On the consistency strength of the Milner-Sauer Conjecture

Logic in Hungary, August 2005

Assaf Rinot Tel-Aviv University

Joint work with Moti Gitik
Tel-Aviv University

Definitions

Definition. Suppose $\langle P, \leq \rangle$ is a poset. $A \subseteq P$ is said to be *cofinal* in P iff for each $x \in P$ there exists $y \in A$ such that $x \leq y$.

Definition. The *cofinality* of $\langle P, \leq \rangle$, denoted: $cf(P, \leq) := min\{|A| \mid A \subseteq P \text{ is cofinal in } P\}.$

Definition. $A \subseteq P$ is said to be a (weak) antichain iff for all $\{x,y\} \in [A]^2$, $x \not\leq y$ and $y \not\leq x$.

Motivation

Theorem (Hausdorff, 1908). If $\langle P, \leq \rangle$ is a linearly ordered set, then $cf(P, \leq)$ is a regular cardinal.

Theorem (Erdös-Tarski, 1943). If $\langle P, \leq \rangle$ is a poset with no infinite antichain, then P is a finite union of updirected posets.

Theorem (Pouzet, 1979). If $cf(P, \leq) \neq 1$ for an updirected poset with no infinite antichain, then there exists a cofinal subset $P' \subseteq P$ such that $P' \cong \bigotimes_{i < n} \kappa_n$ for some finite sequence of infinite regular cardinals $\langle \kappa_i \mid i < n \rangle$.

Corollary. If $\langle P, \leq \rangle$ is a poset and $cf(P, \leq)$ is a singular cardinal, then P contains an infinite antichain.

The conjecture

Conjecture (Milner-Sauer, 1981). If $\langle P, \leq \rangle$ is a poset and $cf(P, \leq) = \lambda > cf(\lambda) = \kappa$, then P must contain an antichain of size κ .

Consistency results

The conjecture is consistent and known to follow from GCH-type assumptions, e.g., for $\lambda > \operatorname{cf}(\lambda) = \kappa$:

Theorem (Milner-Prikry '81). If $\mu^{<\kappa} < \lambda$ for all $\mu < \lambda$, then any poset of cofinality λ contains an antichain of size κ .

Theorem (Milner-Pouzet '82). If $\lambda^{<\kappa} = \lambda$, then any poset of cofinality λ contains an antichain of size κ .

Theorem (Hajnal-Sauer '86). If λ is a strong limit, then any poset of cofinality λ contains λ^{κ} antichains of size κ .

Most recent result

For $\lambda > cf(\lambda) = \kappa$,

Theorem (Milner-Pouzet '97, Gorelic 2005). If $\lambda^{<\kappa} = \lambda$, then any poset of cofinality λ contains λ^{κ} antichains of size κ .

Problem

GCH-type assumption can easily be violated by forcing.

Notation

For simplicity, from now on, we fix a singular cardinal λ and let $\kappa := cf(\lambda)$.

We denote $[\lambda]^{<\kappa} := \{X \subseteq \lambda \mid |X| < \kappa\}.$

A related problem

For a topological space $\langle X,O\rangle$, put : $d(X):=\min\{|D|\mid D\subseteq X \text{ is dense in }X\}+\aleph_0.$ $w(X):=\min\{|B|\mid B\subseteq O \text{ is a base for }X\}+\aleph_0.$ $hC(X):=\min\{\mu\in \mathrm{ICN}\mid \forall Y\subseteq X, \text{ every open cover of }Y \text{ has a subcover of cardinality }<\mu\}.$

Theorem 1. If there exists a poset of cofinality λ with no antichain of size κ , then there exists a T_0 topological space $\langle X, O \rangle$ such that for all $U \in O \setminus \{\emptyset\}$:

- 1. $|U| = d(U) = w(U) = \lambda$,
- 2. $hC(U) \leq \kappa$.

Topological result

Theorem 2. If there exists a space $\langle X, O \rangle$ such that $d(X) = w(X) = \lambda$ and $hC(X) \leq \kappa$, then $cf([\lambda]^{<\kappa}, \subseteq) > \lambda$.

Main result

Theorem 3. Suppose $cf([\lambda]^{<\kappa}, \subseteq) = \lambda$. If $\langle P, \leq \rangle$ is a poset and $cf(P, \leq) = \lambda$, then P contains λ^{κ} antichains of size κ .

Proof. If $\lambda^{<\kappa}=\lambda$, the result is already known. If $\lambda^{<\kappa}>\lambda$, apply Theorems 1 and 2 to yield an antichain $A\in [P]^{\kappa}$ and notice that $[A]^{\kappa}$ is a family of λ^{κ} antichains of size κ .

On the hypothesis $cf([\lambda]^{<\kappa},\subseteq)=\lambda$

Theorem 4. If there exists an inner model of ZFC satisfying GCH and the covering lemma, then $cf([\lambda]^{<\kappa},\subseteq)=\lambda$.

Corollary. If the Milner-Sauer conjecture does not hold, then there exists an inner model with a measurable cardinal.

Proof. By Dodd-Jensen, if there exists no inner model with a measurable cardinal, then the hypothesis of Theorem 4 holds for the core model K^{DJ} . Now apply Theorem 3.

The Milner-Sauer conjecture has large cardinals consistency strength

Starting with a ground model with no counterexample to the conjecture, a forcing notion that does not make use of the existence of large cardinals cannot produce a counter-example.

More on $cf([\lambda]^{<\kappa},\subseteq)$

Theorem 5. If there exists a cardinal $\theta < \lambda$ such that $\theta^{<\theta} = \theta$ and for any regular cardinal $\mu > \theta$, $\mu^{\aleph_0} = \mu$, then $cf([\lambda]^{<\kappa}, \subseteq) = \lambda$.

Corollary. Martin's Maximum implies the Milner-Sauer conjecture.

Proof. By the preceding theorem for $\theta = \aleph_2$.

Corollary. The Milner-Sauer conjecture holds above a strongly-compact cardinal.

Proof. By Ketonen/Solovay, if θ is strongly-compact, then $\mu^{\aleph_0} = \mu$ for all regular $\mu > \theta$.

Dichotomy - A ZFC Theorem

Theorem 6. For λ , One and only one holds : (a) For any poset $\langle P, \leq \rangle$ of cofinality λ , there exists some $n \in \mathbb{N}^+$, such that in the product order, P^n contains an antichain of size κ .

- (b) There exists a cardinal $\theta < \lambda$ and a family of sets $\mathcal{J} \subseteq \mathcal{P}(\theta)$ such that $cf(\mathcal{J}, \subseteq) = \lambda$ and:
- (b.1) \mathcal{J} is closed under finite unions and intersections. In particular, the poset $\langle \mathcal{J}, \subseteq \rangle$ is updirected and downdirected.
- (b.2) For all $n \in \mathbb{N}^+$, every antichain in the product order, \mathcal{J}^n , is of size $< \kappa$.

Dichotomy towards a proof

If one would like to try and **prove** the conejcture, we suggest the following strategy:

(1) Eliminate the possibility of the second item of the dichotomy theorem and (2) Argue the existence of a bound for the first item. I.e.:

Conjecture. For any cardinal $\lambda > \operatorname{cf}(\lambda) = \kappa$, there exists $n_{\lambda} \in \mathbb{N}^+$ such that for any poset $\langle P, \leq \rangle$ of cofinality λ , there exists a positive $n \leq n_{\lambda}$, such that in the product order, P^n contains an antichain of size κ .

(3) prove that $n_{\lambda} = 1$ for any singular λ .

More about consistency strength

Definition. For a singular cardinal μ , let $pp(\mu) := \sup\{cf(\prod \mathbf{a}/D) \mid \mathbf{a} \in [\mu]^{cf(\mu)} \text{ is a family of regular cardinals cofinal in } \mu$, D is an ultrafilter on \mathbf{a} extending the filter of co-bounded sets \mathbf{a} .

Definition. Shelah's Strong Hypothesis states: For any singular cardinal μ , $pp(\mu) = \mu^+$.

Theorem (Gitik, 1991). If there is no inner model with a cardinal δ , $o(\delta) \geq \delta^{++}$, then for any singular $\mu > 2^{\aleph_0}$, $pp(\mu) = \mu^+$.

Finer consistency strength result

Theorem (Shelah, 1993). If $pp(\mu) = \mu^+$ for all $\mu < \lambda$, then $cf([\lambda]^{<\kappa}, \subseteq) = \lambda$.

Corollary. Suppose $2^{\aleph_0} < \aleph_{\omega}$.

If the Milner-Sauer conjecture does not hold, then there exists an inner model with a cardinal δ and $o(\delta) \geq \delta^{++}$.

References

- [1] A. Rinot *On the consistency strength of the Milner-Sauer conjecture*. Accepted to Pure and Applied Logic. Available online: http://dx.doi.org/10.1016/j.apal.2005.09.012
- [2] E.C. Milner, N. Sauer, Remarks on the cofinality of a partially ordered set, and a generalization of König's lemma. Discrete Math., Vol. 35 (1981), 165-171. Available online: dx.doi.org/10.1016/0012-365X(81)90205-3