Distributive Aronszajn trees

The 14th International Workshop on Set Theory
CIRM, Luminy, Marseille
10-October-2017

Assaf Rinot
Bar-Ilan University

Conventions

Throughout, κ denotes a regular uncountable cardinal, and λ denotes an uncountable cardinal.

Conventions

Throughout, κ denotes a regular uncountable cardinal, and λ denotes an uncountable cardinal. Often times, $\kappa=\lambda^{+}$.

Conventions

Throughout, κ denotes a regular uncountable cardinal, and λ denotes an uncountable cardinal. Often times, $\kappa=\lambda^{+}$.
H_{κ} denotes the collection of all sets of hereditary cardinality $<\kappa$.

Conventions

Throughout, κ denotes a regular uncountable cardinal, and λ denotes an uncountable cardinal. Often times, $\kappa=\lambda^{+}$.
H_{κ} denotes the collection of all sets of hereditary cardinality $<\kappa$.
$\mathcal{K}(\kappa)$ denotes the collection of all $x \in \mathcal{P}(\kappa)$ such that x is a club subset of $\sup (x)$.

Conventions

Throughout, κ denotes a regular uncountable cardinal, and λ denotes an uncountable cardinal. Often times, $\kappa=\lambda^{+}$.
H_{κ} denotes the collection of all sets of hereditary cardinality $<\kappa$.
$\mathcal{K}(\kappa)$ denotes the collection of all $x \in \mathcal{P}(\kappa)$ such that x is a club subset of $\sup (x)$.

Every set of ordinals C, splits into two:

- $\operatorname{acc}(C):=\{\alpha \in C \mid \sup (C \cap \alpha)=\alpha>0\} ;$
- $\operatorname{nacc}(C):=C \backslash \operatorname{acc}(C)$.

Conventions

Throughout, κ denotes a regular uncountable cardinal, and λ denotes an uncountable cardinal. Often times, $\kappa=\lambda^{+}$.
H_{κ} denotes the collection of all sets of hereditary cardinality $<\kappa$.
$\mathcal{K}(\kappa)$ denotes the collection of all $x \in \mathcal{P}(\kappa)$ such that x is a club subset of $\sup (x)$.

Every set of ordinals C, splits into two:

- $\operatorname{acc}(C):=\{\alpha \in C \mid \sup (C \cap \alpha)=\alpha>0\} ;$
- $\operatorname{nacc}(C):=C \backslash \operatorname{acc}(C)$.

When we write "there is a limit $\alpha<\kappa$ ", we mean " $\exists \alpha \in \operatorname{acc}(\kappa)$ ".

κ-trees

Definition
In this talk, a κ-tree is a nonempty subset $T \subseteq{ }^{<\kappa} H_{\kappa}$, satisfying:

κ-trees

Definition
In this talk, a κ-tree is a nonempty subset $T \subseteq{ }^{<\kappa} H_{\kappa}$, satisfying:

1. for all $\alpha<\kappa$, the set $T_{\alpha}:=T \cap{ }^{\alpha} H_{\kappa}$ has size $<\kappa$;

κ-trees

Definition

In this talk, a κ-tree is a nonempty subset $T \subseteq{ }^{<\kappa} H_{\kappa}$, satisfying:

1. for all $\alpha<\kappa$, the set $T_{\alpha}:=T \cap{ }^{\alpha} H_{\kappa}$ has size $<\kappa$;
2. for all $\alpha<\kappa$ and $t \in T$, there is $s \in T_{\alpha}$ such that $t \cup s \in T$.

κ-trees

Definition

In this talk, a κ-tree is a nonempty subset $T \subseteq{ }^{<\kappa} H_{\kappa}$, satisfying:

1. for all $\alpha<\kappa$, the set $T_{\alpha}:=T \cap{ }^{\alpha} H_{\kappa}$ has size $<\kappa$;
2. for all $\alpha<\kappa$ and $t \in T$, there is $s \in T_{\alpha}$ such that $t \cup s \in T$.

To each T, we associate the notion of forcing $\mathbb{P}(T):=(T, \supseteq)$.

κ-trees

Definition

In this talk, a κ-tree is a nonempty subset $T \subseteq{ }^{<\kappa} H_{\kappa}$, satisfying:

1. for all $\alpha<\kappa$, the set $T_{\alpha}:=T \cap{ }^{\alpha} H_{\kappa}$ has size $<\kappa$;
2. for all $\alpha<\kappa$ and $t \in T$, there is $s \in T_{\alpha}$ such that $t \cup s \in T$.

To each T, we associate the notion of forcing $\mathbb{P}(T):=(T, \supseteq)$.

Note

If T is a κ-tree, then $\mathbb{P}(T)$ adds a cofinal branch through T. i.e., a sequence $b: \kappa \rightarrow H_{\kappa}$ such that $b \upharpoonright \alpha \in T$ for all $\alpha<\kappa$.

κ-trees

Definition

In this talk, a κ-tree is a nonempty subset $T \subseteq{ }^{<\kappa} H_{\kappa}$, satisfying:

1. for all $\alpha<\kappa$, the set $T_{\alpha}:=T \cap{ }^{\alpha} H_{\kappa}$ has size $<\kappa$;
2. for all $\alpha<\kappa$ and $t \in T$, there is $s \in T_{\alpha}$ such that $t \cup s \in T$.

To each T, we associate the notion of forcing $\mathbb{P}(T):=(T, \supseteq)$.
Definition
A κ-tree T is Aronszajn iff it has no cofinal branches.

Note

If T is a κ-tree, then $\mathbb{P}(T)$ adds a cofinal branch through T. i.e., a sequence $b: \kappa \rightarrow H_{\kappa}$ such that $b \upharpoonright \alpha \in T$ for all $\alpha<\kappa$.

κ-trees

Definition

In this talk, a κ-tree is a nonempty subset $T \subseteq{ }^{<\kappa} H_{\kappa}$, satisfying:

1. for all $\alpha<\kappa$, the set $T_{\alpha}:=T \cap{ }^{\alpha} H_{\kappa}$ has size $<\kappa$;
2. for all $\alpha<\kappa$ and $t \in T$, there is $s \in T_{\alpha}$ such that $t \cup s \in T$.

To each T, we associate the notion of forcing $\mathbb{P}(T):=(T, \supseteq)$.
Definition
A κ-tree T is Aronszajn iff it has no cofinal branches.
Definition
A κ-tree T is Souslin iff it is Aronszajn and $\mathbb{P}(T)$ has the κ-cc.

λ^{+}-Souslin trees

Jensen proved that, in L, for all (regular uncountable) κ that is not weakly compact, there is a κ-Souslin tree.

λ^{+}-Souslin trees

Jensen proved that, in L, for all (regular uncountable) κ that is not weakly compact, there is a κ-Souslin tree. His proof shows:

Theorem (Jensen, 1972)
For all uncountable $\lambda, \mathrm{GCH}+\square_{\lambda}$ yields a λ^{+}-Souslin tree.

λ^{+}-Souslin trees

Jensen proved that, in L, for all (regular uncountable) κ that is not weakly compact, there is a κ-Souslin tree. His proof shows:

Theorem (Jensen, 1972)
For all uncountable $\lambda, \mathrm{GCH}+\square_{\lambda}$ yields a λ^{+}-Souslin tree.
This was recently improved:
Theorem (Rinot, 2017)
For all uncountable $\lambda, \mathrm{GCH}+\square\left(\lambda^{+}\right)$yields a λ^{+}-Souslin tree.

λ^{+}-Souslin trees

A tree T is coherent iff $\{\alpha \in \operatorname{dom}(s) \cap \operatorname{dom}(t) \mid s(\alpha) \neq t(\alpha)\}$ is finite for all $s, t \in T$.

Theorem (Jensen, 1972)
For all uncountable $\lambda, \mathrm{GCH}+\square_{\lambda}$ yields a λ^{+}-Souslin tree.
This was recently improved:
Theorem (Rinot, 2017)
For all uncountable $\lambda, \mathrm{GCH}+\square\left(\lambda^{+}\right)$yields a λ^{+}-Souslin tree.

λ^{+}-Souslin trees

A tree T is coherent iff $\{\alpha \in \operatorname{dom}(s) \cap \operatorname{dom}(t) \mid s(\alpha) \neq t(\alpha)\}$ is finite for all $s, t \in T$.

Theorem (Veličković, 1986)
For all uncountable $\lambda, \Delta_{\lambda}$ yields a coherent λ^{+}-Souslin tree.
This was recently improved:
Theorem (Rinot, 2017)
For all uncountable $\lambda, \mathrm{GCH}+\square\left(\lambda^{+}\right)$yields a λ^{+}-Souslin tree.

λ^{+}-Souslin trees

A tree T is coherent iff $\{\alpha \in \operatorname{dom}(s) \cap \operatorname{dom}(t) \mid s(\alpha) \neq t(\alpha)\}$ is finite for all $s, t \in T$.

Theorem (Veličković, 1986)
For all uncountable $\lambda, \nabla_{\lambda}$ yields a coherent λ^{+}-Souslin tree.
This was recently improved:
Theorem (Rinot, 2017)
For all uncountable $\lambda, \mathrm{GCH}+\square\left(\lambda^{+}\right)$yields a λ^{+}-Souslin tree.
Even more recently:
Theorem (Brodsky-Rinot, 201m)
For all singular $\lambda, \mathrm{GCH}+\square\left(\lambda^{+}\right)$yields a coherent λ^{+}-Souslin tree.

λ^{+}-Souslin trees

In this talk, I would like to discuss the techniques that go into the proofs, and to report on progress made on a related problem.

This was recently improved:
Theorem (Rinot, 2017)
For all uncountable $\lambda, \mathrm{GCH}+\square\left(\lambda^{+}\right)$yields a λ^{+}-Souslin tree.
Even more recently:
Theorem (Brodsky-Rinot, 201 ∞)
For all singular $\lambda, \mathrm{GCH}+\square\left(\lambda^{+}\right)$yields a coherent λ^{+}-Souslin tree.

A related problem

Definition

A κ-tree T is collapsing iff $\mathbb{P}(T)$ collapses cardinals.

A related problem

Definition

A κ-tree T is collapsing iff $\mathbb{P}(T)$ collapses cardinals.
Collapsing Tree Property
CTP (κ) asserts that the two hold:

1. there exists a κ-Aronszajn tree;
2. every κ-Aronszajn tree is collapsing.

A related problem

Definition

A κ-tree T is collapsing iff $\mathbb{P}(T)$ collapses cardinals.
Collapsing Tree Property
CTP (κ) asserts that the two hold:

1. there exists a κ-Aronszajn tree;
2. every κ-Aronszajn tree is collapsing.

Theorem (Jensen, 1970's)
GCH is consistent with $\operatorname{CTP}\left(\aleph_{1}\right)$.

A related problem

Definition

A κ-tree T is collapsing iff $\mathbb{P}(T)$ collapses cardinals.
Collapsing Tree Property
CTP (κ) asserts that the two hold:

1. there exists a κ-Aronszajn tree;
2. every κ-Aronszajn tree is collapsing.

Theorem (Jensen, 1970's)
GCH is consistent with $\operatorname{CTP}\left(\aleph_{1}\right)$.
Theorem (Laver-Shelah, 1981)
Assuming a weakly compact, CH is consistent with CTP $\left(\aleph_{2}\right)$.

A related problem

Conjecture

For every uncountable cardinal $\lambda, \mathrm{GCH} \Longrightarrow \neg \mathrm{CTP}\left(\lambda^{+}\right)$.
Collapsing Tree Property
CTP (κ) asserts that the two hold:

1. there exists a κ-Aronszajn tree;
2. every κ-Aronszajn tree is collapsing.

Theorem (Jensen, 1970's)
GCH is consistent with $\operatorname{CTP}\left(\aleph_{1}\right)$.
Theorem (Laver-Shelah, 1981)
Assuming a weakly compact, CH is consistent with CTP $\left(\aleph_{2}\right)$.

A related problem

Conjecture

For every uncountable cardinal $\lambda, \mathrm{GCH} \Longrightarrow \neg \operatorname{CTP}\left(\lambda^{+}\right)$.
Collapsing Tree Property
$\operatorname{CTP}(\kappa)$ asserts that the two hold:

1. there exists a κ-Aronszajn tree;
2. every κ-Aronszajn tree is collapsing.

It is now inevitable to discuss square principles...

Square principles

Square principles

Definition (Jensen, 1972)
\square_{λ} : exists a sequence $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$such that for every limit α :

1. C_{α} is a club in α of order-type $\leq \lambda$;
2. for all $\bar{\alpha} \in \operatorname{acc}\left(C_{\alpha}\right), C_{\alpha} \cap \bar{\alpha}=C_{\bar{\alpha}}$.

Square principles

Definition (Jensen, 1972)
\square_{λ} : exists a sequence $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$such that for every limit α :

1. C_{α} is a club in α of order-type $\leq \lambda$;
2. for all $\bar{\alpha} \in \operatorname{acc}\left(C_{\alpha}\right), C_{\alpha} \cap \bar{\alpha}=C_{\bar{\alpha}}$.

We generalize the preceding from a cardinal λ to an ordinal ξ :
Definition
\square_{ξ} : exists a sequence $\left.\left\langle C_{\alpha}\right| \alpha<|\xi|^{+}\right\rangle$such that for every limit α :

1. C_{α} is a club in α of order-type $\leq \xi$;
2. for all $\bar{\alpha} \in \operatorname{acc}\left(C_{\alpha}\right), C_{\alpha} \cap \bar{\alpha}=C_{\bar{\alpha}}$.

Square principles

Wait a minute!
But for all $\xi \in\left[\lambda, \lambda^{+}\right), \square_{\xi}$ is equivalent to \square_{λ}.

We generalize the preceding from a cardinal λ to an ordinal ξ :
Definition
\square_{ξ} : exists a sequence $\left.\left\langle C_{\alpha}\right| \alpha<|\xi|^{+}\right\rangle$such that for every limit α :

1. C_{α} is a club in α of order-type $\leq \xi$;
2. for all $\bar{\alpha} \in \operatorname{acc}\left(C_{\alpha}\right), C_{\alpha} \cap \bar{\alpha}=C_{\bar{\alpha}}$.

Square principles

Wait a minute!
But for all $\xi \in\left[\lambda, \lambda^{+}\right), \square_{\xi}$ is equivalent to \square_{λ}.
It's true, but we nevertheless claim that $\square_{\lambda^{2}}$ is superior over \square_{λ}.

We generalize the preceding from a cardinal λ to an ordinal ξ :
Definition
\square_{ξ} : exists a sequence $\left.\left\langle C_{\alpha}\right| \alpha<|\xi|^{+}\right\rangle$such that for every limit α :

1. C_{α} is a club in α of order-type $\leq \xi$;
2. for all $\bar{\alpha} \in \operatorname{acc}\left(C_{\alpha}\right), C_{\alpha} \cap \bar{\alpha}=C_{\bar{\alpha}}$.

Square principles

Wait a minute!
But for all $\xi \in\left[\lambda, \lambda^{+}\right), \square_{\xi}$ is equivalent to \square_{λ}.
It's true, but we nevertheless claim that $\square_{\lambda^{2}}$ is superior over \square_{λ}.
Why? because the former allows $\left\{\alpha \in E_{\theta}^{\lambda^{+}}| | C_{\alpha}|=|\alpha|\}\right.$ to be stationary for any choice of a regular cardinal $\theta \leq \lambda$.

Definition

\square_{ξ} : exists a sequence $\left.\left\langle C_{\alpha}\right| \alpha<|\xi|^{+}\right\rangle$such that for every limit α :

1. C_{α} is a club in α of order-type $\leq \xi$;
2. for all $\bar{\alpha} \in \operatorname{acc}\left(C_{\alpha}\right), C_{\alpha} \cap \bar{\alpha}=C_{\bar{\alpha}}$.

Square principles

Wait a minute!
But for all $\xi \in\left[\lambda, \lambda^{+}\right), \square_{\xi}$ is equivalent to \square_{λ}.
It's true, but we nevertheless claim that $\square_{\lambda^{2}}$ is superior over \square_{λ}.
Why? because the former allows $\left\{\alpha \in E_{\theta}^{\lambda^{+}}| | C_{\alpha}|=|\alpha|\}\right.$ to be stationary for any choice of a regular cardinal $\theta \leq \lambda$.

Definition

$\square_{\xi}(\kappa)$: exists a sequence $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ such that for every limit α :

1. C_{α} is a club in α of order-type $\leq \xi$;
2. for all $\bar{\alpha} \in \operatorname{acc}\left(C_{\alpha}\right), C_{\alpha} \cap \bar{\alpha}=C_{\bar{\alpha}}$.

Square principles

Wait a minute!
But for all $\xi \in\left[\lambda, \lambda^{+}\right), \square_{\xi}$ is equivalent to \square_{λ}.
It's true, but we nevertheless claim that $\square_{\lambda^{2}}$ is superior over \square_{λ}.
Why? because the former allows $\left\{\alpha \in E_{\theta}^{\lambda^{+}}| | C_{\alpha}|=|\alpha|\}\right.$ to be stationary for any choice of a regular cardinal $\theta \leq \lambda$.

Definition

$\square_{\xi}(\kappa)$: exists a sequence $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ such that for every limit α :

1. C_{α} is a club in α of order-type $\leq \xi$;
2. for all $\bar{\alpha} \in \operatorname{acc}\left(C_{\alpha}\right), C_{\alpha} \cap \bar{\alpha}=C_{\bar{\alpha}}$;
3. for every club $D \subseteq \kappa$, there is $\bar{\alpha} \in \operatorname{acc}(D)$ with $D \cap \bar{\alpha} \neq C_{\bar{\alpha}}$.

Square principles

Definition

$\square_{\xi}(\kappa,<\mu)$: exists a sequence $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ such that for limit α :

1. C_{α} is a club in α of order-type $\leq \xi$;
2. $\mathcal{C}_{\alpha}:=\left\{C_{\beta} \cap \alpha \mid \beta<\kappa\right.$, sup $\left.\left(C_{\beta} \cap \alpha\right)=\alpha\right\}$ has size $<\mu$;
3. for every club $D \subseteq \kappa$, there is $\bar{\alpha} \in \operatorname{acc}(D)$ with $D \cap \bar{\alpha} \notin \mathcal{C}_{\bar{\alpha}}$.

Definition

$\square_{\xi}(\kappa)$: exists a sequence $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ such that for every limit α :

1. C_{α} is a club in α of order-type $\leq \xi$;
2. for all $\bar{\alpha} \in \operatorname{acc}\left(C_{\alpha}\right), C_{\alpha} \cap \bar{\alpha}=C_{\bar{\alpha}}$;
3. for every club $D \subseteq \kappa$, there is $\bar{\alpha} \in \operatorname{acc}(D)$ with $D \cap \bar{\alpha} \neq C_{\bar{\alpha}}$.

Square principles

Definition

$\square_{\xi}(\kappa,<\mu)$: exists a sequence $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ such that for limit α :

1. C_{α} is a club in α of order-type $\leq \xi$;
2. $\mathcal{C}_{\alpha}:=\left\{C_{\beta} \cap \alpha \mid \beta<\kappa\right.$, $\left.\sup \left(C_{\beta} \cap \alpha\right)=\alpha\right\}$ has size $<\mu$;
3. for every club $D \subseteq \kappa$, there is $\bar{\alpha} \in \operatorname{acc}(D)$ with $D \cap \bar{\alpha} \notin \mathcal{C}_{\bar{\alpha}}$.

Square principles and Aronszajn trees are closely related:
Theorem (Jensen, 1972)
$\square_{\lambda}\left(\lambda^{+},<\lambda^{+}\right)$holds iff there exists a special λ^{+}-Aronszajn tree.

Square principles

Definition

$\square_{\xi}(\kappa,<\mu)$: exists a sequence $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ such that for limit α :

1. C_{α} is a club in α of order-type $\leq \xi$;
2. $\mathcal{C}_{\alpha}:=\left\{C_{\beta} \cap \alpha \mid \beta<\kappa\right.$, $\left.\sup \left(C_{\beta} \cap \alpha\right)=\alpha\right\}$ has size $<\mu$;
3. for every club $D \subseteq \kappa$, there is $\bar{\alpha} \in \operatorname{acc}(D)$ with $D \cap \bar{\alpha} \notin \mathcal{C}_{\bar{\alpha}}$.

Square principles and Aronszajn trees are closely related:
Theorem (Jensen, 1972)
$\square_{\lambda}\left(\lambda^{+},<\lambda^{+}\right)$holds iff there exists a special λ^{+}-Aronszajn tree.
Theorem (Todorcevic, 1987)
$\square_{\kappa}(\kappa,<\kappa)$ holds iff there exists a κ-Aronszajn tree.

Square principles

Recall our conjecture
For every uncountable cardinal $\lambda, \mathrm{GCH} \Longrightarrow \neg \mathrm{CTP}\left(\lambda^{+}\right)$.

Theorem (Jensen, 1972)
$\square_{\lambda}\left(\lambda^{+},<\lambda^{+}\right)$holds iff there exists a special λ^{+}-Aronszajn tree.
Theorem (Todorcevic, 1987)
$\square_{\kappa}(\kappa,<\kappa)$ holds iff there exists a κ-Aronszajn tree.

Square principles

Recall our conjecture
For every uncountable cardinal $\lambda, \mathrm{GCH} \Longrightarrow \neg \mathrm{CTP}\left(\lambda^{+}\right)$.
Equivalently
For every uncountable cardinal λ, if $\mathrm{GCH}+\square_{\lambda^{+}}\left(\lambda^{+},<\lambda^{+}\right)$holds, then there is a λ^{+}-Aronszajn tree T s.t. $\mathbb{P}(T)$ preserves cardinals.

Theorem (Jensen, 1972)
$\square_{\lambda}\left(\lambda^{+},<\lambda^{+}\right)$holds iff there exists a special λ^{+}-Aronszajn tree.
Theorem (Todorcevic, 1987)
$\square_{\kappa}(\kappa,<\kappa)$ holds iff there exists a κ-Aronszajn tree.

Square principles

Recall our conjecture
For every uncountable cardinal $\lambda, \mathrm{GCH} \Longrightarrow \neg \mathrm{CTP}\left(\lambda^{+}\right)$.
Equivalently
For every uncountable cardinal λ, if $\mathrm{GCH}+\square_{\lambda^{+}}\left(\lambda^{+},<\lambda^{+}\right)$holds, then there is a λ^{+}-Aronszajn tree T s.t. $\mathbb{P}(T)$ preserves cardinals.

Theorem (Ben-David and Shelah, 1986)
For every singular cardinal λ, if $\mathrm{GCH}+\square_{\lambda}\left(\lambda^{+},<\lambda^{+}\right)$holds, then there is a λ^{+}-Aronszajn tree T s.t. $\mathbb{P}(T)$ is λ-distributive.

To sum up

A problem of a similar flavor

- Jensen constructed a λ^{+}-Souslin tree from GCH $+\square_{\xi}\left(\lambda^{+}\right)$ with $\xi=\lambda$, and we relaxed it to $\xi=\lambda^{+}$.
- Ben-David and Shelah constructed a non-collapsing λ^{+}-Aronszajn tree from $\mathrm{GCH}+\square_{\xi}\left(\lambda^{+},<\lambda^{+}\right)$with $\xi=\lambda$, and we want to relax it to $\xi=\lambda^{+}$.

To sum up

A problem of a similar flavor

- Jensen constructed a λ^{+}-Souslin tree from GCH $+\square_{\xi}\left(\lambda^{+}\right)$ with $\xi=\lambda$, and we relaxed it to $\xi=\lambda^{+}$.
- Ben-David and Shelah constructed a non-collapsing λ^{+}-Aronszajn tree from $\mathrm{GCH}+\square_{\xi}\left(\lambda^{+},<\lambda^{+}\right)$with $\xi=\lambda$, and we want to relax it to $\xi=\lambda^{+}$.
The constructions under $\xi=\lambda$ use this assumption crucially:

To sum up

A problem of a similar flavor

- Jensen constructed a λ^{+}-Souslin tree from GCH $+\square_{\xi}\left(\lambda^{+}\right)$ with $\xi=\lambda$, and we relaxed it to $\xi=\lambda^{+}$.
- Ben-David and Shelah constructed a non-collapsing λ^{+}-Aronszajn tree from $\mathrm{GCH}+\square_{\xi}\left(\lambda^{+},<\lambda^{+}\right)$with $\xi=\lambda$, and we want to relax it to $\xi=\lambda^{+}$.
The constructions under $\xi=\lambda$ use this assumption crucially:
- Jensen exploits the fact that $\square_{\lambda}\left(\lambda^{+}\right)$yields a non-reflecting stationary set S.

To sum up

A problem of a similar flavor

- Jensen constructed a λ^{+}-Souslin tree from GCH $+\square_{\xi}\left(\lambda^{+}\right)$ with $\xi=\lambda$, and we relaxed it to $\xi=\lambda^{+}$.
- Ben-David and Shelah constructed a non-collapsing λ^{+}-Aronszajn tree from $\mathrm{GCH}+\square_{\xi}\left(\lambda^{+},<\lambda^{+}\right)$with $\xi=\lambda$, and we want to relax it to $\xi=\lambda^{+}$.
The constructions under $\xi=\lambda$ use this assumption crucially:
- Jensen exploits the fact that $\square_{\lambda}\left(\lambda^{+}\right)$yields a non-reflecting stationary set S. The definition of limit level T_{α} for $\alpha \in S$ involves throwing away many canonical limits from $\bigcup_{\beta<\alpha} T_{\beta}$.

To sum up

A problem of a similar flavor

- Jensen constructed a λ^{+}-Souslin tree from GCH $+\square_{\xi}\left(\lambda^{+}\right)$ with $\xi=\lambda$, and we relaxed it to $\xi=\lambda^{+}$.
- Ben-David and Shelah constructed a non-collapsing λ^{+}-Aronszajn tree from $\mathrm{GCH}+\square_{\xi}\left(\lambda^{+},<\lambda^{+}\right)$with $\xi=\lambda$, and we want to relax it to $\xi=\lambda^{+}$.
The constructions under $\xi=\lambda$ use this assumption crucially:
- Jensen exploits the fact that $\square_{\lambda}\left(\lambda^{+}\right)$yields a non-reflecting stationary set S. The definition of limit level T_{α} for $\alpha \in S$ involves throwing away many canonical limits from $\bigcup_{\beta<\alpha} T_{\beta}$. By $\diamond(S)$, this ensures the sealing of antichains.

To sum up

A problem of a similar flavor

- Jensen constructed a λ^{+}-Souslin tree from GCH $+\square_{\xi}\left(\lambda^{+}\right)$ with $\xi=\lambda$, and we relaxed it to $\xi=\lambda^{+}$.
- Ben-David and Shelah constructed a non-collapsing λ^{+}-Aronszajn tree from $\mathrm{GCH}+\square_{\xi}\left(\lambda^{+},<\lambda^{+}\right)$with $\xi=\lambda$, and we want to relax it to $\xi=\lambda^{+}$.
The constructions under $\xi=\lambda$ use this assumption crucially:
- Jensen exploits the fact that $\square_{\lambda}\left(\lambda^{+}\right)$yields a non-reflecting stationary set S. The definition of limit level T_{α} for $\alpha \in S$ involves throwing away many canonical limits from $\bigcup_{\beta<\alpha} T_{\beta}$. By $\diamond(S)$, this ensures the sealing of antichains. This does not jam the later stages of the construction, since (one can arrange that) $\operatorname{acc}\left(C_{\alpha}\right) \cap S=\emptyset$ for all α.

To sum up

A problem of a similar flavor

- Jensen constructed a λ^{+}-Souslin tree from GCH $+\square_{\xi}\left(\lambda^{+}\right)$ with $\xi=\lambda$, and we relaxed it to $\xi=\lambda^{+}$.
- Ben-David and Shelah constructed a non-collapsing λ^{+}-Aronszajn tree from $\mathrm{GCH}+\square_{\xi}\left(\lambda^{+},<\lambda^{+}\right)$with $\xi=\lambda$, and we want to relax it to $\xi=\lambda^{+}$.
The constructions under $\xi=\lambda$ use this assumption crucially:
- Ben-David and Shelah exploits the fact that for λ singular, $\square_{\lambda}\left(\lambda^{+},<\lambda^{+}\right)$may be witnessed by a sequence $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$ for which $\left\{\alpha<\lambda^{+}| | C_{\alpha}|=|\alpha|\}\right.$ is nonstationary.

To sum up

A problem of a similar flavor

- Jensen constructed a λ^{+}-Souslin tree from GCH $+\square_{\xi}\left(\lambda^{+}\right)$ with $\xi=\lambda$, and we relaxed it to $\xi=\lambda^{+}$.
- Ben-David and Shelah constructed a non-collapsing λ^{+}-Aronszajn tree from $\mathrm{GCH}+\square_{\xi}\left(\lambda^{+},<\lambda^{+}\right)$with $\xi=\lambda$, and we want to relax it to $\xi=\lambda^{+}$.
The constructions under $\xi=\lambda$ use this assumption crucially:
- Ben-David and Shelah exploits the fact that for λ singular, $\square_{\lambda}\left(\lambda^{+},<\lambda^{+}\right)$may be witnessed by a sequence $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$ for which $\left|C_{\alpha}\right|<\lambda$ for all $\alpha<\lambda^{+}$.

To sum up

A problem of a similar flavor

- Jensen constructed a λ^{+}-Souslin tree from GCH $+\square_{\xi}\left(\lambda^{+}\right)$ with $\xi=\lambda$, and we relaxed it to $\xi=\lambda^{+}$.
- Ben-David and Shelah constructed a non-collapsing λ^{+}-Aronszajn tree from $\mathrm{GCH}+\square_{\xi}\left(\lambda^{+},<\lambda^{+}\right)$with $\xi=\lambda$, and we want to relax it to $\xi=\lambda^{+}$.
The constructions under $\xi=\lambda$ use this assumption crucially:
- Ben-David and Shelah exploits the fact that for λ singular, $\square_{\lambda}\left(\lambda^{+},<\lambda^{+}\right)$may be witnessed by a sequence $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$ for which $\left|C_{\alpha}\right|<\lambda$ for all $\alpha<\lambda^{+}$.
The definition of limit level T_{α} involves throwing away one canonical limit from $\bigcup_{\beta<\alpha} T_{\beta}$.

To sum up

A problem of a similar flavor

- Jensen constructed a λ^{+}-Souslin tree from GCH $+\square_{\xi}\left(\lambda^{+}\right)$ with $\xi=\lambda$, and we relaxed it to $\xi=\lambda^{+}$.
- Ben-David and Shelah constructed a non-collapsing λ^{+}-Aronszajn tree from $\mathrm{GCH}+\square_{\xi}\left(\lambda^{+},<\lambda^{+}\right)$with $\xi=\lambda$, and we want to relax it to $\xi=\lambda^{+}$.
The constructions under $\xi=\lambda$ use this assumption crucially:
- Ben-David and Shelah exploits the fact that for λ singular, $\square_{\lambda}\left(\lambda^{+},<\lambda^{+}\right)$may be witnessed by a sequence $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$ for which $\left|C_{\alpha}\right|<\lambda$ for all $\alpha<\lambda^{+}$.
The definition of limit level T_{α} involves throwing away one canonical limit from $\bigcup_{\beta<\alpha} T_{\beta}$.
By $\diamond\left(\lambda^{+}\right)$, this ensures the sealing of a cofinal branch.

To sum up

A problem of a similar flavor

- Jensen constructed a λ^{+}-Souslin tree from GCH $+\square_{\xi}\left(\lambda^{+}\right)$ with $\xi=\lambda$, and we relaxed it to $\xi=\lambda^{+}$.
- Ben-David and Shelah constructed a non-collapsing λ^{+}-Aronszajn tree from $\mathrm{GCH}+\square_{\xi}\left(\lambda^{+},<\lambda^{+}\right)$with $\xi=\lambda$, and we want to relax it to $\xi=\lambda^{+}$.
The constructions under $\xi=\lambda$ use this assumption crucially:
- Ben-David and Shelah exploits the fact that for λ singular, $\square_{\lambda}\left(\lambda^{+},<\lambda^{+}\right)$may be witnessed by a sequence $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$ for which $\left|C_{\alpha}\right|<\lambda$ for all $\alpha<\lambda^{+}$.
The definition of limit level T_{α} involves throwing away one canonical limit from $\bigcup_{\beta<\alpha} T_{\beta}$.
This does not jam the later stages of the construction, since they build a λ-splitting tree, while $\left|C_{\alpha}\right|<\lambda$ for all α.

To sum up

A problem of a similar flavor

- Jensen constructed a λ^{+}-Souslin tree from GCH $+\square_{\xi}\left(\lambda^{+}\right)$ with $\xi=\lambda$, and we relaxed it to $\xi=\lambda^{+}$.
- Ben-David and Shelah constructed a non-collapsing λ^{+}-Aronszajn tree from $\mathrm{GCH}+\square_{\xi}\left(\lambda^{+},<\lambda^{+}\right)$with $\xi=\lambda$, and we want to relax it to $\xi=\lambda^{+}$.
The constructions under $\xi=\lambda$ use this assumption crucially.
So, "relaxing $\xi=\lambda$ to $\xi=\lambda^{+}$", in fact, amounts to finding a different construction.

Same same, but different

Coherent Souslin trees

Exercise

Suppose that $\diamond(\kappa)$ holds, and there exists a $\square_{\kappa}(\kappa)$-sequence $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ satisfying the following:

Coherent Souslin trees

Exercise

Suppose that $\diamond(\kappa)$ holds, and there exists a $\square_{\kappa}(\kappa)$-sequence $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ satisfying the following:

- For every cofinal $A \subseteq \kappa$, there is a limit $\alpha<\kappa$ such that $\sup \left(\operatorname{nacc}\left(C_{\alpha}\right) \cap A\right)=\alpha$.

Coherent Souslin trees

Exercise

Suppose that $\diamond(\kappa)$ holds, and there exists a $\square_{\kappa}(\kappa)$-sequence $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ satisfying the following:

- For every cofinal $A \subseteq \kappa$, there is a limit $\alpha<\kappa$ such that $\sup \left(\operatorname{nacc}\left(C_{\alpha}\right) \cap A\right)=\alpha$.
Then there exists a κ-Souslin tree.

Coherent Souslin trees

Exercise

Suppose that $\diamond(\kappa)$ holds, and there exists a $\square_{\kappa}(\kappa)$-sequence $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ satisfying the following:

- For every cofinal $A \subseteq \kappa$, there is a limit $\alpha<\kappa$ such that $\sup \left(\operatorname{nacc}\left(C_{\alpha}\right) \cap A\right)=\alpha$.
Then there exists a κ-Souslin tree.
For a quick proof
See "How to construct a Souslin tree the right way" on my webpage.

Coherent Souslin trees

Proposition (Brodsky-Rinot, 2017)
Suppose that $\diamond(\kappa)$ holds, and there exists a $\square_{\kappa}(\kappa)$-sequence $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ satisfying the following:

- For every sequence $\left\langle A_{i} \mid i<\kappa\right\rangle$ of cofinal subsets of κ, there is a limit $\alpha<\kappa$ such that $\sup \left(\operatorname{nacc}\left(C_{\alpha}\right) \cap A_{i}\right)=\alpha$ for all $i<\alpha$.

Coherent Souslin trees

Proposition (Brodsky-Rinot, 2017)
Suppose that $\diamond(\kappa)$ holds, and there exists a $\square_{\kappa}(\kappa)$-sequence $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ satisfying the following:

- For every sequence $\left\langle A_{i} \mid i<\kappa\right\rangle$ of cofinal subsets of κ, there is a limit $\alpha<\kappa$ such that $\sup \left(\operatorname{nacc}\left(C_{\alpha}\right) \cap A_{i}\right)=\alpha$ for all $i<\alpha$.
Then there exists a coherent κ-Souslin tree.

Coherent Souslin trees

Proposition (Brodsky-Rinot, 2017)
Suppose that $\diamond(\kappa)$ holds, and there exists a $\square_{\kappa}(\kappa)$-sequence $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ satisfying the following:

- For every sequence $\left\langle A_{i} \mid i<\kappa\right\rangle$ of cofinal subsets of κ, there is a limit $\alpha<\kappa$ such that $\sup \left(\operatorname{nacc}\left(C_{\alpha}\right) \cap A_{i}\right)=\alpha$ for all $i<\alpha$.
Then there exists a coherent κ-Souslin tree.
Note
Wlog, the A_{i} 's are pairwise disjoint. Therefore, $\left|C_{\alpha}\right|=|\alpha|$.

Coherent Souslin trees

Proposition (Brodsky-Rinot, 2017)
Suppose that $\diamond(\kappa)$ holds, and there exists a $\square_{\kappa}(\kappa)$-sequence $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ satisfying the following:

- For every sequence $\left\langle A_{i} \mid i<\kappa\right\rangle$ of cofinal subsets of κ, there is a limit $\alpha<\kappa$ such that $\sup \left(\operatorname{nacc}\left(C_{\alpha}\right) \cap A_{i}\right)=\alpha$ for all $i<\alpha$.
Then there exists a coherent κ-Souslin tree.
About the proof
Uses the microscopic approach for Souslin-tree constructions.

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201 ∞)
Suppose that $\diamond(\kappa)$ holds, and there exists a $\square_{\kappa}(\kappa,<\kappa)$-sequence $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ satisfying the following:

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201m)
Suppose that $\forall(\kappa)$ holds, and there exists a $\square_{\kappa}(\kappa,<\kappa)$-sequence $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ satisfying the following:

- For every club $E \subseteq \kappa$, there is
a limit $\alpha<\kappa$ such that $\sup (\operatorname{nacc}(C) \cap E)=\alpha$ for all $C \in \mathcal{C}_{\alpha}$.

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201m)
Suppose that $\forall(\kappa)$ holds, and there exists a $\square_{\kappa}(\kappa,<\kappa)$-sequence $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ satisfying the following:

- For every club $E \subseteq \kappa$, there is
a limit $\alpha<\kappa$ such that $\sup (\operatorname{nacc}(C) \cap E)=\alpha$ for all $C \in \mathcal{C}_{\alpha}$.
Recall
$\mathcal{C}_{\alpha}:=\left\{C_{\beta} \cap \alpha \mid \beta<\kappa, \sup \left(C_{\beta} \cap \alpha\right)=\alpha\right\}$.

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201m)
Suppose that $\forall(\kappa)$ holds, and there exists a $\square_{\kappa}(\kappa,<\kappa)$-sequence $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ satisfying the following:

- For every club $E \subseteq \kappa$, there is
a limit $\alpha<\kappa$ such that $\sup (\operatorname{nacc}(C) \cap E)=\alpha$ for all $C \in \mathcal{C}_{\alpha}$.
Then there exists a corresponding tree $T(\vec{C})$ which is κ-Aronszajn.

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201ヵ)
Suppose that $\forall(\kappa)$ holds, and there exists a $\square_{\kappa}(\kappa,<\kappa)$-sequence $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ satisfying the following:

- For every club $E \subseteq \kappa$, there is
a limit $\alpha<\kappa$ such that $\sup (\operatorname{nacc}(C) \cap E)=\alpha$ for all $C \in \mathcal{C}_{\alpha}$.
Then there exists a corresponding tree $T(\vec{C})$ which is κ-Aronszajn.
Note
Ben-David and Shelah used $\diamond(\kappa)$ to seal cofinal branches.
We use club-guessing, instead.
(Instead of throwing away canonical limits, we inject noise)

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201m)
Suppose that $\forall(\kappa)$ holds, and there exists a $\square_{\kappa}(\kappa,<\kappa)$-sequence $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ satisfying the following:

- For every club $E \subseteq \kappa$, there is
a limit $\alpha<\kappa$ such that $\sup (\operatorname{nacc}(C) \cap E)=\alpha$ for all $C \in \mathcal{C}_{\alpha}$.
Then there exists a corresponding tree $T(\vec{C})$ which is κ-Aronszajn. Furthermore, for every cardinal θ, if the following holds:
- For every sequence $\left\langle A_{i} \mid i<\theta\right\rangle$ of cofinal subsets of κ, there is a limit $\alpha<\kappa$ such that $\sup \left(\operatorname{nacc}\left(C_{\alpha}\right) \cap A_{i}\right)=\alpha$ for all $i<\theta$.

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201 ∞)
Suppose that $\forall(\kappa)$ holds, and there exists a $\square_{\kappa}(\kappa,<\kappa)$-sequence $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ satisfying the following:

- For every club $E \subseteq \kappa$, there is
a limit $\alpha<\kappa$ such that $\sup (\operatorname{nacc}(C) \cap E)=\alpha$ for all $C \in \mathcal{C}_{\alpha}$.
Then there exists a corresponding tree $T(\vec{C})$ which is κ-Aronszajn. Furthermore, for every cardinal θ, if the following holds:
- For every sequence $\left\langle A_{i} \mid i<\theta\right\rangle$ of cofinal subsets of κ, there is a limit $\alpha<\kappa$ such that $\sup \left(\operatorname{nacc}\left(C_{\alpha}\right) \cap A_{i}\right)=\alpha$ for all $i<\theta$.
Then $T(\vec{C})$ is θ-distributive.

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201ヵ)
Suppose that $\forall(\kappa)$ holds, and there exists a $\square_{\kappa}(\kappa,<\kappa)$-sequence $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ satisfying the following:

- For every club $E \subseteq \kappa$, there is
a limit $\alpha<\kappa$ such that $\sup (\operatorname{nacc}(C) \cap E)=\alpha$ for all $C \in \mathcal{C}_{\alpha}$.
Then there exists a corresponding tree $T(\vec{C})$ which is κ-Aronszajn. Furthermore, for every cardinal θ, if the following holds:
- For every sequence $\left\langle A_{i} \mid i<\theta\right\rangle$ of cofinal subsets of κ, there is a limit $\alpha<\kappa$ such that $\sup \left(\operatorname{nacc}\left(C_{\alpha}\right) \cap A_{i}\right)=\alpha$ for all $i<\theta$.
Then $T(\vec{C})$ is θ-distributive.

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201m)
Suppose that $\forall(\kappa)$ holds, and there exists a $\square_{\kappa}(\kappa,<\kappa)$-sequence $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ satisfying the following:

- For every club $E \subseteq \kappa$, there is
a limit $\alpha<\kappa$ such that $\sup (\operatorname{nacc}(C) \cap E)=\alpha$ for all $C \in \mathcal{C}_{\alpha}$.
Then there exists a corresponding tree $T(\vec{C})$ which is κ-Aronszajn. Furthermore, for every cardinal θ, if the following holds:
- For every sequence $\left\langle A_{i} \mid i<\theta\right\rangle$ of cofinal subsets of κ, there is a limit $\alpha<\kappa$ such that $\sup \left(\operatorname{nacc}\left(C_{\alpha}\right) \cap A_{i}\right)=\alpha$ for all $i<\theta$.
Then $T(\vec{C})$ is θ-distributive.
About the proof
Uses walks on ordinals.

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201 ∞)
Suppose that $\diamond(\kappa)$ holds, and there exists a $\square_{\kappa}(\kappa,<\kappa)$-sequence $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ satisfying the following:

- For every club $E \subseteq \kappa$, there is
a limit $\alpha<\kappa$ such that $\sup (\operatorname{nacc}(C) \cap E)=\alpha$ for all $C \in \mathcal{C}_{\alpha}$.
Then there exists a corresponding tree $T(\vec{C})$ which is κ-Aronszajn. Furthermore, for every cardinal θ, if the following holds:
- For every sequence $\left\langle A_{i} \mid i<\theta\right\rangle$ of cofinal subsets of κ, there is a limit $\alpha<\kappa$ such that $\sup \left(\operatorname{nacc}\left(C_{\alpha}\right) \cap A_{i}\right)=\alpha$ for all $i<\theta$.
Then $T(\vec{C})$ is θ-distributive.
About the proof
Uses walks on ordinals.
From \vec{C}, we cook up \vec{D}, and then the tree $T(\vec{C})$ is $\mathcal{T}\left(\rho_{0}^{\vec{D}}\right)$.

To sum up

There are a few machines that take $\square_{\xi}(\kappa,<\mu)$-sequences \vec{C} as inputs, and produce corresponding trees $T(\vec{C})$ as outputs.
We already mentioned two:

- The microscopic approach for Souslin-tree constructions;
- Walks on ordinals.

To sum up

There are a few machines that take $\square_{\xi}(\kappa,<\mu)$-sequences \vec{C} as inputs, and produce corresponding trees $T(\vec{C})$ as outputs.
We already mentioned two:

- The microscopic approach for Souslin-tree constructions;
- Walks on ordinals.

Whether the outcome tree $T(\vec{C})$ is Aronszajn/Souslin/Collapsing... depends on further features of \vec{C}.

To sum up

There are a few machines that take $\square_{\xi}(\kappa,<\mu)$-sequences \vec{C} as inputs, and produce corresponding trees $T(\vec{C})$ as outputs.
We already mentioned two:

- The microscopic approach for Souslin-tree constructions;
- Walks on ordinals.

Whether the outcome tree $T(\vec{C})$ is Aronszajn/Souslin/Collapsing... depends on further features of \vec{C}.
So, if we were to use these machines, then we have to find a way to improve the \vec{C} 's.

Improve your square

Postprocessing functions

So, someone provides us with a raw $\square_{\xi}(\kappa,<\mu)$-sequence $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$. How do we proceed?

Postprocessing functions

So, someone provides us with a raw $\square_{\xi}(\kappa,<\mu)$-sequence $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$. How do we proceed?

Definition
$\Phi: \mathcal{K}(\kappa) \rightarrow \mathcal{K}(\kappa)$ is a postprocessing function iff for all $x \in \mathcal{K}(\kappa)$:

Postprocessing functions

So, someone provides us with a raw $\square_{\xi}(\kappa,<\mu)$-sequence $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$. How do we proceed?

Definition
$\Phi: \mathcal{K}(\kappa) \rightarrow \mathcal{K}(\kappa)$ is a postprocessing function iff for all $x \in \mathcal{K}(\kappa)$:

Recall

$x \in \mathcal{K}(\kappa)$ iff x is a club in some limit ordinal $\alpha \leq \kappa$.

Postprocessing functions

So, someone provides us with a raw $\square_{\xi}(\kappa,<\mu)$-sequence $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$. How do we proceed?

Definition

$\Phi: \mathcal{K}(\kappa) \rightarrow \mathcal{K}(\kappa)$ is a postprocessing function iff for all $x \in \mathcal{K}(\kappa)$:

- $\Phi(x)$ is a club in $\sup (x)$;

Recall

$x \in \mathcal{K}(\kappa)$ iff x is a club in some limit ordinal $\alpha \leq \kappa$.

Postprocessing functions

So, someone provides us with a raw $\square_{\xi}(\kappa,<\mu)$-sequence $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$. How do we proceed?

Definition

$\Phi: \mathcal{K}(\kappa) \rightarrow \mathcal{K}(\kappa)$ is a postprocessing function iff for all $x \in \mathcal{K}(\kappa)$:

- $\Phi(x)$ is a club in $\sup (x)$;
- $\operatorname{acc}(\Phi(x)) \subseteq \operatorname{acc}(x)$;

Recall

$x \in \mathcal{K}(\kappa)$ iff x is a club in some limit ordinal $\alpha \leq \kappa$.

Postprocessing functions

So, someone provides us with a raw $\square_{\xi}(\kappa,<\mu)$-sequence $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$. How do we proceed?

Definition

$\Phi: \mathcal{K}(\kappa) \rightarrow \mathcal{K}(\kappa)$ is a postprocessing function iff for all $x \in \mathcal{K}(\kappa)$:

- $\Phi(x)$ is a club in $\sup (x)$;
- $\operatorname{acc}(\Phi(x)) \subseteq \operatorname{acc}(x)$;
- for every $\bar{\alpha} \in \operatorname{acc}(\Phi(x)), \Phi(x) \cap \bar{\alpha}=\Phi(x \cap \bar{\alpha})$.

Recall

$x \in \mathcal{K}(\kappa)$ iff x is a club in some limit ordinal $\alpha \leq \kappa$.

Postprocessing functions

So, someone provides us with a raw $\square_{\xi}(\kappa,<\mu)$-sequence $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$. How do we proceed?

Definition

$\Phi: \mathcal{K}(\kappa) \rightarrow \mathcal{K}(\kappa)$ is a postprocessing function iff for all $x \in \mathcal{K}(\kappa)$:

- $\Phi(x)$ is a club in $\sup (x)$;
- $\operatorname{acc}(\Phi(x)) \subseteq \operatorname{acc}(x)$;
- for every $\bar{\alpha} \in \operatorname{acc}(\Phi(x)), \Phi(x) \cap \bar{\alpha}=\Phi(x \cap \bar{\alpha})$.

By convention, let $\Phi(x):=\{\sup (x)\}$ for all $x \in \mathcal{P}(\kappa) \backslash \mathcal{K}(\kappa)$.

Postprocessing functions

So, someone provides us with a raw $\square_{\xi}(\kappa,<\mu)$-sequence $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$. How do we proceed?

Definition

$\Phi: \mathcal{K}(\kappa) \rightarrow \mathcal{K}(\kappa)$ is a postprocessing function iff for all $x \in \mathcal{K}(\kappa)$:

- $\Phi(x)$ is a club in $\sup (x)$;
- $\operatorname{acc}(\Phi(x)) \subseteq \operatorname{acc}(x)$;
- for every $\bar{\alpha} \in \operatorname{acc}(\Phi(x)), \Phi(x) \cap \bar{\alpha}=\Phi(x \cap \bar{\alpha})$.

By convention, let $\Phi(x):=\{\sup (x)\}$ for all $x \in \mathcal{P}(\kappa) \backslash \mathcal{K}(\kappa)$.
Lemma (Brodsky-Rinot, 201 ∞)
If $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ is a $\square_{\xi}(\kappa,<\mu)$-sequence, and $\min \{\xi, \mu\}<\kappa$, then $\vec{C}^{\Phi}:=\left\langle\Phi\left(C_{\alpha}\right) \mid \alpha<\kappa\right\rangle$ is a $\square_{\xi}(\kappa,<\mu)$-sequence, as well.

Postprocessing functions (cont.)

Definition
$\Phi: \mathcal{K}(\kappa) \rightarrow \mathcal{K}(\kappa)$ is a postprocessing function iff for all $x \in \mathcal{K}(\kappa)$:

- $\Phi(x)$ is a club in $\sup (x)$;
- $\operatorname{acc}(\Phi(x)) \subseteq \operatorname{acc}(x)$;
- for every $\bar{\alpha} \in \operatorname{acc}(\Phi(x)), \Phi(x) \cap \bar{\alpha}=\Phi(x \cap \bar{\alpha})$.

So the collection of postprocessing functions forms a monoid that acts on the class of square sequences.

Postprocessing functions (cont.)

Definition

$\Phi: \mathcal{K}(\kappa) \rightarrow \mathcal{K}(\kappa)$ is a postprocessing function iff for all $x \in \mathcal{K}(\kappa)$:

- $\Phi(x)$ is a club in $\sup (x)$;
- $\operatorname{acc}(\Phi(x)) \subseteq \operatorname{acc}(x)$;
- for every $\bar{\alpha} \in \operatorname{acc}(\Phi(x)), \Phi(x) \cap \bar{\alpha}=\Phi(x \cap \bar{\alpha})$.

So the collection of postprocessing functions forms a monoid that acts on the class of square sequences.
This means that we can start with an arbitrary square sequence \vec{C}; then move to $\vec{C}^{\Phi_{0}}$, and then to $\vec{C}^{\Phi_{1} \circ \Phi_{0}}$, and hopefully, after finitely many steps, we will end up with a useful sequence $\vec{C}^{\Phi_{n} \circ \cdots \circ \Phi_{0}}$.

Postprocessing functions (cont.)

Definition

$\Phi: \mathcal{K}(\kappa) \rightarrow \mathcal{K}(\kappa)$ is a postprocessing function iff for all $x \in \mathcal{K}(\kappa)$:

- $\Phi(x)$ is a club in $\sup (x)$;
- $\operatorname{acc}(\Phi(x)) \subseteq \operatorname{acc}(x)$;
- for every $\bar{\alpha} \in \operatorname{acc}(\Phi(x)), \Phi(x) \cap \bar{\alpha}=\Phi(x \cap \bar{\alpha})$.

So the collection of postprocessing functions forms a monoid that acts on the class of square sequences.
This means that we can start with an arbitrary square sequence \vec{C}; then move to $\vec{C}^{\Phi_{0}}$, and then to $\vec{C}^{\Phi_{1} \circ \Phi_{0}}$, and hopefully, after finitely many steps, we will end up with a useful sequence $\vec{C}^{\Phi_{n} \circ \cdots \circ \Phi_{0}}$.
Our current practical record stands on $n=11$.

Postprocessing functions (cont.)

Definition

$\Phi: \mathcal{K}(\kappa) \rightarrow \mathcal{K}(\kappa)$ is a postprocessing function iff for all $x \in \mathcal{K}(\kappa)$:

- $\Phi(x)$ is a club in $\sup (x)$;
- $\operatorname{acc}(\Phi(x)) \subseteq \operatorname{acc}(x)$;
- for every $\bar{\alpha} \in \operatorname{acc}(\Phi(x)), \Phi(x) \cap \bar{\alpha}=\Phi(x \cap \bar{\alpha})$.

So the collection of postprocessing functions forms a monoid that acts on the class of square sequences.
This means that we can start with an arbitrary square sequence \vec{C}; then move to $\vec{C}^{\Phi_{0}}$, and then to $\vec{C}^{\Phi_{1} \circ \Phi_{0}}$, and hopefully, after finitely many steps, we will end up with a useful sequence $\vec{C}^{\Phi_{n} \circ \cdots \circ \Phi_{0}}$.
Our current practical record stands on $n=11$.
Question
What kind of postprocessing functions are there?

List of postprocessing functions

Postprocessing functions - example \#1

Recall (postprocessing function)
A map $\Phi: \mathcal{K}(\kappa) \rightarrow \mathcal{K}(\kappa)$ satisfying for all $x \in \mathcal{K}(\kappa)$:

- $\Phi(x)$ is a club in $\sup (x)$;
- $\operatorname{acc}(\Phi(x)) \subseteq \operatorname{acc}(x)$;
- for every $\bar{\alpha} \in \operatorname{acc}(\Phi(x)), \Phi(x) \cap \bar{\alpha}=\Phi(x \cap \bar{\alpha})$.

For all $x \in \mathcal{K}(\kappa)$, let:

$$
\Phi(x):=\operatorname{acc}(x)
$$

Postprocessing functions - example \#1

Recall (postprocessing function)

A map $\Phi: \mathcal{K}(\kappa) \rightarrow \mathcal{K}(\kappa)$ satisfying for all $x \in \mathcal{K}(\kappa)$:

- $\Phi(x)$ is a club in $\sup (x)$;
- $\operatorname{acc}(\Phi(x)) \subseteq \operatorname{acc}(x)$;
- for every $\bar{\alpha} \in \operatorname{acc}(\Phi(x)), \Phi(x) \cap \bar{\alpha}=\Phi(x \cap \bar{\alpha})$.

For all $x \in \mathcal{K}(\kappa)$, let:

$$
\Phi(x):=\operatorname{acc}(x)
$$

Well, the preceding doesn't quite work. Here is how it's done:

$$
\Phi(x):= \begin{cases}\operatorname{acc}(x), & \text { if } \sup (\operatorname{acc}(x))=\sup (x)\end{cases}
$$

Postprocessing functions - example \#1

Recall (postprocessing function)

A map $\Phi: \mathcal{K}(\kappa) \rightarrow \mathcal{K}(\kappa)$ satisfying for all $x \in \mathcal{K}(\kappa)$:

- $\Phi(x)$ is a club in $\sup (x)$;
- $\operatorname{acc}(\Phi(x)) \subseteq \operatorname{acc}(x)$;
- for every $\bar{\alpha} \in \operatorname{acc}(\Phi(x)), \Phi(x) \cap \bar{\alpha}=\Phi(x \cap \bar{\alpha})$.

For all $x \in \mathcal{K}(\kappa)$, let:

$$
\Phi(x):=\operatorname{acc}(x)
$$

Well, the preceding doesn't quite work. Here is how it's done:

$$
\Phi(x):= \begin{cases}\operatorname{acc}(x), & \text { if } \sup (\operatorname{acc}(x))=\sup (x) \\ x \backslash \sup (\operatorname{acc}(x)), & \text { otherwise }\end{cases}
$$

Postprocessing functions - example \#2

For some fixed $\epsilon<\kappa$:

$$
\Phi(x):= \begin{cases}\{\alpha \in x \mid \operatorname{otp}(x \cap \alpha)>\epsilon\}, & \text { if } \operatorname{otp}(x)>\epsilon ; \\ x, & \text { otherwise }\end{cases}
$$

Postprocessing functions - example \#2

For some fixed $\epsilon<\kappa$:

$$
\Phi(x):= \begin{cases}\{\alpha \in x \mid \operatorname{otp}(x \cap \alpha)>\epsilon\}, & \text { if } \operatorname{otp}(x)>\epsilon ; \\ x, & \text { otherwise }\end{cases}
$$

More generally, for a fixed closed subset Σ of κ :
$\Phi(x):= \begin{cases}\{\alpha \in x \mid \operatorname{otp}(x \cap \alpha) \in \Sigma\}, & \text { if } \operatorname{otp}(x)=\sup (\Sigma \cap \operatorname{otp}(x)) ; \\ x \backslash(x(\sup (\Sigma \cap \operatorname{otp}(x)))), & \text { otherwise. }\end{cases}$

Postprocessing functions - example \#2

For some fixed $\epsilon<\kappa$:

$$
\Phi(x):= \begin{cases}\{\alpha \in x \mid \operatorname{otp}(x \cap \alpha)>\epsilon\}, & \text { if } \operatorname{otp}(x)>\epsilon ; \\ x, & \text { otherwise }\end{cases}
$$

More generally, for a fixed closed subset Σ of κ :
$\Phi(x):= \begin{cases}\{\alpha \in x \mid \operatorname{otp}(x \cap \alpha) \in \Sigma\}, & \text { if } \operatorname{otp}(x)=\sup (\Sigma \cap \operatorname{otp}(x)) ; \\ x \backslash(x(\sup (\Sigma \cap \operatorname{otp}(x)))), & \text { otherwise. }\end{cases}$
Applications
A clever choice of Σ could transform a $\square_{\xi}(\kappa,<\mu)$-sequence into a $\square_{\xi^{\prime}}\left(\kappa,<\mu^{\prime}\right)$-sequence with $\xi^{\prime}<\xi$ or $\mu^{\prime}<\mu$.

Postprocessing functions - example \#3

For some fixed club $D \subseteq \kappa$:

$$
\Phi(x):= \begin{cases}D \cap x, & \text { if } \sup (D \cap x)=\sup (x) \\ x \backslash \sup (D \cap x), & \text { otherwise }\end{cases}
$$

Postprocessing functions - example \#3

For some fixed club $D \subseteq \kappa$:

$$
\Phi(x):= \begin{cases}D \cap x, & \text { if } \sup (D \cap x)=\sup (x) \\ x \backslash \sup (D \cap x), & \text { otherwise }\end{cases}
$$

Another useful option:

$$
\Phi(x):= \begin{cases}\{\sup (D \cap \alpha) \mid \alpha \in x\}, & \text { if } \sup (D \cap \sup (x))=\sup (x) \\ x \backslash \sup (D \cap \sup (x)), & \text { otherwise }\end{cases}
$$

Postprocessing functions - example \#3

For some fixed club $D \subseteq \kappa$:

$$
\Phi(x):= \begin{cases}D \cap x, & \text { if } \sup (D \cap x)=\sup (x) \\ x \backslash \sup (D \cap x), & \text { otherwise }\end{cases}
$$

Another useful option:

$$
\Phi(x):= \begin{cases}\{\sup (D \cap \alpha) \mid \alpha \in x\}, & \text { if } \sup (D \cap \sup (x))=\sup (x) \\ x \backslash \sup (D \cap \sup (x)), & \text { otherwise }\end{cases}
$$

Applications
A clever choice of D could equip a $\square_{\xi}(\kappa,<\mu)$-sequence with some club-guessing features.

Postprocessing functions - example \#4

For some fixed $A \subseteq \kappa$:

$$
\Phi(x):= \begin{cases}\mathrm{cl}(\operatorname{nacc}(x) \cap A), & \text { if } \sup (\operatorname{nacc}(x) \cap A)=\sup (x) \\ x \backslash \sup (\operatorname{nacc}(x) \cap A), & \text { otherwise. }\end{cases}
$$

Postprocessing functions - example \#4

For some fixed $A \subseteq \kappa$:

$$
\Phi(x):= \begin{cases}\operatorname{cl}(\operatorname{nacc}(x) \cap A), & \text { if } \sup (\operatorname{nacc}(x) \cap A)=\sup (x) \\ x \backslash \sup (\operatorname{nacc}(x) \cap A), & \text { otherwise }\end{cases}
$$

Applications

A dichotomy argument could provide A that would transform a $\square_{\xi}(\kappa,<\mu)$-sequence into a $\square_{\xi^{\prime}}(\kappa,<\mu)$-sequence with $\xi^{\prime}<\xi$.

Postprocessing functions - example \#5

Theorem (Brodsky-Rinot, 201 ∞)
Suppose that $2^{\lambda}=\lambda^{+}, S \subseteq E_{\neq \mathrm{ff}(\lambda)}^{\lambda^{+}}$is stationary, and $\left\langle C_{\alpha} \mid \alpha \in S\right\rangle$ is a sequence such that each \mathcal{C}_{α} is a club in α of order-type $<\alpha$. Then there exists a postprocessing function $\Phi: \mathcal{K}\left(\lambda^{+}\right) \rightarrow \mathcal{K}\left(\lambda^{+}\right)$ satisfying the following.

Postprocessing functions - example \#5

Theorem (Brodsky-Rinot, 201ヵ)
Suppose that $2^{\lambda}=\lambda^{+}, S \subseteq E_{\neq \mathrm{ff}(\lambda)}^{\lambda^{+}}$is stationary, and $\left\langle C_{\alpha} \mid \alpha \in S\right\rangle$ is a sequence such that each \mathcal{C}_{α} is a club in α of order-type $<\alpha$. Then there exists a postprocessing function $\Phi: \mathcal{K}\left(\lambda^{+}\right) \rightarrow \mathcal{K}\left(\lambda^{+}\right)$ satisfying the following.
For every cofinal $A \subseteq \lambda^{+}$, there exist stationarily many $\alpha \in S$ s.t.:

$$
\begin{aligned}
& \text { 1. } \operatorname{nacc}\left(\Phi\left(C_{\alpha}\right)\right) \subseteq A ; \\
& \text { 2. } \operatorname{otp}\left(\Phi\left(C_{\alpha}\right)\right)=\operatorname{cf}(\alpha) .
\end{aligned}
$$

Postprocessing functions - example \#5

Theorem (Brodsky-Rinot, 201ヵ)
Suppose that $2^{\lambda}=\lambda^{+}, S \subseteq E_{\neq \mathrm{ff}(\lambda)}^{\lambda^{+}}$is stationary, and $\left\langle C_{\alpha} \mid \alpha \in S\right\rangle$ is a sequence such that each \mathcal{C}_{α} is a club in α of order-type $<\alpha$. Then there exists a postprocessing function $\Phi: \mathcal{K}\left(\lambda^{+}\right) \rightarrow \mathcal{K}\left(\lambda^{+}\right)$ satisfying the following.
For every cofinal $A \subseteq \lambda^{+}$, there exist stationarily many $\alpha \in S$ s.t.:

$$
\text { 1. } \operatorname{nacc}\left(\Phi\left(C_{\alpha}\right)\right) \subseteq A \text {; }
$$

$$
\text { 2. } \operatorname{otp}\left(\Phi\left(C_{\alpha}\right)\right)=\operatorname{cf}(\alpha) \text {. }
$$

Corollary (Shelah, 2010)
If $2^{\lambda}=\lambda^{+}$, then $\diamond(S)$ holds for every stationary $S \subseteq E_{\neq f f(\lambda)}^{\lambda^{+}}$.

Postprocessing functions - example \#5

Theorem (Brodsky-Rinot, 201ヵ)
Suppose that $2^{\lambda}=\lambda^{+}, S \subseteq E_{\neq \mathrm{ff}(\lambda)}^{\lambda^{+}}$is stationary, and $\left\langle C_{\alpha} \mid \alpha \in S\right\rangle$ is a sequence such that each \mathcal{C}_{α} is a club in α of order-type $<\alpha$. Then there exists a postprocessing function $\Phi: \mathcal{K}\left(\lambda^{+}\right) \rightarrow \mathcal{K}\left(\lambda^{+}\right)$ satisfying the following.
For every cofinal $A \subseteq \lambda^{+}$, there exist stationarily many $\alpha \in S$ s.t.:

$$
\begin{aligned}
& \text { 1. } \operatorname{nacc}\left(\Phi\left(C_{\alpha}\right)\right) \subseteq A ; \\
& \text { 2. } \operatorname{otp}\left(\Phi\left(C_{\alpha}\right)\right)=\operatorname{cf}(\alpha) .
\end{aligned}
$$

Corollary (Shelah, 2010) If $2^{\lambda}=\lambda^{+}$, then $\diamond(S)$ holds for every stationary $S \subseteq E_{\nexists f(\lambda)}^{\lambda^{+}}$.
Corollary (Zeman, 2010)
For λ singular, if $2^{\lambda}=\lambda^{+}$and \square_{λ}^{*} holds, then $\diamond(S)$ holds for every $S \subseteq E_{\mathrm{cf}(\lambda)}^{\lambda^{+}}$that reflects stationarily often.

Postprocessing functions - example \#5

Theorem (Brodsky-Rinot, 201ヵ)
Suppose that $2^{\lambda}=\lambda^{+}, S \subseteq E_{\neq \mathrm{ff}(\lambda)}^{\lambda^{+}}$is stationary, and $\left\langle C_{\alpha} \mid \alpha \in S\right\rangle$ is a sequence such that each \mathcal{C}_{α} is a club in α of order-type $<\alpha$. Then there exists a postprocessing function $\Phi: \mathcal{K}\left(\lambda^{+}\right) \rightarrow \mathcal{K}\left(\lambda^{+}\right)$ satisfying the following.
For every cofinal $A \subseteq \lambda^{+}$, there exist stationarily many $\alpha \in S$ s.t.:

$$
\begin{aligned}
& \text { 1. } \operatorname{nacc}\left(\Phi\left(C_{\alpha}\right)\right) \subseteq A ; \\
& \text { 2. } \operatorname{otp}\left(\Phi\left(C_{\alpha}\right)\right)=\operatorname{cf}(\alpha) .
\end{aligned}
$$

Not enough for intended applications
Hitting a single cofinal set A is nice, but we need to hit many A_{i} 's.

Postprocessing functions - example \#5

Theorem (Brodsky-Rinot, 201ヵ)
Suppose that $2^{\lambda}=\lambda^{+}, S \subseteq E_{\neq \mathrm{ff}(\lambda)}^{\lambda^{+}}$is stationary, and $\left\langle C_{\alpha} \mid \alpha \in S\right\rangle$ is a sequence such that each \mathcal{C}_{α} is a club in α of order-type $<\alpha$. Then there exists a postprocessing function $\Phi: \mathcal{K}\left(\lambda^{+}\right) \rightarrow \mathcal{K}\left(\lambda^{+}\right)$ satisfying the following.
For every cofinal $A \subseteq \lambda^{+}$, there exist stationarily many $\alpha \in S$ s.t.:

$$
\text { 1. } \operatorname{nacc}\left(\Phi\left(C_{\alpha}\right)\right) \subseteq A \text {; }
$$

$$
\text { 2. } \operatorname{otp}\left(\Phi\left(C_{\alpha}\right)\right)=\operatorname{cf}(\alpha) \text {. }
$$

Lemma (Brodsky-Rinot, 201×)
Assume $\diamond(\kappa)$. Then there is a postprocessing $\Phi: \mathcal{K}(\kappa) \rightarrow \mathcal{K}(\kappa)$ such that every sequence $\left\langle A_{i} \mid i<\kappa\right\rangle$ of cofinal subsets of κ may be encoded by a single stationary set G.

Postprocessing functions - example \#5

Theorem (Brodsky-Rinot, 201ヵ)
Suppose that $2^{\lambda}=\lambda^{+}, S \subseteq E_{\neq \mathrm{ff}(\lambda)}^{\lambda^{+}}$is stationary, and $\left\langle C_{\alpha} \mid \alpha \in S\right\rangle$ is a sequence such that each \mathcal{C}_{α} is a club in α of order-type $<\alpha$. Then there exists a postprocessing function $\Phi: \mathcal{K}\left(\lambda^{+}\right) \rightarrow \mathcal{K}\left(\lambda^{+}\right)$ satisfying the following.
For every cofinal $A \subseteq \lambda^{+}$, there exist stationarily many $\alpha \in S$ s.t.:

$$
\text { 1. } \operatorname{nacc}\left(\Phi\left(C_{\alpha}\right)\right) \subseteq A \text {; }
$$

2. $\operatorname{otp}\left(\Phi\left(C_{\alpha}\right)\right)=\operatorname{cf}(\alpha)$.

Lemma (Brodsky-Rinot, 201×)
Assume $\diamond(\kappa)$. Then there is a postprocessing $\Phi: \mathcal{K}(\kappa) \rightarrow \mathcal{K}(\kappa)$ such that every sequence $\left\langle A_{i} \mid i<\kappa\right\rangle$ of cofinal subsets of κ may be encoded by a single stationary set G. For all $x \in \mathcal{K}(\kappa)$: If $\operatorname{nacc}(x) \subseteq G$, then $(\Phi(x))(i+1) \in A_{i}$ for all $i<\operatorname{otp}(x)$.

Postprocessing functions - example \#5

Corollary (Brodsky-Rinot, 201ळ)
Suppose $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ is a $\square_{\xi}(\kappa,<\mu)$-sequence, and $2^{|\xi|}=\kappa$.
For cofinally many $\theta<|\xi|$, there exists a postprocessing function $\Phi_{\theta}: \mathcal{K}(\kappa) \rightarrow \mathcal{K}(\kappa)$ satisfying the following.
For every sequence $\left\langle A_{i} \mid i<\theta\right\rangle$ of cofinal subsets of κ, there are stat. many $\alpha<\kappa$ s.t. $\sup \left(\operatorname{nacc}\left(\Phi_{\theta}\left(C_{\alpha}\right)\right) \cap A_{i}\right)=\alpha$ for all $i<\theta$.

[^0]
Postprocessing functions - example \#5

Corollary (Brodsky-Rinot, 201ळ)
Suppose $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ is a $\square_{\xi}(\kappa,<\mu)$-sequence, and $2^{|\xi|}=\kappa$.
For cofinally many $\theta<|\xi|$, there exists a postprocessing function $\Phi_{\theta}: \mathcal{K}(\kappa) \rightarrow \mathcal{K}(\kappa)$ satisfying the following.
For every sequence $\left\langle A_{i} \mid i<\theta\right\rangle$ of cofinal subsets of κ, there are stat. many $\alpha<\kappa$ s.t. $\sup \left(\operatorname{nacc}\left(\Phi_{\theta}\left(C_{\alpha}\right)\right) \cap A_{i}\right)=\alpha$ for all $i<\theta$.

Next problem
Each θ has its own Φ_{θ}. We need to integrate them together!

Postprocessing functions - example \#5

Corollary (Brodsky-Rinot, 201 ∞)
Suppose $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ is a $\square_{\xi}(\kappa,<\mu)$-sequence, and $2^{|\xi|}=\kappa$.
For cofinally many $\theta<|\xi|$, there exists a postprocessing function $\Phi_{\theta}: \mathcal{K}(\kappa) \rightarrow \mathcal{K}(\kappa)$ satisfying the following.
For every sequence $\left\langle A_{i} \mid i<\theta\right\rangle$ of cofinal subsets of κ, there are stat. many $\alpha<\kappa$ s.t. $\sup \left(\operatorname{nacc}\left(\Phi_{\theta}\left(C_{\alpha}\right)\right) \cap A_{i}\right)=\alpha$ for all $i<\theta$.

Remark

A statement parallel to the preceding, obtained by replacing $\xi<\kappa$ with $\mu<\kappa$ holds true as well.
(The proof, however, is entirely different)

Mixing postprocessing functions

Mixing postprocessing functions

It turns out that the monoid of postprocessing functions is closed under various mixing operations. We found a few. Here's one.

Mixing postprocessing functions

It turns out that the monoid of postprocessing functions is closed under various mixing operations. We found a few. Here's one.

Mixing lemma (Brodsky-Rinot, 201 ∞)
Suppose $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ is a $\square_{\xi}(\kappa,<\mu)$-sequence, $\min \{\xi, \mu\}<\kappa$. For every $\Theta \subseteq \kappa$ and every sequence $\left\langle S_{\theta} \mid \theta \in \Theta\right\rangle$ of stationary subsets of κ, there is a postprocessing function $\Phi: \mathcal{K}(\kappa) \rightarrow \mathcal{K}(\kappa)$ such that, for cofinally many $\theta \in \Theta$,

Mixing postprocessing functions

It turns out that the monoid of postprocessing functions is closed under various mixing operations. We found a few. Here's one.

Mixing lemma (Brodsky-Rinot, 201 ∞)
Suppose $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ is a $\square_{\xi}(\kappa,<\mu)$-sequence, $\min \{\xi, \mu\}<\kappa$. For every $\Theta \subseteq \kappa$ and every sequence $\left\langle S_{\theta} \mid \theta \in \Theta\right\rangle$ of stationary subsets of κ, there is a postprocessing function $\Phi: \mathcal{K}(\kappa) \rightarrow \mathcal{K}(\kappa)$ such that, for cofinally many $\theta \in \Theta$,

$$
\hat{S}_{\theta}:=\left\{\alpha \in S_{\theta} \mid \min \left(\Phi\left(C_{\alpha}\right)\right)=\theta\right\}
$$

is stationary.

Mixing postprocessing functions

It turns out that the monoid of postprocessing functions is closed under various mixing operations. We found a few. Here's one.
Mixing lemma (Brodsky-Rinot, 201 ∞)
Suppose $\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ is a $\square_{\xi}(\kappa,<\mu)$-sequence, $\min \{\xi, \mu\}<\kappa$. For every $\Theta \subseteq \kappa$ and every sequence $\left\langle S_{\theta} \mid \theta \in \Theta\right\rangle$ of stationary subsets of κ, there is a postprocessing function $\Phi: \mathcal{K}(\kappa) \rightarrow \mathcal{K}(\kappa)$ such that, for cofinally many $\theta \in \Theta$,

$$
\hat{S}_{\theta}:=\left\{\alpha \in S_{\theta} \mid \min \left(\Phi\left(C_{\alpha}\right)\right)=\theta\right\}
$$

is stationary.
This means
To each θ such that \hat{S}_{θ} is stationary, we may find a corresponding postprocessing function Φ_{θ}, and then we can mix them together letting $\Phi^{\prime}(x)=\Phi_{\theta}(x)$ iff $\min (\Phi(x))=\theta$.

An application

Conjecture

For every uncountable cardinal λ, if $\mathrm{GCH}+\square_{\lambda^{+}}\left(\lambda^{+},<\lambda^{+}\right)$holds, then there is a λ^{+}-Aronszajn tree T s.t. $\mathbb{P}(T)$ preserves cardinals.

Theorem (Brodsky-Rinot, 201 ∞)
For every singular cardinal λ, if $\mathrm{GCH}+\square_{\lambda^{+}}\left(\lambda^{+},<\lambda\right)$ holds, then there is a λ^{+}-Aronszajn tree T s.t. $\mathbb{P}(T)$ is λ-distributive.

An application

Conjecture

For every uncountable cardinal λ, if $\mathrm{GCH}+\square_{\lambda^{+}}\left(\lambda^{+},<\lambda^{+}\right)$holds, then there is a λ^{+}-Aronszajn tree T s.t. $\mathbb{P}(T)$ preserves cardinals.

Theorem (Brodsky-Rinot, 201m)
For every singular cardinal λ, if GCH $+\square_{\lambda^{+}}\left(\lambda^{+},<\lambda\right)$ holds, then there is a λ^{+}-Aronszajn tree T s.t. $\mathbb{P}(T)$ is λ-distributive.

Corollary

For every uncountable cardinal λ, if $\mathrm{GCH}+\square_{\lambda^{+}}\left(\lambda^{+},<\lambda\right)$ holds, then there is a λ^{+}-Aronszajn tree T s.t. $\mathbb{P}(T)$ is λ-distributive.

An application

Conjecture

For every uncountable cardinal λ, if GCH $+\square_{\lambda^{+}}\left(\lambda^{+},<\lambda^{+}\right)$holds, then there is a λ^{+}-Aronszajn tree T s.t. $\mathbb{P}(T)$ preserves cardinals.

Theorem (Brodsky-Rinot, 201 ∞)
For every singular cardinal λ, if $\mathrm{GCH}+\square_{\lambda^{+}}\left(\lambda^{+},<\lambda\right)$ holds, then there is a λ^{+}-Aronszajn tree T s.t. $\mathbb{P}(T)$ is λ-distributive.

An unrelated application of the mixing lemma If $\square(\kappa)$ holds, then any fat subset of κ may be split into κ many fat sets.

Blowing up

We have demonstrated the power of postprocessing functions, but there are also some disadvantages.

Blowing up

We have demonstrated the power of postprocessing functions, but there are also some disadvantages.
Most promimently, the requirement "acc $(\Phi(x)) \subseteq \operatorname{acc}(x)$ " prevents us from blowing-up the order-type of elements of a square.

Blowing up

We have demonstrated the power of postprocessing functions, but there are also some disadvantages.
Most promimently, the requirement "acc $(\Phi(x)) \subseteq \operatorname{acc}(x)$ " prevents us from blowing-up the order-type of elements of a square. For this, we developed a separate tool. Here is an application.

Blowing up

We have demonstrated the power of postprocessing functions, but there are also some disadvantages.
Most promimently, the requirement "acc $(\Phi(x)) \subseteq \operatorname{acc}(x)$ " prevents us from blowing-up the order-type of elements of a square. For this, we developed a separate tool. Here is an application.
Theorem (Brodsky-Rinot, 201 ∞)
Assume GCH, λ is a singular cardinal, and there is a non-reflecting stationary subset of $E_{\neq \mathrm{cf}(\lambda)}^{\lambda^{+}}$.

Blowing up

We have demonstrated the power of postprocessing functions, but there are also some disadvantages.
Most promimently, the requirement "acc $(\Phi(x)) \subseteq \operatorname{acc}(x)$ " prevents us from blowing-up the order-type of elements of a square.
For this, we developed a separate tool. Here is an application.

Theorem (Brodsky-Rinot, 201 ∞)

Assume GCH, λ is a singular cardinal, and there is a non-reflecting stationary subset of $E_{\neq \operatorname{cf}(\lambda)}^{\lambda^{+}}$.
If \square_{λ}^{*} holds, then there is a $\square_{\lambda^{2}}\left(\lambda^{+},<\lambda^{+}\right)$-sequence \vec{C}, for which the microscopic approach to Souslin-tree constructions produces a λ^{+}-Souslin tree which is moreover free.

[^0]: Lemma (Brodsky-Rinot, 201ヵ)
 Assume $\diamond(\kappa)$. Then there is a postprocessing $\Phi: \mathcal{K}(\kappa) \rightarrow \mathcal{K}(\kappa)$ such that every sequence $\left\langle A_{i} \mid i<\kappa\right\rangle$ of cofinal subsets of κ may be encoded by a single stationary set G. For all $x \in \mathcal{K}(\kappa)$: If $\operatorname{nacc}(x) \subseteq G$, then $(\Phi(x))(i+1) \in A_{i}$ for all $i<\operatorname{otp}(x)$.

