Same Graph, Different Universe

INFTY final conference University of Bonn 4-March-2014

Assaf Rinot Bar-Ilan University, Israel This talk will center around the following works:

[Rin1] Hedetniemi's conjecture for uncountable graphs, to appear in J. Eur. Math. Soc.

 [Rin2] Incompactness from Martin's Axiom, submitted to the Baumgartner memorial issue.
 [Rin3] Same Graph, Different Universe, work in progress.

Suppose that you are responsible for scheduling times for lectures in a university. You want to make sure that any two lectures with a common student occur at different times to avoid a conflict.

Suppose that you are responsible for scheduling times for lectures in a university. You want to make sure that any two lectures with a common student occur at different times to avoid a conflict.

Let G be the set of lectures. Define a symmetric binary relation E on G, so that distinct lectures a and b are E-related iff there is a student that is enrolled in both a and b.

Suppose that you are responsible for scheduling times for lectures in a university. You want to make sure that any two lectures with a common student occur at different times to avoid a conflict.

Let G be the set of lectures. Define a symmetric binary relation E on G, so that distinct lectures a and b are E-related iff there is a student that is enrolled in both a and b.

Let T denote the set of all possible timeslots. Our goal, then, is to find a mapping $\chi : G \to T$ so that $\chi(a) \neq \chi(b)$ whenever *aEb*.

Suppose that you are responsible for scheduling times for lectures in a university. You want to make sure that any two lectures with a common student occur at different times to avoid a conflict.

Let G be the set of lectures. Define a symmetric binary relation E on G, so that distinct lectures a and b are E-related iff there is a student that is enrolled in both a and b.

Let T denote the set of all possible timeslots. Our goal, then, is to find a mapping $\chi : G \to T$ so that $\chi(a) \neq \chi(b)$ whenever *aEb*. To save resources, we may also want to minimize $|\operatorname{Im}(\chi)|$.

Graphs and chromatic numbers

Definition

A graph is a structure $\mathcal{G} = (G, E)$ with $E \subseteq [G]^2 := \{\{a, b\} \mid a, b \in G, a \neq b\}.$

Graphs and chromatic numbers

Definition

A graph is a structure $\mathcal{G} = (G, E)$ with $E \subseteq [G]^2 := \{\{a, b\} \mid a, b \in G, a \neq b\}.$

Definition

A coloring $\chi : G \to \kappa$ is <u>E-chromatic</u> if <u>aEb</u> entails $\chi(a) \neq \chi(b)$.

Definition

Chr(G, E) is the least (finite or infinite) cardinal κ for which there exists an *E*-chromatic coloring $\chi : G \to \kappa$.

Graphs and chromatic numbers

Definition

A graph is a structure $\mathcal{G} = (G, E)$ with $E \subseteq [G]^2 := \{\{a, b\} \mid a, b \in G, a \neq b\}.$

Definition

A coloring $\chi : G \to \kappa$ is <u>E-chromatic</u> if <u>aEb</u> entails $\chi(a) \neq \chi(b)$.

Definition

Chr(G, E) is the least (finite or infinite) cardinal κ for which there exists an E-chromatic coloring $\chi : G \to \kappa$. Equivalently, it is the least cardinal κ such that $G = \bigcup_{i < \kappa} A_i$, where A_i is E-independent for each $i < \kappa$.

An example

Recall that an ω_1 -tree, $\mathcal{T} = (\mathcal{T}, \triangleleft)$, is said to be <u>special</u> if there exists an order-preserving map from $(\mathcal{T}, \triangleleft)$ to the rationals $(\mathbb{Q}, <)$.

An example

Recall that an ω_1 -tree, $\mathcal{T} = (\mathcal{T}, \triangleleft)$, is said to be <u>special</u> if there exists an order-preserving map from $(\mathcal{T}, \triangleleft)$ to the rationals $(\mathbb{Q}, <)$.

Proposition

Consider its comparability graph $\mathcal{G}_{\mathcal{T}} = (\mathcal{T}, Sym(\triangleleft))$, where

$$Sym(\triangleleft) := \{\{a, b\} \in [T]^2 \mid a \lhd b \text{ or } b \lhd a\}.$$

An example

Recall that an ω_1 -tree, $\mathcal{T} = (\mathcal{T}, \triangleleft)$, is said to be <u>special</u> if there exists an order-preserving map from $(\mathcal{T}, \triangleleft)$ to the rationals $(\mathbb{Q}, <)$.

Proposition

Consider its comparability graph $\mathcal{G}_{\mathcal{T}} = (\mathcal{T}, Sym(\triangleleft))$, where

$$Sym(\triangleleft) := \{\{a, b\} \in [T]^2 \mid a \triangleleft b \text{ or } b \triangleleft a\}.$$

Then \mathcal{T} is special iff \mathcal{T} is the countable union of antichains iff $Chr(\mathcal{G}_{\mathcal{T}}) = \aleph_0$.

An example (cont.)

If $\mathcal{T} = (\omega_1, \triangleleft)$ is a Souslin tree, then it cannot be the union of countably many antichains. So, $Chr(\mathcal{G}_{\mathcal{T}}) = \aleph_1$. However:

An example (cont.)

If $\mathcal{T} = (\omega_1, \triangleleft)$ is a Souslin tree, then it cannot be the union of countably many antichains. So, $Chr(\mathcal{G}_{\mathcal{T}}) = \aleph_1$. However:

Theorem (Baumgartner-Malitz-Reinhardt, 1970) There is a *ccc* notion of forcing, \mathbb{P} , such that $\Vdash_{\mathbb{P}} \operatorname{Chr}(\mathcal{G}_{\mathcal{T}}) = \aleph_0$.

Theorem (Shelah, 1980's)

There is a σ -distributive notion of forcing (of size \mathfrak{c}), \mathbb{Q} , such that $\Vdash_{\mathbb{Q}} \operatorname{Chr}(\mathcal{G}_{\mathcal{T}}) = \aleph_0$.

Definition

Given graphs $\mathcal{G} = (G, E), \mathcal{H} = (H, F)$, let $\mathcal{G} \times \mathcal{H} := (G \times H, E * F)$, where:

•
$$G \times H := \{(g, h) \mid g \in G, h \in H\};$$

• $E * F = \{\{(g_0, h_0), (g_1, h_1)\} \mid g_0 Eg_1 \& h_0 Fh_1\}.$

Definition

Given graphs $\mathcal{G} = (G, E), \mathcal{H} = (H, F)$, let $\mathcal{G} \times \mathcal{H} := (G \times H, E * F)$, where:

•
$$G \times H := \{(g, h) \mid g \in G, h \in H\};$$

• $E * F = \{\{(g_0, h_0), (g_1, h_1)\} \mid g_0 Eg_1 \& h_0 Fh_1\}.$

For an *E*-chromatic coloring $\chi : G \to \kappa$, define a coloring $\chi^{\otimes H} : G \times H \to \kappa$ by letting $\chi^{\otimes H}(g, h) := \chi(g)$ for all $(g, h) \in G \times H$.

Definition

Given graphs $\mathcal{G} = (G, E), \mathcal{H} = (H, F)$, let $\mathcal{G} \times \mathcal{H} := (G \times H, E * F)$, where:

•
$$G \times H := \{(g, h) \mid g \in G, h \in H\};$$

• $E * F = \{\{(g_0, h_0), (g_1, h_1)\} \mid g_0 Eg_1 \& h_0 Fh_1\}.$

For an *E*-chromatic coloring $\chi : G \to \kappa$, define a coloring $\chi^{\otimes H} : G \times H \to \kappa$ by letting $\chi^{\otimes H}(g, h) := \chi(g)$ for all $(g, h) \in G \times H$. Then $\chi^{\otimes H}$ is E * F-chromatic, and hence $\operatorname{Chr}(\mathcal{G} \times \mathcal{H}) \leq \operatorname{Chr}(\mathcal{G})$.

Definition

Given graphs $\mathcal{G} = (G, E), \mathcal{H} = (H, F)$, let $\mathcal{G} \times \mathcal{H} := (G \times H, E * F)$, where:

•
$$G \times H := \{(g, h) \mid g \in G, h \in H\};$$

• $E * F = \{\{(g_0, h_0), (g_1, h_1)\} \mid g_0 Eg_1 \& h_0 Fh_1\}.$

For an *E*-chromatic coloring $\chi : G \to \kappa$, define a coloring $\chi^{\otimes H} : G \times H \to \kappa$ by letting $\chi^{\otimes H}(g,h) := \chi(g)$ for all $(g,h) \in G \times H$. Then $\chi^{\otimes H}$ is E * F-chromatic, and hence $\operatorname{Chr}(\mathcal{G} \times \mathcal{H}) \leq \operatorname{Chr}(\mathcal{G})$. By symmetry, $\operatorname{Chr}(\mathcal{G} \times \mathcal{H}) \leq \operatorname{Chr}(\mathcal{H})$. Thus,

 $Chr(\mathcal{G} \times \mathcal{H}) \leq min\{Chr(\mathcal{G}), Chr(\mathcal{H})\}.$

Conjecture (Hedetniemi, 1966)

For every pair of (finite) graphs \mathcal{G}, \mathcal{H} :

```
Chr(\mathcal{G} \times \mathcal{H}) = min\{Chr(\mathcal{G}), Chr(\mathcal{H})\}.
```

Conjecture (Hedetniemi, 1966)

For every pair of (finite) graphs \mathcal{G}, \mathcal{H} :

```
Chr(\mathcal{G} \times \mathcal{H}) = min\{Chr(\mathcal{G}), Chr(\mathcal{H})\}.
```

Not only that the above conjecture is still standing, but even the following Ramsey-type consequence of it is still unknown to hold.

Weak Hedetniemi Conjecture

For every positive integer k, there exists an integer $\varphi(k)$, such that if $\operatorname{Chr}(\mathcal{G}) = \operatorname{Chr}(\mathcal{H}) = \varphi(k)$, then $\operatorname{Chr}(\mathcal{G} \times \mathcal{H}) \ge k$.

Conjecture (Hedetniemi, 1966)

For every pair of (finite) graphs \mathcal{G}, \mathcal{H} :

$Chr(\mathcal{G} \times \mathcal{H}) = min\{Chr(\mathcal{G}), Chr(\mathcal{H})\}.$

Not only that the above conjecture is still standing, but even the following Ramsey-type consequence of it is still unknown to hold.

Weak Hedetniemi Conjecture

For every positive integer k, there exists an integer $\varphi(k)$, such that if $\operatorname{Chr}(\mathcal{G}) = \operatorname{Chr}(\mathcal{H}) = \varphi(k)$, then $\operatorname{Chr}(\mathcal{G} \times \mathcal{H}) \ge k$.

Remarks

- 1. Hedetniemi's conjecture is equivalent to " $\varphi(k) = k$ for all positive integer k";
- 2. Hedetniemi (1966) proved $\varphi(k) = k$ for all $k \in \{1, 2, 3\}$;
- 3. El-Zahar and Sauer (1985) proved that $\varphi(4) = 4$.

The infinite counterpart

Theorem (Hajnal, 1985)

For every infinite cardinal κ , there exist graphs \mathcal{G}, \mathcal{H} such that

•
$$\operatorname{Chr}(\mathcal{G}) = \operatorname{Chr}(\mathcal{H}) = \kappa^+;$$

•
$$\operatorname{Chr}(\mathcal{G} \times \mathcal{H}) = \kappa$$
.

The infinite counterpart

Theorem (Hajnal, 1985)

For every infinite cardinal κ , there exist graphs \mathcal{G}, \mathcal{H} such that

•
$$\operatorname{Chr}(\mathcal{G}) = \operatorname{Chr}(\mathcal{H}) = \kappa^+;$$

•
$$\operatorname{Chr}(\mathcal{G} \times \mathcal{H}) = \kappa$$
.

This shows that a gap 1 is possible. In his paper, Hajnal asked about the possibility of realizing an infinite gap, but the best known result is that of gap 2:

The infinite counterpart

Theorem (Hajnal, 1985)

For every infinite cardinal κ , there exist graphs \mathcal{G}, \mathcal{H} such that

•
$$\operatorname{Chr}(\mathcal{G}) = \operatorname{Chr}(\mathcal{H}) = \kappa^+;$$

• $\operatorname{Chr}(\mathcal{G} \times \mathcal{H}) = \kappa$.

This shows that a gap 1 is possible. In his paper, Hajnal asked about the possibility of realizing an infinite gap, but the best known result is that of gap 2:

Theorem (Soukup, 1988)

It is consistent with ZFC + GCH that there exist graphs \mathcal{G}, \mathcal{H} of size and chromatic number \aleph_2 such that $Chr(\mathcal{G} \times \mathcal{H}) = \aleph_0$.

Hajnal's question (1985)

Is it consistent with ZFC+GCH that there are graphs \mathcal{G}, \mathcal{H} such that $Chr(\mathcal{G}) = Chr(\mathcal{H}) \geq \aleph_{\omega}$, while $Chr(\mathcal{G} \times \mathcal{H}) = \aleph_n$?

Hajnal's question (1985)

Is it consistent with ZFC+GCH that there are graphs \mathcal{G}, \mathcal{H} such that $Chr(\mathcal{G}) = Chr(\mathcal{H}) \geq \aleph_{\omega}$, while $Chr(\mathcal{G} \times \mathcal{H}) = \aleph_n$?

Infinite Weak Hedetniemi Conjecture

For every infinite cardinal κ , there exists a cardinal $\varphi(\kappa)$, such that if $\operatorname{Chr}(\mathcal{G}) = \operatorname{Chr}(\mathcal{H}) = \varphi(\kappa)$, then $\operatorname{Chr}(\mathcal{G} \times \mathcal{H}) \ge \kappa$.

Hajnal's question (1985)

Is it consistent with ZFC+GCH that there are graphs \mathcal{G}, \mathcal{H} such that $Chr(\mathcal{G}) = Chr(\mathcal{H}) \geq \aleph_{\omega}$, while $Chr(\mathcal{G} \times \mathcal{H}) = \aleph_n$?

Infinite Weak Hedetniemi Conjecture

For every infinite cardinal κ , there exists a cardinal $\varphi(\kappa)$, such that if $\operatorname{Chr}(\mathcal{G}) = \operatorname{Chr}(\mathcal{H}) = \varphi(\kappa)$, then $\operatorname{Chr}(\mathcal{G} \times \mathcal{H}) \ge \kappa$.

Observation (building on Hajnal)

If there exists a proper class of strongly-compact cardinals, then the Infinite Weak Hedetniemi Conjecture holds.

Hajnal's question (1985)

Is it consistent with ZFC+GCH that there are graphs \mathcal{G}, \mathcal{H} such that $Chr(\mathcal{G}) = Chr(\mathcal{H}) \geq \aleph_{\omega}$, while $Chr(\mathcal{G} \times \mathcal{H}) = \aleph_n$?

Infinite Weak Hedetniemi Conjecture

For every infinite cardinal κ , there exists a cardinal $\varphi(\kappa)$, such that if $\operatorname{Chr}(\mathcal{G}) = \operatorname{Chr}(\mathcal{H}) = \varphi(\kappa)$, then $\operatorname{Chr}(\mathcal{G} \times \mathcal{H}) \ge \kappa$.

Theorem [Rin1]

Suppose that V = L.

For every infinite cardinal λ , there exist graphs \mathcal{G}, \mathcal{H} such that $Chr(\mathcal{G}) = Chr(\mathcal{H}) > \lambda$, while $Chr(\mathcal{G} \times \mathcal{H}) = \aleph_0$.

Theorem

If \bigotimes_{λ} holds, then there exist graphs $\mathcal{G}_0 = (\mathcal{G}_0, \mathcal{E}_0), \mathcal{G}_1 = (\mathcal{G}_1, \mathcal{E}_1)$ of size λ^+ and $(<\lambda^+)$ -distributive notions of forcing $\mathbb{P}_0, \mathbb{P}_1$ s.t.:

•
$$V^{\mathbb{P}_0} \models \mathsf{Chr}(\mathcal{G}_0) = \omega, \mathsf{Chr}(\mathcal{G}_1) = \lambda^+;$$

•
$$V^{\mathbb{P}_1} \models \operatorname{Chr}(\mathcal{G}_0) = \lambda^+, \operatorname{Chr}(\mathcal{G}_1) = \omega.$$

Theorem

If \bigotimes_{λ} holds, then there exist graphs $\mathcal{G}_0 = (G_0, E_0), \mathcal{G}_1 = (G_1, E_1)$ of size λ^+ and $(<\lambda^+)$ -distributive notions of forcing $\mathbb{P}_0, \mathbb{P}_1$ s.t.:

•
$$V^{\mathbb{P}_0} \models \mathsf{Chr}(\mathcal{G}_0) = \omega, \mathsf{Chr}(\mathcal{G}_1) = \lambda^+;$$

•
$$V^{\mathbb{P}_1} \models \mathsf{Chr}(\mathcal{G}_0) = \lambda^+, \mathsf{Chr}(\mathcal{G}_1) = \omega$$

Wlog, $G_i = \{ \alpha < \lambda^+ \mid (\alpha \mod 2) = i \}$ for each i < 2.

Theorem

If \bigotimes_{λ} holds, then there exist graphs $\mathcal{G}_0 = (G_0, E_0), \mathcal{G}_1 = (G_1, E_1)$ of size λ^+ and $(<\lambda^+)$ -distributive notions of forcing $\mathbb{P}_0, \mathbb{P}_1$ s.t.:

$$V^{\mathbb{P}_0} \models \operatorname{Chr}(\mathcal{G}_0) = \omega, \operatorname{Chr}(\mathcal{G}_1) = \lambda^+;$$

$$V^{\mathbb{P}_1} \models \operatorname{Chr}(\mathcal{G}_0) = \lambda^+, \operatorname{Chr}(\mathcal{G}_1) = \omega.$$

Wlog, $G_i = \{ \alpha < \lambda^+ \mid (\alpha \mod 2) = i \}$ for each i < 2.

Now, do the following. For i < 2, let

Theorem

If \bigotimes_{λ} holds, then there exist graphs $\mathcal{G}_0 = (G_0, E_0), \mathcal{G}_1 = (G_1, E_1)$ of size λ^+ and $(<\lambda^+)$ -distributive notions of forcing $\mathbb{P}_0, \mathbb{P}_1$ s.t.:

Wlog, $G_i = \{ \alpha < \lambda^+ \mid (\alpha \mod 2) = i \}$ for each i < 2.

Now, do the following. For i < 2, let

H_i := { *χ* : *G*_(1-*i*)∩*α* → *ω* | *α* ∈ *G_i*, *χ* is *E*_(1-*i*)-chromatic}; *F_i* := { { *χ*, *χ'* } ∈ [*H_i*]² | {*α_χ*, *α_{χ'}* } ∈ *E_i*, }.

Theorem

If \bigotimes_{λ} holds, then there exist graphs $\mathcal{G}_0 = (G_0, E_0), \mathcal{G}_1 = (G_1, E_1)$ of size λ^+ and $(<\lambda^+)$ -distributive notions of forcing $\mathbb{P}_0, \mathbb{P}_1$ s.t.:

$$V^{\mathbb{P}_0} \models \operatorname{Chr}(\mathcal{G}_0) = \omega, \operatorname{Chr}(\mathcal{G}_1) = \lambda^+;$$
$$V^{\mathbb{P}_1} \models \operatorname{Chr}(\mathcal{G}_0) = \lambda^+, \operatorname{Chr}(\mathcal{G}_1) = \omega.$$

Wlog, $G_i = \{ \alpha < \lambda^+ \mid (\alpha \mod 2) = i \}$ for each i < 2.

Now, do the following. For i < 2, let

Claim $Chr(H_0, F_0) = \lambda^+$ [and similarly, $Chr(H_1, F_1) = \lambda^+$].

Now, do the following. For i < 2, let

•
$$H_i := \{\chi : G_{(1-i)} \cap \alpha \to \omega \mid \alpha \in G_i, \chi \text{ is } E_{(1-i)}\text{-chromatic}\};$$

► $F_i := \{ \{ \chi, \chi' \} \in [H_i]^2 \mid \{ \alpha_{\chi}, \alpha_{\chi'} \} \in E_i, \chi \subseteq \chi' \}.$

Claim $Chr(H_0, F_0) = \lambda^+$ [and similarly, $Chr(H_1, F_1) = \lambda^+$]. Proof. Suppose $c : H_0 \to \lambda$ is F_0 -chromatic.

Now, do the following. For i < 2, let
The main ingredient of the solution

Claim $Chr(H_0, F_0) = \lambda^+$ [and similarly, $Chr(H_1, F_1) = \lambda^+$].

Proof.

Suppose $c: H_0 \to \lambda$ is F_0 -chromatic. Pass to $V^{\mathbb{P}_1}$. Here, $Chr(\mathcal{G}_0) = \lambda^+$ and $Chr(\mathcal{G}_1) = \omega$. Pick $\chi_1 : \mathcal{G}_1 \to \omega$ which is E_1 -chromatic. Then $\chi_1 \upharpoonright \alpha \in V$ for all $\alpha < \lambda^+$.

Now, do the following. For i < 2, let

The main ingredient of the solution

Claim $Chr(H_0, F_0) = \lambda^+$ [and similarly, $Chr(H_1, F_1) = \lambda^+$].

Proof.

Suppose $c : H_0 \to \lambda$ is F_0 -chromatic. Pass to $V^{\mathbb{P}_1}$. Here, $Chr(\mathcal{G}_0) = \lambda^+$ and $Chr(\mathcal{G}_1) = \omega$. Pick $\chi_1 : \mathcal{G}_1 \to \omega$ which is E_1 -chromatic. Then $\chi_1 \upharpoonright \alpha \in V$ for all $\alpha < \lambda^+$. Define $\chi_0 : \mathcal{G}_0 \to \lambda$ by $\chi_0(\alpha) := c(\chi_1 \upharpoonright \alpha)$. Then χ_0 is E_0 -chromatic. Now, do the following. For i < 2, let

$$H_i := \{ \chi : G_{(1-i)} \cap \alpha \to \omega \mid \alpha \in G_i, \chi \text{ is } E_{(1-i)} \text{-chromatic} \};$$

 $\succ F_i := \{\{\chi, \chi'\} \in [H_i]^2 \mid \{\alpha_{\chi}, \alpha_{\chi'}\} \in E_i, \chi \subseteq \chi'\}.$

The main ingredient of the solution

Claim Chr $(H_0, F_0) = \lambda^+$ [and similarly, Chr $(H_1, F_1) = \lambda^+$].

Proof.

Suppose $c : H_0 \to \lambda$ is F_0 -chromatic. Pass to $V^{\mathbb{P}_1}$. Here, $\operatorname{Chr}(\mathcal{G}_0) = \lambda^+$ and $\operatorname{Chr}(\mathcal{G}_1) = \omega$. Pick $\chi_1 : \mathcal{G}_1 \to \omega$ which is E_1 -chromatic. Then $\chi_1 \upharpoonright \alpha \in V$ for all $\alpha < \lambda^+$. Define $\chi_0 : \mathcal{G}_0 \to \lambda$ by $\chi_0(\alpha) := c(\chi_1 \upharpoonright \alpha)$. Then χ_0 is E_0 -chromatic. Now, do the following. For i < 2, let

Claim Chr $(H_0 \times H_1, F_0 * F_1) = \aleph_0.$

Recall:

•
$$G_i = \{ \alpha < \lambda^+ \mid (\alpha \mod 2) = i \};$$

►
$$H_i := \{ \chi : G_{(1-i)} \cap \alpha \to \omega \mid \alpha \in G_i, \chi \text{ is } E_{(1-i)} \text{-chromatic} \};$$

$$\blacktriangleright F_i := \{\{\chi, \chi'\} \in [H_i]^2 \mid \{\alpha_{\chi}, \alpha_{\chi'}\} \in E_i, \chi \subseteq \chi'\}.$$

Claim

 $Chr(H_0 \times H_1, F_0 * F_1) = \aleph_0.$

Proof.

Define $c: H_0 \times H_1 \rightarrow \omega \times 2$, by letting $c(\chi_0, \chi_1) = (\chi_0(\alpha_{\chi_1}), 0)$ if $\alpha_{\chi_0} > \alpha_{\chi_1}$, and $c(\chi_0, \chi_1) = (\chi_1(\alpha_{\chi_0}), 1)$, otherwise.

Recall:

•
$$G_i = \{ \alpha < \lambda^+ \mid (\alpha \mod 2) = i \};$$

• $H_i := \{ \chi : G_{(1-i)} \cap \alpha \rightarrow \omega \mid \alpha \in G_i, \chi \text{ is } E_{(1-i)}\text{-chromatic} \};$
• $F_i := \{ (\chi, \chi') \in [H_i]^2 \mid \{ \alpha, \alpha, \gamma \} \in F_i, \chi \in \chi' \}$

 $\blacktriangleright F_i := \{\{\chi, \chi'\} \in [H_i]^2 \mid \{\alpha_{\chi}, \alpha_{\chi'}\} \in E_i, \chi \subseteq \chi'\}.$

Claim

 $\operatorname{Chr}(H_0 \times H_1, F_0 * F_1) = \aleph_0.$

Proof.

Define $c: H_0 \times H_1 \rightarrow \omega \times 2$, by letting $c(\chi_0, \chi_1) = (\chi_0(\alpha_{\chi_1}), 0)$ if $\alpha_{\chi_0} > \alpha_{\chi_1}$, and $c(\chi_0, \chi_1) = (\chi_1(\alpha_{\chi_0}), 1)$, otherwise. Towards a contradiction, suppose $c(\chi_0, \chi_1) = c(\chi'_0, \chi'_1) = (n, i)$, while $\{(\chi_0, \chi_1), (\chi'_0, \chi'_1)\} \in F_0 * F_1$.

Recall:

•
$$G_i = \{ \alpha < \lambda^+ \mid (\alpha \mod 2) = i \};$$

• $H_i := \{ \chi : G_{(1-i)} \cap \alpha \to \omega \mid \alpha \in G_i, \chi \text{ is } E_{(1-i)}\text{-chromatic} \};$

 $\blacktriangleright F_i := \{\{\chi, \chi'\} \in [H_i]^2 \mid \{\alpha_{\chi}, \alpha_{\chi'}\} \in E_i, \chi \subseteq \chi'\}.$

Claim

 $Chr(H_0 \times H_1, F_0 * F_1) = \aleph_0.$

Proof.

Define $c: H_0 \times H_1 \rightarrow \omega \times 2$, by letting $c(\chi_0, \chi_1) = (\chi_0(\alpha_{\chi_1}), 0)$ if $\alpha_{\chi_0} > \alpha_{\chi_1}$, and $c(\chi_0, \chi_1) = (\chi_1(\alpha_{\chi_0}), 1)$, otherwise. Towards a contradiction, suppose $c(\chi_0, \chi_1) = c(\chi'_0, \chi'_1) = (n, i)$, while $\{(\chi_0, \chi_1), (\chi'_0, \chi'_1)\} \in F_0 * F_1$. Say, i = 0.

Recall:

•
$$G_i = \{ \alpha < \lambda^+ \mid (\alpha \mod 2) = i \};$$

• $H_i := \{ \chi : G_{(1-i)} \cap \alpha \rightarrow \omega \mid \alpha \in G_i, \chi \text{ is } E_{(1-i)}\text{-chromatic} \};$
• $F_i := \{ \{ \chi, \chi' \} \in [H_i]^2 \mid \{ \alpha_{\chi}, \alpha_{\chi'} \} \in E_i, \chi \subseteq \chi' \}.$

Claim

 $Chr(H_0 \times H_1, F_0 * F_1) = \aleph_0.$

Proof.

Define $c: H_0 \times H_1 \rightarrow \omega \times 2$, by letting $c(\chi_0, \chi_1) = (\chi_0(\alpha_{\chi_1}), 0)$ if $\alpha_{\chi_0} > \alpha_{\chi_1}$, and $c(\chi_0, \chi_1) = (\chi_1(\alpha_{\chi_0}), 1)$, otherwise. Towards a contradiction, suppose $c(\chi_0, \chi_1) = c(\chi'_0, \chi'_1) = (n, i)$, while $\{(\chi_0, \chi_1), (\chi'_0, \chi'_1)\} \in F_0 * F_1$. Say, i = 0. As $\{\chi_0, \chi'_0\} \in F_0$, $\chi := \chi_0 \cup \chi'_0$ is an E_1 -chromatic coloring,

Recall:

Claim

$$\mathsf{Chr}(H_0 \times H_1, F_0 * F_1) = \aleph_0.$$

Proof.

Define $c: H_0 \times H_1 \rightarrow \omega \times 2$, by letting $c(\chi_0, \chi_1) = (\chi_0(\alpha_{\chi_1}), 0)$ if $\alpha_{\chi_0} > \alpha_{\chi_1}$, and $c(\chi_0, \chi_1) = (\chi_1(\alpha_{\chi_0}), 1)$, otherwise. Towards a contradiction, suppose $c(\chi_0, \chi_1) = c(\chi'_0, \chi'_1) = (n, i)$, while $\{(\chi_0, \chi_1), (\chi'_0, \chi'_1)\} \in F_0 * F_1$. Say, i = 0. As $\{\chi_0, \chi'_0\} \in F_0$, $\chi := \chi_0 \cup \chi'_0$ is an E_1 -chromatic coloring, but then $\chi(\alpha_{\chi_1}) = n = \chi(\alpha_{\chi'_1})$, contradicting that $\{\alpha_{\chi_1}, \alpha_{\chi'_1}\} \in E_1$.

Disclaimer: This is work in progress. At present, we have more questions than answers!

Definition

For a graph $\mathcal{G},$ and a class of cardinals-preserving notions of forcing $\mathcal{P},$ let

 $\operatorname{Chr}_{\mathcal{P}}(\mathcal{G}) := \{ \kappa \mid \text{exists } \mathbb{P} \in \mathcal{P} \text{ with } V^{\mathbb{P}} \models \operatorname{Chr}(\mathcal{G}) = \kappa \}.$

Definition

For a graph $\mathcal{G},$ and a class of cardinals-preserving notions of forcing $\mathcal{P},$ let

$$\operatorname{Chr}_{\mathcal{P}}(\mathcal{G}) := \{ \kappa \mid \text{exists } \mathbb{P} \in \mathcal{P} \text{ with } V^{\mathbb{P}} \models \operatorname{Chr}(\mathcal{G}) = \kappa \}.$$

Theorem (Baumgartner-Malitz-Reinhardt, 1970)

If there exists a nonspecial Aronszajn tree, then there exists a graph \mathcal{G} of size \aleph_1 for which $Chr_{ccc}(\mathcal{G}) = {\aleph_0, \aleph_1}$.

Definition

For a graph $\mathcal{G},$ and a class of cardinals-preserving notions of forcing $\mathcal{P},$ let

$$\operatorname{Chr}_{\mathcal{P}}(\mathcal{G}) := \{ \kappa \mid \text{exists } \mathbb{P} \in \mathcal{P} \text{ with } V^{\mathbb{P}} \models \operatorname{Chr}(\mathcal{G}) = \kappa \}.$$

Theorem (Baumgartner-Malitz-Reinhardt, 1970)

If there exists a nonspecial Aronszajn tree, then there exists a graph \mathcal{G} of size \aleph_1 for which $Chr_{ccc}(\mathcal{G}) = {\aleph_0, \aleph_1}$.

Theorem (Hajnal-Komjáth, 1988)

There exists a graph \mathcal{G} of size 2^{\aleph_0} and chromatic number $\geq \aleph_1$, such that $V^{\mathbb{P}} \models \operatorname{Chr}(\mathcal{G}) = \aleph_0$, for some *ccc* poset \mathbb{P} .

Definition

For a graph $\mathcal{G},$ and a class of cardinals-preserving notions of forcing $\mathcal{P},$ let

$$\operatorname{Chr}_{\mathcal{P}}(\mathcal{G}) := \{ \kappa \mid \text{exists } \mathbb{P} \in \mathcal{P} \text{ with } V^{\mathbb{P}} \models \operatorname{Chr}(\mathcal{G}) = \kappa \}.$$

Theorem (Baumgartner-Malitz-Reinhardt, 1970)

If there exists a nonspecial Aronszajn tree, then there exists a graph \mathcal{G} of size \aleph_1 for which $Chr_{ccc}(\mathcal{G}) = {\aleph_0, \aleph_1}$.

Theorem (Hajnal-Komjáth, 1988)

There exists a graph \mathcal{G} of size 2^{\aleph_0} and chromatic number $\geq \aleph_1$, such that $V^{\mathbb{P}} \models \operatorname{Chr}(\mathcal{G}) = \aleph_0$, for some *ccc* poset \mathbb{P} . By Martin's Axiom, one cannot hope to get such \mathcal{G} of size $< 2^{\aleph_0}$.

Definition

For a graph $\mathcal{G},$ and a class of cardinals-preserving notions of forcing $\mathcal{P},$ let

$$\operatorname{Chr}_{\mathcal{P}}(\mathcal{G}) := \{ \kappa \mid \text{exists } \mathbb{P} \in \mathcal{P} \text{ with } V^{\mathbb{P}} \models \operatorname{Chr}(\mathcal{G}) = \kappa \}.$$

Corollary (Baumgartner-Malitz-Reinhardt, 1970) \diamond entails a graph \mathcal{G} of size \aleph_1 for which $\operatorname{Chr}_{ccc}(\mathcal{G}) = {\aleph_0, \aleph_1}.$

Theorem (Hajnal-Komjáth, 1988)

There exists a graph \mathcal{G} of size 2^{\aleph_0} and chromatic number $\geq \aleph_1$, such that $V^{\mathbb{P}} \models \operatorname{Chr}(\mathcal{G}) = \aleph_0$, for some *ccc* poset \mathbb{P} . By Martin's Axiom, one cannot hope to get such \mathcal{G} of size $< 2^{\aleph_0}$.

Definition

For a graph $\mathcal{G},$ and a class of cardinals-preserving notions of forcing $\mathcal{P},$ let

$$\operatorname{Chr}_{\mathcal{P}}(\mathcal{G}) := \{ \kappa \mid \text{exists } \mathbb{P} \in \mathcal{P} \text{ with } V^{\mathbb{P}} \models \operatorname{Chr}(\mathcal{G}) = \kappa \}.$$

Corollary (Baumgartner-Malitz-Reinhardt, 1970) \diamond entails a graph \mathcal{G} of size \aleph_1 for which $\operatorname{Chr}_{ccc}(\mathcal{G}) = {\aleph_0, \aleph_1}.$

Corollary (Hajnal-Komjáth, 1988) CH entails a graph \mathcal{G} of size \aleph_1 for which $\operatorname{Chr}_{ccc}(\mathcal{G}) = {\aleph_0, \aleph_1}.$

Definition

For a graph $\mathcal{G},$ and a class of cardinals-preserving notions of forcing $\mathcal{P},$ let

$$\operatorname{Chr}_{\mathcal{P}}(\mathcal{G}) := \{ \kappa \mid \text{exists } \mathbb{P} \in \mathcal{P} \text{ with } V^{\mathbb{P}} \models \operatorname{Chr}(\mathcal{G}) = \kappa \}.$$

Proposition [Rin3]

There exists a graph \mathcal{G} of size 2^{\aleph_0} for which $Chr_{ccc}(\mathcal{G}) = {\aleph_0, \aleph_1}$.

Corollary (Hajnal-Komjáth, 1988)

CH entails a graph \mathcal{G} of size \aleph_1 for which $Chr_{ccc}(\mathcal{G}) = {\aleph_0, \aleph_1}$.

Definition

For a graph $\mathcal{G},$ and a class of cardinals-preserving notions of forcing $\mathcal{P},$ let

$$\operatorname{Chr}_{\mathcal{P}}(\mathcal{G}) := \{ \kappa \mid \text{exists } \mathbb{P} \in \mathcal{P} \text{ with } V^{\mathbb{P}} \models \operatorname{Chr}(\mathcal{G}) = \kappa \}.$$

Proposition [Rin3]

There exists a graph \mathcal{G} of size 2^{\aleph_0} for which $\operatorname{Chr}_{ccc}(\mathcal{G}) = \{\aleph_0, \aleph_1\}$. By Martin's Axiom, one cannot hope to get such \mathcal{G} of size $< 2^{\aleph_0}$.

Corollary (Hajnal-Komjáth, 1988)

CH entails a graph \mathcal{G} of size \aleph_1 for which $Chr_{ccc}(\mathcal{G}) = {\aleph_0, \aleph_1}$.

Theorem (Shelah, 1980's)

Every nonspecial Aronszajn tree can be made special by means of a $\sigma\text{-distributive forcing of size }\mathfrak{c}.$

Theorem (Shelah, 1980's)

Every nonspecial Aronszajn tree can be made special by means of a $\sigma\text{-distributive forcing of size }\mathfrak{c}.$

Corollary

 $\diamondsuit \text{ entails a graph } \mathcal{G} \text{ of size } \aleph_1 \text{, } \mathsf{Chr}_{\sigma\text{-}\mathsf{Baire},\aleph_2\text{-}\mathsf{cc}}(\mathcal{G}) = \{\aleph_0, \aleph_1\}.$

Theorem (Shelah, 1980's)

Every nonspecial Aronszajn tree can be made special by means of a $\sigma\text{-distributive forcing of size }\mathfrak{c}.$

Corollary

 $\diamondsuit \text{ entails a graph } \mathcal{G} \text{ of size } \aleph_1 \text{, } \mathsf{Chr}_{\sigma\text{-}\mathsf{Baire},\aleph_2\text{-}\mathsf{cc}}(\mathcal{G}) = \{\aleph_0, \aleph_1\}.$

Theorem [Rin1]

 ${\color{black} \bigotimes_{\lambda}} \text{ entails a graph } \mathcal{G} \text{ of size } \lambda^+ \text{, } \mathsf{Chr}_{\lambda\text{-}\mathsf{Baire},\lambda^{++}\text{-}\mathsf{cc}}(\mathcal{G}) \supseteq \{ \aleph_0,\lambda^+ \}.$

Theorem (Shelah, 1980's)

Every nonspecial Aronszajn tree can be made special by means of a $\sigma\text{-distributive forcing of size }\mathfrak{c}.$

Corollary

 $\diamondsuit \text{ entails a graph } \mathcal{G} \text{ of size } \aleph_1 \text{, } \mathsf{Chr}_{\sigma\text{-}\mathsf{Baire},\aleph_2\text{-}\mathsf{cc}}(\mathcal{G}) = \{\aleph_0, \aleph_1\}.$

Theorem [Rin1]

Question What about $Chr_{\mathcal{P}}(\mathcal{G}) = \{\lambda, \lambda^+\}$?

Question What about $Chr_{\mathcal{P}}(\mathcal{G}) = \{\lambda, \lambda^+\}$?

Proposition [Rin3]

Assume GCH.

For every regular cardinal λ , there exists a graph \mathcal{G} of size λ^+ , such that $\operatorname{Chr}_{(<\lambda)-\operatorname{directed-closed},\lambda^+-\operatorname{cc}}(\mathcal{G}) = \{\lambda,\lambda^+\}.$

Question What about $Chr_{\mathcal{P}}(\mathcal{G}) = \{\lambda, \lambda^+\}$?

Proposition [Rin3]

Assume GCH.

For every regular cardinal λ , there exists a graph \mathcal{G} of size λ^+ , such that $\operatorname{Chr}_{(<\lambda)-\operatorname{directed-closed},\lambda^+-\operatorname{cc}}(\mathcal{G}) = \{\lambda,\lambda^+\}.$

Proposition [Rin3]

For every measurable cardinal λ , there exists a graph \mathcal{G} of size 2^{λ} , such that $\operatorname{Chr}_{(<\lambda)-\operatorname{directed-closed},\lambda^+-\operatorname{cc}}(\mathcal{G}) = \{\lambda,\lambda^+\}.$

Corollary [Rin1]

 $\bigotimes_{\lambda} \text{ entails a graph } \mathcal{G} \text{ of size } \lambda^+, \operatorname{Chr}_{\lambda-\operatorname{Baire},\lambda^{++}-\operatorname{cc}}(\mathcal{G}) = \{\lambda,\lambda^+\}.$

Proposition [Rin3]

Assume GCH.

For every regular cardinal λ , there exists a graph \mathcal{G} of size λ^+ , such that $\operatorname{Chr}_{(<\lambda)-\operatorname{directed-closed},\lambda^+-\operatorname{cc}}(\mathcal{G}) = \{\lambda,\lambda^+\}.$

Proposition [Rin3]

For every measurable cardinal λ , there exists a graph \mathcal{G} of size 2^{λ} , such that $\operatorname{Chr}_{(<\lambda)-\operatorname{directed-closed},\lambda^+-\operatorname{cc}}(\mathcal{G}) = \{\lambda,\lambda^+\}.$

Corollary [Rin1]

 \bigotimes_{λ} entails a graph \mathcal{G} of size λ^+ , $\mathsf{Chr}_{\lambda-\mathsf{Baire},\lambda^{++}-\mathsf{cc}}(\mathcal{G}) = \{\lambda,\lambda^+\}.$

Proposition [Rin3]

Assume GCH.

For every regular cardinal λ , there exists a graph \mathcal{G} of size λ^+ , such that $\operatorname{Chr}_{(<\lambda)-\operatorname{directed-closed},\lambda^+-\operatorname{cc}}(\mathcal{G}) = \{\lambda,\lambda^+\}.$

Proposition [Rin3]

For every measurable cardinal λ , there exists a graph \mathcal{G} of size 2^{λ} , such that $\operatorname{Chr}_{(<\lambda)-\operatorname{directed-closed},\lambda^+-\operatorname{cc}}(\mathcal{G}) = \{\lambda,\lambda^+\}.$

New rule: no cheating allowed!

Suppose that a graph (G, E) of size $\lambda > \kappa$ satisfies $Chr_{\mathcal{P}}(G, E) = \{\kappa, \lambda\}$. Maybe one is cheating somehow, and in fact $Chr(G', E) = \kappa$ for some key subset $G' \subseteq G$?

Definition Say that a graph (G, E) has everywhere chromatic number λ , if $Chr(G', E) = \lambda$ for all $G' \subseteq G$ with |G'| = |G|.

Proposition [Rin2]

If $\langle f_{\alpha} \mid \alpha < \lambda \rangle$ is a <*-increasing and unbounded sequence of reals ${}^{\omega}\omega$, then there exists a graph \mathcal{G} of size and everywhere chromatic number λ , such that $\aleph_0 \in \operatorname{Chr}_{ccc}(\mathcal{G})$.

Definition

Say that a graph (G, E) has everywhere chromatic number λ , if $Chr(G', E) = \lambda$ for all $G' \subseteq \overline{G}$ with |G'| = |G|.

Proposition [Rin2] If $\langle f_{\alpha} \mid \alpha < \lambda \rangle$ is a <*-increasing and unbounded sequence of reals

^{$\omega\omega$}, then there exists a graph \mathcal{G} of size and everywhere chromatic number λ , such that $\aleph_0 \in \operatorname{Chr}_{ccc}(\mathcal{G})$.

To which λ 's do the proposition apply? Recall Hechler's theorem:

Theorem (Hechler, 1974)

If \mathbb{P} is a partially ordered set in which every countable subset has an upper bound, then \mathbb{P} can consistently be isomorphic to a cofinal subset of $\langle {}^{\omega}\omega, <^* \rangle$.

Proposition [Rin2]

If $\langle f_{\alpha} \mid \alpha < \lambda \rangle$ is a <*-increasing and unbounded sequence of reals ${}^{\omega}\omega$, then there exists a graph \mathcal{G} of size and everywhere chromatic number λ , such that $\aleph_0 \in \operatorname{Chr}_{ccc}(\mathcal{G})$.

Another application:

Corollary [Rin2]

Suppose that Martin's Axiom holds.

Then there exists an edge relation $E \subseteq [\mathfrak{c}]^2$, such that for all $G \subseteq \mathfrak{c}$:

$$\aleph_0 + \operatorname{Chr}(G, E) = \begin{cases} \mathfrak{c}, & |G| = \mathfrak{c} \\ \aleph_0, & |G| < \mathfrak{c} \end{cases}$$

This appears to be the simplest construction of incompacttess graphs with arbitrarily large gaps.

Definition [Rin3] $\Pr^{U}(\lambda,\kappa) = \Pr^{U}(\lambda,\kappa^{+},2,\kappa)$ asserts the existence of a coloring $c : [\lambda]^{2} \rightarrow 2$ satisfying the two:

Definition [Rin3]

 $\Pr^{U}(\lambda,\kappa) = \Pr^{U}(\lambda,\kappa^{+},2,\kappa)$ asserts the existence of a coloring $c : [\lambda]^{2} \rightarrow 2$ satisfying the two:

1. for every $A \subseteq \lambda$ of size λ , there exists $\alpha < \beta$ in A with $c(\alpha, \beta) = 0$;

Definition [Rin3]

 $\Pr^{U}(\lambda,\kappa) = \Pr^{U}(\lambda,\kappa^{+},2,\kappa)$ asserts the existence of a coloring $c : [\lambda]^{2} \rightarrow 2$ satisfying the two:

- 1. for every $A \subseteq \lambda$ of size λ , there exists $\alpha < \beta$ in A with $c(\alpha, \beta) = 0$;
- for every A ⊆ [κ⁺]^{<κ} of size κ⁺, consisting of pairwise disjoint sets, there exist a, b ∈ A with sup(a) < min(b) such that c[a × b] = {1}.

Definition [Rin3]

 $\Pr^{U}(\lambda,\kappa) = \Pr^{U}(\lambda,\kappa^{+},2,\kappa)$ asserts the existence of a coloring $c : [\lambda]^{2} \rightarrow 2$ satisfying the two:

- 1. for every $A \subseteq \lambda$ of size λ , there exists $\alpha < \beta$ in A with $c(\alpha, \beta) = 0$;
- 2. for every $\mathcal{A} \subseteq [\kappa^+]^{<\kappa}$ of size κ^+ , consisting of pairwise disjoint sets, there exist $a, b \in \mathcal{A}$ with $\sup(a) < \min(b)$ such that $c[a \times b] = \{1\}$.

Remark

 $\Pr^{U}(\lambda, \kappa, \theta, \sigma)$ is an unbalanced form of Shelah's $\Pr_{1}(\lambda, \kappa, \theta, \sigma)$.

Definition [Rin3]

 $\Pr^{U}(\lambda,\kappa) = \Pr^{U}(\lambda,\kappa^{+},2,\kappa)$ asserts the existence of a coloring $c : [\lambda]^{2} \rightarrow 2$ satisfying the two:

- 1. for every $A \subseteq \lambda$ of size λ , there exists $\alpha < \beta$ in A with $c(\alpha, \beta) = 0$;
- for every A ⊆ [κ⁺]^{<κ} of size κ⁺, consisting of pairwise disjoint sets, there exist a, b ∈ A with sup(a) < min(b) such that c[a × b] = {1}.

Previous incarnation

Suppose c is a witness to $Pr^{U}(\aleph_{2}, \aleph_{1})$. Set $\alpha <_{c} \beta$ iff $\alpha \in \beta$ and $c(\alpha, \beta) = 0$.
Definition [Rin3]

 $\Pr^{U}(\lambda,\kappa) = \Pr^{U}(\lambda,\kappa^{+},2,\kappa)$ asserts the existence of a coloring $c : [\lambda]^{2} \rightarrow 2$ satisfying the two:

- 1. for every $A \subseteq \lambda$ of size λ , there exists $\alpha < \beta$ in A with $c(\alpha, \beta) = 0$;
- for every A ⊆ [κ⁺]^{<κ} of size κ⁺, consisting of pairwise disjoint sets, there exist a, b ∈ A with sup(a) < min(b) such that c[a × b] = {1}.

Previous incarnation

Suppose c is a witness to $\Pr^{U}(\aleph_{2}, \aleph_{1})$. Set $\alpha <_{c} \beta$ iff $\alpha \in \beta$ and $c(\alpha, \beta) = 0$. If $\mathcal{T} = (\omega_{2}, <_{c})$ happens to be a tree order, then \mathcal{T} is an \aleph_{2} -Souslin tree, without an ascent path (à-la Laver).

Definition [Rin3]

 $\Pr^{U}(\lambda,\kappa) = \Pr^{U}(\lambda,\kappa^{+},2,\kappa)$ asserts the existence of a coloring $c : [\lambda]^{2} \rightarrow 2$ satisfying the two:

- 1. for every $A \subseteq \lambda$ of size λ , there exists $\alpha < \beta$ in A with $c(\alpha, \beta) = 0$;
- for every A ⊆ [κ⁺]^{<κ} of size κ⁺, consisting of pairwise disjoint sets, there exist a, b ∈ A with sup(a) < min(b) such that c[a × b] = {1}.

Proposition [Rin3]

Assume $\Pr^{U}(\lambda, \kappa)$, and $\kappa = \kappa^{<\kappa} < cf(\lambda) = \lambda$. Then there exists a graph \mathcal{G} of size and everywhere chromatic number λ ,

Definition [Rin3]

 $\Pr^{U}(\lambda,\kappa) = \Pr^{U}(\lambda,\kappa^{+},2,\kappa)$ asserts the existence of a coloring $c : [\lambda]^{2} \rightarrow 2$ satisfying the two:

- 1. for every $A \subseteq \lambda$ of size λ , there exists $\alpha < \beta$ in A with $c(\alpha, \beta) = 0$;
- for every A ⊆ [κ⁺]^{<κ} of size κ⁺, consisting of pairwise disjoint sets, there exist a, b ∈ A with sup(a) < min(b) such that c[a × b] = {1}.

Proposition [Rin3]

Assume $\Pr^{U}(\lambda, \kappa)$, and $\kappa = \kappa^{<\kappa} < \operatorname{cf}(\lambda) = \lambda$. Then there exists a graph \mathcal{G} of size and everywhere chromatic number λ , together with a $(<\kappa)$ -directed-closed, κ^+ -cc notion of forcing \mathbb{P} , such that $V^{\mathbb{P}} \models \operatorname{Chr}(\mathcal{G}) = \kappa$.

Theorem [Rin3] GCH entails $Pr^{U}(\kappa^{+}, \kappa)$ for every regular cardinal $\kappa \neq \aleph_{1}$.

Proposition [Rin3]

Assume $\Pr^{U}(\lambda, \kappa)$, and $\kappa = \kappa^{<\kappa} < \operatorname{cf}(\lambda) = \lambda$. Then there exists a graph \mathcal{G} of size and everywhere chromatic number λ , together with a $(< \kappa)$ -directed-closed, κ^+ -cc notion of forcing \mathbb{P} , such that $V^{\mathbb{P}} \models \operatorname{Chr}(\mathcal{G}) = \kappa$.

Theorem [Rin3]

GCH entails $Pr^{U}(\kappa^{+}, \kappa)$ for every regular cardinal $\kappa \neq \aleph_{1}$. GCH $+ \diamondsuit$ entails $Pr^{U}(\kappa^{+}, \kappa)$ for every regular cardinal κ .

Proposition [Rin3]

Assume $\Pr^{U}(\lambda, \kappa)$, and $\kappa = \kappa^{<\kappa} < cf(\lambda) = \lambda$. Then there exists a graph \mathcal{G} of size and everywhere chromatic number λ , together with a $(< \kappa)$ -directed-closed, κ^+ -cc notion of forcing \mathbb{P} , such that $V^{\mathbb{P}} \models Chr(\mathcal{G}) = \kappa$.

Theorem [Rin3]

GCH entails $Pr^{U}(\kappa^{+}, \kappa)$ for every regular cardinal $\kappa \neq \aleph_{1}$. GCH + \diamondsuit entails $Pr^{U}(\kappa^{+}, \kappa)$ for every regular cardinal κ .

Conjecture GCH $+\neg Pr^{U}(\aleph_{2}, \aleph_{1})$ is consistent (modulo large cardinals).

Theorem [Rin3]

GCH entails $Pr^{U}(\kappa^{+}, \kappa)$ for every regular cardinal $\kappa \neq \aleph_{1}$. GCH $+\diamond$ entails $Pr^{U}(\kappa^{+}, \kappa)$ for every regular cardinal κ .

Wild guess $CH + \neg Pr^{U}(\aleph_{2}, \aleph_{1})$ is equiconsistent with the existence of a weakly-compact cardinal.

Question

We have seen examples of graphs \mathcal{G} with $|\operatorname{Chr}_{\mathcal{P}}(\mathcal{G})| > 1$. So, what does $\operatorname{Chr}(\mathcal{G})$ really tell us?

Question

We have seen examples of graphs \mathcal{G} with $|\operatorname{Chr}_{\mathcal{P}}(\mathcal{G})| > 1$. So, what does $\operatorname{Chr}(\mathcal{G})$ really tell us?

Answer

It tells us a small part of the story. Precisely,

 $\mathsf{Chr}(\mathcal{G}) = \mathsf{max}(\mathsf{Chr}_{\mathcal{P}}(\mathcal{G})).$

Question

We have seen examples of graphs \mathcal{G} with $|\operatorname{Chr}_{\mathcal{P}}(\mathcal{G})| > 1$. So, what does $\operatorname{Chr}(\mathcal{G})$ really tell us?

Answer

It tells us a small part of the story. Precisely,

 $Chr(\mathcal{G}) = max(Chr_{\mathcal{P}}(\mathcal{G})).$

If \mathcal{G} is finite, then $\operatorname{Chr}_{\mathcal{P}}(\mathcal{G}) = {\operatorname{Chr}(\mathcal{G})}$, so $\operatorname{Chr}_{\mathcal{P}}(\mathcal{G})$ and $\operatorname{Chr}(\mathcal{G})$ are different ways of generalizing the finitary concept,

Question

We have seen examples of graphs \mathcal{G} with $|\operatorname{Chr}_{\mathcal{P}}(\mathcal{G})| > 1$. So, what does $\operatorname{Chr}(\mathcal{G})$ really tell us?

Answer

It tells us a small part of the story. Precisely,

 $Chr(\mathcal{G}) = max(Chr_{\mathcal{P}}(\mathcal{G})).$

If \mathcal{G} is finite, then $\operatorname{Chr}_{\mathcal{P}}(\mathcal{G}) = {\operatorname{Chr}(\mathcal{G})}$, so $\operatorname{Chr}_{\mathcal{P}}(\mathcal{G})$ and $\operatorname{Chr}(\mathcal{G})$ are different ways of generalizing the finitary concept, but maybe we should have paid more attention to the former.

Laver, Baumgartner, Devlin, Shelah-Stanley, Todorcevic, R. David, Cummings, and more recently, Lücke, gave examples of peculiar nonspecial \aleph_2 -Aronszajn trees.

Laver, Baumgartner, Devlin, Shelah-Stanley, Todorcevic, R. David, Cummings, and more recently, Lücke, gave examples of peculiar nonspecial \aleph_2 -Aronszajn trees.

For instance, if V = L, then there exist \aleph_2 -Aronszajn trees $\mathcal{T}_1, \mathcal{T}_2$ such that

- $\operatorname{Chr}_{\operatorname{cofinality-preserving}}(\mathcal{G}_{\mathcal{T}_1}) = \{\aleph_2\};$
- $\mathsf{Chr}_{\mathsf{cofinality-preserving}}(\mathcal{G}_{\mathcal{T}_2}) = \{\aleph_2, \aleph_1\}.$

Laver, Baumgartner, Devlin, Shelah-Stanley, Todorcevic, R. David, Cummings, and more recently, Lücke, gave examples of peculiar nonspecial \aleph_2 -Aronszajn trees.

For instance, if V = L, then there exist \aleph_2 -Aronszajn trees $\mathcal{T}_1, \mathcal{T}_2$ such that

- $\operatorname{Chr}_{\operatorname{cofinality-preserving}}(\mathcal{G}_{\mathcal{T}_1}) = \{\aleph_2\};$
- $\mathsf{Chr}_{\mathsf{cofinality-preserving}}(\mathcal{G}_{\mathcal{T}_2}) = \{\aleph_2, \aleph_1\}.$

The standard chromatic number measure oversees this essential difference between T_1 and T_2 .

Laver, Baumgartner, Devlin, Shelah-Stanley, Todorcevic, R. David, Cummings, and more recently, Lücke, gave examples of peculiar nonspecial \aleph_2 -Aronszajn trees.

For instance, if V = L, then there exist \aleph_2 -Aronszajn trees $\mathcal{T}_1, \mathcal{T}_2$ such that

- $\operatorname{Chr}_{\operatorname{cofinality-preserving}}(\mathcal{G}_{\mathcal{T}_1}) = \{\aleph_2\};$
- $\mathsf{Chr}_{\mathsf{cofinality-preserving}}(\mathcal{G}_{\mathcal{T}_2}) = \{\aleph_2, \aleph_1\}.$

The standard chromatic number measure oversees this essential difference between T_1 and T_2 .

Question What about $|Chr_{\mathcal{P}}(\mathcal{G})| > 2$?

Laver, Baumgartner, Devlin, Shelah-Stanley, Todorcevic, R. David, Cummings, and more recently, Lücke, gave examples of peculiar nonspecial \aleph_2 -Aronszajn trees.

For instance, if V = L, then there exist \aleph_2 -Aronszajn trees $\mathcal{T}_1, \mathcal{T}_2$ such that

- $\operatorname{Chr}_{\operatorname{cofinality-preserving}}(\mathcal{G}_{\mathcal{T}_1}) = \{\aleph_2\};$
- $\mathsf{Chr}_{\mathsf{cofinality-preserving}}(\mathcal{G}_{\mathcal{T}_2}) = \{\aleph_2, \aleph_1\}.$

The standard chromatic number measure oversees this essential difference between T_1 and T_2 .

Question What about $|Chr_{\mathcal{P}}(\mathcal{G})| > 3$?

Laver, Baumgartner, Devlin, Shelah-Stanley, Todorcevic, R. David, Cummings, and more recently, Lücke, gave examples of peculiar nonspecial \aleph_2 -Aronszajn trees.

For instance, if V = L, then there exist \aleph_2 -Aronszajn trees $\mathcal{T}_1, \mathcal{T}_2$ such that

- $\operatorname{Chr}_{\operatorname{cofinality-preserving}}(\mathcal{G}_{\mathcal{T}_1}) = \{\aleph_2\};$
- $\mathsf{Chr}_{\mathsf{cofinality-preserving}}(\mathcal{G}_{\mathcal{T}_2}) = \{\aleph_2, \aleph_1\}.$

The standard chromatic number measure oversees this essential difference between T_1 and T_2 .

Question What about $Chr_{\mathcal{P}}(\mathcal{G})$ infinite?

Laver, Baumgartner, Devlin, Shelah-Stanley, Todorcevic, R. David, Cummings, and more recently, Lücke, gave examples of peculiar nonspecial \aleph_2 -Aronszajn trees.

For instance, if V = L, then there exist \aleph_2 -Aronszajn trees $\mathcal{T}_1, \mathcal{T}_2$ such that

- $\operatorname{Chr}_{\operatorname{cofinality-preserving}}(\mathcal{G}_{\mathcal{T}_1}) = \{\aleph_2\};$
- $\mathsf{Chr}_{\mathsf{cofinality-preserving}}(\mathcal{G}_{\mathcal{T}_2}) = \{\aleph_2, \aleph_1\}.$

The standard chromatic number measure oversees this essential difference between T_1 and T_2 .

Question

What about $Chr_{\mathcal{P}}(\mathcal{G})$ uncountable?

Laver, Baumgartner, Devlin, Shelah-Stanley, Todorcevic, R. David, Cummings, and more recently, Lücke, gave examples of peculiar nonspecial \aleph_2 -Aronszajn trees.

For instance, if V = L, then there exist \aleph_2 -Aronszajn trees $\mathcal{T}_1, \mathcal{T}_2$ such that

- $\operatorname{Chr}_{\operatorname{cofinality-preserving}}(\mathcal{G}_{\mathcal{T}_1}) = \{\aleph_2\};$
- $\mathsf{Chr}_{\mathsf{cofinality-preserving}}(\mathcal{G}_{\mathcal{T}_2}) = \{\aleph_2, \aleph_1\}.$

The standard chromatic number measure oversees this essential difference between T_1 and T_2 .

Question

What about $|Chr_{\mathcal{P}}(\mathcal{G})| = fixed-point of the <math>\aleph$ -function?

Main Theorem [Rin3]

Suppose that V = L and ϕ is the least to satisfy $\phi = \aleph_{\phi}$. Then for every infinite cardinal $\mu < \aleph_{\phi}$, there exists a graph \mathcal{G} of size μ such that:

$$\mathsf{Chr}_{\mathsf{cofinality-preserving}}(\mathcal{G}) = \{\aleph_0, \aleph_1, \aleph_2, \dots, \mu\}.$$

Main Theorem [Rin3]

Suppose that V = L and ϕ is the least to satisfy $\phi = \aleph_{\phi}$. Then for every infinite cardinal $\mu < \aleph_{\phi}$, there exists a graph \mathcal{G} of size μ such that:

 $Chr_{cofinality-preserving}(\mathcal{G}) = \{ \kappa \leq \mu \mid \kappa \text{ infinite cardinal} \}.$

Main Theorem [Rin3]

Suppose that V = L and ϕ is the least to satisfy $\phi = \aleph_{\phi}$. Then for every infinite cardinal $\mu < \aleph_{\phi}$, there exists a graph \mathcal{G} of size μ such that:

 $Chr_{cofinality-preserving}(\mathcal{G}) = \{ \kappa \leq \mu \mid \kappa \text{ infinite cardinal} \}.$

Conjecture

By a more careful construction of \bigotimes_{λ} -sequences in L, the restriction " $\mu < \aleph_{\phi}$ " in the above theorem may be waived.

Main Theorem [Rin3]

Suppose that V = L and ϕ is the least to satisfy $\phi = \aleph_{\phi}$. Then for every infinite cardinal $\mu < \aleph_{\phi}$, there exists a graph \mathcal{G} of size μ such that:

$$\mathsf{Chr}_{\mathsf{cofinality-preserving}}(\mathcal{G}) = \{\kappa \leq \mu \mid \kappa \text{ infinite cardinal}\}.$$

Proposed project

Characterize all sets \mathcal{K} of cardinals for which there exists a graph \mathcal{G} with $Chr_{cofinality-preserving}(\mathcal{G}) = \mathcal{K}$.

Main Theorem [Rin3]

Suppose that V = L and ϕ is the least to satisfy $\phi = \aleph_{\phi}$. Then for every infinite cardinal $\mu < \aleph_{\phi}$, there exists a graph \mathcal{G} of size μ such that:

$$\mathsf{Chr}_{\mathsf{cofinality-preserving}}(\mathcal{G}) = \{\kappa \leq \mu \mid \kappa \text{ infinite cardinal}\}.$$

Proposed project

Characterize all sets \mathcal{K} of cardinals for which there exists a graph \mathcal{G} with $Chr_{cofinality-preserving}(\mathcal{G}) = \mathcal{K}$.

Basic question

Is $Chr_{cofinality-preserving}(\mathcal{G})$ provably/consistently a closed set?