Distributive Aronszajn trees

The 14th International Workshop on Set Theory
CIRM, Luminy, Marseille
10-October-2017

Assaf Rinot
Bar-1lan University

Conventions

Throughout, k denotes a regular uncountable cardinal, and A
denotes an uncountable cardinal.

)

25

Conventions

Throughout, k denotes a regular uncountable cardinal, and A
denotes an uncountable cardinal. Often times, xk = AT.

)

25

Conventions

Throughout, k denotes a regular uncountable cardinal, and A
denotes an uncountable cardinal. Often times, xk = AT.

H,; denotes the collection of all sets of hereditary cardinality < .

)

25

Conventions
Throughout, k denotes a regular uncountable cardinal, and A
denotes an uncountable cardinal. Often times, xk = AT.
H,; denotes the collection of all sets of hereditary cardinality < .

K(x) denotes the collection of all x € P(k) such that x is a club
subset of sup(x).

)

25

Conventions

Throughout, k denotes a regular uncountable cardinal, and A
denotes an uncountable cardinal. Often times, xk = AT.

H,; denotes the collection of all sets of hereditary cardinality < .

K(x) denotes the collection of all x € P(k) such that x is a club
subset of sup(x).

Every set of ordinals C, splits into two:
» acc(C) :={ae C|sup(CNa)=a>0}
» nacc(C) := C \ acc(C).

)

25

Conventions
Throughout, k denotes a regular uncountable cardinal, and A
denotes an uncountable cardinal. Often times, xk = AT.
H,; denotes the collection of all sets of hereditary cardinality < .

K(x) denotes the collection of all x € P(k) such that x is a club
subset of sup(x).

Every set of ordinals C, splits into two:
» acc(C) :={ae C|sup(CNa)=a>0}
» nacc(C) := C \ acc(C).

When we write “there is a limit a < k", we mean "Ja € acc(k)".

)

25

Kk-trees

Definition
In this talk, a k-tree is a nonempty subset T C <FH,,, satisfying:

25

Kk-trees

Definition
In this talk, a k-tree is a nonempty subset T C <FH,,, satisfying:
1. for all a < k, the set T, := T N“H,, has size < k;

25

Kk-trees

Definition

In this talk, a k-tree is a nonempty subset T C <FH,,, satisfying:
1. for all a < k, the set T, := T N“H,, has size < k;
2. forallao<kand t € T, thereisse T, suchthat tUs e T.

3/25

Kk-trees

Definition

In this talk, a k-tree is a nonempty subset T C <FH,,, satisfying:
1. for all a < k, the set T, := T N“H,, has size < k;
2. forallao<kand t € T, thereisse T, suchthat tUs e T.

To each T, we associate the notion of forcing P(T) := (T, D).

3/25

Kk-trees

Definition

In this talk, a k-tree is a nonempty subset T C <FH,,, satisfying:
1. for all a < k, the set T, := T N“H,, has size < k;
2. forallao<kand t € T, thereisse T, suchthat tUs e T.

To each T, we associate the notion of forcing P(T) := (T, D).

Note
If T is a k-tree, then P(T) adds a cofinal branch through T. i.e.,
a sequence b: k — H, such that b a € T for all a < k.

3/25

Kk-trees

Definition

In this talk, a k-tree is a nonempty subset T C <FH,,, satisfying:
1. for all a < k, the set T, := T N“H,, has size < k;
2. forallao<kand t € T, thereisse T, suchthat tUs e T.

To each T, we associate the notion of forcing P(T) := (T, D).
Definition
A k-tree T is Aronszajn iff it has no cofinal branches.

Note
If T is a k-tree, then P(T) adds a cofinal branch through T. i.e.,
a sequence b: k — H, such that b a € T for all a < k.

3/25

Kk-trees

Definition
In this talk, a k-tree is a nonempty subset T C <FH,,, satisfying:
1. for all a < k, the set T, := T N“H,, has size < k;

2. forallao<kand t € T, thereisse T, suchthat tUs e T.
To each T, we associate the notion of forcing P(T) := (T, D).
Definition
A k-tree T is Aronszajn iff it has no cofinal branches.

Definition
A k-tree T is Souslin iff it is Aronszajn and P(T) has the k-cc.

3/25

AT-Souslin trees

Jensen proved that, in L, for all (regular uncountable) « that is not
weakly compact, there is a k-Souslin tree.

4/25

AT-Souslin trees

Jensen proved that, in L, for all (regular uncountable) « that is not
weakly compact, there is a k-Souslin tree. His proof shows:

Theorem (Jensen, 1972)
For all uncountable A, GCH + [, yields a A*-Souslin tree.

/25

AT-Souslin trees

Jensen proved that, in L, for all (regular uncountable) « that is not
weakly compact, there is a k-Souslin tree. His proof shows:

Theorem (Jensen, 1972)

For all uncountable A, GCH + [, yields a A*-Souslin tree.
This was recently improved:

Theorem (Rinot, 2017)

For all uncountable X\, GCH + T(A\") yields a A*-Souslin tree.

/25

AT-Souslin trees

A tree T is coherent iff {ov € dom(s) Ndom(t) | s(a) # t(a)} is
finite for all s, t € T.

Theorem (Jensen, 1972)

For all uncountable A, GCH + O, yields a AT-Souslin tree.
This was recently improved:

Theorem (Rinot, 2017)

For all uncountable X\, GCH + T(A\") yields a A*-Souslin tree.

/25

AT-Souslin trees

A tree T is coherent iff {ov € dom(s) Ndom(t) | s(a) # t(a)} is
finite for all s, t € T.

Theorem (Veli¢kovi¢, 1986)

For all uncountable \,]y yields a coherent *-Souslin tree.

This was recently improved:

Theorem (Rinot, 2017)
For all uncountable X\, GCH + T(A\") yields a A*-Souslin tree.

/25

AT-Souslin trees

A tree T is coherent iff {ov € dom(s) Ndom(t) | s(a) # t(a)} is
finite for all s, t € T.

Theorem (Veli¢kovi¢, 1986)

For all uncountable \,]y yields a coherent *-Souslin tree.

This was recently improved:

Theorem (Rinot, 2017)

For all uncountable X\, GCH + T(A\") yields a A*-Souslin tree.
Even more recently:

Theorem (Brodsky-Rinot, 20100)
For all singular \, GCH + O(\") yields a coherent A*-Souslin tree.

/ 25

AT-Souslin trees

In this talk, | would like to discuss the techniques that go into the
proofs, and to report on progress made on a related problem.

This was recently improved:
Theorem (Rinot, 2017)
For all uncountable X\, GCH + T(A\") yields a A*-Souslin tree.

Even more recently:

Theorem (Brodsky-Rinot, 20100)
For all singular A\, GCH + O(A\") yields a coherent A*-Souslin tree.

25

A related problem

Definition
A k-tree T is collapsing iff P(T) collapses cardinals.

25

A related problem

Definition

A k-tree T is collapsing iff P(T) collapses cardinals.

Collapsing Tree Property
CTP(k) asserts that the two hold:
1. there exists a k-Aronszajn tree;

2. every k-Aronszajn tree is collapsing.

25

A related problem

Definition
A k-tree T is collapsing iff P(T) collapses cardinals.

Collapsing Tree Property
CTP(k) asserts that the two hold:
1. there exists a k-Aronszajn tree;

2. every k-Aronszajn tree is collapsing.

Theorem (Jensen, 1970's)
GCH is consistent with CTP(Xy).

A related problem

Definition
A k-tree T is collapsing iff P(T) collapses cardinals.

Collapsing Tree Property
CTP(k) asserts that the two hold:

1. there exists a k-Aronszajn tree;

2. every k-Aronszajn tree is collapsing.

Theorem (Jensen, 1970's)
GCH is consistent with CTP(Xy).

Theorem (Laver-Shelah, 1981)
Assuming a weakly compact, CH is consistent with CTP(R3).

A related problem

Conjecture
For every uncountable cardinal A, GCH = —CTP(\™).

Collapsing Tree Property
CTP(k) asserts that the two hold:
1. there exists a k-Aronszajn tree;

2. every k-Aronszajn tree is collapsing.

Theorem (Jensen, 1970's)
GCH is consistent with CTP(Xy).

Theorem (Laver-Shelah, 1981)
Assuming a weakly compact, CH is consistent with CTP(R3).

A related problem

Conjecture
For every uncountable cardinal A, GCH = —CTP(\™).

Collapsing Tree Property
CTP(k) asserts that the two hold:
1. there exists a k-Aronszajn tree;

2. every k-Aronszajn tree is collapsing.

It is now inevitable to discuss square principles...

5/25

Square principles

6/25

Square principles

Definition (Jensen, 1972)

Oa: exists a sequence (C, | a < A1) such that for every limit a:

1. C,is a club in a of order-type < A;
2. for all @ € acc(Cy), CaNa = Cs.

25

Square principles

Definition (Jensen, 1972)

Oa: exists a sequence (C, | a < A1) such that for every limit a:
1. C,is a club in a of order-type < A;
2. for all @ € acc(Cy), CaNa = Cs.

We generalize the preceding from a cardinal A to an ordinal &:

Definition

Ce: exists a sequence (C, | o < |€]T) such that for every limit a:

1. C4is a club in « of order-type < &;
2. for all @ € acc(Cy), CaNa = Cs.

25

Square principles

Wait a minute!
But for all £ € [\, A1), ¢ is equivalent to OJ,.

We generalize the preceding from a cardinal A to an ordinal &:

Definition

Ce: exists a sequence (C, | o < |€]T) such that for every limit a:

1. C4is a club in « of order-type < &;
2. for all @ € acc(Cy), CaNa = Cs.

25

Square principles

Wait a minute!
But for all £ € [\, A1), ¢ is equivalent to OJ,.

It's true, but we nevertheless claim that [is superior over [y.

We generalize the preceding from a cardinal A to an ordinal &:

Definition

Ce: exists a sequence (C, | o < |€]T) such that for every limit a:

1. C4is a club in « of order-type < &;
2. for all @ € acc(Cy), CaNa = Cs.

25

Square principles

Wait a minute!
But for all £ € [\, A1), ¢ is equivalent to OJ,.

It's true, but we nevertheless claim that [is superior over [y.
Why? because the former allows {«a € Eg)‘+ | |Cal = |af} to be
stationary for any choice of a regular cardinal 6 < A.

Definition

Ce: exists a sequence (C, | o < |€]T) such that for every limit a:
1. C4is a club in « of order-type < &;
2. for all @ € acc(Cy), CaNa = Cs.

25

Square principles

Wait a minute!
But for all £ € [\, A1), ¢ is equivalent to OJ,.

It's true, but we nevertheless claim that [is superior over [y.
Why? because the former allows {«a € Eg)‘+ | |Cal = |af} to be
stationary for any choice of a regular cardinal 6 < A.

Definition

O¢(k): exists a sequence (C, | @ < k) such that for every limit a:
1. C4is a club in « of order-type < &;
2. for all @ € acc(Cy), CaNa = Cs.

25

Square principles

Wait a minute!
But for all £ € [\, A1), ¢ is equivalent to OJ,.

It's true, but we nevertheless claim that [is superior over [y.
Why? because the former allows {«a € Eg)‘+ | |Cal = |af} to be
stationary for any choice of a regular cardinal 6 < A.

Definition

O¢(k): exists a sequence (C, | @ < k) such that for every limit a:
1. C4is a club in « of order-type < &;
2. for all @ € acc(Cy), CoNa = Ca;
3. for every club D C &, there is & € acc(D) with DNa # Cs.

25

Square principles

Definition

O¢(k, < p): exists a sequence (C, | o < k) such that for limit a:
1. C,is a club in « of order-type < &;
2. Co:={Csna|p < r,sup(Cgna) = a} has size < p;
3. for every club D C k, there is & € acc(D) with DN a ¢ Cs.

Definition

O¢(k): exists a sequence (C, | @ < k) such that for every limit a:
1. C4is a club in « of order-type < &;
2. for all @ € acc(Cy), CoNa = Ca;
3. for every club D C &, there is & € acc(D) with DNa # Cs.

25

Square principles

Definition

O¢(k, < p): exists a sequence (C, | o < k) such that for limit a:
1. C,is a club in « of order-type < &;
2. Co:={CsnNa|p <k,sup(CgNa)=a} has size < ;
3. for every club D C k, there is & € acc(D) with DN a ¢ Cs.

Square principles and Aronszajn trees are closely related:

Theorem (Jensen, 1972)
Ox(AT, < AT) holds iff there exists a special A\t -Aronszajn tree.

25

Square principles

Definition

O¢(k, < p): exists a sequence (C, | o < k) such that for limit a:
1. C,is a club in « of order-type < &;
2. Co:={CsnNa|p <k,sup(CgNa)=a} has size < ;
3. for every club D C k, there is & € acc(D) with DN a ¢ Cs.

Square principles and Aronszajn trees are closely related:

Theorem (Jensen, 1972)
Ox(AT, < AT) holds iff there exists a special A\t -Aronszajn tree.

Theorem (Todorcevic, 1987)
Ok(k, < k) holds iff there exists a k-Aronszajn tree.

25

Square principles

Recall our conjecture
For every uncountable cardinal A\, GCH = —~CTP(A™).

Theorem (Jensen, 1972)

Ox(AT, < AT) holds iff there exists a special A\t -Aronszajn tree.

Theorem (Todorcevic, 1987)
Ok(k, < k) holds iff there exists a k-Aronszajn tree.

25

Square principles

Recall our conjecture
For every uncountable cardinal A\, GCH = —~CTP(A™).

Equivalently

For every uncountable cardinal A, if GCH + O+ (AT, < A™) holds,
then there is a AT-Aronszajn tree T s.t. P(T) preserves cardinals.

Theorem (Jensen, 1972)
Ox(AT, < AT) holds iff there exists a special A\t -Aronszajn tree.

Theorem (Todorcevic, 1987)
Ok(k, < k) holds iff there exists a k-Aronszajn tree.

25

Square principles

Recall our conjecture
For every uncountable cardinal A\, GCH = —~CTP(A™).

Equivalently

For every uncountable cardinal A, if GCH + O+ (AT, < A™) holds,
then there is a AT-Aronszajn tree T s.t. P(T) preserves cardinals.

Theorem (Ben-David and Shelah, 1986)

For every singular cardinal X, if GCH + O\(A1, < AT) holds,
then there is a \T-Aronszajn tree T s.t. P(T) is A-distributive.

25

To sum up

A problem of a similar flavor

» Jensen constructed a AT-Souslin tree from GCH + C¢(AT)
with € =), and we relaxed it to £ = \™.

» Ben-David and Shelah constructed a non-collapsing
AT-Aronszajn tree from GCH + O (AT, < AT) with £ =),
and we want to relax it to & = A7

25

To sum up

A problem of a similar flavor

» Jensen constructed a AT-Souslin tree from GCH + C¢(AT)
with € =), and we relaxed it to £ = \™.

» Ben-David and Shelah constructed a non-collapsing
AT-Aronszajn tree from GCH + O (AT, < AT) with £ =),
and we want to relax it to & = A7

The constructions under £ = X use this assumption crucially:

To sum up

A problem of a similar flavor

» Jensen constructed a AT-Souslin tree from GCH + C¢(AT)
with € =)\, and we relaxed it to & = \™.

» Ben-David and Shelah constructed a non-collapsing
AT-Aronszajn tree from GCH + Og (AT, < AT) with £ =),
and we want to relax it to £ = *.

The constructions under £ = X use this assumption crucially:

» Jensen exploits the fact that 0\(A™) yields a non-reflecting
stationary set S.

To sum up

A problem of a similar flavor

» Jensen constructed a AT-Souslin tree from GCH + C¢(AT)
with € =)\, and we relaxed it to & = \™.

» Ben-David and Shelah constructed a non-collapsing
AT-Aronszajn tree from GCH + Og (AT, < AT) with £ =),
and we want to relax it to £ = *.

The constructions under £ = X use this assumption crucially:

» Jensen exploits the fact that TJy(A™) yields a non-reflecting
stationary set S. The definition of limit level T, for a € S
involves throwing away many canonical limits from U5<a Ts.

To sum up

A problem of a similar flavor

» Jensen constructed a A*-Souslin tree from GCH + C¢(AT)
with &€ =), and we relaxed it to £ = \™.

» Ben-David and Shelah constructed a non-collapsing
AT-Aronszajn tree from GCH + Og(AT, < AT) with £ =),
and we want to relax it to £ = *.

The constructions under £ = X use this assumption crucially:

» Jensen exploits the fact that TJy(A™) yields a non-reflecting
stationary set S. The definition of limit level T, for a € S

involves throwing away many canonical limits from U5<a Ts.

By &(S), this ensures the sealing of antichains.

25

To sum up

A problem of a similar flavor

» Jensen constructed a A*-Souslin tree from GCH + C¢(AT)
with &€ =), and we relaxed it to £ = \™.

» Ben-David and Shelah constructed a non-collapsing
AT-Aronszajn tree from GCH + Og(AT, < AT) with £ =),
and we want to relax it to £ = *.

The constructions under £ = X use this assumption crucially:

» Jensen exploits the fact that TJy(A™) yields a non-reflecting
stationary set S. The definition of limit level T, for a € S

involves throwing away many canonical limits from U5<a Ts.

By &(S), this ensures the sealing of antichains.
This does not jam the later stages of the construction, since
(one can arrange that) acc(C,) NS = 0 for all a.

25

To sum up

A problem of a similar flavor

» Jensen constructed a A*-Souslin tree from GCH + [¢(A 1)
with € =), and we relaxed it to £ = \™.

» Ben-David and Shelah constructed a non-collapsing
AT-Aronszajn tree from GCH + O (AT, < AT) with £ =),
and we want to relax it to & = A7

The constructions under £ = X use this assumption crucially:

» Ben-David and Shelah exploits the fact that for A singular,
Ox(AT, < A1) may be witnessed by a sequence (C, | a« < AT)
for which {a < A1 | |C,| = ||} is nonstationary.

25

To sum up

A problem of a similar flavor

» Jensen constructed a A*-Souslin tree from GCH + [¢(A 1)
with € =), and we relaxed it to £ = \™.

» Ben-David and Shelah constructed a non-collapsing
AT-Aronszajn tree from GCH + O (AT, < AT) with £ =),
and we want to relax it to & = A7

The constructions under £ = X use this assumption crucially:

» Ben-David and Shelah exploits the fact that for A singular,
Ox(AT, < A1) may be witnessed by a sequence (C, | a« < AT)
for which |C,| < A for all o < AT,

25

To sum up

A problem of a similar flavor

» Jensen constructed a A*-Souslin tree from GCH + [¢(A 1)
with € =), and we relaxed it to £ = \™.

» Ben-David and Shelah constructed a non-collapsing
AT-Aronszajn tree from GCH + O (AT, < AT) with £ =),
and we want to relax it to & = A7

The constructions under £ = X use this assumption crucially:

» Ben-David and Shelah exploits the fact that for A singular,
Ox(AT, < A1) may be witnessed by a sequence (C, | a« < AT)
for which |C,| < A for all @ < AT
The definition of limit level T, involves throwing away one
canonical limit from (Js_,, T.

25

To sum up

A problem of a similar flavor

» Jensen constructed a A*-Souslin tree from GCH + [¢(A 1)
with € =), and we relaxed it to £ = \™.

» Ben-David and Shelah constructed a non-collapsing
AT-Aronszajn tree from GCH + Og(A1, < AT) with € = A,
and we want to relax it to & = A7

The constructions under £ = X use this assumption crucially:

» Ben-David and Shelah exploits the fact that for A singular,
Ox(AT, < A1) may be witnessed by a sequence (C, | a« < AT)
for which |C,| < A for all @ < AT
The definition of limit level T, involves throwing away one
canonical limit from (Js_,, T.

By ¢(AT), this ensures the sealing of a cofinal branch.

25

To sum up

A problem of a similar flavor

» Jensen constructed a A*-Souslin tree from GCH + [¢(A 1)
with € =), and we relaxed it to £ = \™.

» Ben-David and Shelah constructed a non-collapsing
AT-Aronszajn tree from GCH + Og(A1, < AT) with € = A,
and we want to relax it to & = A7

The constructions under £ = X use this assumption crucially:

» Ben-David and Shelah exploits the fact that for A singular,
Ox(AT, < A1) may be witnessed by a sequence (C, | a« < AT)
for which |C,| < A for all o < AT,

The definition of limit level T, involves throwing away one
canonical limit from (Js_,, T.

This does not jam the later stages of the construction, since
they build a A-splitting tree, while |C,| < A for all .

25

To sum up

A problem of a similar flavor

» Jensen constructed a AT-Souslin tree from GCH + C¢(AT)
with € =), and we relaxed it to £ = \™.

» Ben-David and Shelah constructed a non-collapsing
AT-Aronszajn tree from GCH + O (AT, < AT) with £ =),
and we want to relax it to & = A7

The constructions under £ = X use this assumption crucially.

So, “relaxing & = X to & = A", in fact, amounts to finding a
different construction.

25

Same same, but different

Coherent Souslin trees

Exercise

Suppose that {}(x) holds, and there exists a [J.(x)-sequence
(Cq | @ < k) satisfying the following:

10/25

Coherent Souslin trees

Exercise

Suppose that {}(x) holds, and there exists a [J.(x)-sequence
(Cq | @ < k) satisfying the following:

» For every cofinal A C &, there is a limit @ < k such that
sup(nacc(Cy) NA) = a.

10/25

Coherent Souslin trees

Exercise
Suppose that {}(x) holds, and there exists a [J.(x)-sequence
(Cq | @ < k) satisfying the following:
» For every cofinal A C &, there is a limit @ < k such that
sup(nacc(Cy) NA) = a.
Then there exists a x-Souslin tree.

10/25

Coherent Souslin trees

Exercise
Suppose that {}(x) holds, and there exists a [J.(x)-sequence
(Cq | @ < k) satisfying the following:
» For every cofinal A C &, there is a limit @ < k such that
sup(nacc(Cy) NA) = a.
Then there exists a x-Souslin tree.

For a quick proof
See “How to construct a Souslin tree the right way” on my
webpage.

10/25

Coherent Souslin trees

Proposition (Brodsky-Rinot, 2017)

Suppose that {}(x) holds, and there exists a [J.(x)-sequence
(Cq | @ < k) satisfying the following:

» For every sequence (A; | i < k) of cofinal subsets of &, there is
a limit @ < & such that sup(nacc(C,) NA;) = a for all i < a.

10/25

Coherent Souslin trees

Proposition (Brodsky-Rinot, 2017)
Suppose that {}(x) holds, and there exists a [J.(x)-sequence
(Cq | @ < k) satisfying the following:
» For every sequence (A; | i < k) of cofinal subsets of &, there is
a limit @ < & such that sup(nacc(C,) NA;) = a for all i < a.

Then there exists a coherent k-Souslin tree.

10/25

Coherent Souslin trees

Proposition (Brodsky-Rinot, 2017)
Suppose that {}(x) holds, and there exists a [J.(x)-sequence
(Cq | @ < k) satisfying the following:
» For every sequence (A; | i < k) of cofinal subsets of &, there is
a limit @ < & such that sup(nacc(C,) NA;) = a for all i < a.

Then there exists a coherent k-Souslin tree.

Note
Wiog, the A;'s are pairwise disjoint. Therefore, |C,| = |a.

10/25

Coherent Souslin trees

Proposition (Brodsky-Rinot, 2017)
Suppose that {}(x) holds, and there exists a [J.(x)-sequence
(Cq | @ < k) satisfying the following:
» For every sequence (A; | i < k) of cofinal subsets of &, there is
a limit @ < & such that sup(nacc(C,) NA;) = a for all i < a.

Then there exists a coherent k-Souslin tree.

About the proof
Uses the microscopic approach for Souslin-tree constructions.

10/25

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201c0)

Suppose that (k) holds, and there exists a [, (x, < k)-sequence
C = (Cy | @ < k) satisfying the following:

11/25

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201c0)
Suppose that {(x) holds, and there exists a [J,;(x, < x)-sequence
C = (Cy | @ < k) satisfying the following:
» For every club E C &, there is
a limit o < & such that sup(nacc(C) N E) = « for all C € C,,.

11/25

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201c0)
Suppose that {(x) holds, and there exists a [J,;(x, < x)-sequence
C = (Cy | @ < k) satisfying the following:
» For every club E C &, there is
a limit o < & such that sup(nacc(C) N E) = « for all C € C,,.

Recall
Co ={CsNa|pf <k,sup(CsgNa)=al.

11/25

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201c0)
Suppose that (k) holds, and there exists a [, (x, < k)-sequence
C = (Cy | @ < k) satisfying the following:

» For every club E C k, there is
a limit o < & such that sup(nacc(C) N E) = « for all C € C,,.

Then there exists a corresponding tree T(C) which is x-Aronszajn.

11/25

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201c0)
S_’uppose that {(k) holds, and there exists a O (k, < k)-sequence
C = (Cy | @ < k) satisfying the following:
» For every club E C &, there is

a limit o < & such that sup(nacc(C) N E) = « for all C € C,,.
Then there exists a corresponding tree T(C) which is x-Aronszajn.
Note
Ben-David and Shelah used {)(k) to seal cofinal branches.

We use club-guessing, instead.
(Instead of throwing away canonical limits, we inject noise)

11/25

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201c0)
Suppose that (k) holds, and there exists a [, (x, < k)-sequence
C = (Cy | @ < k) satisfying the following:

» For every club E C k, there is
a limit o < & such that sup(nacc(C) N E) = « for all C € C,,.

Then there exists a corresponding tree T(C) which is x-Aronszajn.
Furthermore, for every cardinal 8, if the following holds:

» For every sequence (A; | i < 6) of cofinal subsets of x, there is
a limit < & such that sup(nacc(C,) N A;) = «a for all i < 6.

11/25

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201c0)
Suppose that {(x) holds, and there exists a [J,;(x, < x)-sequence
C = (Cy | @ < k) satisfying the following:
» For every club E C k, there is
a limit o < & such that sup(nacc(C) N E) = « for all C € C,,.
Then there exists a corresponding tree T(C) which is x-Aronszajn.
Furthermore, for every cardinal 8, if the following holds:

» For every sequence (A; | i < 6) of cofinal subsets of x, there is
a limit < & such that sup(nacc(C,) N A;) = «a for all i < 6.

=,

Then T(C) is O-distributive.

11/25

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201c0)
Suppose that {(x) holds, and there exists a [J,;(x, < x)-sequence
C = (Cy | @ < k) satisfying the following:
» For every club E C k, there is
a limit o < & such that sup(nacc(C) N E) = « for all C € C,,.
Then there exists a corresponding tree T(C) which is k-Aronszajn.
Furthermore, for every cardinal 8, if the following holds:

» For every sequence (A; | i < 6) of cofinal subsets of x, there is
a limit @ < & such that sup(nacc(C,) N A;) = « for all i < 6.

=,

Then T(C) is f-distributive.

11/25

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201c0)
Suppose that {(x) holds, and there exists a [J,;(x, < x)-sequence
C = (Cy | @ < k) satisfying the following:
» For every club E C k, there is
a limit o < & such that sup(nacc(C) N E) = « for all C € C,,.

Then there exists a corresponding tree T(C) which is k-Aronszajn.
Furthermore, for every cardinal 8, if the following holds:

» For every sequence (A; | i < 6) of cofinal subsets of x, there is
a limit @ < & such that sup(nacc(C,) N A;) = « for all i < 6.

=,

Then T(C) is f-distributive.

About the proof
Uses walks on ordinals.

11/25

Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201c0)
Suppose that {(x) holds, and there exists a [J,;(x, < x)-sequence
C = (Cy | @ < k) satisfying the following:
» For every club E C &, there is
a limit o < & such that sup(nacc(C) N E) = « for all C € C,,.
Then there exists a corresponding tree T(C) which is k-Aronszajn.
Furthermore, for every cardinal 8, if the following holds:

» For every sequence (A; | i < 6) of cofinal subsets of x, there is
a limit @ < & such that sup(nacc(C,) N A;) = « for all i < 6.

=,

Then T(C) is O-distributive.

About the proof

Uses walks on ordinals. B
From C, we cook up D, and then the tree T(C) is T(p5).

11/25

To sum up

There are a few machines that take C¢(k, < p1)-sequences C as

inputs, and produce corresponding trees T(C) as outputs.
We already mentioned two:

» The microscopic approach for Souslin-tree constructions;

» Walks on ordinals.

12/25

To sum up

There are a few machines that take C¢(k, < p1)-sequences C as

=,

inputs, and produce corresponding trees T(C) as outputs.
We already mentioned two:

» The microscopic approach for Souslin-tree constructions;
» Walks on ordinals.

Whether the outcome tree T(fl is Aronszajn/Souslin/Collapsing...
depends on further features of C.

12/25

To sum up

There are a few machines that take C¢(k, < p1)-sequences C as

=,

inputs, and produce corresponding trees T(C) as outputs.
We already mentioned two:

» The microscopic approach for Souslin-tree constructions;

» Walks on ordinals.

Whether the outcome tree T(fl is Aronszajn/Souslin/Collapsing...

depends on further features of C.
So, if we were to use these machines, then we have to find a way
to improve the C's.

12/25

Improve your square

13 /25

Postprocessing functions

So, someone provides us with a raw C¢(k, < pt)-sequence
(Cq | @ < k). How do we proceed?

14 /25

Postprocessing functions

So, someone provides us with a raw C¢(k, < pt)-sequence
(Cq | @ < k). How do we proceed?

Definition
® : K(k) — K(k) is a postprocessing function iff for all x € K(k):

14 /25

Postprocessing functions

So, someone provides us with a raw C¢(k, < pt)-sequence
(Cq | @ < k). How do we proceed?

Definition
® : K(k) — K(k) is a postprocessing function iff for all x € K(k):

Recall
x € K(k) iff x is a club in some limit ordinal o < k.

14 /25

Postprocessing functions

So, someone provides us with a raw C¢(k, < pt)-sequence
(Cq | @ < k). How do we proceed?

Definition

¢ : (k) = K(r) is a postprocessing function iff for all x € K(k):
» ®(x) is a club in sup(x);

Recall
x € K(k) iff x is a club in some limit ordinal o < k.

14 /25

Postprocessing functions

So, someone provides us with a raw C¢(k, < pt)-sequence
(Cq | @ < k). How do we proceed?

Definition

¢ : (k) = K(r) is a postprocessing function iff for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);

Recall
x € K(k) iff x is a club in some limit ordinal o < k.

14 /25

Postprocessing functions

So, someone provides us with a raw C¢(k, < pt)-sequence
(Cq | @ < k). How do we proceed?

Definition

¢ : (k) = K(r) is a postprocessing function iff for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
> for every & € acc(P(x)), P(x)Na = d(xNa).

Recall
x € K(k) iff x is a club in some limit ordinal o < k.

14 /25

Postprocessing functions

So, someone provides us with a raw C¢(k, < pt)-sequence
(Co | @ < K). How do we proceed?

Definition

¢ : (k) = K(r) is a postprocessing function iff for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
> for every & € acc(P(x)), P(x)Na = d(xNa).

By convention, let ®(x) := {sup(x)} for all x € P(x) \ K(k).

14 /25

Postprocessing functions

So, someone provides us with a raw C¢(k, < pt)-sequence
(Cq | @ < k). How do we proceed?

Definition

¢ : (k) = K(r) is a postprocessing function iff for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
> for every & € acc(P(x)), P(x)Na = d(xNa).

By convention, let ®(x) := {sup(x)} for all x € P(x) \ K(k).

Lemma (Brodsky-Rinot, 20100)
IFC=(Cyla<k)isa O¢(k, < p)-sequence, and min{&, u} < &,
then C® := (&(C,) |a < k) isa O¢(k, < p)-sequence, as well.

14 /25

Postprocessing functions (cont.)

Definition

® : K(k) — K(k) is a postprocessing function iff for all x € K(k):

» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
> for every & € acc(P(x)), P(x)Na = d(xNa).

So the collection of postprocessing functions forms a monoid that
acts on the class of square sequences.

15/25

Postprocessing functions (cont.)

Definition

® : K(k) — K(k) is a postprocessing function iff for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
» for every & € acc(P(x)), (x)Na = d(xNa).

So the collection of postprocessing functions forms a monoid that
acts on the class of square sequences.

This means that we can start with an arbitrary square sequence C:
then move to C®, and then to C®1°® and hopefully, after finitely
many steps, we will end up with a useful sequence C®no-o®o

15/25

Postprocessing functions (cont.)

Definition

® : K(k) — K(k) is a postprocessing function iff for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
» for every & € acc(P(x)), (x)Na = d(xNa).

So the collection of postprocessing functions forms a monoid that
acts on the class of square sequences.

This means that we can start with an arbitrary square sequence C:
then move to C®°, and then to C®1°%, and hopefully, after finitely
many steps, we will end up with a useful sequence C®no-o®o

Our current practical record stands on n = 11.

15/25

Postprocessing functions (cont.)

Definition

® : K(k) — K(k) is a postprocessing function iff for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
» for every & € acc(P(x)), (x)Na = d(xNa).

So the collection of postprocessing functions forms a monoid that
acts on the class of square sequences.

This means that we can start with an arbitrary square sequence C:
then move to C®°, and then to C®1°%, and hopefully, after finitely
many steps, we will end up with a useful sequence C®no-o®o

Our current practical record stands on n = 11.

Question
What kind of postprocessing functions are there?

15/25

List of postprocessing functions

16 /25

Postprocessing functions - example #1

Recall (postprocessing function)

A map ¢ : K(k) — K(r) satisfying for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
» for every & € acc(P(x)), P(x)Na = d(xNa).

For all x € K(k), let:

®(x) = acc(x).

17/25

Postprocessing functions - example #1

Recall (postprocessing function)

A map ¢ : (k) — K(r) satisfying for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
» for every & € acc(®(x)), P(x)Na = d(xNa).

For all x € K(k), let:

®(x) = acc(x).

Well, the preceding doesn't quite work. Here is how it's done:

O(x) == {aCC(X)7 if sup(acc(x)) = sup(x);

17 /25

Postprocessing functions - example #1

Recall (postprocessing function)

A map ¢ : (k) — K(r) satisfying for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
» for every & € acc(®(x)), P(x)Na = d(xNa).

For all x € K(k), let:

®(x) = acc(x).

Well, the preceding doesn't quite work. Here is how it's done:

x \ sup(acc(x)), otherwise.

O(x) == {aCC(X)7 if sup(acc(x)) = sup(x);

17/25

Postprocessing functions - example #2

For some fixed € < k:

O(x) = {{a € x |otp(xNa) > e}, if otp(f<) > €
X, otherwise.

18/25

Postprocessing functions - example #2

For some fixed € < k:

O(x) = {{a € x| otp(xNa) > e}, if otp(f<) > €
X, otherwise.

More generally, for a fixed closed subset ¥ of «:

x \ (x(sup(X Notp(x)))), otherwise.

O(x) = {{a € x|otp(xNa) € X}, if otp(x) = sup(X Notp(x));

18 /25

Postprocessing functions - example #2

For some fixed € < k:

O(x) = {{a € x| otp(xNa) > e}, if otp(f<) > €
X, otherwise.

More generally, for a fixed closed subset ¥ of «:

O(x) = {{a € x|otp(xNa) € X}, if otp(x) = sup(X Notp(x));
| x\ (x(sup(Z Notp(x)))), otherwise.

Applications
A clever choice of X could transform a C¢(k, < u)-sequence into a
Oer(k, < p')-sequence with & < & or 1/ < p.

18 /25

Postprocessing functions - example #3

For some fixed club D C k:

(DnNx, if sup(D N x) = sup(x);
d(x) =
x \ sup(DNx), otherwise.

19/25

Postprocessing functions - example #3

For some fixed club D C k:

(DnNx, if sup(D N x) = sup(x);
d(x) =
x \ sup(D Nx), otherwise.

Another useful option:

O(x) = {sup(DNa) | a € x}, if sup(D Nsup(x)) = sup(x);
. x \ sup(D Nsup(x)), otherwise

19/25

Postprocessing functions - example #3

For some fixed club D C k:

(DnNx, if sup(D N x) = sup(x);
d(x) =
x \ sup(DNx), otherwise.

Another useful option:

O(x) = {sup(DNa) | a € x}, if sup(D Nsup(x)) = sup(x);
. x \ sup(D Nsup(x)), otherwise

Applications

A clever choice of D could equip a C¢(r, < p1)-sequence with some
club-guessing features.

19/25

Postprocessing functions - example #4

For some fixed A C k:

O(x) = cl(nacc(x) N A), if sup(nacc(x) N A) = sup(x);
X \ sup(nacc(x) N A), otherwise.

20 /25

Postprocessing functions - example #4

For some fixed A C k:

O(x) = cl(nacc(x) N A), if sup(nacc(x) N A) = sup(x);
X \ sup(nacc(x) N A), otherwise.

Applications
A dichotomy argument could provide A that would transform a
O¢(k, < p)-sequence into a Og/(k, < p)-sequence with ' < &.

20 /25

Postprocessing functions - example #5

Theorem (Brodsky-Rinot, 20100)

Suppose that 2) = *, S C E;;(/\) is stationary, and (C, | « € S)
is a sequence such that each C, is a club in « of order-type < .
Then there exists a postprocessing function ® : (A1) — K(AT)
satisfying the following.

21/25

Postprocessing functions - example #5

Theorem (Brodsky-Rinot, 20100)

Suppose that 2) = *, S C E;;(/\) is stationary, and (C, | « € S)
is a sequence such that each C, is a club in « of order-type < .
Then there exists a postprocessing function ® : (A1) — K(AT)
satisfying the following.

For every cofinal A C AT, there exist stationarily many oo € S s.t.:
1. nacc(®(Cy)) C A;
2. otp(P(C,)) = cf(a).

21/25

Postprocessing functions - example #5

Theorem (Brodsky-Rinot, 20100)

Suppose that 2* = *, S C E} f(/\) is stationary, and (C, | a € S)
is a sequence such that each C, is a club in « of order-type < .
Then there exists a postprocessing function ® : (A1) — K(AT)
satisfying the following.
For every cofinal A C AT, there exist stationarily many oo € S s.t.:
1. nacc(®(Cy)) C A;
2. otp(P(C,)) = cf(a).
Corollary (Shelah, 2010)

If 2% = A%, then {(S) holds for every stationary S C EJ_ f()\)

21/25

Postprocessing functions - example #5

Theorem (Brodsky-Rinot, 20100)

Suppose that 2* = *, S C E} f(/\) is stationary, and (C, | a € S)
is a sequence such that each C, is a club in « of order-type < .
Then there exists a postprocessing function ® : (A1) — K(AT)
satisfying the following.

For every cofinal A C AT, there exist stationarily many oo € S s.t.:

1. nacc(®(C,)) C A;
2. otp(P(C,)) = cf(a).

Corollary (Shelah, 2010)

If 2% = A%, then {(S) holds for every stationary S C EJ_ f()\)

Corollary (Zeman, 2010)

For A singular, if 22 = AT and [0} holds, then {>(S) holds for every
SC Ec’\fa) that reflects stationarily often.

21/25

Postprocessing functions - example #5

Theorem (Brodsky-Rinot, 20100)

Suppose that 2) = *, S C E;;(/\) is stationary, and (C, | « € S)
is a sequence such that each C, is a club in « of order-type < .
Then there exists a postprocessing function ® : (A1) — K(AT)
satisfying the following.

For every cofinal A C AT, there exist stationarily many oo € S s.t.:

1. nacc(®(Cy)) C A;
2. otp(P(C,)) = cf(a).
Not enough for intended applications

Hitting a single cofinal set A is nice, but we need to hit many A;'s.

21/25

Postprocessing functions - example #5

Theorem (Brodsky-Rinot, 20100)

Suppose that 2) = *, S C E;;(/\) is stationary, and (C, | « € S)
is a sequence such that each C, is a club in « of order-type < .
Then there exists a postprocessing function ® : (A1) — K(AT)
satisfying the following.

For every cofinal A C AT, there exist stationarily many oo € S s.t.:

1. nacc(®(C,)) C A;
2. otp(P(C,)) = cf(a).

Lemma (Brodsky-Rinot, 20100)

Assume (k). Then there is a postprocessing ® : K(k) — K(k)
such that every sequence (A; | i < k) of cofinal subsets of K may
be encoded by a single stationary set G.

21/25

Postprocessing functions - example #5

Theorem (Brodsky-Rinot, 20100)
Suppose that 2) = *, S C E;;(/\) is stationary, and (C, | « € S)
is a sequence such that each C, is a club in « of order-type < .
Then there exists a postprocessing function ® : (A1) — K(AT)
satisfying the following.
For every cofinal A C AT, there exist stationarily many oo € S s.t.:
1. nacc(®(Cy)) C A;
2. otp(P(C,)) = cf(a).

Lemma (Brodsky-Rinot, 20100)

Assume (k). Then there is a postprocessing ® : K(k) — K(k)
such that every sequence (A; | i < k) of cofinal subsets of K may
be encoded by a single stationary set G. For all x € K(k):

If nacc(x) C G, then (®(x))(i + 1) € A; for all i < otp(x).

21/25

Postprocessing functions - example #5

Corollary (Brodsky-Rinot, 20100)

Suppose (C, | a < k) is a O¢(k, < p1)-sequence, and 2/l = &.
For cofinally many 6 < ||, there exists a postprocessing function
&y : K(r) — K(k) satisfying the following.

For every sequence (A; | i < 6) of cofinal subsets of «, there are
stat. many a < k& s.t. sup(nacc(®yp(Cy)) NA;) = a for all i < 0.

Lemma (Brodsky-Rinot, 20100)

Assume (k). Then there is a postprocessing ® : K(k) — K(k)
such that every sequence (A; | i < k) of cofinal subsets of K may
be encoded by a single stationary set G. For all x € K(k):

If nacc(x) C G, then (®(x))(i + 1) € A; for all i < otp(x).

21/25

Postprocessing functions - example #5

Corollary (Brodsky-Rinot, 20100)

Suppose (C, | a < k) is a O¢(k, < p1)-sequence, and 2/l = &.
For cofinally many 6 < ||, there exists a postprocessing function
&y : K(r) — K(k) satisfying the following.

For every sequence (A; | i < 6) of cofinal subsets of «, there are
stat. many a < k& s.t. sup(nacc(®yp(Cy)) NA;) = a for all i < 0.

Next problem
Each 0 has its own ®y. We need to integrate them together!

21/25

Postprocessing functions - example #5

Corollary (Brodsky-Rinot, 20100)

Suppose (C, | a < k) is a O¢(k, < p1)-sequence, and 2/l = &.
For cofinally many 6 < ||, there exists a postprocessing function
&y : K(r) — K(k) satisfying the following.

For every sequence (A; | i < 6) of cofinal subsets of «, there are
stat. many a < k& s.t. sup(nacc(®yp(Cy)) NA;) = a for all i < 0.

Remark

A statement parallel to the preceding, obtained by replacing £ < &
with p < k holds true as well.

(The proof, however, is entirely different)

21/25

Mixing postprocessing functions

Mixing postprocessing functions

It turns out that the monoid of postprocessing functions is closed
under various mixing operations. We found a few. Here's one.

23 /25

Mixing postprocessing functions

It turns out that the monoid of postprocessing functions is closed
under various mixing operations. We found a few. Here's one.

Mixing lemma (Brodsky-Rinot, 20100)

Suppose (C, | o < k) is a O¢(k, < p)-sequence, min{&, u} < k.
For every © C k and every sequence (Sy | 6 € ©) of stationary
subsets of k, there is a postprocessing function ® : (k) — K(k)
such that, for cofinally many 6 € ©,

23 /25

Mixing postprocessing functions

It turns out that the monoid of postprocessing functions is closed
under various mixing operations. We found a few. Here's one.

Mixing lemma (Brodsky-Rinot, 20100)

Suppose (C, | o < k) is a O¢(k, < p)-sequence, min{&, u} < k.
For every © C k and every sequence (Sy | 6 € ©) of stationary
subsets of k, there is a postprocessing function ® : (k) — K(k)
such that, for cofinally many 6 € ©,

Sp:={a € Sy | min(®(C,)) = 6}

is stationary.

23 /25

Mixing postprocessing functions

It turns out that the monoid of postprocessing functions is closed
under various mixing operations. We found a few. Here's one.

Mixing lemma (Brodsky-Rinot, 20100)

Suppose (C, | o < k) is a O¢(k, < p)-sequence, min{&, u} < k.
For every © C k and every sequence (Sy | 6 € ©) of stationary
subsets of k, there is a postprocessing function ® : (k) — K(k)
such that, for cofinally many 6 € ©,

Sp:={a € Sy | min(®(C,)) = 6}
is stationary.

This means

To each 6 such that Sy is stationary, we may find a corresponding
postprocessing function ®y, and then we can mix them together
letting ®'(x) = ®p(x) iff min(P(x)) = 0.

23 /25

An application

Conjecture
For every uncountable cardinal A, if GCH + O+ (A1, < A™) holds,
then there is a AT-Aronszajn tree T s.t. P(T) preserves cardinals.

Theorem (Brodsky-Rinot, 20100)

For every singular cardinal), if GCH + O,+ (A1, < \) holds,
then there is a A™-Aronszajn tree T s.t. P(T) is A-distributive.

24 /25

An application

Conjecture

For every uncountable cardinal A, if GCH + O+ (A1, < A™) holds,
then there is a AT-Aronszajn tree T s.t. P(T) preserves cardinals.

Theorem (Brodsky-Rinot, 20100)

For every singular cardinal), if GCH + O,+ (A1, < \) holds,
then there is a A™-Aronszajn tree T s.t. P(T) is A-distributive.

Corollary

For every uncountable cardinal A, if GCH + O+ (AT, < A) holds,
then there is a AT-Aronszajn tree T s.t. P(T) is A-distributive.

24 /25

An application

Conjecture

For every uncountable cardinal A, if GCH + O+ (A1, < A™) holds,
then there is a AT-Aronszajn tree T s.t. P(T) preserves cardinals.

Theorem (Brodsky-Rinot, 20100)

For every singular cardinal), if GCH + O,+ (A1, < \) holds,
then there is a A™-Aronszajn tree T s.t. P(T) is A-distributive.

An unrelated application of the mixing lemma

If O(x) holds, then any fat subset of x may be split into x many
fat sets.

24 /25

Blowing up

We have demonstrated the power of postprocessing functions, but
there are also some disadvantages.

25 /25

Blowing up

We have demonstrated the power of postprocessing functions, but
there are also some disadvantages.

Most promimently, the requirement “acc(®(x)) C acc(x)” prevents
us from blowing-up the order-type of elements of a square.

25 /25

Blowing up

We have demonstrated the power of postprocessing functions, but
there are also some disadvantages.

Most promimently, the requirement “acc(®(x)) C acc(x)” prevents
us from blowing-up the order-type of elements of a square.

For this, we developed a separate tool. Here is an application.

25 /25

Blowing up

We have demonstrated the power of postprocessing functions, but
there are also some disadvantages.

Most promimently, the requirement “acc(®(x)) C acc(x)” prevents
us from blowing-up the order-type of elements of a square.

For this, we developed a separate tool. Here is an application.

Theorem (Brodsky-Rinot, 20100)

Assume GCH, X is a singular cardinal, and there is a non-reflecting
stationary subset of E;;(/\).

25 /25

Blowing up

We have demonstrated the power of postprocessing functions, but
there are also some disadvantages.

Most promimently, the requirement “acc(®(x)) C acc(x)” prevents
us from blowing-up the order-type of elements of a square.

For this, we developed a separate tool. Here is an application.

Theorem (Brodsky-Rinot, 20100)

Assume GCH, X is a singular cardinal, and there is a non-reflecting
stationary subset of E;;(/\).

If (I} holds, then there is a Oy2(AT, < A1)-sequence 6 for which
the microscopic approach to Souslin-tree constructions produces a
AT-Souslin tree which is moreover free.

25 /25

