Same Graph, Different Universe

INFTY final conference
University of Bonn
4-March-2014

Assaf Rinot
Bar-Ilan University, Israel

Partial bibliography

This talk will center around the following works:
[Rin1] Hedetniemi's conjecture for uncountable graphs, to appear in J. Eur. Math. Soc.
[Rin2] Incompactness from Martin's Axiom, submitted to the Baumgartner memorial issue.
[Rin3] Same Graph, Different Universe, work in progress.

Motivating Graph Theory

Suppose that you are responsible for scheduling times for lectures in a university. You want to make sure that any two lectures with a common student occur at different times to avoid a conflict.

Motivating Graph Theory

Suppose that you are responsible for scheduling times for lectures in a university. You want to make sure that any two lectures with a common student occur at different times to avoid a conflict.

Let G be the set of lectures. Define a symmetric binary relation E on G, so that distinct lectures a and b are E-related iff there is a student that is enrolled in both a and b.

Motivating Graph Theory

Suppose that you are responsible for scheduling times for lectures in a university. You want to make sure that any two lectures with a common student occur at different times to avoid a conflict.

Let G be the set of lectures. Define a symmetric binary relation E on G, so that distinct lectures a and b are E-related iff there is a student that is enrolled in both a and b.

Let T denote the set of all possible timeslots. Our goal, then, is to find a mapping $\chi: G \rightarrow T$ so that $\chi(a) \neq \chi(b)$ whenever $a E b$.

Motivating Graph Theory

Suppose that you are responsible for scheduling times for lectures in a university. You want to make sure that any two lectures with a common student occur at different times to avoid a conflict.

Let G be the set of lectures. Define a symmetric binary relation E on G, so that distinct lectures a and b are E-related iff there is a student that is enrolled in both a and b.

Let T denote the set of all possible timeslots. Our goal, then, is to find a mapping $\chi: G \rightarrow T$ so that $\chi(a) \neq \chi(b)$ whenever $a E b$. To save resources, we may also want to minimize $|\operatorname{Im}(\chi)|$.

Graphs and chromatic numbers

Definition
A graph is a structure $\mathcal{G}=(G, E)$ with
$E \subseteq[G]^{2}:=\{\{a, b\} \mid a, b \in G, a \neq b\}$.

Graphs and chromatic numbers

Definition

A graph is a structure $\mathcal{G}=(G, E)$ with
$E \subseteq[G]^{2}:=\{\{a, b\} \mid a, b \in G, a \neq b\}$.
Definition
A coloring $\chi: G \rightarrow \kappa$ is $\underline{E \text {-chromatic }}$ if aEb entails $\chi(a) \neq \chi(b)$.
Definition
$\operatorname{Chr}(G, E)$ is the least (finite or infinite) cardinal κ for which there exists an E-chromatic coloring $\chi: G \rightarrow \kappa$.

Graphs and chromatic numbers

Definition

A graph is a structure $\mathcal{G}=(G, E)$ with
$E \subseteq[G]^{2}:=\{\{a, b\} \mid a, b \in G, a \neq b\}$.
Definition
A coloring $\chi: G \rightarrow \kappa$ is E-chromatic if aEb entails $\chi(a) \neq \chi(b)$.
Definition
$\operatorname{Chr}(G, E)$ is the least (finite or infinite) cardinal κ for which there exists an E-chromatic coloring $\chi: G \rightarrow \kappa$.
Equivalently, it is the least cardinal κ such that $G=\bigcup_{i<\kappa} A_{i}$, where A_{i} is E-independent for each $i<\kappa$.

An example

Recall that an ω_{1}-tree, $\mathcal{T}=(T, \triangleleft)$, is said to be special if there exists an order-preserving map from (T, \triangleleft) to the rationals $(\mathbb{Q},<)$.

An example

Recall that an ω_{1}-tree, $\mathcal{T}=(T, \triangleleft)$, is said to be special if there exists an order-preserving map from (T, \triangleleft) to the rationals $(\mathbb{Q},<)$.

Proposition
Consider its comparability graph $\mathcal{G}_{\mathcal{T}}=(T, \operatorname{Sym}(\triangleleft))$, where

$$
\operatorname{Sym}(\triangleleft):=\left\{\{a, b\} \in[T]^{2} \mid a \triangleleft b \text { or } b \triangleleft a\right\} .
$$

An example

Recall that an ω_{1}-tree, $\mathcal{T}=(T, \triangleleft)$, is said to be special if there exists an order-preserving map from (T, \triangleleft) to the rationals $(\mathbb{Q},<)$.

Proposition
Consider its comparability graph $\mathcal{G}_{\mathcal{T}}=(T, \operatorname{Sym}(\triangleleft))$, where

$$
\operatorname{Sym}(\triangleleft):=\left\{\{a, b\} \in[T]^{2} \mid a \triangleleft b \text { or } b \triangleleft a\right\} .
$$

Then \mathcal{T} is special iff \mathcal{T} is the countable union of antichains iff $\operatorname{Chr}\left(\mathcal{G}_{\mathcal{T}}\right)=\aleph_{0}$.

An example (cont.)

If $\mathcal{T}=\left(\omega_{1}, \triangleleft\right)$ is a Souslin tree, then it cannot be the union of countably many antichains. So, $\operatorname{Chr}\left(\mathcal{G}_{\mathcal{T}}\right)=\aleph_{1}$. However:

An example (cont.)

If $\mathcal{T}=\left(\omega_{1}, \triangleleft\right)$ is a Souslin tree, then it cannot be the union of countably many antichains. So, $\operatorname{Chr}\left(\mathcal{G}_{\mathcal{T}}\right)=\aleph_{1}$. However:

Theorem (Baumgartner-Malitz-Reinhardt, 1970)
There is a ccc notion of forcing, \mathbb{P}, such that $\Vdash_{\mathbb{P}} \operatorname{Chr}\left(\mathcal{G}_{\mathcal{T}}\right)=\aleph_{0}$.
Theorem (Shelah, 1980's)
There is a σ-distributive notion of forcing (of size \mathfrak{c}), \mathbb{Q}, such that $\vdash_{\mathbb{Q}} \operatorname{Chr}\left(\mathcal{G}_{\mathcal{T}}\right)=\aleph_{0}$.

Hedetniemi's conjecture

The tensor product of graphs

Definition
Given graphs $\mathcal{G}=(G, E), \mathcal{H}=(H, F)$, let $\mathcal{G} \times \mathcal{H}:=(G \times H, E * F)$, where:

- $G \times H:=\{(g, h) \mid g \in G, h \in H\}$;
- $E * F=\left\{\left\{\left(g_{0}, h_{0}\right),\left(g_{1}, h_{1}\right)\right\} \mid g_{0} E g_{1} \& h_{0} F h_{1}\right\}$.

\mathcal{G}

\mathcal{H}

$\mathcal{G} \times \mathcal{H}$

The tensor product of graphs

Definition

Given graphs $\mathcal{G}=(G, E), \mathcal{H}=(H, F)$, let
$\mathcal{G} \times \mathcal{H}:=(G \times H, E * F)$, where:

- $G \times H:=\{(g, h) \mid g \in G, h \in H\}$;
- $E * F=\left\{\left\{\left(g_{0}, h_{0}\right),\left(g_{1}, h_{1}\right)\right\} \mid g_{0} E g_{1} \& h_{0} F h_{1}\right\}$.

For an E-chromatic coloring $\chi: G \rightarrow \kappa$, define a coloring $\chi^{\otimes H}$:
$G \times H \rightarrow \kappa$ by letting $\chi^{\otimes H}(g, h):=\chi(g)$ for all $(g, h) \in G \times H$.

The tensor product of graphs

Definition

Given graphs $\mathcal{G}=(G, E), \mathcal{H}=(H, F)$, let
$\mathcal{G} \times \mathcal{H}:=(G \times H, E * F)$, where:

- $G \times H:=\{(g, h) \mid g \in G, h \in H\}$;
- $E * F=\left\{\left\{\left(g_{0}, h_{0}\right),\left(g_{1}, h_{1}\right)\right\} \mid g_{0} E g_{1} \& h_{0} F h_{1}\right\}$.

For an E-chromatic coloring $\chi: G \rightarrow \kappa$, define a coloring $\chi^{\otimes H}$: $G \times H \rightarrow \kappa$ by letting $\chi^{\otimes H}(g, h):=\chi(g)$ for all $(g, h) \in G \times H$. Then $\chi^{\otimes H}$ is $E * F$-chromatic, and hence $\operatorname{Chr}(\mathcal{G} \times \mathcal{H}) \leq \operatorname{Chr}(\mathcal{G})$.

The tensor product of graphs

Definition

Given graphs $\mathcal{G}=(G, E), \mathcal{H}=(H, F)$, let
$\mathcal{G} \times \mathcal{H}:=(G \times H, E * F)$, where:

- $G \times H:=\{(g, h) \mid g \in G, h \in H\}$;
- $E * F=\left\{\left\{\left(g_{0}, h_{0}\right),\left(g_{1}, h_{1}\right)\right\} \mid g_{0} E g_{1} \& h_{0} F h_{1}\right\}$.

For an E-chromatic coloring $\chi: G \rightarrow \kappa$, define a coloring $\chi^{\otimes H}$: $G \times H \rightarrow \kappa$ by letting $\chi^{\otimes H}(g, h):=\chi(g)$ for all $(g, h) \in G \times H$. Then $\chi^{\otimes H}$ is $E * F$-chromatic, and hence $\operatorname{Chr}(\mathcal{G} \times \mathcal{H}) \leq \operatorname{Chr}(\mathcal{G})$. By symmetry, $\operatorname{Chr}(\mathcal{G} \times \mathcal{H}) \leq \operatorname{Chr}(\mathcal{H})$. Thus,

$$
\operatorname{Chr}(\mathcal{G} \times \mathcal{H}) \leq \min \{\operatorname{Chr}(\mathcal{G}), \operatorname{Chr}(\mathcal{H})\}
$$

Hedetniemi's conjecture

Conjecture (Hedetniemi, 1966)
For every pair of (finite) graphs \mathcal{G}, \mathcal{H} :

$$
\operatorname{Chr}(\mathcal{G} \times \mathcal{H})=\min \{\operatorname{Chr}(\mathcal{G}), \operatorname{Chr}(\mathcal{H})\}
$$

Hedetniemi's conjecture

Conjecture (Hedetniemi, 1966)
For every pair of (finite) graphs \mathcal{G}, \mathcal{H} :

$$
\operatorname{Chr}(\mathcal{G} \times \mathcal{H})=\min \{\operatorname{Chr}(\mathcal{G}), \operatorname{Chr}(\mathcal{H})\}
$$

Not only that the above conjecture is still standing, but even the following Ramsey-type consequence of it is still unknown to hold.
Weak Hedetniemi Conjecture
For every positive integer k, there exists an integer $\varphi(k)$, such that if $\operatorname{Chr}(\mathcal{G})=\operatorname{Chr}(\mathcal{H})=\varphi(k)$, then $\operatorname{Chr}(\mathcal{G} \times H) \geq k$.

Hedetniemi's conjecture

Conjecture (Hedetniemi, 1966)

For every pair of (finite) graphs \mathcal{G}, \mathcal{H} :

$$
\operatorname{Chr}(\mathcal{G} \times \mathcal{H})=\min \{\operatorname{Chr}(\mathcal{G}), \operatorname{Chr}(\mathcal{H})\} .
$$

Not only that the above conjecture is still standing, but even the following Ramsey-type consequence of it is still unknown to hold.
Weak Hedetniemi Conjecture
For every positive integer k, there exists an integer $\varphi(k)$, such that if $\operatorname{Chr}(\mathcal{G})=\operatorname{Chr}(\mathcal{H})=\varphi(k)$, then $\operatorname{Chr}(\mathcal{G} \times H) \geq k$.
Remarks

1. Hedetniemi's conjecture is equivalent to " $\varphi(k)=k$ for all positive integer $k^{\prime \prime}$;
2. Hedetniemi (1966) proved $\varphi(k)=k$ for all $k \in\{1,2,3\}$;
3. El-Zahar and Sauer (1985) proved that $\varphi(4)=4$.

The infinite counterpart

Theorem (Hajnal, 1985)
For every infinite cardinal κ, there exist graphs \mathcal{G}, \mathcal{H} such that

- $\operatorname{Chr}(\mathcal{G})=\operatorname{Chr}(\mathcal{H})=\kappa^{+}$;
- $\operatorname{Chr}(\mathcal{G} \times \mathcal{H})=\kappa$.

The infinite counterpart

Theorem (Hajnal, 1985)
For every infinite cardinal κ, there exist graphs \mathcal{G}, \mathcal{H} such that

- $\operatorname{Chr}(\mathcal{G})=\operatorname{Chr}(\mathcal{H})=\kappa^{+} ;$
- $\operatorname{Chr}(\mathcal{G} \times \mathcal{H})=\kappa$.

This shows that a gap 1 is possible. In his paper, Hajnal asked about the possibility of realizing an infinite gap, but the best known result is that of gap 2 :

The infinite counterpart

Theorem (Hajnal, 1985)
For every infinite cardinal κ, there exist graphs \mathcal{G}, \mathcal{H} such that

- $\operatorname{Chr}(\mathcal{G})=\operatorname{Chr}(\mathcal{H})=\kappa^{+} ;$
- $\operatorname{Chr}(\mathcal{G} \times \mathcal{H})=\kappa$.

This shows that a gap 1 is possible. In his paper, Hajnal asked about the possibility of realizing an infinite gap, but the best known result is that of gap 2 :

Theorem (Soukup, 1988)
It is consistent with ZFC + GCH that there exist graphs \mathcal{G}, \mathcal{H} of size and chromatic number \aleph_{2} such that $\operatorname{Chr}(\mathcal{G} \times \mathcal{H})=\aleph_{0}$.

Hajnal's question and the weak conjecture

Hajnal's question (1985)
Is it consistent with ZFC + GCH that there are graphs \mathcal{G}, \mathcal{H} such that $\operatorname{Chr}(\mathcal{G})=\operatorname{Chr}(\mathcal{H}) \geq \aleph_{\omega}$, while $\operatorname{Chr}(\mathcal{G} \times \mathcal{H})=\aleph_{n}$?

Hajnal's question and the weak conjecture

Hajnal's question (1985)
Is it consistent with ZFC +GCH that there are graphs \mathcal{G}, \mathcal{H} such that $\operatorname{Chr}(\mathcal{G})=\operatorname{Chr}(\mathcal{H}) \geq \aleph_{\omega}$, while $\operatorname{Chr}(\mathcal{G} \times \mathcal{H})=\aleph_{n}$?

Infinite Weak Hedetniemi Conjecture
For every infinite cardinal κ, there exists a cardinal $\varphi(\kappa)$, such that if $\operatorname{Chr}(\mathcal{G})=\operatorname{Chr}(\mathcal{H})=\varphi(\kappa)$, then $\operatorname{Chr}(\mathcal{G} \times H) \geq \kappa$.

Hajnal's question and the weak conjecture

Hajnal's question (1985)
Is it consistent with ZFC +GCH that there are graphs \mathcal{G}, \mathcal{H} such that $\operatorname{Chr}(\mathcal{G})=\operatorname{Chr}(\mathcal{H}) \geq \aleph_{\omega}$, while $\operatorname{Chr}(\mathcal{G} \times \mathcal{H})=\aleph_{n}$?

Infinite Weak Hedetniemi Conjecture
For every infinite cardinal κ, there exists a cardinal $\varphi(\kappa)$, such that if $\operatorname{Chr}(\mathcal{G})=\operatorname{Chr}(\mathcal{H})=\varphi(\kappa)$, then $\operatorname{Chr}(\mathcal{G} \times H) \geq \kappa$.

Observation (building on Hajnal)
If there exists a proper class of strongly-compact cardinals, then the Infinite Weak Hedetniemi Conjecture holds.

Hajnal's question and the weak conjecture

Hajnal's question (1985)
Is it consistent with ZFC +GCH that there are graphs \mathcal{G}, \mathcal{H} such that $\operatorname{Chr}(\mathcal{G})=\operatorname{Chr}(\mathcal{H}) \geq \aleph_{\omega}$, while $\operatorname{Chr}(\mathcal{G} \times \mathcal{H})=\aleph_{n}$?

Infinite Weak Hedetniemi Conjecture
For every infinite cardinal κ, there exists a cardinal $\varphi(\kappa)$, such that if $\operatorname{Chr}(\mathcal{G})=\operatorname{Chr}(\mathcal{H})=\varphi(\kappa)$, then $\operatorname{Chr}(\mathcal{G} \times H) \geq \kappa$.

Theorem [Rin1]
Suppose that $V=L$.
For every infinite cardinal λ, there exist graphs \mathcal{G}, \mathcal{H} such that
$\operatorname{Chr}(\mathcal{G})=\operatorname{Chr}(\mathcal{H})>\lambda$, while $\operatorname{Chr}(\mathcal{G} \times \mathcal{H})=\aleph_{0}$.

The main ingredient of the solution

Theorem
If ∇_{λ} holds, then there exist graphs $\mathcal{G}_{0}=\left(G_{0}, E_{0}\right), \mathcal{G}_{1}=\left(G_{1}, E_{1}\right)$ of size λ^{+}and $\left(<\lambda^{+}\right)$-distributive notions of forcing $\mathbb{P}_{0}, \mathbb{P}_{1}$ s.t.:

- $V^{\mathbb{P}_{0}}=\operatorname{Chr}\left(\mathcal{G}_{0}\right)=\omega, \operatorname{Chr}\left(\mathcal{G}_{1}\right)=\lambda^{+}$;
- $V^{\mathbb{P}_{1}} \vDash \operatorname{Chr}\left(\mathcal{G}_{0}\right)=\lambda^{+}, \operatorname{Chr}\left(\mathcal{G}_{1}\right)=\omega$.

The main ingredient of the solution

Theorem
If ∇_{λ} holds, then there exist graphs $\mathcal{G}_{0}=\left(G_{0}, E_{0}\right), \mathcal{G}_{1}=\left(G_{1}, E_{1}\right)$ of size λ^{+}and $\left(<\lambda^{+}\right)$-distributive notions of forcing $\mathbb{P}_{0}, \mathbb{P}_{1}$ s.t.:

- $V^{\mathbb{P}_{0}}=\operatorname{Chr}\left(\mathcal{G}_{0}\right)=\omega, \operatorname{Chr}\left(\mathcal{G}_{1}\right)=\lambda^{+}$;
- $V^{\mathbb{P}_{1}} \models \operatorname{Chr}\left(\mathcal{G}_{0}\right)=\lambda^{+}, \operatorname{Chr}\left(\mathcal{G}_{1}\right)=\omega$.

Wlog, $G_{i}=\left\{\alpha<\lambda^{+} \mid(\alpha \bmod 2)=i\right\}$ for each $i<2$.

The main ingredient of the solution

Theorem
If λ_{λ} holds, then there exist graphs $\mathcal{G}_{0}=\left(G_{0}, E_{0}\right), \mathcal{G}_{1}=\left(G_{1}, E_{1}\right)$ of size λ^{+}and $\left(<\lambda^{+}\right)$-distributive notions of forcing $\mathbb{P}_{0}, \mathbb{P}_{1}$ s.t.:

- $V^{\mathbb{P}_{0}}=\operatorname{Chr}\left(\mathcal{G}_{0}\right)=\omega, \operatorname{Chr}\left(\mathcal{G}_{1}\right)=\lambda^{+} ;$
- $V^{\mathbb{P}_{1}} \models \operatorname{Chr}\left(\mathcal{G}_{0}\right)=\lambda^{+}, \operatorname{Chr}\left(\mathcal{G}_{1}\right)=\omega$.

Wlog, $G_{i}=\left\{\alpha<\lambda^{+} \mid(\alpha \bmod 2)=i\right\}$ for each $i<2$.

Now, do the following. For $i<2$, let

- $H_{i}:=\left\{\quad \chi: \alpha \rightarrow \omega \mid \alpha \in G_{i}\right.$, \};
- $F_{i}:=\left\{\left\{\chi, \chi^{\prime}\right\} \in\left[H_{i}\right]^{2} \mid\left\{\alpha_{\chi}, \alpha_{\chi^{\prime}}\right\} \in E_{i}, \quad\right\}$.

The main ingredient of the solution

Theorem
If $⿴\rangle_{\lambda}$ holds, then there exist graphs $\mathcal{G}_{0}=\left(G_{0}, E_{0}\right), \mathcal{G}_{1}=\left(G_{1}, E_{1}\right)$ of size λ^{+}and $\left(<\lambda^{+}\right)$-distributive notions of forcing $\mathbb{P}_{0}, \mathbb{P}_{1}$ s.t.:

- $V^{\mathbb{P}_{0}}=\operatorname{Chr}\left(\mathcal{G}_{0}\right)=\omega, \operatorname{Chr}\left(\mathcal{G}_{1}\right)=\lambda^{+} ;$
- $V^{\mathbb{P}_{1}} \models \operatorname{Chr}\left(\mathcal{G}_{0}\right)=\lambda^{+}, \operatorname{Chr}\left(\mathcal{G}_{1}\right)=\omega$.

Wlog, $G_{i}=\left\{\alpha<\lambda^{+} \mid(\alpha \bmod 2)=i\right\}$ for each $i<2$.

Now, do the following. For $i<2$, let

- $H_{i}:=\left\{\chi: G_{(1-i)} \cap \alpha \rightarrow \omega \mid \alpha \in G_{i}, \chi\right.$ is $E_{(1-i)}$-chromatic $\} ;$
- $F_{i}:=\left\{\left\{\chi, \chi^{\prime}\right\} \in\left[H_{i}\right]^{2} \mid\left\{\alpha_{\chi}, \alpha_{\chi^{\prime}}\right\} \in E_{i}, \quad\right\}$.

The main ingredient of the solution

Theorem
If $⿴\rangle_{\lambda}$ holds, then there exist graphs $\mathcal{G}_{0}=\left(G_{0}, E_{0}\right), \mathcal{G}_{1}=\left(G_{1}, E_{1}\right)$ of size λ^{+}and $\left(<\lambda^{+}\right)$-distributive notions of forcing $\mathbb{P}_{0}, \mathbb{P}_{1}$ s.t.:

- $V^{\mathbb{P}_{0}}=\operatorname{Chr}\left(\mathcal{G}_{0}\right)=\omega, \operatorname{Chr}\left(\mathcal{G}_{1}\right)=\lambda^{+} ;$
- $V^{\mathbb{P}_{1}} \models \operatorname{Chr}\left(\mathcal{G}_{0}\right)=\lambda^{+}, \operatorname{Chr}\left(\mathcal{G}_{1}\right)=\omega$.

Wlog, $G_{i}=\left\{\alpha<\lambda^{+} \mid(\alpha \bmod 2)=i\right\}$ for each $i<2$.

Now, do the following. For $i<2$, let

- $H_{i}:=\left\{\chi: G_{(1-i)} \cap \alpha \rightarrow \omega \mid \alpha \in G_{i}, \chi\right.$ is $E_{(1-i)}$-chromatic $\} ;$
- $F_{i}:=\left\{\left\{\chi, \chi^{\prime}\right\} \in\left[H_{i}\right]^{2} \mid\left\{\alpha_{\chi}, \alpha_{\chi^{\prime}}\right\} \in E_{i}, \chi \subseteq \chi^{\prime}\right\}$.

The main ingredient of the solution

Claim
$\operatorname{Chr}\left(H_{0}, F_{0}\right)=\lambda^{+}$and similarly, $\left.\operatorname{Chr}\left(H_{1}, F_{1}\right)=\lambda^{+}\right]$.

Now, do the following. For $i<2$, let

- $H_{i}:=\left\{\chi: G_{(1-i)} \cap \alpha \rightarrow \omega \mid \alpha \in G_{i}, \chi\right.$ is $E_{(1-i)}$-chromatic $\}$;
- $F_{i}:=\left\{\left\{\chi, \chi^{\prime}\right\} \in\left[H_{i}\right]^{2} \mid\left\{\alpha_{\chi}, \alpha_{\chi^{\prime}}\right\} \in E_{i}, \chi \subseteq \chi^{\prime}\right\}$.

The main ingredient of the solution

Claim
$\operatorname{Chr}\left(H_{0}, F_{0}\right)=\lambda^{+}$and similarly, $\left.\operatorname{Chr}\left(H_{1}, F_{1}\right)=\lambda^{+}\right]$.
Proof.
Suppose $c: H_{0} \rightarrow \lambda$ is F_{0}-chromatic.

Now, do the following. For $i<2$, let

- $H_{i}:=\left\{\chi: G_{(1-i)} \cap \alpha \rightarrow \omega \mid \alpha \in G_{i}, \chi\right.$ is $E_{(1-i)}$-chromatic $\}$;
- $F_{i}:=\left\{\left\{\chi, \chi^{\prime}\right\} \in\left[H_{i}\right]^{2} \mid\left\{\alpha_{\chi}, \alpha_{\chi^{\prime}}\right\} \in E_{i}, \chi \subseteq \chi^{\prime}\right\}$.

The main ingredient of the solution

Claim
$\operatorname{Chr}\left(H_{0}, F_{0}\right)=\lambda^{+}$[and similarly, $\left.\operatorname{Chr}\left(H_{1}, F_{1}\right)=\lambda^{+}\right]$.
Proof.
Suppose $c: H_{0} \rightarrow \lambda$ is F_{0}-chromatic. Pass to $V^{\mathbb{P}_{1}}$. Here, $\operatorname{Chr}\left(\mathcal{G}_{0}\right)=\lambda^{+}$and $\operatorname{Chr}\left(\mathcal{G}_{1}\right)=\omega$. Pick $\chi_{1}: G_{1} \rightarrow \omega$ which is E_{1}-chromatic. Then $\chi_{1} \mid \alpha \in V$ for all $\alpha<\lambda^{+}$.

Now, do the following. For $i<2$, let

- $H_{i}:=\left\{\chi: G_{(1-i)} \cap \alpha \rightarrow \omega \mid \alpha \in G_{i}, \chi\right.$ is $E_{(1-i)}$-chromatic $\} ;$
- $F_{i}:=\left\{\left\{\chi, \chi^{\prime}\right\} \in\left[H_{i}\right]^{2} \mid\left\{\alpha_{\chi}, \alpha_{\chi^{\prime}}\right\} \in E_{i}, \chi \subseteq \chi^{\prime}\right\}$.

The main ingredient of the solution

Claim
$\operatorname{Chr}\left(H_{0}, F_{0}\right)=\lambda^{+}$[and similarly, $\left.\operatorname{Chr}\left(H_{1}, F_{1}\right)=\lambda^{+}\right]$.
Proof.
Suppose $c: H_{0} \rightarrow \lambda$ is F_{0}-chromatic. Pass to $V^{\mathbb{P}_{1}}$. Here, $\operatorname{Chr}\left(\mathcal{G}_{0}\right)=\lambda^{+}$and $\operatorname{Chr}\left(\mathcal{G}_{1}\right)=\omega$. Pick $\chi_{1}: G_{1} \rightarrow \omega$ which is E_{1}-chromatic. Then $\chi_{1} \mid \alpha \in V$ for all $\alpha<\lambda^{+}$. Define $\chi_{0}: G_{0} \rightarrow \lambda$ by $\chi_{0}(\alpha):=c\left(\chi_{1} \upharpoonright \alpha\right)$. Then χ_{0} is E_{0}-chromatic. \square
Now, do the following. For $i<2$, let

- $H_{i}:=\left\{\chi: G_{(1-i)} \cap \alpha \rightarrow \omega \mid \alpha \in G_{i}, \chi\right.$ is $E_{(1-i)}$-chromatic $\}$;
- $F_{i}:=\left\{\left\{\chi, \chi^{\prime}\right\} \in\left[H_{i}\right]^{2} \mid\left\{\alpha_{\chi}, \alpha_{\chi^{\prime}}\right\} \in E_{i}, \chi \subseteq \chi^{\prime}\right\}$.

The main ingredient of the solution

Claim
$\operatorname{Chr}\left(H_{0}, F_{0}\right)=\lambda^{+}$[and similarly, $\left.\operatorname{Chr}\left(H_{1}, F_{1}\right)=\lambda^{+}\right]$.
Proof.
Suppose $c: H_{0} \rightarrow \lambda$ is F_{0}-chromatic. Pass to $V^{\mathbb{P}_{1}}$. Here, $\operatorname{Chr}\left(\mathcal{G}_{0}\right)=\lambda^{+}$and $\operatorname{Chr}\left(\mathcal{G}_{1}\right)=\omega$. Pick $\chi_{1}: G_{1} \rightarrow \omega$ which is E_{1}-chromatic. Then $\chi_{1} \mid \alpha \in V$ for all $\alpha<\lambda^{+}$. Define $\chi_{0}: G_{0} \rightarrow \lambda$ by $\chi_{0}(\alpha):=c\left(\chi_{1} \mid \alpha\right)$. Then χ_{0} is E_{0}-chromatic. \square
Now, do the following. For $i<2$, let

- $H_{i}:=\left\{\chi: G_{(1-i)} \cap \alpha \rightarrow \omega \mid \alpha \in G_{i}, \chi\right.$ is $E_{(1-i)}$-chromatic $\} ;$
- $F_{i}:=\left\{\left\{\chi, \chi^{\prime}\right\} \in\left[H_{i}\right]^{2} \mid\left\{\alpha_{\chi}, \alpha_{\chi^{\prime}}\right\} \in E_{i}, \chi \subseteq \chi^{\prime}\right\}$.

The main ingredient of the solution (cont.)

Claim
$\operatorname{Chr}\left(H_{0} \times H_{1}, F_{0} * F_{1}\right)=\aleph_{0}$.

The main ingredient of the solution (cont.)

Recall:

- $G_{i}=\left\{\alpha<\lambda^{+} \mid(\alpha \bmod 2)=i\right\} ;$
- $H_{i}:=\left\{\chi: G_{(1-i)} \cap \alpha \rightarrow \omega \mid \alpha \in G_{i}, \chi\right.$ is $E_{(1-i)}$-chromatic $\}$;
- $F_{i}:=\left\{\left\{\chi, \chi^{\prime}\right\} \in\left[H_{i}\right]^{2} \mid\left\{\alpha_{\chi}, \alpha_{\chi^{\prime}}\right\} \in E_{i}, \chi \subseteq \chi^{\prime}\right\}$.

Claim
$\operatorname{Chr}\left(H_{0} \times H_{1}, F_{0} * F_{1}\right)=\aleph_{0}$.
Proof.
Define $c: H_{0} \times H_{1} \rightarrow \omega \times 2$, by letting $c\left(\chi_{0}, \chi_{1}\right)=\left(\chi_{0}\left(\alpha_{\chi_{1}}\right), 0\right)$ if $\alpha_{\chi_{0}}>\alpha_{\chi_{1}}$, and $c\left(\chi_{0}, \chi_{1}\right)=\left(\chi_{1}\left(\alpha_{\chi_{0}}\right), 1\right)$, otherwise.

The main ingredient of the solution (cont.)

Recall:

- $G_{i}=\left\{\alpha<\lambda^{+} \mid(\alpha \bmod 2)=i\right\} ;$
- $H_{i}:=\left\{\chi: G_{(1-i)} \cap \alpha \rightarrow \omega \mid \alpha \in G_{i}, \chi\right.$ is $E_{(1-i)}$-chromatic $\}$;
- $F_{i}:=\left\{\left\{\chi, \chi^{\prime}\right\} \in\left[H_{i}\right]^{2} \mid\left\{\alpha_{\chi}, \alpha_{\chi^{\prime}}\right\} \in E_{i}, \chi \subseteq \chi^{\prime}\right\}$.

Claim
$\operatorname{Chr}\left(H_{0} \times H_{1}, F_{0} * F_{1}\right)=\aleph_{0}$.
Proof.
Define $c: H_{0} \times H_{1} \rightarrow \omega \times 2$, by letting $c\left(\chi_{0}, \chi_{1}\right)=\left(\chi_{0}\left(\alpha_{\chi_{1}}\right), 0\right)$ if $\alpha_{\chi_{0}}>\alpha_{\chi_{1}}$, and $c\left(\chi_{0}, \chi_{1}\right)=\left(\chi_{1}\left(\alpha_{\chi_{0}}\right), 1\right)$, otherwise.
Towards a contradiction, suppose $c\left(\chi_{0}, \chi_{1}\right)=c\left(\chi_{0}^{\prime}, \chi_{1}^{\prime}\right)=(n, i)$, while $\left\{\left(\chi_{0}, \chi_{1}\right),\left(\chi_{0}^{\prime}, \chi_{1}^{\prime}\right)\right\} \in F_{0} * F_{1}$.

The main ingredient of the solution (cont.)

Recall:

- $G_{i}=\left\{\alpha<\lambda^{+} \mid(\alpha \bmod 2)=i\right\} ;$
- $H_{i}:=\left\{\chi: G_{(1-i)} \cap \alpha \rightarrow \omega \mid \alpha \in G_{i}, \chi\right.$ is $E_{(1-i)}$-chromatic $\}$;
- $F_{i}:=\left\{\left\{\chi, \chi^{\prime}\right\} \in\left[H_{i}\right]^{2} \mid\left\{\alpha_{\chi}, \alpha_{\chi^{\prime}}\right\} \in E_{i}, \chi \subseteq \chi^{\prime}\right\}$.

Claim
$\operatorname{Chr}\left(H_{0} \times H_{1}, F_{0} * F_{1}\right)=\aleph_{0}$.
Proof.
Define $c: H_{0} \times H_{1} \rightarrow \omega \times 2$, by letting $c\left(\chi_{0}, \chi_{1}\right)=\left(\chi_{0}\left(\alpha_{\chi_{1}}\right), 0\right)$ if $\alpha_{\chi_{0}}>\alpha_{\chi_{1}}$, and $c\left(\chi_{0}, \chi_{1}\right)=\left(\chi_{1}\left(\alpha_{\chi_{0}}\right), 1\right)$, otherwise.
Towards a contradiction, suppose $c\left(\chi_{0}, \chi_{1}\right)=c\left(\chi_{0}^{\prime}, \chi_{1}^{\prime}\right)=(n, i)$, while $\left\{\left(\chi_{0}, \chi_{1}\right),\left(\chi_{0}^{\prime}, \chi_{1}^{\prime}\right)\right\} \in F_{0} * F_{1}$. Say, $i=0$.

The main ingredient of the solution (cont.)

Recall:

- $G_{i}=\left\{\alpha<\lambda^{+} \mid(\alpha \bmod 2)=i\right\} ;$
- $H_{i}:=\left\{\chi: G_{(1-i)} \cap \alpha \rightarrow \omega \mid \alpha \in G_{i}, \chi\right.$ is $E_{(1-i)}$-chromatic $\}$;
- $F_{i}:=\left\{\left\{\chi, \chi^{\prime}\right\} \in\left[H_{i}\right]^{2} \mid\left\{\alpha_{\chi}, \alpha_{\chi^{\prime}}\right\} \in E_{i}, \chi \subseteq \chi^{\prime}\right\}$.

Claim
$\operatorname{Chr}\left(H_{0} \times H_{1}, F_{0} * F_{1}\right)=\aleph_{0}$.
Proof.
Define $c: H_{0} \times H_{1} \rightarrow \omega \times 2$, by letting $c\left(\chi_{0}, \chi_{1}\right)=\left(\chi_{0}\left(\alpha_{\chi_{1}}\right), 0\right)$ if $\alpha_{\chi_{0}}>\alpha_{\chi_{1}}$, and $c\left(\chi_{0}, \chi_{1}\right)=\left(\chi_{1}\left(\alpha_{\chi_{0}}\right), 1\right)$, otherwise.
Towards a contradiction, suppose $c\left(\chi_{0}, \chi_{1}\right)=c\left(\chi_{0}^{\prime}, \chi_{1}^{\prime}\right)=(n, i)$, while $\left\{\left(\chi_{0}, \chi_{1}\right),\left(\chi_{0}^{\prime}, \chi_{1}^{\prime}\right)\right\} \in F_{0} * F_{1}$. Say, $i=0$. As $\left\{\chi_{0}, \chi_{0}^{\prime}\right\} \in F_{0}$, $\chi:=\chi_{0} \cup \chi_{0}^{\prime}$ is an E_{1}-chromatic coloring,

The main ingredient of the solution (cont.)

Recall:

- $G_{i}=\left\{\alpha<\lambda^{+} \mid(\alpha \bmod 2)=i\right\} ;$
- $H_{i}:=\left\{\chi: G_{(1-i)} \cap \alpha \rightarrow \omega \mid \alpha \in G_{i}, \chi\right.$ is $E_{(1-i)}$-chromatic $\}$;
- $F_{i}:=\left\{\left\{\chi, \chi^{\prime}\right\} \in\left[H_{i}\right]^{2} \mid\left\{\alpha_{\chi}, \alpha_{\chi^{\prime}}\right\} \in E_{i}, \chi \subseteq \chi^{\prime}\right\}$.

Claim
$\operatorname{Chr}\left(H_{0} \times H_{1}, F_{0} * F_{1}\right)=\aleph_{0}$.
Proof.
Define $c: H_{0} \times H_{1} \rightarrow \omega \times 2$, by letting $c\left(\chi_{0}, \chi_{1}\right)=\left(\chi_{0}\left(\alpha_{\chi_{1}}\right), 0\right)$ if $\alpha_{\chi_{0}}>\alpha_{\chi_{1}}$, and $c\left(\chi_{0}, \chi_{1}\right)=\left(\chi_{1}\left(\alpha_{\chi_{0}}\right), 1\right)$, otherwise.
Towards a contradiction, suppose $c\left(\chi_{0}, \chi_{1}\right)=c\left(\chi_{0}^{\prime}, \chi_{1}^{\prime}\right)=(n, i)$, while $\left\{\left(\chi_{0}, \chi_{1}\right),\left(\chi_{0}^{\prime}, \chi_{1}^{\prime}\right)\right\} \in F_{0} * F_{1}$. Say, $i=0$. As $\left\{\chi_{0}, \chi_{0}^{\prime}\right\} \in F_{0}$, $\chi:=\chi_{0} \cup \chi_{0}^{\prime}$ is an E_{1}-chromatic coloring, but then $\chi\left(\alpha_{\chi_{1}}\right)=n=\chi\left(\alpha_{\chi_{1}^{\prime}}\right)$, contradicting that $\left\{\alpha_{\chi_{1}}, \alpha_{\chi_{1}^{\prime}}\right\} \in E_{1}$.

The spectrum of chromatic numbers

Disclaimer: This is work in progress. At present, we have more questions than answers!

The spectrum of chromatic numbers

Definition

For a graph \mathcal{G}, and a class of cardinals-preserving notions of forcing \mathcal{P}, let
$\operatorname{Chr}_{\mathcal{P}}(\mathcal{G}):=\left\{\kappa \mid\right.$ exists $\mathbb{P} \in \mathcal{P}$ with $\left.V^{\mathbb{P}} \models \operatorname{Chr}(\mathcal{G})=\kappa\right\}$.

The spectrum of chromatic numbers

Definition

For a graph \mathcal{G}, and a class of cardinals-preserving notions of forcing \mathcal{P}, let

$$
\operatorname{Chr}_{\mathcal{P}}(\mathcal{G}):=\left\{\kappa \mid \text { exists } \mathbb{P} \in \mathcal{P} \text { with } V^{\mathbb{P}} \models \operatorname{Chr}(\mathcal{G})=\kappa\right\} .
$$

Theorem (Baumgartner-Malitz-Reinhardt, 1970)
If there exists a nonspecial Aronszajn tree, then there exists a graph \mathcal{G} of size \aleph_{1} for which $\operatorname{Chr}_{c c c}(\mathcal{G})=\left\{\aleph_{0}, \aleph_{1}\right\}$.

The spectrum of chromatic numbers

Definition

For a graph \mathcal{G}, and a class of cardinals-preserving notions of forcing \mathcal{P}, let

$$
\operatorname{Chr}_{\mathcal{P}}(\mathcal{G}):=\left\{\kappa \mid \text { exists } \mathbb{P} \in \mathcal{P} \text { with } V^{\mathbb{P}} \models \operatorname{Chr}(\mathcal{G})=\kappa\right\} .
$$

Theorem (Baumgartner-Malitz-Reinhardt, 1970)
If there exists a nonspecial Aronszajn tree, then there exists a graph \mathcal{G} of size \aleph_{1} for which $\operatorname{Chr}_{c c c}(\mathcal{G})=\left\{\aleph_{0}, \aleph_{1}\right\}$.
Theorem (Hajnal-Komjáth, 1988)
There exists a graph \mathcal{G} of size $2^{\aleph_{0}}$ and chromatic number $\geq \aleph_{1}$, such that $V^{\mathbb{P}} \mid=\operatorname{Chr}(\mathcal{G})=\aleph_{0}$, for some ccc poset \mathbb{P}.

The spectrum of chromatic numbers

Definition

For a graph \mathcal{G}, and a class of cardinals-preserving notions of forcing \mathcal{P}, let

$$
\operatorname{Chr}_{\mathcal{P}}(\mathcal{G}):=\left\{\kappa \mid \text { exists } \mathbb{P} \in \mathcal{P} \text { with } V^{\mathbb{P}} \models \operatorname{Chr}(\mathcal{G})=\kappa\right\} .
$$

Theorem (Baumgartner-Malitz-Reinhardt, 1970)

If there exists a nonspecial Aronszajn tree, then there exists a graph \mathcal{G} of size \aleph_{1} for which $\operatorname{Chr}_{c c c}(\mathcal{G})=\left\{\aleph_{0}, \aleph_{1}\right\}$.
Theorem (Hajnal-Komjáth, 1988)
There exists a graph \mathcal{G} of size $2^{\aleph_{0}}$ and chromatic number $\geq \aleph_{1}$, such that $V^{\mathbb{P}} \models \operatorname{Chr}(\mathcal{G})=\aleph_{0}$, for some ccc poset \mathbb{P}.
By Martin's Axiom, one cannot hope to get such \mathcal{G} of size $<2^{\aleph_{0}}$.

The spectrum of chromatic numbers

Definition

For a graph \mathcal{G}, and a class of cardinals-preserving notions of forcing \mathcal{P}, let

$$
\operatorname{Chr}_{\mathcal{P}}(\mathcal{G}):=\left\{\kappa \mid \text { exists } \mathbb{P} \in \mathcal{P} \text { with } V^{\mathbb{P}} \models \operatorname{Chr}(\mathcal{G})=\kappa\right\} .
$$

Corollary (Baumgartner-Malitz-Reinhardt, 1970) \diamond entails a graph \mathcal{G} of size \aleph_{1} for which $\operatorname{Chr}_{c c c}(\mathcal{G})=\left\{\aleph_{0}, \aleph_{1}\right\}$.

Theorem (Hajnal-Komjáth, 1988)
There exists a graph \mathcal{G} of size $2^{\aleph_{0}}$ and chromatic number $\geq \aleph_{1}$, such that $V^{\mathbb{P}} \models \operatorname{Chr}(\mathcal{G})=\aleph_{0}$, for some ccc poset \mathbb{P}. By Martin's Axiom, one cannot hope to get such \mathcal{G} of size $<2^{\aleph_{0}}$.

The spectrum of chromatic numbers

Definition

For a graph \mathcal{G}, and a class of cardinals-preserving notions of forcing \mathcal{P}, let

$$
\operatorname{Chr}_{\mathcal{P}}(\mathcal{G}):=\left\{\kappa \mid \text { exists } \mathbb{P} \in \mathcal{P} \text { with } V^{\mathbb{P}} \models \operatorname{Chr}(\mathcal{G})=\kappa\right\} .
$$

Corollary (Baumgartner-Malitz-Reinhardt, 1970)
\diamond entails a graph \mathcal{G} of size \aleph_{1} for which $\operatorname{Chr}_{c c c}(\mathcal{G})=\left\{\aleph_{0}, \aleph_{1}\right\}$.

Corollary (Hajnal-Komjáth, 1988)
CH entails a graph \mathcal{G} of size \aleph_{1} for which $\operatorname{Chr}_{c c c}(\mathcal{G})=\left\{\aleph_{0}, \aleph_{1}\right\}$.

The spectrum of chromatic numbers

Definition

For a graph \mathcal{G}, and a class of cardinals-preserving notions of forcing \mathcal{P}, let

$$
\operatorname{Chr}_{\mathcal{P}}(\mathcal{G}):=\left\{\kappa \mid \text { exists } \mathbb{P} \in \mathcal{P} \text { with } V^{\mathbb{P}} \models \operatorname{Chr}(\mathcal{G})=\kappa\right\} .
$$

Proposition [Rin3]
There exists a graph \mathcal{G} of size $2^{\aleph_{0}}$ for which $\operatorname{Chr}_{c c c}(\mathcal{G})=\left\{\aleph_{0}, \aleph_{1}\right\}$.

Corollary (Hajnal-Komjáth, 1988)
CH entails a graph \mathcal{G} of size \aleph_{1} for which $\operatorname{Chr}_{c c c}(\mathcal{G})=\left\{\aleph_{0}, \aleph_{1}\right\}$.

The spectrum of chromatic numbers

Definition

For a graph \mathcal{G}, and a class of cardinals-preserving notions of forcing \mathcal{P}, let

$$
\operatorname{Chr}_{\mathcal{P}}(\mathcal{G}):=\left\{\kappa \mid \text { exists } \mathbb{P} \in \mathcal{P} \text { with } V^{\mathbb{P}} \models \operatorname{Chr}(\mathcal{G})=\kappa\right\} .
$$

Proposition [Rin3]

There exists a graph \mathcal{G} of size $2^{\aleph_{0}}$ for which $\operatorname{Chr}_{c c c}(\mathcal{G})=\left\{\aleph_{0}, \aleph_{1}\right\}$. By Martin's Axiom, one cannot hope to get such \mathcal{G} of size $<2^{\aleph_{0}}$.

Corollary (Hajnal-Komjáth, 1988)
CH entails a graph \mathcal{G} of size \aleph_{1} for which $\operatorname{Chr}_{c c c}(\mathcal{G})=\left\{\aleph_{0}, \aleph_{1}\right\}$.

Distributive and closed forcing

Theorem (Shelah, 1980's)
Every nonspecial Aronszajn tree can be made special by means of a σ-distributive forcing of size \mathbf{c}.

Distributive and closed forcing

Theorem (Shelah, 1980's)
Every nonspecial Aronszajn tree can be made special by means of a σ-distributive forcing of size \mathbf{c}.
Corollary
\diamond entails a graph \mathcal{G} of size $\aleph_{1}, \operatorname{Chr}_{\sigma \text {-Baire, } \aleph_{2} \text {-cc }}(\mathcal{G})=\left\{\aleph_{0}, \aleph_{1}\right\}$.

Distributive and closed forcing

Theorem (Shelah, 1980's)
Every nonspecial Aronszajn tree can be made special by means of a σ-distributive forcing of size \mathbf{c}.
Corollary
\diamond entails a graph \mathcal{G} of size $\aleph_{1}, \operatorname{Chr}_{\sigma \text {-Baire }, \aleph_{2}-c c}(\mathcal{G})=\left\{\aleph_{0}, \aleph_{1}\right\}$.

Theorem [Rin1]
\rangle_{λ} entails a graph \mathcal{G} of size $\lambda^{+}, \operatorname{Chr}_{\lambda \text {-Baire } \lambda^{++}}(\mathcal{G}) \supseteq\left\{\aleph_{0}, \lambda^{+}\right\}$.

Distributive and closed forcing

Theorem (Shelah, 1980's)
Every nonspecial Aronszajn tree can be made special by means of a σ-distributive forcing of size \mathbf{c}.
Corollary
\diamond entails a graph \mathcal{G} of size $\aleph_{1}, \operatorname{Chr}_{\sigma \text {-Baire }, \aleph_{2}-c c}(\mathcal{G})=\left\{\aleph_{0}, \aleph_{1}\right\}$.

Theorem [Rin1]
\square_{λ} entails a graph \mathcal{G} of size $\lambda^{+}, \operatorname{Chr}_{\lambda-\text { Baire }, \lambda^{++}-\mathrm{cc}}(\mathcal{G}) \supseteq\left\{\aleph_{0}, \lambda^{+}\right\}$. We conjecture that moreover, $\operatorname{Chr}_{\lambda \text {-Baire }, \lambda^{++-c c}}(\mathcal{G})=\left\{\aleph_{0}, \lambda^{+}\right\}$.

Distributive and closed forcing

Question
What about $\operatorname{Chr}_{\mathcal{P}}(\mathcal{G})=\left\{\lambda, \lambda^{+}\right\}$?

Distributive and closed forcing

Question
What about $\operatorname{Chr}_{\mathcal{P}}(\mathcal{G})=\left\{\lambda, \lambda^{+}\right\}$?

Proposition [Rin3]
Assume GCH.
For every regular cardinal λ, there exists a graph \mathcal{G} of size λ^{+}, such that $\operatorname{Chr}_{(<\lambda) \text {-directed-closed, } \lambda^{+}-\mathrm{cc}}(\mathcal{G})=\left\{\lambda, \lambda^{+}\right\}$.

Distributive and closed forcing

Question
What about $\operatorname{Chr}_{\mathcal{P}}(\mathcal{G})=\left\{\lambda, \lambda^{+}\right\}$?

Proposition [Rin3]

Assume GCH.
For every regular cardinal λ, there exists a graph \mathcal{G} of size λ^{+}, such that $\operatorname{Chr}_{(<\lambda) \text {-directed-closed, } \lambda^{+}-\mathrm{cc}}(\mathcal{G})=\left\{\lambda, \lambda^{+}\right\}$.
Proposition [Rin3]
For every measurable cardinal λ, there exists a graph \mathcal{G} of size 2^{λ}, such that $\operatorname{Chr}_{(<\lambda) \text {-directed-closed, } \lambda^{+}-\mathrm{cc}}(\mathcal{G})=\left\{\lambda, \lambda^{+}\right\}$.

Distributive and closed forcing

Corollary [Rin1]

Δ_{λ} entails a graph \mathcal{G} of size $\lambda^{+}, \operatorname{Chr}_{\lambda-\text { Baire }, \lambda^{++}{ }_{-c c}}(\mathcal{G})=\left\{\lambda, \lambda^{+}\right\}$.

Proposition [Rin3]

Assume GCH.
For every regular cardinal λ, there exists a graph \mathcal{G} of size λ^{+}, such that $\operatorname{Chr}_{(<\lambda) \text {-directed-closed, } \lambda^{+}-\mathrm{cc}}(\mathcal{G})=\left\{\lambda, \lambda^{+}\right\}$.
Proposition [Rin3]
For every measurable cardinal λ, there exists a graph \mathcal{G} of size 2^{λ}, such that $\operatorname{Chr}_{(<\lambda) \text {-directed-closed, }, \lambda^{+}-\mathrm{cc}}(\mathcal{G})=\left\{\lambda, \lambda^{+}\right\}$.

Distributive and closed forcing

Corollary [Rin1]

\square_{λ} entails a graph \mathcal{G} of size $\lambda^{+}, \operatorname{Chr}_{\lambda-\text { Baire }, \lambda^{++}-\text {cc }}(\mathcal{G})=\left\{\lambda, \lambda^{+}\right\}$.

Proposition [Rin3]

Assume GCH.
For every regular cardinal λ, there exists a graph \mathcal{G} of size λ^{+}, such that $\operatorname{Chr}_{(<\lambda) \text {-directed-closed, } \lambda^{+}-\mathrm{cc}(\mathcal{G})}=\left\{\lambda, \lambda^{+}\right\}$.

Proposition [Rin3]

For every measurable cardinal λ, there exists a graph \mathcal{G} of size 2^{λ}, such that $\operatorname{Chr}_{\left(\langle\lambda) \text {-directed-closed, } \lambda^{+}-\text {cc }\right.}(\mathcal{G})=\left\{\lambda, \lambda^{+}\right\}$.
New rule: no cheating allowed!
Suppose that a graph (G, E) of size $\lambda>\kappa$ satisfies
$\operatorname{Chr}_{\mathcal{p}}(G, E)=\{\kappa, \lambda\}$. Maybe one is cheating somehow, and in fact $\operatorname{Chr}\left(G^{\prime}, E\right)=\kappa$ for some key subset $G^{\prime} \subseteq G$?

No cheating

Definition

Say that a graph (G, E) has everywhere chromatic number λ, if $\operatorname{Chr}\left(G^{\prime}, E\right)=\lambda$ for all $G^{\prime} \subseteq \bar{G}$ with $\left|G^{\prime}\right|=|G|$.

No cheating

Proposition [Rin2]

If $\left\langle f_{\alpha} \mid \alpha<\lambda\right\rangle$ is a $<^{*}$-increasing and unbounded sequence of reals ${ }^{\omega} \omega$, then there exists a graph \mathcal{G} of size and everywhere chromatic number λ, such that $\aleph_{0} \in \operatorname{Chr}_{c c c}(\mathcal{G})$.

Definition
Say that a graph (G, E) has everywhere chromatic number λ, if $\operatorname{Chr}\left(G^{\prime}, E\right)=\lambda$ for all $G^{\prime} \subseteq \bar{G}$ with $\left|G^{\prime}\right|=|G|$.

No cheating

Proposition [Rin2]

If $\left\langle f_{\alpha} \mid \alpha<\lambda\right\rangle$ is a $<^{*}$-increasing and unbounded sequence of reals ${ }^{\omega} \omega$, then there exists a graph \mathcal{G} of size and everywhere chromatic number λ, such that $\aleph_{0} \in \operatorname{Chr}_{c c c}(\mathcal{G})$.
To which λ 's do the proposition apply? Recall Hechler's theorem:
Theorem (Hechler, 1974)
If \mathbb{P} is a partially ordered set in which every countable subset has an upper bound, then \mathbb{P} can consistently be isomorphic to a cofinal subset of $\left\langle{ }^{\omega} \omega,<^{*}\right\rangle$.

No cheating

Proposition [Rin2]

If $\left\langle f_{\alpha} \mid \alpha<\lambda\right\rangle$ is a $<^{*}$-increasing and unbounded sequence of reals ${ }^{\omega} \omega$, then there exists a graph \mathcal{G} of size and everywhere chromatic number λ, such that $\aleph_{0} \in \operatorname{Chr}_{c c c}(\mathcal{G})$.
Another application:
Corollary [Rin2]
Suppose that Martin's Axiom holds.
Then there exists an edge relation $E \subseteq[c]^{2}$, such that for all $G \subseteq c$:

$$
\aleph_{0}+\operatorname{Chr}(G, E)= \begin{cases}\mathfrak{c}, & |G|=\mathfrak{c} \\ \aleph_{0}, & |G|<\mathfrak{c} .\end{cases}
$$

This appears to be the simplest construction of incompacntess graphs with arbitrarily large gaps.

Everywhere chromatic graphs from strong colorings

Definition [Rin3]
$\operatorname{Pr}^{U}(\lambda, \kappa)=\operatorname{Pr}^{U}\left(\lambda, \kappa^{+}, 2, \kappa\right)$ asserts the existence of a coloring $c:[\lambda]^{2} \rightarrow 2$ satisfying the two:

Everywhere chromatic graphs from strong colorings

Definition [Rin3]
$\operatorname{Pr}^{U}(\lambda, \kappa)=\operatorname{Pr}^{U}\left(\lambda, \kappa^{+}, 2, \kappa\right)$ asserts the existence of a coloring $c:[\lambda]^{2} \rightarrow 2$ satisfying the two:

1. for every $A \subseteq \lambda$ of size λ, there exists $\alpha<\beta$ in A with $c(\alpha, \beta)=0$;

Everywhere chromatic graphs from strong colorings

Definition [Rin3]
$\operatorname{Pr}^{U}(\lambda, \kappa)=\operatorname{Pr}^{U}\left(\lambda, \kappa^{+}, 2, \kappa\right)$ asserts the existence of a coloring $c:[\lambda]^{2} \rightarrow 2$ satisfying the two:

1. for every $A \subseteq \lambda$ of size λ, there exists $\alpha<\beta$ in A with $c(\alpha, \beta)=0$;
2. for every $\mathcal{A} \subseteq\left[\kappa^{+}\right]^{<\kappa}$ of size κ^{+}, consisting of pairwise disjoint sets, there exist $a, b \in \mathcal{A}$ with $\sup (a)<\min (b)$ such that $c[a \times b]=\{1\}$.

Everywhere chromatic graphs from strong colorings

Definition [Rin3]
$\operatorname{Pr}^{U}(\lambda, \kappa)=\operatorname{Pr}^{U}\left(\lambda, \kappa^{+}, 2, \kappa\right)$ asserts the existence of a coloring $c:[\lambda]^{2} \rightarrow 2$ satisfying the two:

1. for every $A \subseteq \lambda$ of size λ, there exists $\alpha<\beta$ in A with $c(\alpha, \beta)=0$;
2. for every $\mathcal{A} \subseteq\left[\kappa^{+}\right]^{<\kappa}$ of size κ^{+}, consisting of pairwise disjoint sets, there exist $a, b \in \mathcal{A}$ with $\sup (a)<\min (b)$ such that $c[a \times b]=\{1\}$.

Remark
$\operatorname{Pr}^{U}(\lambda, \kappa, \theta, \sigma)$ is an unbalanced form of Shelah's $\operatorname{Pr}_{1}(\lambda, \kappa, \theta, \sigma)$.

Everywhere chromatic graphs from strong colorings

Definition [Rin3]
$\operatorname{Pr}^{U}(\lambda, \kappa)=\operatorname{Pr}^{U}\left(\lambda, \kappa^{+}, 2, \kappa\right)$ asserts the existence of a coloring $c:[\lambda]^{2} \rightarrow 2$ satisfying the two:

1. for every $A \subseteq \lambda$ of size λ, there exists $\alpha<\beta$ in A with $c(\alpha, \beta)=0$;
2. for every $\mathcal{A} \subseteq\left[\kappa^{+}\right]^{<\kappa}$ of size κ^{+}, consisting of pairwise disjoint sets, there exist $a, b \in \mathcal{A}$ with $\sup (a)<\min (b)$ such that $c[a \times b]=\{1\}$.

Previous incarnation
Suppose c is a witness to $\operatorname{Pr}^{U}\left(\aleph_{2}, \aleph_{1}\right)$. Set $\alpha<_{c} \beta$ iff $\alpha \in \beta$ and $c(\alpha, \beta)=0$.

Everywhere chromatic graphs from strong colorings

Definition [Rin3]

$\operatorname{Pr}^{U}(\lambda, \kappa)=\operatorname{Pr}^{U}\left(\lambda, \kappa^{+}, 2, \kappa\right)$ asserts the existence of a coloring $c:[\lambda]^{2} \rightarrow 2$ satisfying the two:

1. for every $A \subseteq \lambda$ of size λ, there exists $\alpha<\beta$ in A with $c(\alpha, \beta)=0$;
2. for every $\mathcal{A} \subseteq\left[\kappa^{+}\right]^{<\kappa}$ of size κ^{+}, consisting of pairwise disjoint sets, there exist $a, b \in \mathcal{A}$ with $\sup (a)<\min (b)$ such that $c[a \times b]=\{1\}$.

Previous incarnation
Suppose c is a witness to $\operatorname{Pr}^{U}\left(\aleph_{2}, \aleph_{1}\right)$. Set $\alpha<_{c} \beta$ iff $\alpha \in \beta$ and $c(\alpha, \beta)=0$. If $\mathcal{T}=\left(\omega_{2},<_{c}\right)$ happens to be a tree order, then \mathcal{T} is an \aleph_{2}-Souslin tree, without an ascent path (à-la Laver).

Everywhere chromatic graphs from strong colorings

Definition [Rin3]

$\operatorname{Pr}^{U}(\lambda, \kappa)=\operatorname{Pr}^{U}\left(\lambda, \kappa^{+}, 2, \kappa\right)$ asserts the existence of a coloring $c:[\lambda]^{2} \rightarrow 2$ satisfying the two:

1. for every $A \subseteq \lambda$ of size λ, there exists $\alpha<\beta$ in A with $c(\alpha, \beta)=0$;
2. for every $\mathcal{A} \subseteq\left[\kappa^{+}\right]^{<\kappa}$ of size κ^{+}, consisting of pairwise disjoint sets, there exist $a, b \in \mathcal{A}$ with $\sup (a)<\min (b)$ such that $c[a \times b]=\{1\}$.

Proposition [Rin3]
Assume $\operatorname{Pr}^{U}(\lambda, \kappa)$, and $\kappa=\kappa^{<\kappa}<\operatorname{cf}(\lambda)=\lambda$.
Then there exists a graph \mathcal{G} of size and everywhere chromatic number λ,

Everywhere chromatic graphs from strong colorings

Definition [Rin3]

$\operatorname{Pr}^{U}(\lambda, \kappa)=\operatorname{Pr}^{U}\left(\lambda, \kappa^{+}, 2, \kappa\right)$ asserts the existence of a coloring $c:[\lambda]^{2} \rightarrow 2$ satisfying the two:

1. for every $A \subseteq \lambda$ of size λ, there exists $\alpha<\beta$ in A with $c(\alpha, \beta)=0$;
2. for every $\mathcal{A} \subseteq\left[\kappa^{+}\right]^{<\kappa}$ of size κ^{+}, consisting of pairwise disjoint sets, there exist $a, b \in \mathcal{A}$ with $\sup (a)<\min (b)$ such that $c[a \times b]=\{1\}$.

Proposition [Rin3]

Assume $\operatorname{Pr}^{U}(\lambda, \kappa)$, and $\kappa=\kappa^{<\kappa}<\operatorname{cf}(\lambda)=\lambda$.
Then there exists a graph \mathcal{G} of size and everywhere chromatic number λ, together with a $(<\kappa)$-directed-closed, κ^{+}-cc notion of forcing \mathbb{P}, such that $V^{\mathbb{P}} \models \operatorname{Chr}(\mathcal{G})=\kappa$.

Everywhere chromatic graphs from strong colorings

Theorem [Rin3]
GCH entails $\operatorname{Pr}^{U}\left(\kappa^{+}, \kappa\right)$ for every regular cardinal $\kappa \neq \aleph_{1}$.

Proposition [Rin3]
Assume $\operatorname{Pr}^{U}(\lambda, \kappa)$, and $\kappa=\kappa^{<\kappa}<\operatorname{cf}(\lambda)=\lambda$.
Then there exists a graph \mathcal{G} of size and everywhere chromatic number λ, together with a $(<\kappa)$-directed-closed, κ^{+}-cc notion of forcing \mathbb{P}, such that $V^{\mathbb{P}}=\operatorname{Chr}(\mathcal{G})=\kappa$.

Everywhere chromatic graphs from strong colorings

Theorem [Rin3]
GCH entails $\operatorname{Pr}^{U}\left(\kappa^{+}, \kappa\right)$ for every regular cardinal $\kappa \neq \aleph_{1}$. GCH $+\diamond$ entails $\operatorname{Pr}^{U}\left(\kappa^{+}, \kappa\right)$ for every regular cardinal κ.

Proposition [Rin3]

Assume $\operatorname{Pr}^{U}(\lambda, \kappa)$, and $\kappa=\kappa^{<\kappa}<\operatorname{cf}(\lambda)=\lambda$.
Then there exists a graph \mathcal{G} of size and everywhere chromatic number λ, together with a $(<\kappa)$-directed-closed, κ^{+}-cc notion of forcing \mathbb{P}, such that $V^{\mathbb{P}}=\operatorname{Chr}(\mathcal{G})=\kappa$.

Everywhere chromatic graphs from strong colorings

Theorem [Rin3]
GCH entails $\operatorname{Pr}^{U}\left(\kappa^{+}, \kappa\right)$ for every regular cardinal $\kappa \neq \aleph_{1}$. GCH $+\diamond$ entails $\operatorname{Pr}^{U}\left(\kappa^{+}, \kappa\right)$ for every regular cardinal κ.

Conjecture
$\mathrm{GCH}+\neg \mathrm{Pr}^{U}\left(\aleph_{2}, \aleph_{1}\right)$ is consistent (modulo large cardinals).

Everywhere chromatic graphs from strong colorings

Theorem [Rin3]
GCH entails $\operatorname{Pr}^{U}\left(\kappa^{+}, \kappa\right)$ for every regular cardinal $\kappa \neq \aleph_{1}$. GCH $+\diamond$ entails $\operatorname{Pr}^{U}\left(\kappa^{+}, \kappa\right)$ for every regular cardinal κ.

Wild guess
$\mathrm{CH}+\neg \operatorname{Pr}{ }^{U}\left(\aleph_{2}, \aleph_{1}\right)$ is equiconsistent with the existence of a weakly-compact cardinal.

The infinitary generalization of chromatic numbers

Question
We have seen examples of graphs \mathcal{G} with $\left|\operatorname{Chr}_{\mathcal{P}}(\mathcal{G})\right|>1$. So, what does $\operatorname{Chr}(\mathcal{G})$ really tell us?

The infinitary generalization of chromatic numbers

Question
We have seen examples of graphs \mathcal{G} with $\left|\operatorname{Chr}_{\mathcal{P}}(\mathcal{G})\right|>1$.
So, what does $\operatorname{Chr}(\mathcal{G})$ really tell us?
Answer
It tells us a small part of the story. Precisely,

$$
\operatorname{Chr}(\mathcal{G})=\max \left(\operatorname{Chr}_{\mathcal{P}}(\mathcal{G})\right) .
$$

The infinitary generalization of chromatic numbers

Question
We have seen examples of graphs \mathcal{G} with $\left|\operatorname{Chr}_{\mathcal{P}}(\mathcal{G})\right|>1$.
So, what does $\operatorname{Chr}(\mathcal{G})$ really tell us?
Answer
It tells us a small part of the story. Precisely,

$$
\operatorname{Chr}(\mathcal{G})=\max \left(\operatorname{Chr}_{\mathcal{P}}(\mathcal{G})\right) .
$$

If \mathcal{G} is finite, then $\operatorname{Chr}_{\mathcal{P}}(\mathcal{G})=\{\operatorname{Chr}(\mathcal{G})\}$, so $\operatorname{Chr}_{\mathcal{P}}(\mathcal{G})$ and $\operatorname{Chr}(\mathcal{G})$ are different ways of generalizing the finitary concept,

The infinitary generalization of chromatic numbers

Question

We have seen examples of graphs \mathcal{G} with $\left|\operatorname{Chr}_{\mathcal{P}}(\mathcal{G})\right|>1$.
So, what does $\operatorname{Chr}(\mathcal{G})$ really tell us?
Answer
It tells us a small part of the story. Precisely,

$$
\operatorname{Chr}(\mathcal{G})=\max \left(\operatorname{Chr}_{\mathcal{P}}(\mathcal{G})\right) .
$$

If \mathcal{G} is finite, then $\operatorname{Chr}_{\mathcal{P}}(\mathcal{G})=\{\operatorname{Chr}(\mathcal{G})\}$, so $\operatorname{Chr}_{\mathcal{P}}(\mathcal{G})$ and $\operatorname{Chr}(\mathcal{G})$ are different ways of generalizing the finitary concept, but maybe we should have paid more attention to the former.

Testcase: higher Aronszajn trees

Laver, Baumgartner, Devlin, Shelah-Stanley, Todorcevic, R. David, Cummings, and more recently, Lücke, gave examples of peculiar nonspecial \aleph_{2}-Aronszajn trees.

Testcase: higher Aronszajn trees

Laver, Baumgartner, Devlin, Shelah-Stanley, Todorcevic, R. David, Cummings, and more recently, Lücke, gave examples of peculiar nonspecial \aleph_{2}-Aronszajn trees.

For instance, if $V=L$, then there exist \aleph_{2}-Aronszajn trees $\mathcal{T}_{1}, \mathcal{T}_{2}$ such that

- $\operatorname{Chr}_{\text {cofinality-preserving }}\left(\mathcal{G}_{\mathcal{T}_{1}}\right)=\left\{\aleph_{2}\right\} ;$
- $\operatorname{Chr}_{\text {cofinality-preserving }}\left(\mathcal{G}_{\mathcal{T}_{2}}\right)=\left\{\aleph_{2}, \aleph_{1}\right\}$.

Testcase: higher Aronszajn trees

Laver, Baumgartner, Devlin, Shelah-Stanley, Todorcevic, R. David, Cummings, and more recently, Lücke, gave examples of peculiar nonspecial \aleph_{2}-Aronszajn trees.

For instance, if $V=L$, then there exist \aleph_{2}-Aronszajn trees $\mathcal{T}_{1}, \mathcal{T}_{2}$ such that

- $\operatorname{Chr}_{\text {cofinality-preserving }}\left(\mathcal{G}_{\mathcal{T}_{1}}\right)=\left\{\aleph_{2}\right\} ;$
- $\operatorname{Chr}_{\text {cofinality-preserving }}\left(\mathcal{G}_{\mathcal{T}_{2}}\right)=\left\{\aleph_{2}, \aleph_{1}\right\}$.

The standard chromatic number measure oversees this essential difference between \mathcal{T}_{1} and \mathcal{T}_{2}.

Testcase: higher Aronszajn trees

Laver, Baumgartner, Devlin, Shelah-Stanley, Todorcevic, R. David, Cummings, and more recently, Lücke, gave examples of peculiar nonspecial \aleph_{2}-Aronszajn trees.

For instance, if $V=L$, then there exist \aleph_{2}-Aronszajn trees $\mathcal{T}_{1}, \mathcal{T}_{2}$ such that

- $\operatorname{Chr}_{\text {cofinality-preserving }}\left(\mathcal{G}_{\mathcal{T}_{1}}\right)=\left\{\aleph_{2}\right\} ;$
- $\operatorname{Chr}_{\text {cofinality-preserving }}\left(\mathcal{G}_{\mathcal{T}_{2}}\right)=\left\{\aleph_{2}, \aleph_{1}\right\}$.

The standard chromatic number measure oversees this essential difference between \mathcal{T}_{1} and \mathcal{T}_{2}.

Question
What about $\left|\operatorname{Chr}_{\mathcal{P}}(\mathcal{G})\right|>2$?

Testcase: higher Aronszajn trees

Laver, Baumgartner, Devlin, Shelah-Stanley, Todorcevic, R. David, Cummings, and more recently, Lücke, gave examples of peculiar nonspecial \aleph_{2}-Aronszajn trees.

For instance, if $V=L$, then there exist \aleph_{2}-Aronszajn trees $\mathcal{T}_{1}, \mathcal{T}_{2}$ such that

- $\operatorname{Chr}_{\text {cofinality-preserving }}\left(\mathcal{G}_{\mathcal{T}_{1}}\right)=\left\{\aleph_{2}\right\} ;$
- $\operatorname{Chr}_{\text {cofinality-preserving }}\left(\mathcal{G}_{\mathcal{T}_{2}}\right)=\left\{\aleph_{2}, \aleph_{1}\right\}$.

The standard chromatic number measure oversees this essential difference between \mathcal{T}_{1} and \mathcal{T}_{2}.

Question
What about $\left|\operatorname{Chr}_{\mathcal{P}}(\mathcal{G})\right|>3$?

Testcase: higher Aronszajn trees

Laver, Baumgartner, Devlin, Shelah-Stanley, Todorcevic, R. David, Cummings, and more recently, Lücke, gave examples of peculiar nonspecial \aleph_{2}-Aronszajn trees.

For instance, if $V=L$, then there exist \aleph_{2}-Aronszajn trees $\mathcal{T}_{1}, \mathcal{T}_{2}$ such that

- $\operatorname{Chr}_{\text {cofinality-preserving }}\left(\mathcal{G}_{\mathcal{T}_{1}}\right)=\left\{\aleph_{2}\right\} ;$
- $\operatorname{Chr}_{\text {cofinality-preserving }}\left(\mathcal{G}_{\mathcal{T}_{2}}\right)=\left\{\aleph_{2}, \aleph_{1}\right\}$.

The standard chromatic number measure oversees this essential difference between \mathcal{T}_{1} and \mathcal{T}_{2}.

Question
What about $\operatorname{Chr}_{\mathcal{P}}(\mathcal{G})$ infinite?

Testcase: higher Aronszajn trees

Laver, Baumgartner, Devlin, Shelah-Stanley, Todorcevic, R. David, Cummings, and more recently, Lücke, gave examples of peculiar nonspecial \aleph_{2}-Aronszajn trees.

For instance, if $V=L$, then there exist \aleph_{2}-Aronszajn trees $\mathcal{T}_{1}, \mathcal{T}_{2}$ such that

- $\operatorname{Chr}_{\text {cofinality-preserving }}\left(\mathcal{G}_{\mathcal{T}_{1}}\right)=\left\{\aleph_{2}\right\} ;$
- $\operatorname{Chr}_{\text {cofinality-preserving }}\left(\mathcal{G}_{\mathcal{T}_{2}}\right)=\left\{\aleph_{2}, \aleph_{1}\right\}$.

The standard chromatic number measure oversees this essential difference between \mathcal{T}_{1} and \mathcal{T}_{2}.

Question
What about $\operatorname{Chr}_{\mathcal{P}}(\mathcal{G})$ uncountable?

Testcase: higher Aronszajn trees

Laver, Baumgartner, Devlin, Shelah-Stanley, Todorcevic, R. David, Cummings, and more recently, Lücke, gave examples of peculiar nonspecial \aleph_{2}-Aronszajn trees.

For instance, if $V=L$, then there exist \aleph_{2}-Aronszajn trees $\mathcal{T}_{1}, \mathcal{T}_{2}$ such that

- $\operatorname{Chr}_{\text {cofinality-preserving }}\left(\mathcal{G}_{\mathcal{T}_{1}}\right)=\left\{\aleph_{2}\right\} ;$
- $\operatorname{Chr}_{\text {cofinality-preserving }}\left(\mathcal{G}_{\mathcal{T}_{2}}\right)=\left\{\aleph_{2}, \aleph_{1}\right\}$.

The standard chromatic number measure oversees this essential difference between \mathcal{T}_{1} and \mathcal{T}_{2}.

Question
What about $\left|\operatorname{Chr}_{\mathcal{P}}(\mathcal{G})\right|=$ fixed-point of the \aleph-function?

Realizable sets

Main Theorem [Rin3]

Suppose that $V=L$ and ϕ is the least to satisfy $\phi=\aleph_{\phi}$. Then for every infinite cardinal $\mu<\aleph_{\phi}$, there exists a graph \mathcal{G} of size μ such that:
$\operatorname{Chr}_{\text {cofinality-preserving }}(\mathcal{G})=\left\{\aleph_{0}, \aleph_{1}, \aleph_{2}, \ldots, \mu\right\}$.

Realizable sets

Main Theorem [Rin3]

Suppose that $V=L$ and ϕ is the least to satisfy $\phi=\aleph_{\phi}$. Then for every infinite cardinal $\mu<\aleph_{\phi}$, there exists a graph \mathcal{G} of size μ such that:
$\operatorname{Chr}_{\text {cofinality-preserving }}(\mathcal{G})=\{\kappa \leq \mu \mid \kappa$ infinite cardinal $\}$.

Realizable sets

Main Theorem [Rin3]

Suppose that $V=L$ and ϕ is the least to satisfy $\phi=\aleph_{\phi}$. Then for every infinite cardinal $\mu<\aleph_{\phi}$, there exists a graph \mathcal{G} of size μ such that:
$\operatorname{Chr}_{\text {cofinality-preserving }}(\mathcal{G})=\{\kappa \leq \mu \mid \kappa$ infinite cardinal $\}$.

Conjecture

By a more careful construction of \square_{λ}-sequences in L, the restriction " $\mu<\aleph_{\phi}$ " in the above theorem may be waived.

Realizable sets

Main Theorem [Rin3]

Suppose that $V=L$ and ϕ is the least to satisfy $\phi=\aleph_{\phi}$.
Then for every infinite cardinal $\mu<\aleph_{\phi}$, there exists a graph \mathcal{G} of size μ such that:
$\operatorname{Chr}_{\text {cofinality-preserving }}(\mathcal{G})=\{\kappa \leq \mu \mid \kappa$ infinite cardinal $\}$.

Proposed project

Characterize all sets \mathcal{K} of cardinals for which there exists a graph \mathcal{G} with $\operatorname{Chr}_{\text {cofinality-preserving }}(\mathcal{G})=\mathcal{K}$.

Realizable sets

Main Theorem [Rin3]

Suppose that $V=L$ and ϕ is the least to satisfy $\phi=\aleph_{\phi}$.
Then for every infinite cardinal $\mu<\aleph_{\phi}$, there exists a graph \mathcal{G} of size μ such that:
$\operatorname{Chr}_{\text {cofinality-preserving }}(\mathcal{G})=\{\kappa \leq \mu \mid \kappa$ infinite cardinal $\}$.

Proposed project

Characterize all sets \mathcal{K} of cardinals for which there exists a graph \mathcal{G} with $\operatorname{Chr}_{\text {cofinality-preserving }}(\mathcal{G})=\mathcal{K}$.

Basic question
Is $\mathrm{Chr}_{\text {cofinality-preserving }}(\mathcal{G})$ provably/consistently a closed set?

