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Motivating Graph Theory

Suppose that you are responsible for scheduling times for lectures
in a university. You want to make sure that any two lectures with a
common student occur at different times to avoid a conflict.

Let G be the set of lectures. Define a symmetric binary relation E
on G , so that distinct lectures a and b are E -related iff there is a
student that is enrolled in both a and b.

Let T denote the set of all possible timeslots. Our goal, then, is to
find a mapping χ : G → T so that χ(a) 6= χ(b) whenever aEb.
To save resources, we may also want to minimize | Im(χ)|.
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Graphs and chromatic numbers

Definition
A graph is a structure G = (G ,E ) with
E ⊆ [G ]2 := {{a, b} | a, b ∈ G , a 6= b}.

Definition
A coloring χ : G → κ is E -chromatic if aEb entails χ(a) 6= χ(b).

Definition
Chr(G ,E ) is the least (finite or infinite) cardinal κ for which there
exists an E -chromatic coloring χ : G → κ.
Equivalently, it is the least cardinal κ such that G =

⋃
i<κ Ai ,

where Ai is E -independent for each i < κ.
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An example

Recall that an ω1-tree, T = (T ,C), is said to be special if there
exists an order-preserving map from (T ,C) to the rationals (Q, <).

Proposition

Consider its comparability graph GT = (T ,Sym(C)), where

Sym(C) := {{a, b} ∈ [T ]2 | aC b or b C a}.

Then T is special iff T is the countable union of antichains iff
Chr(GT ) = ℵ0.

5 / 21



An example

Recall that an ω1-tree, T = (T ,C), is said to be special if there
exists an order-preserving map from (T ,C) to the rationals (Q, <).

Proposition

Consider its comparability graph GT = (T ,Sym(C)), where

Sym(C) := {{a, b} ∈ [T ]2 | aC b or b C a}.

Then T is special iff T is the countable union of antichains iff
Chr(GT ) = ℵ0.

5 / 21



An example

Recall that an ω1-tree, T = (T ,C), is said to be special if there
exists an order-preserving map from (T ,C) to the rationals (Q, <).

Proposition

Consider its comparability graph GT = (T ,Sym(C)), where

Sym(C) := {{a, b} ∈ [T ]2 | aC b or b C a}.

Then T is special iff T is the countable union of antichains iff
Chr(GT ) = ℵ0.

5 / 21



An example (cont.)

If T = (ω1,C) is a Souslin tree, then it cannot be the union of
countably many antichains. So, Chr(GT ) = ℵ1.
However:

Theorem (Baumgartner-Malitz-Reinhardt, 1970)

There is a ccc notion of forcing, P, such that P Chr(GT ) = ℵ0.

Theorem (Shelah, 1980’s)

There is a σ-distributive notion of forcing (of size c), Q, such that
Q Chr(GT ) = ℵ0.
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Hedetniemi’s conjecture
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The tensor product of graphs

Definition
Given graphs G = (G ,E ),H = (H,F ), let
G ×H := (G × H,E ∗ F ), where:

I G × H := {(g , h) | g ∈ G , h ∈ H};
I E ∗ F = {{(g0, h0), (g1, h1)} | g0Eg1 & h0Fh1}.
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For an E -chromatic coloring χ : G → κ, define a coloring χ⊗H :
G × H → κ by letting χ⊗H(g , h) := χ(g) for all (g , h) ∈ G × H.
Then χ⊗H is E ∗ F -chromatic, and hence Chr(G ×H) ≤ Chr(G).
By symmetry, Chr(G ×H) ≤ Chr(H). Thus,

Chr(G ×H) ≤ min{Chr(G),Chr(H)}.
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Hedetniemi’s conjecture

Conjecture (Hedetniemi, 1966)

For every pair of (finite) graphs G,H:

Chr(G ×H) = min{Chr(G),Chr(H)}.

Not only that the above conjecture is still standing, but even the
following Ramsey-type consequence of it is still unknown to hold.

Weak Hedetniemi Conjecture

For every positive integer k , there exists an integer ϕ(k), such that
if Chr(G) = Chr(H) = ϕ(k), then Chr(G × H) ≥ k.

Remarks

1. Hedetniemi’s conjecture is equivalent to “ϕ(k) = k for all
positive integer k”;

2. Hedetniemi (1966) proved ϕ(k) = k for all k ∈ {1, 2, 3};
3. El-Zahar and Sauer (1985) proved that ϕ(4) = 4.
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The infinite counterpart

Theorem (Hajnal, 1985)

For every infinite cardinal κ, there exist graphs G,H such that

I Chr(G) = Chr(H) = κ+;

I Chr(G ×H) = κ.

This shows that a gap 1 is possible. In his paper, Hajnal asked
about the possibility of realizing an infinite gap, but the best
known result is that of gap 2:

Theorem (Soukup, 1988)

It is consistent with ZFC + GCH that there exist graphs G,H of
size and chromatic number ℵ2 such that Chr(G ×H) = ℵ0.
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Hajnal’s question and the weak conjecture

Hajnal’s question (1985)

Is it consistent with ZFC+GCH that there are graphs G,H such
that Chr(G) = Chr(H) ≥ ℵω, while Chr(G ×H) = ℵn?

Infinite Weak Hedetniemi Conjecture

For every infinite cardinal κ, there exists a cardinal ϕ(κ), such that
if Chr(G) = Chr(H) = ϕ(κ), then Chr(G × H) ≥ κ.

11 / 21



Hajnal’s question and the weak conjecture

Hajnal’s question (1985)

Is it consistent with ZFC+GCH that there are graphs G,H such
that Chr(G) = Chr(H) ≥ ℵω, while Chr(G ×H) = ℵn?

Infinite Weak Hedetniemi Conjecture

For every infinite cardinal κ, there exists a cardinal ϕ(κ), such that
if Chr(G) = Chr(H) = ϕ(κ), then Chr(G × H) ≥ κ.

11 / 21



Hajnal’s question and the weak conjecture

Hajnal’s question (1985)

Is it consistent with ZFC+GCH that there are graphs G,H such
that Chr(G) = Chr(H) ≥ ℵω, while Chr(G ×H) = ℵn?

Infinite Weak Hedetniemi Conjecture

For every infinite cardinal κ, there exists a cardinal ϕ(κ), such that
if Chr(G) = Chr(H) = ϕ(κ), then Chr(G × H) ≥ κ.

Observation (building on Hajnal)

If there exists a proper class of strongly-compact cardinals, then
the Infinite Weak Hedetniemi Conjecture holds.
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Hajnal’s question and the weak conjecture

Hajnal’s question (1985)

Is it consistent with ZFC+GCH that there are graphs G,H such
that Chr(G) = Chr(H) ≥ ℵω, while Chr(G ×H) = ℵn?

Infinite Weak Hedetniemi Conjecture

For every infinite cardinal κ, there exists a cardinal ϕ(κ), such that
if Chr(G) = Chr(H) = ϕ(κ), then Chr(G × H) ≥ κ.

Theorem [Rin1]

Suppose that V = L.
For every infinite cardinal λ, there exist graphs G,H such that
Chr(G) = Chr(H) > λ, while Chr(G ×H) = ℵ0.

11 / 21



The main ingredient of the solution

Theorem
If ♦ λ holds, then there exist graphs G0 = (G0,E0),G1 = (G1,E1)
of size λ+ and (< λ+)-distributive notions of forcing P0,P1 s.t.:

I V P0 |= Chr(G0) = ω,Chr(G1) = λ+;

I V P1 |= Chr(G0) = λ+,Chr(G1) = ω.
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The main ingredient of the solution (cont.)

Claim
Chr(H0 × H1,F0 ∗ F1) = ℵ0.

Proof.
Define c : H0 × H1 → ω × 2, by letting c(χ0, χ1) = (χ0(αχ1), 0) if
αχ0 > αχ1 , and c(χ0, χ1) = (χ1(αχ0), 1), otherwise.
Towards a contradiction, suppose c(χ0, χ1) = c(χ′0, χ

′
1) = (n, i),

while {(χ0, χ1), (χ′0, χ
′
1)} ∈ F0 ∗ F1. Say, i = 0. As {χ0, χ

′
0} ∈ F0,

χ := χ0 ∪ χ′0 is an E1-chromatic coloring, but then
χ(αχ1) = n = χ(αχ′

1
), contradicting that {αχ1 , αχ′

1
} ∈ E1.
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The spectrum of chromatic numbers

Disclaimer: This is work in progress. At present, we have more
questions than answers!
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The spectrum of chromatic numbers

Definition
For a graph G, and a class of cardinals-preserving notions of
forcing P, let

ChrP(G) := {κ | exists P ∈ P with V P |= Chr(G) = κ}.
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Distributive and closed forcing

Theorem (Shelah, 1980’s)

Every nonspecial Aronszajn tree can be made special by means of
a σ-distributive forcing of size c.
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Theorem [Rin1]

♦ λ entails a graph G of size λ+, Chrλ-Baire,λ++-cc(G) ⊇ {ℵ0, λ
+}.

We conjecture that moreover, Chrλ-Baire,λ++-cc(G) = {ℵ0, λ
+}.
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Distributive and closed forcing

Corollary [Rin1]

♦ λ entails a graph G of size λ+, Chrλ-Baire,λ++-cc(G) = {λ, λ+}.

Proposition [Rin3]

Assume GCH.
For every regular cardinal λ, there exists a graph G of size λ+,
such that Chr(<λ)-directed-closed,λ+-cc(G) = {λ, λ+}.

Proposition [Rin3]

For every measurable cardinal λ, there exists a graph G of size 2λ,
such that Chr(<λ)-directed-closed,λ+-cc(G) = {λ, λ+}.

New rule: no cheating allowed!

Suppose that a graph (G ,E ) of size λ > κ satisfies
ChrP(G ,E ) = {κ, λ}. Maybe one is cheating somehow, and in fact
Chr(G ′,E ) = κ for some key subset G ′ ⊆ G ?
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No cheating

Definition
Say that a graph (G ,E ) has everywhere chromatic number λ, if
Chr(G ′,E ) = λ for all G ′ ⊆ G with |G ′| = |G |.
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No cheating

Proposition [Rin2]

If 〈fα | α < λ〉 is a <∗-increasing and unbounded sequence of reals
ωω, then there exists a graph G of size and everywhere chromatic
number λ, such that ℵ0 ∈ Chrccc(G).

Definition
Say that a graph (G ,E ) has everywhere chromatic number λ, if
Chr(G ′,E ) = λ for all G ′ ⊆ G with |G ′| = |G |.
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No cheating

Proposition [Rin2]

If 〈fα | α < λ〉 is a <∗-increasing and unbounded sequence of reals
ωω, then there exists a graph G of size and everywhere chromatic
number λ, such that ℵ0 ∈ Chrccc(G).

To which λ’s do the proposition apply? Recall Hechler’s theorem:

Theorem (Hechler, 1974)

If P is a partially ordered set in which every countable subset has
an upper bound, then P can consistently be isomorphic to a cofinal
subset of 〈ωω,<∗〉.
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No cheating

Proposition [Rin2]

If 〈fα | α < λ〉 is a <∗-increasing and unbounded sequence of reals
ωω, then there exists a graph G of size and everywhere chromatic
number λ, such that ℵ0 ∈ Chrccc(G).

Another application:

Corollary [Rin2]

Suppose that Martin’s Axiom holds.
Then there exists an edge relation E ⊆ [c]2, such that for all G ⊆ c:

ℵ0 + Chr(G ,E ) =

{
c, |G | = c

ℵ0, |G | < c
.

This appears to be the simplest construction of incompacntess
graphs with arbitrarily large gaps.
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Everywhere chromatic graphs from strong colorings

Definition [Rin3]

PrU(λ, κ) = PrU(λ, κ+, 2, κ) asserts the existence of a coloring
c : [λ]2 → 2 satisfying the two:
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c : [λ]2 → 2 satisfying the two:

1. for every A ⊆ λ of size λ, there exists α < β in A with
c(α, β) = 0;

2. for every A ⊆ [κ+]<κ of size κ+, consisting of pairwise
disjoint sets, there exist a, b ∈ A with sup(a) < min(b) such
that c[a× b] = {1}.

Remark
PrU(λ, κ, θ, σ) is an unbalanced form of Shelah’s Pr1(λ, κ, θ, σ).
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Suppose c is a witness to PrU(ℵ2,ℵ1). Set α <c β iff α ∈ β and
c(α, β) = 0.
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1. for every A ⊆ λ of size λ, there exists α < β in A with
c(α, β) = 0;

2. for every A ⊆ [κ+]<κ of size κ+, consisting of pairwise
disjoint sets, there exist a, b ∈ A with sup(a) < min(b) such
that c[a× b] = {1}.

Previous incarnation
Suppose c is a witness to PrU(ℵ2,ℵ1). Set α <c β iff α ∈ β and
c(α, β) = 0. If T = (ω2, <c) happens to be a tree order, then T is
an ℵ2-Souslin tree, without an ascent path (à-la Laver).
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Everywhere chromatic graphs from strong colorings

Theorem [Rin3]

GCH entails PrU(κ+, κ) for every regular cardinal κ 6= ℵ1.
GCH +♦ entails PrU(κ+, κ) for every regular cardinal κ.

Conjecture

GCH +¬PrU(ℵ2,ℵ1) is consistent (modulo large cardinals).
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Everywhere chromatic graphs from strong colorings

Theorem [Rin3]

GCH entails PrU(κ+, κ) for every regular cardinal κ 6= ℵ1.
GCH +♦ entails PrU(κ+, κ) for every regular cardinal κ.

Wild guess

CH +¬PrU(ℵ2,ℵ1) is equiconsistent with the existence of a
weakly-compact cardinal.
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The infinitary generalization of chromatic numbers

Question
We have seen examples of graphs G with |ChrP(G)| > 1.
So, what does Chr(G) really tell us?

Answer
It tells us a small part of the story. Precisely,

Chr(G) = max(ChrP(G)).

If G is finite, then ChrP(G) = {Chr(G)}, so ChrP(G) and Chr(G)
are different ways of generalizing the finitary concept, but maybe
we should have paid more attention to the former.
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Testcase: higher Aronszajn trees

Laver, Baumgartner, Devlin, Shelah-Stanley, Todorcevic, R. David,
Cummings, and more recently, Lücke, gave examples of peculiar
nonspecial ℵ2-Aronszajn trees.

For instance, if V = L, then there exist ℵ2-Aronszajn trees T1, T2

such that

I Chrcofinality-preserving(GT1) = {ℵ2};
I Chrcofinality-preserving(GT2) = {ℵ2,ℵ1}.

The standard chromatic number measure oversees this essential
difference between T1 and T2.
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What about |ChrP(G)| > 2?
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The standard chromatic number measure oversees this essential
difference between T1 and T2.

Question
What about |ChrP(G)| > 3?
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The standard chromatic number measure oversees this essential
difference between T1 and T2.

Question
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Testcase: higher Aronszajn trees

Laver, Baumgartner, Devlin, Shelah-Stanley, Todorcevic, R. David,
Cummings, and more recently, Lücke, gave examples of peculiar
nonspecial ℵ2-Aronszajn trees.

For instance, if V = L, then there exist ℵ2-Aronszajn trees T1, T2

such that

I Chrcofinality-preserving(GT1) = {ℵ2};
I Chrcofinality-preserving(GT2) = {ℵ2,ℵ1}.

The standard chromatic number measure oversees this essential
difference between T1 and T2.

Question
What about |ChrP(G)| = fixed-point of the ℵ-function?
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Realizable sets

Main Theorem [Rin3]

Suppose that V = L and φ is the least to satisfy φ = ℵφ.
Then for every infinite cardinal µ < ℵφ, there exists a graph G of
size µ such that:

Chrcofinality-preserving(G) = {ℵ0,ℵ1,ℵ2, . . . , µ}.
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Realizable sets

Main Theorem [Rin3]

Suppose that V = L and φ is the least to satisfy φ = ℵφ.
Then for every infinite cardinal µ < ℵφ, there exists a graph G of
size µ such that:

Chrcofinality-preserving(G) = {κ ≤ µ | κ infinite cardinal}.

Conjecture

By a more careful construction of ♦ λ-sequences in L, the
restriction “µ < ℵφ” in the above theorem may be waived.
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Realizable sets

Main Theorem [Rin3]

Suppose that V = L and φ is the least to satisfy φ = ℵφ.
Then for every infinite cardinal µ < ℵφ, there exists a graph G of
size µ such that:

Chrcofinality-preserving(G) = {κ ≤ µ | κ infinite cardinal}.

Proposed project

Characterize all sets K of cardinals for which there exists a graph G
with Chrcofinality-preserving(G) = K.
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Main Theorem [Rin3]

Suppose that V = L and φ is the least to satisfy φ = ℵφ.
Then for every infinite cardinal µ < ℵφ, there exists a graph G of
size µ such that:

Chrcofinality-preserving(G) = {κ ≤ µ | κ infinite cardinal}.

Proposed project

Characterize all sets K of cardinals for which there exists a graph G
with Chrcofinality-preserving(G) = K.

Basic question

Is Chrcofinality-preserving(G) provably/consistently a closed set?
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