;
- Fix a function $f:\left[\lambda^{+}\right]^{2} \rightarrow{ }^{<\omega} \operatorname{cf}(\lambda) \times{ }^{<\omega} \operatorname{cf}(\lambda)$ with strong coloring properties;
- Given $\alpha<\beta<\lambda^{+}$, consider $(\sigma, \eta)=f(\alpha, \beta)$;
- Let $\beta_{0}:=\beta$, and $\beta_{n+1}:=\min \left(C_{\beta_{n}}^{\sigma(n)} \backslash \alpha\right)$ for all $n \in \operatorname{dom}(\sigma)$;
- Let $\gamma:=\max \left\{\sup \left(C_{\beta_{n}}^{\sigma(n)} \cap \alpha\right) \mid n \in \operatorname{dom}(\sigma)\right\}$;
- Let $\alpha_{0}:=\alpha$, and $\alpha_{m+1}:=\min \left(C_{\alpha_{m}}^{\eta(m)} \backslash \gamma+1\right)$ for $m \in \operatorname{dom}(\eta)$

Transforming Rectangles into Squares (Cont.)

The definition of r ts

- Fix a matrix of local clubs $\left\langle C_{\alpha}^{i} \mid \alpha<\lambda^{+}, i<\operatorname{cf}(\lambda)\right\rangle$ that incorporates a club-guessing sequence/matrix;
- Fix a function $f:\left[\lambda^{+}\right]^{2} \rightarrow{ }^{<\omega} \operatorname{cf}(\lambda) \times{ }^{<\omega} \operatorname{cf}(\lambda)$ with strong coloring properties;
- Given $\alpha<\beta<\lambda^{+}$, consider $(\sigma, \eta)=f(\alpha, \beta)$;
- Let $\beta_{0}:=\beta$, and $\beta_{n+1}:=\min \left(C_{\beta_{n}}^{\sigma(n)} \backslash \alpha\right)$ for all $n \in \operatorname{dom}(\sigma)$;
- Let $\gamma:=\max \left\{\sup \left(C_{\beta_{n}}^{\sigma(n)} \cap \alpha\right) \mid n \in \operatorname{dom}(\sigma)\right\}$;
- Let $\alpha_{0}:=\alpha$, and $\alpha_{m+1}:=\min \left(C_{\alpha_{m}}^{\eta(m)} \backslash \gamma+1\right)$ for $m \in \operatorname{dom}(\eta)$
- Put r ts $(\alpha, \beta):=\left(\alpha_{\operatorname{dom}(\eta)}, \beta_{\operatorname{dom}(\sigma)}\right)$.

Transforming Rectangles into Squares (Cont.)

The definition of r ts

- Fix a matrix of local clubs $\left\langle C_{\alpha}^{i} \mid \alpha<\lambda^{+}, i<\operatorname{cf}(\lambda)\right\rangle$ that incorporates a club-guessing sequence/matrix;
- Fix a function $f:\left[\lambda^{+}\right]^{2} \rightarrow{ }^{<\omega} \operatorname{cf}(\lambda) \times{ }^{<\omega} \operatorname{cf}(\lambda)$ with strong coloring properties;
- Given $\alpha<\beta<\lambda^{+}$, consider $(\sigma, \eta)=f(\alpha, \beta)$;
- Let $\beta_{0}:=\beta$, and $\beta_{n+1}:=\min \left(C_{\beta_{n}}^{\sigma(n)} \backslash \alpha\right)$ for all $n \in \operatorname{dom}(\sigma)$;
- Let $\gamma:=\max \left\{\sup \left(C_{\beta_{n}}^{\sigma(n)} \cap \alpha\right) \mid n \in \operatorname{dom}(\sigma)\right\}$;
- Let $\alpha_{0}:=\alpha$, and $\alpha_{m+1}:=\min \left(C_{\alpha_{m}}^{\eta(m)} \backslash \gamma+1\right)$ for $m \in \operatorname{dom}(\eta)$
- Put $r t s(\alpha, \beta):=\left(\alpha_{\operatorname{dom}(\eta)}, \beta_{\operatorname{dom}(\sigma)}\right)$.

The definition of r ts is quite natural in this context, and so the main point is to verify that the definition does the job.

Why does rts work

- For every cofinal subset $X \subseteq \lambda^{+}$, every ordinal $\delta<\lambda^{+}$, and every type p in the language of the matrix-based walks, let $X_{p}(\delta):=\{\alpha \in X \mid$ the pair (δ, α) realizes the type $p\} ;$

Why does rts work

- For every cofinal subset $X \subseteq \lambda^{+}$, every ordinal $\delta<\lambda^{+}$, and every type p in the language of the matrix-based walks, let $X_{p}(\delta):=\{\alpha \in X \mid$ the pair (δ, α) realizes the type $p\} ;$
- Denote $S_{p}^{X}:=\left\{\delta<\lambda^{+} \mid \sup \left(X_{p}(\delta)\right)=\sup (X)\right\}$;

Why does rts work

- For every cofinal subset $X \subseteq \lambda^{+}$, every ordinal $\delta<\lambda^{+}$, and every type p in the language of the matrix-based walks, let $X_{p}(\delta):=\{\alpha \in X \mid$ the pair (δ, α) realizes the type $p\} ;$
- Denote $S_{p}^{X}:=\left\{\delta<\lambda^{+} \mid \sup \left(X_{p}(\delta)\right)=\sup (X)\right\}$;
- Use the fact that the chosen matrix incorporates club guessing to argue that for every cofinal subsets of λ^{+}, X and Y, there exists a type p, for which $S_{p}^{X} \cap S_{p}^{Y}$ is stationary;

Why does rts work

- For every cofinal subset $X \subseteq \lambda^{+}$, every ordinal $\delta<\lambda^{+}$, and every type p in the language of the matrix-based walks, let $X_{p}(\delta):=\{\alpha \in X \mid$ the pair (δ, α) realizes the type $p\} ;$
- Denote $S_{p}^{X}:=\left\{\delta<\lambda^{+} \mid \sup \left(X_{p}(\delta)\right)=\sup (X)\right\}$;
- Use the fact that the chosen matrix incorporates club guessing to argue that for every cofinal subsets of λ^{+}, X and Y, there exists a type p, for which $S_{p}^{X} \cap S_{p}^{Y}$ is stationary;
- Use the fact that f oscillates quite nicely on rectangles $X \circledast Y$, so that it can produce sequences (σ, η) with successful guidelines on which columns of the matrix to advise throughout the walks, and at which step of the walks to stop. This insures that the type p gets realized quite frequently;

Why does rts work

- For every cofinal subset $X \subseteq \lambda^{+}$, every ordinal $\delta<\lambda^{+}$, and every type p in the language of the matrix-based walks, let $X_{p}(\delta):=\{\alpha \in X \mid$ the pair (δ, α) realizes the type $p\} ;$
- Denote $S_{p}^{X}:=\left\{\delta<\lambda^{+} \mid \sup \left(X_{p}(\delta)\right)=\sup (X)\right\}$;
- Use the fact that the chosen matrix incorporates club guessing to argue that for every cofinal subsets of λ^{+}, X and Y, there exists a type p, for which $S_{p}^{X} \cap S_{p}^{Y}$ is stationary;
- Use the fact that f oscillates quite nicely on rectangles $X \circledast Y$, so that it can produce sequences (σ, η) with successful guidelines on which columns of the matrix to advise throughout the walks, and at which step of the walks to stop. This insures that the type p gets realized quite frequently;
- Conclude that $r t s[X \circledast Y] \supseteq\left[S_{p}^{X} \cap S_{p}^{Y} \cap C\right]^{2}$ for the club C of ordinals of the form $M \cap \lambda^{+}$, for elementary submodels $M \prec H_{\chi}$ of size λ, that contains all relevant objects.

