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Graphs and chromatic numbers

Definition
A graph is a structure G = (G ,E ) with
E ⊆ [G ]2 := {{x , y} | x , y ∈ V }.
We sometime write V (G) for the set of vertices G , and E (G) for
the set of edges E .

Definition
A coloring χ : G → κ is E -chromatic if gEh entails χ(g) 6= χ(h).

Definition
Chr(G ,E ) is the least cardinal κ for which there exists an
E -chromatic coloring χ : G → κ.
Equivalently, it is the least cardinal κ such that G =

⋃
i<κ Ai ,

where Ai is E -independent for each i < κ.
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An example

Suppose that T = 〈T ,C〉 is an ω1-tree. Recall that T is said to be
special if there exists an order-preserving mapping from T to the
rationals 〈Q, <〉.

Observation 1
Consider the corresponding comparability graph GT , where
V (GT ) := T and E (GT ) := {{x , y} | x C y or y C x}.
Then T is special iff Chr(GT ) = ℵ0.
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An example (cont.)

Observation 2
If T is a Souslin tree, then T is nonspecial.

Proof.
If T were special, then Chr(GT ) = ℵ0, and T =

⋃
i<ω Ai , where Ai

is an antichain for all i < ω. This is a contradiction to the fact
that T has no uncountable antichains.

Alternative proof.

Forcing with T yields an extended universe W with ωV
1 = ωW

1 , in
which T admits a cofinal branch b. Now, given a coloring
χ : T → ℵ0 from V , we may find (in W ) distinct elements s, t of
b in with χ(s) = χ(t). This means that χ is not E -chromatic.
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The tensor product of graphs

Definition
Given graphs G = (G ,E ),H = (H,F ), let
G ×H := (G × H,E ∗ F ), where:

I G × H := {(g , h) | g ∈ G , h ∈ H};
I E ∗ F = {{(g0, h0), (g1, h1)} | g0Eg1 & h0Fh1}.
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Hedetniemi’s conjecture

Conjecture (Hedetniemi, 1966)

For every pair of (finite) graphs G,H:

Chr(G ×H) = min{Chr(G),Chr(H)}.

Not only that the above conjecture is still standing, but even the
following Ramsey-type consequence of it is still unknown to hold.

Weak Hedetniemi Conjecture (1970’s)

For every positive integer k , there exists an integer ϕ(k), such that
if Chr(G) = Chr(H) = ϕ(k), then Chr(G × H) ≥ k.

Remarks

1. Hedetniemi’s conjecture is equivalent to “ϕ(k) = k for all
positive integer k”;

2. Hedetniemi (1966) proved that ϕ(k) = k for k ∈ {1, 2, 3};
3. El-Zahar and Sauer (1985) proved that ϕ(4) = 4.
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The infinite counterpart

Hedetniemi’s conjecture makes perfect sense in the realm of the
infinite. What is its status?

The corresponding statement for infinite graphs is not
true [Haj85], but little is known about the relationship
between the cardinalities of the chromatic number of A
and B, and the chromatic number of A× B.

N.W. Sauer, Hedetniemi Conjecture,
Encyclopedia of Mathematics,

page 287, Kluwer, 1997.
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The infinite counterpart (cont.)

Theorem (Hajnal, 1985)

For every infinite cardinal κ, there exist graphs G,H such that

I Chr(G) = Chr(H) = κ+;

I Chr(G ×H) = κ.

Theorem (Soukup, 1988)

It is consistent with ZFC + GCH that there exist graphs G,H of
size and chromatic number ℵ2 such that Chr(G ×H) = ℵ0.
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Effective versions

Theorem (Kechris-Solecki-Todorcevic, 1999)

If ℵL[a]1 = ℵ1 for some a ⊆ N, then there exist two co-analytic
graphs G and H such that:

I min{Chr(G),Chr(H)} > ℵ0;

I Chr(G ×H) = ℵ0.

Theorem (Kechris-Solecki-Todorcevic, 1999)

If G,H are two analytic graphs with uncountable Borel chromatic
number, then their product G ×H also has uncountable Borel
chromatic number.
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The extent of the failure

Question 1
In his paper, Hajnal asked whether it is consistent with ZFC+GCH
that there are graphs G,H with Chr(G) = Chr(H) ≥ ℵω and
Chr(G ×H) < ℵω?

Question 2
Soukup, as well as Hajnal, also asked whether it is consistent with
ZFC+GCH that there exist graphs of size and chromatic number
ℵ3 whose tensor product is countably chromatic.

Putting aside the GCH requirement, these questions simply address
instances of the infinite version of the weak conjecture:

Infinite Weak Hedetniemi Conjecture

For every infinite cardinal κ, there exists a cardinal ϕ(κ), such that
if Chr(G) = Chr(H) = ϕ(κ), then Chr(G × H) ≥ κ.
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Necessary features

Observation
If Chr(G ×H) < min{Chr(G),Chr(H)}, then G does not embed to
H, and vice versa.

Proposition (Hajnal, 1980’s)

If G,H have infinite chromatic number, then every subgraph of G
of size < Chr(H) has chromatic number ≤ Chr(G ×H).

So, if Chr(G ×H) < min{Chr(H),Chr(G)}, then G or H
exemplifies the incompactness of the chromatic number.

A difficult problem on its own

The very existence of incompactness graphs was questioned by
Erdös and Hajnal in the 1960’s. At that point in time, the only
known fact was the compactness result of de Bruijn and Erdös.
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Compactness

Theorem (de Bruijn-Erdös, 1951)

Suppose that G is a graph, k < ω, and every finite subgraph of G
has chromatic number ≤ k, then Chr(G) ≤ k.
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F (X ) := {f ∈ Gk | f � X is E -chromatic}

is a closed subset of the Tychonoff space Gk.
Now, suppose that every finite subgraphs of (G ,E ) is
≤ k-chromatic. Then {F (X ) | X ∈ [G ]<ω} has the finite
intersection property. So, by compactness, there exists f in⋂
{F (X ) | X ∈ [G ]2}, and clearly, f : G → k is E -chromatic.
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Compactness

Theorem (de Bruijn-Erdös, 1951)

Suppose that G is a graph, κ < θ, θ = ℵ0 or strongly-compact,
and every subgraph of G of size < θ has chromatic number ≤ κ,
then Chr(G) ≤ κ.
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Compactness

Theorem (de Bruijn-Erdös, 1951)

Suppose that G is a graph, κ < θ, θ = ℵ0 or strongly-compact,
and every subgraph of G of size < θ has chromatic number ≤ κ,
then Chr(G) ≤ κ.

Corollary

Suppose that there exist class many strongly compact cardinals.
Then the Infinite Weak Hedetniemi Conjecture holds.
Moreover, for every infinite cardinal κ, there exists a cardinal ϕ(κ),
such that if min{Chr(G),Chr(H)} ≥ ϕ(κ), then Chr(G × H) ≥ κ.

Proof.
For a cardinal κ, let ϕ(κ) be the least strongly-compact cardinal
θ ≥ κ. Now, suppose that min{Chr(G),Chr(H)} ≥ θ, and
Chr(G ×H) = κ′ < κ. Then, by Hajnal’s proposition, subgraphs of
G of size < θ have chromatic number ≤ Chr(G ×H) = κ′. Then,
by de Bruijn-Erdös, we get Chr(G) ≤ κ′ < θ. A contradiction.
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Summary

I The Infinite Weak Hedetniemi Conjecture is consistent,
relative to large cardinals.

I Any consistent counterexample to the weak conjecture must
be based on (class many) pairs of incompactness graphs,
pairwise non-embeddable.

I The best known result is due to Soukup (1988), who proved
the consistency of ϕ(ℵ0) > ℵ2.
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Incompactness graphs
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Incompactness graphs

Definition
Say that a graph G is (ℵ0, λ)-chromatic, if Chr(G) = λ, but every
subgraph of G of strictly smaller size has chromatic number ≤ ℵ0.
We sometime say that G is almost countably chromatic.

I (Erdös-Hajnal, 1966) if 2ℵ0 = ℵ1, then there exists an
(ℵ0,ℵ1)-chromatic graph of size ℵ2;

I (Komjáth, 1988) it is consistent with 2ℵ0 = ℵω1+1 that there
exists an (ℵ0,ℵ1)-chromatic graph of size ℵω1 ;

I (Shelah, 1990) it is consistent with GCH that there exists an
(ℵ0,ℵ1)-chromatic graph of size ℵω1 ;
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Constructions of almost countably chromatic graphs

I (Baumgartner, 1984) it is consistent with GCH that there
exists an (ℵ0,ℵ2)-chromatic graph of size ℵ2;

I (Komjáth, 1988) it is consistent with 2ℵ0 = ℵ3 that there
exists an (ℵ0,ℵ2)-chromatic graph of size ℵ2;

I (Todorcevic, 1989) Martin’s Axiom + 2ℵ0 = ℵ2 entails an
(ℵ0,ℵ2)-chromatic graph of size ℵ2.

Baumgartner proved that CH entails a poset of size ℵ2 which is
σ-closed, has the ℵ2-c.c., and adds an (ℵ0,ℵ2)-chromatic graph of
size ℵ2. A whole page in Baumgartner’s original paper is dedicated
to motivating the definition of his complicated poset.
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to motivating the definition of his complicated poset.

Soukup’s model of GCH +ϕ(ℵ0) > ℵ2 is a further sophistication of
Baumgartner’s forcing.
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(ℵ0,ℵ2)-chromatic graph of size ℵ2.

Baumgartner proved that CH entails a poset of size ℵ2 which is
σ-closed, has the ℵ2-c.c., and adds an (ℵ0,ℵ2)-chromatic graph of
size ℵ2. A whole page in Baumgartner’s original paper is dedicated
to motivating the definition of his complicated poset.

Unfortunately, Baumgartner’s approach does not seem to generalize
to yield (ℵ0,ℵ3)-chromatic graphs.
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Almost countably chromatic and highly chromatic graphs

I (Shelah, 1990) if V = L, then (GCH holds, and) for every
uncountable not weakly-compact cardinal λ, there exists an
(ℵ0, λ)-chromatic graph of size λ;

I (Soukup, 1990) If Martin’s Axiom holds, then there is a
(< c)-distributive, c+-c.c., notion of forcing of size c+ that
adds an (ℵ0, c+)-chromatic graph of size c+;

I ([Rin4]) Martin’s Axiom entails an (ℵ0, c)-chromatic graph of
size c.

Note that Shelah’s 1990 result is the only one to provide a model
with class many incompactness graphs. However, as Hajnal
mentioned in his 2004 PIMS Distinguished Chair Lecture, there
was no success in generalizing Shelah’s result.
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The C-sequence graph
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Simple way to derive graphs

Definition ([Rin2])

Given a sequence of local clubs
−→
C = 〈Cα | α < θ limit〉, and a

subset G ⊆ θ, we define an edge relation E as follows:

E := {{α, δ} ∈ [G ]2 | α ∈ Cδ,min(Cα) > sup(Cδ ∩ α)}.

We denote the outcome graph (G ,E ) be G (
−→
C ).

Key Feature ([Rin2])

If
−→
C is end-segment-coherent (e.g., a �(θ)-sequence), and G ⊆ θ

is a non-reflecting set, then G (
−→
C ) is an (ℵ0, κ)-graph, for some

cardinal κ.

20 / 34



Simple way to derive graphs

Definition ([Rin2])

Given a sequence of local clubs
−→
C = 〈Cα | α < θ limit〉, and a

subset G ⊆ θ, we define an edge relation E as follows:

E := {{α, δ} ∈ [G ]2 | α ∈ Cδ,min(Cα) > sup(Cδ ∩ α)}.

We denote the outcome graph (G ,E ) be G (
−→
C ).

Key Feature ([Rin2])

If
−→
C is end-segment-coherent (e.g., a �(θ)-sequence), and G ⊆ θ

is a non-reflecting set, then G (
−→
C ) is an (ℵ0, κ)-graph, for some

cardinal κ.

20 / 34



Simple way to derive graphs

Definition ([Rin2])

Given a sequence of local clubs
−→
C = 〈Cα | α < θ limit〉, and a

subset G ⊆ θ, we define an edge relation E as follows:

E := {{α, δ} ∈ [G ]2 | α ∈ Cδ,min(Cα) > sup(Cδ ∩ α)}.

We denote the outcome graph (G ,E ) be G (
−→
C ).

Key Feature ([Rin2])

If
−→
C is end-segment-coherent (e.g., a �(θ)-sequence), and G ⊆ θ

is a non-reflecting set, then G (
−→
C ) is an (ℵ0, κ)-graph, for some

cardinal κ.

20 / 34



Simple way to derive graphs - application #1

Definition (Ostaszewski square, [Rin1])

♣ λ asserts the existence of a �λ-sequence 〈Cα | α < λ+〉 with the
following additional feature.

For every sequence 〈Ai | i < λ〉 of cofinal subsets of λ+, and
every limit θ < λ, there exists some α < λ+ such that
otp(Cα) = θ, and Cα(i + 1) ∈ Ai for all i < θ.

Theorem ([Rin2])

If
−→
C is an ♣ λ-sequence, then for every infinite cardinal κ < λ,

there exists a non-reflecting stationary set Gκ ⊆ λ+ such that

Gκ(
−→
C ) is (ℵ0, κ+)-chromatic.

Theorem ([Rin1])

For every uncountable cardinal λ, �λ + CHλ entails ♣ λ.

Corollary ([Rin2])

If �λ + CHλ holds, then for every cardinal κ ≤ λ, there exists an
(ℵ0, κ)-chromatic graph of size λ+.
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Simple way to derive graphs - application #2

Theorem (Baumgartner, 1984)

Assume CH. Then there exists a poset of size ℵ2 which is σ-closed,
has the ℵ2-c.c., and adds an (ℵ0,ℵ2)-chromatic graph of size ℵ2.

Theorem ([Rin2])

Assume CH. If �ℵ1 holds, then in V Add(ω1,1), there exists an
(ℵ0,ℵ2)-graph of size ℵ2.

This does generalize:

Theorem ([Rin2])

Suppose λ<λ = λ and �λ holds. Then in V Add(λ,1), there exists an
(ℵ0, λ+)-graph of size λ+.

Indeed, the example graph is of the form G (
−→
C ), for G = Eλ+

λ , and

a certain ♣ λ-like sequence
−→
C that exists in the generic extension.
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Simple way to derive graphs - application #3

Theorem (Shelah, 1990)

If ♦ λ holds, then exists an (ℵ0, λ+)-chromatic graph of size λ+.

Although Shelah’s argument is rather short and
straightforward (and no doubt, he discovered it in less
time than one can say “pcf theory”), it is tricky, it does
not work when one omits any of the apparently
superfluous elements.

P. Komjáth, BSL VII(4), page 540, 2001.

Theorem ([Rin2])

If �λ + CHλ holds, λ singular, then there exists
−→
C and G such

that G (
−→
C ) is an (ℵ0, λ+)-chromatic graph of size λ+.
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Towards a solution
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Towards a solution

By Hajnal’s proposition, if Chr(G) = Chr(H) = λ, while
Chr(G ×H) = ℵ0, then G and H are (ℵ0, λ)-chromatic.

A careful look at Hajnal’s 1985 construction hints on a partial
converse:

Suppose that G = (θ,E ) is an almost countably chromatic graph.
Define G∗, by letting:

I V (G∗) := {c ∈ <θω | c is E -chromatic};
I E (G∗) := {{c , d} | c ⊆ d or d ⊆ c}.

Then the half graph {(α, c) | dom(c) > α} of G × G∗ is countably
chromatic, as witnessed by the coloring (α, c) 7→ c(α). But there
are still a few problems...
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Towards a solution (cont.)

Suppose that G = (θ,E ) is an almost countably chromatic graph.
Define G∗, by letting:

I V (G∗) := {c ∈ <θω | c is E -chromatic};
I E (G∗) := {{c , d} | c ⊆ d or d ⊆ c}.

Then the half graph {(α, c) | dom(c) > α} of G ×H is countably
chromatic! But there are still a few problems:

1. why should the other half {(α, c) | dom(c) < α} be countably
chromatic ?

2. what about the diagonal {(α, c) | dom(c) = α} ?

3. why should G∗ have an high chromatic number?

4. how does this relate to a workshop in Forcing and Large
Cardinals?
Indeed, large cardinals were seen to (outright) resolve one side
of the problem, but if you are going to work in L for the other
side, where would the forcing come from?
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Towards a solution (cont.)

Question 2
What about the diagonal {(α, c) | dom(c) = α} ?

Short Answer
We don’t care.

Long Answer

This can be found already in Hajnal’s original construction.
Split θ into two equipotent sets T0 and T1. Then, identify V (G)
with T0, and restrict the vertices set of the corresponding G∗ to
the functions h only with dom(h) ∈ T1.
This way, the diagonal turns void.
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Towards a solution (cont.)

Question 3
Why should G∗ have an high chromatic number?

Answer
Recall that GT for a Souslin tree T is uncountably chromatic, since
T admits a branch in some σ-distributive forcing extension.
Now, suppose that θ is regular, and that G = (θ,E ) is more than
just (ℵ0, θ)-chromatic — it can be made countably chromatic in
some (< θ)-distributive forcing extension. Then the chromatic
number of the corresponding G∗ would have to be ≥ θ.

But, is this at all possible?

Theorem ([Rin4])

In L, for every infinite λ, there exists a sequence
−→
C , a set G ⊆ λ+,

and a λ-distributive notion of forcing P of size λ+, such that:

I L |= Chr(G (
−→
C )) = λ+;

I LP |= Chr(G (
−→
C )) = ℵ0.
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Towards a solution (cont.)

Question 4
When will you be using forcing?!

Answer
I just did!
We saw that if V = L, then there exists a graph G such that:

I G has size and chromatic number λ+;

I G∗ has size and chromatic number λ+ (by a forcing
argument!);

I the half graph of G × G∗ is countably chromatic;

I wlog, it has no diagonal.

Thus, we are left with only one problem - taming the other half.
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Main Result
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Main Result

Theorem ([Rin3])

Suppose that ♦ λ holds.
Then there exist graphs G,H of size λ+ such that:

I Chr(G) = Chr(H) = λ+;

I Chr(G ×H) = ℵ0.

Bigger products ([Rin3])

Suppose that ℵ0 ≤ κ ≤ λ, n < ω, and ♦ λ holds.
Then there exist graphs G0, . . . ,Gn+1 of size λ+ such that:

I Chr(
∏

i∈I Gi ) = λ+ whenever ∅ 6= I $ {0, . . . , n + 1};
I Chr(

∏
i∈I Gi ) = κ for I = {0, . . . , n + 1}.
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Consequences of the main theorem

In the constructible universe:

I the Infinite Weak Hedetniemi Conjecture fails, since ϕ(κ)
would have to be larger than λ for every cardinal λ.

I GCH holds, and there are graphs G,H with
Chr(G) = Chr(H) ≥ ℵω and Chr(G ×H) < ℵω.

I GCH holds and there exist graphs of size and chromatic
number ℵ3 whose tensor product is countably chromatic.

I for every positive integer n, there are graphs G,H such that

Chr(G ×H) = log · · · log︸ ︷︷ ︸
n times

(min{Chr(G),Chr(H)}).
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Outline of the proof of the main theorem
Utilize ♦ λ to construct a �λ-sequence

−→
C , pairwise disjoint

nonreflecting stationary sets G0,G1, and notions of forcing P0,P1,

such that for G0 := G0(
−→
C ),G1 := G1(

−→
C ), we have:

In particular, G0 and G1 are pairwise non-embeddable.

For i < 2, define Hi as follows:
I V (Hi ) := {h ∈ V (G∗1−1) | dom(h) ∈ V (Gi )};
I E (Hi ) := {{h, h′} ∈ E (G∗1−i ) | {dom(h), dom(h′)} ∈ E (Gi )}.

By the third column of the above table, Chr(H0) = λ+ .
By the second column of the above table, Chr(H1) = λ+ . �
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For i < 2, define Hi as follows:
I V (Hi ) := {h ∈ V (G∗1−1) | dom(h) ∈ V (Gi )};
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By the third column of the above table, Chr(H0) = λ+ .
By the second column of the above table, Chr(H1) = λ+ . �
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Further investigation

1. In the proof we just discussed, the analysis of the constructed
graphs was done by passing to forcing extensions of the
universe. Is there a forcing-free proof?

2. We saw that the existence of class many strongly compact
cardinals entails the infinite weak Hedetniemi conjecture.

2.1 Does the weak conjecture follow from a bounded amount of
large cardinals?

2.2 Is it consistent that the weak conjecture hold and the
witnessing ϕ satisfies ϕ(κ) ≤ κ+µ for some fixed cardinal µ?
How about ϕ(κ) ≤ iµ(κ)?

3. What is the consistency strength of the statement:
“there exist infinite cardinals κ, ψ, such that if G,H are graphs
with min{Chr(G),Chr(H)} ≥ ψ, then Chr(G ×H) ≥ κ” ?
How about κ = ℵ1?
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