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Motivating Graph Theory

Suppose that you are responsible for scheduling times for lectures
in a university. You want to make sure that any two lectures with a
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3/21



Motivating Graph Theory

Suppose that you are responsible for scheduling times for lectures
in a university. You want to make sure that any two lectures with a
common student occur at different times to avoid a conflict.

Let G be the set of lectures. Define a symmetric binary relation E
on G, so that distinct lectures a and b are E-related iff there is a
student that is enrolled in both a and b.

21



Motivating Graph Theory

Suppose that you are responsible for scheduling times for lectures
in a university. You want to make sure that any two lectures with a
common student occur at different times to avoid a conflict.

Let G be the set of lectures. Define a symmetric binary relation E
on G, so that distinct lectures a and b are E-related iff there is a
student that is enrolled in both a and b.

Let T denote the set of all possible timeslots. Our goal, then, is to
find a mapping x : G — T so that x(a) # x(b) whenever aEb.



Motivating Graph Theory

Suppose that you are responsible for scheduling times for lectures
in a university. You want to make sure that any two lectures with a
common student occur at different times to avoid a conflict.

Let G be the set of lectures. Define a symmetric binary relation E
on G, so that distinct lectures a and b are E-related iff there is a
student that is enrolled in both a and b.

Let T denote the set of all possible timeslots. Our goal, then, is to
find a mapping x : G — T so that x(a) # x(b) whenever aEb.
To save resources, we may also want to minimize | Im(x)].
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Graphs and chromatic numbers

Definition
A graph is a structure G = (G, E) with
E C[G)?:={{a,b} | a,be G,a# b}.
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Graphs and chromatic numbers

Definition
A graph is a structure G = (G, E) with
E C[G]? :={{a,b} | a,b€ G,a+#b}.

Definition
A coloring x : G — k is E-chromatic if aEb entails x(a) # x(b).

Definition

Chr(G, E) is the least (finite or infinite) cardinal x for which there
exists an E-chromatic coloring x : G — k.

Equivalently, it is the least cardinal  such that G = J;_,. Ai

where A; is E-independent for each / < k.
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An example

Recall that an wy-tree, T = (T, <), is said to be special if there

exists an order-preserving map from (T, <) to the rationals (Q, <).
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An example

Recall that an wy-tree, T = (T, <), is said to be special if there

exists an order-preserving map from (T, <) to the rationals (Q, <).

Proposition
Consider its comparability graph G = (T, Sym(<1)), where

Sym(<1) == {{a,b} € [T]?| a<tbor b<a}.

Then 7T is special iff T is the countable union of antichains iff
Chr(G7) = Ro.
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An example (cont.)

If T = (w1, <) is a Souslin tree, then it cannot be the union of
countably many antichains. So, Chr(Gr) = ;.
However:
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An example (cont.)

If T = (w1, <) is a Souslin tree, then it cannot be the union of
countably many antichains. So, Chr(Gr) = ;.

However:

Theorem (Baumgartner-Malitz-Reinhardt, 1970)

There is a ccc notion of forcing, P, such that IFp Chr(G7) = No.

Theorem (Shelah, 1980’s)
There is a o-distributive notion of forcing (of size ¢), Q, such that
kg Chr(G7) = o
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The tensor product of graphs
Definition
Given graphs G = (G,E),H = (H, F), let
G xH:=(Gx H,E % F), where:
» Gx H:={(g,h)|ge G, heH}

» ExF = {{(g0,ho), (g1, 1)} | goEg1 & hoFhy}.
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» ExF = {{(g0,ho), (g1, M)} | goEg1 & hoFh1}.

For an E-chromatic coloring x : G — &, define a coloring x®/ :

G x H — & by letting x®H(g, h) := x(g) for all (g,h) € G x H.
Then x® is E x F-chromatic, and hence Chr(G x H) < Chr(G).
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The tensor product of graphs
Definition
Given graphs G = (G,E),H = (H, F), let
G xH:=(Gx H,E % F), where:
» Gx H:={(g,h)|ge G, heH}

» ExF ={{(g0, o), (g1,Mm)} | goEg1 & hoFh1}.
For an E-chromatic coloring x : G — &, define a coloring x®/ :
G x H — & by letting x®H(g, h) := x(g) for all (g,h) € G x H.

Then x® is E x F-chromatic, and hence Chr(G x H) < Chr(G).
By symmetry, Chr(G x H) < Chr(#). Thus,

Chr(G x H) < min{Chr(G), Chr(H)}.



Hedetniemi's conjecture

Conjecture (Hedetniemi, 1966)
For every pair of (finite) graphs G, H:

Chr(G x H) = min{Chr(G), Chr(H)}.
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Hedetniemi's conjecture

Conjecture (Hedetniemi, 1966)
For every pair of (finite) graphs G, H:

Chr(G x H) = min{Chr(G), Chr(H)}.

Not only that the above conjecture is still standing, but even the
following Ramsey-type consequence of it is still unknown to hold.

Weak Hedetniemi Conjecture
For every positive integer k, there exists an integer p(k), such that
if Chr(G) = Chr(#) = ¢(k), then Chr(G x H) > k.
Remarks
1. Hedetniemi's conjecture is equivalent to “p(k) = k for all
positive integer k";
2. Hedetniemi (1966) proved (k) = k for all k € {1,2,3};
3. El-Zahar and Sauer (1985) proved that ¢(4) = 4.



The infinite counterpart

Theorem (Hajnal, 1985)
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The infinite counterpart

Theorem (Hajnal, 1985)
For every infinite cardinal k, there exist graphs G, H such that
» Chr(G) = Chr(H) = x™;
» Chr(G x H) = k.
This shows that a gap 1 is possible. In his paper, Hajnal asked
about the possibility of realizing an infinite gap, but the best
known result is that of gap 2:
Theorem (Soukup, 1988)

It is consistent with ZFC + GCH that there exist graphs G, H of
size and chromatic number Ry such that Chr(G x H) = Ro.
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Hajnal’s question and the weak conjecture

Hajnal’s question (1985)
Is it consistent with ZFC+GCH that there are graphs G, H such
that Chr(G) = Chr(#) > R, while Chr(G x H) = R,?
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Hajnal’s question and the weak conjecture

Hajnal’s question (1985)
Is it consistent with ZFC+GCH that there are graphs G, H such
that Chr(G) = Chr(#) > R, while Chr(G x H) = R,?

Infinite Weak Hedetniemi Conjecture

For every infinite cardinal &, there exists a cardinal ¢(x), such that
if Chr(G) = Chr(#H) = (), then Chr(G x H) > k.

Observation (building on Hajnal)

If there exists a proper class of strongly-compact cardinals, then
the Infinite Weak Hedetniemi Conjecture holds.
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Hajnal’s question and the weak conjecture

Hajnal's question (1985)
Is it consistent with ZFC+GCH that there are graphs G, H such
that Chr(G) = Chr(#) > R, while Chr(G x H) = R,?

Infinite Weak Hedetniemi Conjecture

For every infinite cardinal &, there exists a cardinal ¢(x), such that
if Chr(G) = Chr(#H) = (), then Chr(G x H) > k.

Theorem [Rin1]

Suppose that V = L.
For every infinite cardinal A, there exist graphs G, H such that

Chr(G) = Chr(H) > X, while Chr(G x H) = No.
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The main ingredient of the solution

Theorem
If K] holds, then there exist graphs Go = (Go, Eo), G1 = (Gi, E1)
of size AT and (< A™)-distributive notions of forcing Py, Py s.t.:
» VP = Chr(Go) = w, Chr(Gy) = AT
» VP = Chr(Go) = AT, Chr(G1) = w.
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The main ingredient of the solution

Theorem
If KM holds, then there exist graphs Gy = (Go, Eo), G1 = (G1, E1)
of size AT and (< A™)-distributive notions of forcing Py, Py s.t.:

» VP = Chr(Go) = w, Chr(Gy) = AT
» VP = Chr(Go) = AT, Chr(G1) = w.
Wilog, G; = {a < A" | (@« mod 2) =i} for each i < 2.

Now, do the following. For i < 2, let
» Hi={x: Gu_pnNa — w|aec Gx is Eg_j-chromatic};
> i = {{X?X/} € [Hf]2 ‘ {a)oa)('} € EiaX g X/}
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The main ingredient of the solution

Claim
Chr(Ho, Fo) = AT [and similarly, Chr(Hy, F1) = A™].

Now, do the following. For i < 2, let

» Hi={x: Gu_nNa — w|aec Gx is E_j-chromatic};

» Fi={{x,x'} € [H]*| {on, ay} € Ei, x S X'}

12 /21



The main ingredient of the solution

Claim
Chr(Ho, Fo) = AT [and similarly, Chr(Hy, F1) = A™].

Proof.
Suppose ¢ : Hy — X is Fg-chromatic.

Now, do the following. For i < 2, let
» Hi:={x: Gu_nNa — w|a € Gjx is E_j-chromatic};
> Fi={{x.X'} € [H]? | {ay, ay} € B x C X'}
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The main ingredient of the solution

Claim
Chr(Ho, Fo) = AT [and similarly, Chr(Hy, F1) = A™].

Proof.

Suppose ¢ : Hy — X is Fg-chromatic. Pass to VF1. Here,
Chr(Go) = AT and Chr(G;) = w. Pick x1 : Gi — w which is
Ei-chromatic. Then x1 [ a € V for all a < A7
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» Hi:={x: Gu_nNa — w|a € Gjx is E_j-chromatic};
> Fi={{x.X'} € [H]? | {ay, ay} € B x C X'}

12 /21



The main ingredient of the solution

Claim
Chr(Ho, Fo) = AT [and similarly, Chr(Hy, F1) = A™].

Proof.
Suppose ¢ : Hy — X is Fg-chromatic. Pass to VF1. Here,
Chr(Go) = AT and Chr(G1) = w. Pick x1 : Gi — w which is
Ei-chromatic. Then x1 [ a € V for all o < AT. Define
X0 : Go — A by xo(a) :=c(x1 | «). Then xo is Eo-chromatic. [
Now, do the following. For i < 2, let

» Hi:={x: Gu_nNa — w|a € Gjx is E_j-chromatic};
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The main ingredient of the solution

Claim
Chr(Ho, Fo) = AT [and similarly, Chr(Hy, F1) = A™].

Proof.
Suppose ¢ : Hy — X is Fg-chromatic. Pass to VF1. Here,
Chr(Go) = A" and Chr(G1) = w. Pick x1 : Gi — w which is
Ei-chromatic. Then x1 [ a € V for all o < AT. Define
X0 : Go — A by xo(a) :=c(x1 | «). Then xo is Eg-chromatic. [
Now, do the following. For i < 2, let

» Hi:={x: Gu_nNa — w|a € Gjx is E_j-chromatic};

» Fi={{x,x'} € [H]*| {on, ay} € Ei, x S X'}
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The main ingredient of the solution (cont.)

Claim
Chr(Ho X Hl, Fo * Fl) = No.
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The main ingredient of the solution (cont.)

Recall:
» Gi={a < A" |(a mod2) =i}
» Hi:={x: Gu_pnNa — w|aec G;x is Eg_j-chromatic};
> Fri= {0 X} € [HIP | {ay, ay} € B x € X

Claim

Chr(Ho x Hy, Fo * F1) = .

Proof.
Define ¢ : Hy x H1 — w X 2, by letting c(xo, x1) = (xo(®y,),0) if
Oy > 0y, and c(xo, x1) = (x1(y,), 1), otherwise.
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The main ingredient of the solution (cont.)

Recall:
» Gi={a <\ |(a mod?2)=i};
» Hi:={x: Gu_nNa — w|a € Gjx is Ez_j-chromatic};
> Fri= {0, X'} € [HI? | {ay, ay} € Bix © X

Claim

Chr(Ho x Hy, Fo * F1) = .

Proof.

Define ¢ : Hy x H1 — w X 2, by letting c(xo, x1) = (xo(®y,),0) if
Oy > 0y, and c(xo, x1) = (x1(y,), 1), otherwise.

Towards a contradiction, suppose c(xo, x1) = ¢(xg, X1) = (n, 1),
while {(x0, x1), (x0: X1)} € Fo * F1.
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The main ingredient of the solution (cont.)

Recall:
» Gi={a <\ |(a mod?2)=i};
» Hi:={x: Gu_nNa — w|a € Gjx is Ez_j-chromatic};
> Fri= {0, X'} € [HI? | {ay, ay} € Bix © X

Claim

Chr(Ho x Hy, Fo * F1) = .

Proof.

Define ¢ : Hy x H1 — w X 2, by letting c(xo, x1) = (xo(®y,),0) if
Oy > 0y, and c(xo, x1) = (x1(y,), 1), otherwise.

Towards a contradiction, suppose c(xo, x1) = ¢(xg, X1) = (n, 1),
while {(xo0, x1), (X0, X1)} € Fo* F1. Say, i = 0.
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The main ingredient of the solution (cont.)

Recall:
» Gi={a <\ |(a mod?2)=i};
» Hi:={x: Gu_nNa — w|ae€ Gy is E;_j-chromatic};
> Fii= {0} € [HP [ {ax, o} € Ex © X

Claim

Chr(Ho x Hy, Fo % F1) = Rq.

Proof.

Define ¢ : Hy x H1 — w X 2, by letting c(xo, x1) = (xo(®y,),0) if
Oy > 0y, and c(xo, x1) = (x1(y,), 1), otherwise.

Towards a contradiction, suppose c(xo, x1) = ¢(xg, X1) = (n, 1),

while {(xo, x1), (X6 X1)} € Fo* F1. Say, i = 0. As {x0, X4} € Fo.
X := Xo U xp is an Ej-chromatic coloring,
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The main ingredient of the solution (cont.)

Recall:
» Gi={a < A" |(a mod2) =i}
» Hi:={x: Gu_nNa — w|a € Gjx is Ez_j-chromatic};
> F={{e X} € [H]P [ {ay. o) € Eux S X}

Claim
Chl’(Ho X Hl, Fo * Fl) = No.

Proof.

Define ¢ : Hy x H1 — w X 2, by letting c(xo, x1) = (xo(®y,),0) if
Oy > 0y, and c(xo, x1) = (x1(y,), 1), otherwise.

Towards a contradiction, suppose c(xo, x1) = ¢(xg, X1) = (n, 1),

while {(xo, x1), (X6 X1)} € Fo* F1. Say, i = 0. As {x0, X4} € Fo.
X := Xo U Xg is an Ei-chromatic coloring, but then

X(ay,) = n=x(a,;), contradicting that {o,,,a,, } € Ey. O
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The spectrum of chromatic numbers

Disclaimer: This is work in progress. At present, we have more
questions than answers!
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The spectrum of chromatic numbers

Definition
For a graph G, and a class of cardinals-preserving notions of
forcing P, let

Chrp(G) := {x | exists P € P with V¥ |= Chr(G) = x}.
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The spectrum of chromatic numbers

Definition
For a graph G, and a class of cardinals-preserving notions of
forcing P, let

Chrp(G) := {x | exists P € P with V¥ |= Chr(G) = x}.

Proposition [Rin3]
There exists a graph G of size 2% for which Chre.(G) = {Xo, N1 }.
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The spectrum of chromatic numbers

Definition
For a graph G, and a class of cardinals-preserving notions of
forcing P, let

Chrp(G) := {x | exists P € P with V¥ |= Chr(G) = x}.

Proposition [Rin3]

There exists a graph G of size 2% for which Chre.(G) = {Xo, N1 }.
By Martin's Axiom, one cannot hope to get such G of size < 2%,
Corollary (Hajnal-Komjath, 1988)
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Distributive and closed forcing
Theorem (Shelah, 1980's)

Every nonspecial Aronszajn tree can be made special by means of
a o-distributive forcing of size .
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Distributive and closed forcing

Theorem (Shelah, 1980's)

Every nonspecial Aronszajn tree can be made special by means of
a o-distributive forcing of size .

Corollary
¢ entails a graph G of size N1, Chr,_aireny-cc(G) = {No, N1}

Theorem [Rin1]

KM entails a graph G of size AT, Chry gaire x++-cc(G) 2 {Ro, AT}
We conjecture that moreover, Chry gaire x++-cc(G) = {Ro, AT}
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Distributive and closed forcing

Question
What about Chrp(G) = {\,A1}?
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Distributive and closed forcing
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Distributive and closed forcing

Corollary [Rinl]
KM entails a graph G of size AT, Chry gaie x++-cc(G) = {\, AT}

Proposition [Rin3]

Assume GCH.

For every regular cardinal )\, there exists a graph G of size AT,
such that Chr(_).directed-closed, A +-cc(G) = {A, AT}

Proposition [Rin3]

For every measurable cardinal A, there exists a graph G of size 2\
such that Chr().directed-closed, A +-cc(G) = {A, AT}

New rule: no cheating allowed!

Suppose that a graph (G, E) of size A\ > k satisfies
Chrp(G, E) = {k,\}. Maybe one is cheating somehow, and in fact
Chr(G', E) = & for some key subset G’ C G?
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No cheating

Definition
Say that a graph (G, E) has everywhere chromatic number ), if
Chr(G',E) = X for all G’ C G with |G'| = |G|.
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No cheating

Proposition [Rin2]

If (f, | @ < A) is a <*-increasing and unbounded sequence of reals
“w, then there exists a graph G of size and everywhere chromatic
number A, such that Ry € Chre(G).

Definition
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17/21



No cheating

Proposition [Rin2]

If (f, | @ < A) is a <*-increasing and unbounded sequence of reals
“w, then there exists a graph G of size and everywhere chromatic
number A, such that Ry € Chr(G).

To which \'s do the proposition apply? Recall Hechler's theorem:

Theorem (Hechler, 1974)

If P is a partially ordered set in which every countable subset has
an upper bound, then P can consistently be isomorphic to a cofinal
subset of (Yw, <*).
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No cheating

Proposition [Rin2]

If (f, | @ < A) is a <*-increasing and unbounded sequence of reals
“w, then there exists a graph G of size and everywhere chromatic
number A, such that Ry € Chr(G).

Another application:

Corollary [Rin2]

Suppose that Martin’s Axiom holds.
Then there exists an edge relation E C [c]?, such that for all G C ¢

¢, G|l=c¢
No + Chr(G, E) = {No lG; e

This appears to be the simplest construction of incompacntess
graphs with arbitrarily large gaps.
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Everywhere chromatic graphs from strong colorings

Definition [Rin3]
PrV(\, k) = PrY(\ kT, 2, k) asserts the existence of a coloring
c : [\]? — 2 satisfying the two:
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PrV(\, k) = PrY(\ kT, 2, k) asserts the existence of a coloring
c : [\]? — 2 satisfying the two:
1. for every A C X\ of size A, there exists a < £ in A with
c(a, B) = 0;
2. for every A C [kT]<" of size kT, consisting of pairwise
disjoint sets, there exist a, b € A with sup(a) < min(b) such
that c[a x b] = {1}.

Remark
PrY(\, k,6,0) is an unbalanced form of Shelah’s Pry(\, &, 6, o).
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Definition [Rin3]
PrV(\, k) = PrY(\ kT, 2, k) asserts the existence of a coloring
c : [\]? — 2 satisfying the two:
1. for every A C X\ of size A, there exists a < £ in A with
c(a, B) = 0;
2. for every A C [kT]<" of size kT, consisting of pairwise
disjoint sets, there exist a, b € A with sup(a) < min(b) such
that c[a x b] = {1}.

Previous incarnation

Suppose ¢ is a witness to PrU(Ng, Ni). Set a <. B iff « € 8 and
c(a,B) =0. If T = (w2, <) happens to be a tree order, then T is
an Ny-Souslin tree, without an ascent path (a-la Laver).
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PrV(\, k) = PrY(\ kT, 2, k) asserts the existence of a coloring
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1. for every A C X\ of size A, there exists a < £ in A with
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2. for every A C [kT]<" of size kT, consisting of pairwise
disjoint sets, there exist a, b € A with sup(a) < min(b) such
that c[a x b] = {1}.

Proposition [Rin3]

Assume PrV(\, k), and k = k<F < cf(\) = \.

Then there exists a graph G of size and everywhere chromatic
number )\, together with a (< k)-directed-closed, x™-cc notion of
forcing P, such that V¥ |= Chr(G) = k.
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Everywhere chromatic graphs from strong colorings

Theorem [Rin3]

GCH entails Pr¥(k*, k) for every regular cardinal k # ;.
GCH +¢ entails PrY(k*, k) for every regular cardinal .

Proposition [Rin3]

Assume PrV(\, k), and k = k<F < cf(\) = \.

Then there exists a graph G of size and everywhere chromatic
number )\, together with a (< k)-directed-closed, x™-cc notion of
forcing P, such that V¥ |= Chr(G) = k.
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Everywhere chromatic graphs from strong colorings

Theorem [Rin3]

GCH entails PrU(er, k) for every regular cardinal x # N;.
GCH +¢ entails PrY(k*, k) for every regular cardinal .

Conjecture
GCH +-PrY(R,,R;) is consistent (modulo large cardinals).
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Everywhere chromatic graphs from strong colorings

Theorem [Rin3]

GCH entails PrU(er, k) for every regular cardinal x # N;.
GCH +¢ entails PrY(k*, k) for every regular cardinal .

Wild guess

CH +-PrY(R,,R;) is equiconsistent with the existence of a
weakly-compact cardinal.

18/21



The infinitary generalization of chromatic numbers

Question

We have seen examples of graphs G with | Chrp(G)| > 1.
So, what does Chr(G) really tell us?
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The infinitary generalization of chromatic numbers

Question
We have seen examples of graphs G with | Chrp(G)| > 1.
So, what does Chr(G) really tell us?

Answer
It tells us a small part of the story. Precisely,

Chr(G) = max(Chrp(G)).

If G is finite, then Chrp(G) = {Chr(G)}, so Chrp(G) and Chr(G)
are different ways of generalizing the finitary concept, but maybe
we should have paid more attention to the former.
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Testcase: higher Aronszajn trees

Laver, Baumgartner, Devlin, Shelah-Stanley, Todorcevic, R. David,
Cummings, and more recently, Liicke, gave examples of peculiar
nonspecial Np-Aronszajn trees.
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Cummings, and more recently, Liicke, gave examples of peculiar
nonspecial Np-Aronszajn trees.

For instance, if V = L, then there exist Ny-Aronszajn trees 71, T
such that

> Chrcoflnallty preservmg( ) - {NZ}
> Chrcoflnallty preservmg( ) - {N27 Nl}

The standard chromatic number measure oversees this essential
difference between 77 and 7.

Question
What about | Chrp(G)| > 27

20/21



Testcase: higher Aronszajn trees

Laver, Baumgartner, Devlin, Shelah-Stanley, Todorcevic, R. David,
Cummings, and more recently, Liicke, gave examples of peculiar
nonspecial Np-Aronszajn trees.

For instance, if V = L, then there exist Ny-Aronszajn trees 71, T
such that

> Chrcoflnallty preservmg( ) - {NZ}
> Chrcoflnallty preservmg( ) - {N27 Nl}

The standard chromatic number measure oversees this essential
difference between 77 and 7.

Question
What about | Chrp(G)| > 37
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Testcase: higher Aronszajn trees

Laver, Baumgartner, Devlin, Shelah-Stanley, Todorcevic, R. David,
Cummings, and more recently, Liicke, gave examples of peculiar
nonspecial Np-Aronszajn trees.

For instance, if V = L, then there exist Ny-Aronszajn trees 71, T
such that

> Chrcoflnallty preservmg( ) - {NZ}
> Chrcoflnallty preservmg( ) - {N27 Nl}

The standard chromatic number measure oversees this essential
difference between 77 and 7.

Question
What about Chrp(G) infinite?
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Testcase: higher Aronszajn trees

Laver, Baumgartner, Devlin, Shelah-Stanley, Todorcevic, R. David,
Cummings, and more recently, Liicke, gave examples of peculiar
nonspecial Np-Aronszajn trees.

For instance, if V = L, then there exist Ny-Aronszajn trees 71, T
such that

> Chrcoflnallty preservmg( ) - {NZ}
> Chrcoflnallty preservmg( ) - {N27 Nl}

The standard chromatic number measure oversees this essential
difference between 77 and 7.

Question
What about Chrp(G) uncountable?
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Testcase: higher Aronszajn trees

Laver, Baumgartner, Devlin, Shelah-Stanley, Todorcevic, R. David,
Cummings, and more recently, Liicke, gave examples of peculiar
nonspecial Np-Aronszajn trees.

For instance, if V = L, then there exist Ny-Aronszajn trees 71, T
such that

> Chrcoflnallty preservmg( ) - {NZ}
> Chrcoflnallty preservmg( ) - {N27 Nl}

The standard chromatic number measure oversees this essential
difference between 77 and 7.

Question
What about | Chrp(G)| = fixed-point of the R-function?
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Realizable sets

Main Theorem [Rin3]

Suppose that V = L and ¢ is the least to satisfy ¢ = N,.
Then for every infinite cardinal < Ny, there exists a graph G of

size p such that:

Chrcofinality-preserving(g) = {N()a va NZ: s ,,u}.
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Realizable sets

Main Theorem [Rin3]

Suppose that V = L and ¢ is the least to satisfy ¢ = N,.
Then for every infinite cardinal < Ny, there exists a graph G of
size p such that:

Chreofinality-preserving(G) = {k < | & infinite cardinal}.

Conjecture

By a more careful construction of [{] \-sequences in L, the
restriction “u < Ny" in the above theorem may be waived.
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Realizable sets

Main Theorem [Rin3]

Suppose that V = L and ¢ is the least to satisfy ¢ = N,.
Then for every infinite cardinal < Ny, there exists a graph G of
size p such that:

Chreofinality-preserving(G) = {k < | & infinite cardinal}.

Proposed project

Characterize all sets K of cardinals for which there exists a graph G
with Chrcoﬁnality-preserving(g) =K.

Basic question
Is Chreofinality-preserving (G) provably/consistently a closed set?
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