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Conventions
Throughout, k denotes a regular uncountable cardinal, and A
denotes an uncountable cardinal. Often times, xk = AT.
H,; denotes the collection of all sets of hereditary cardinality < .

K(x) denotes the collection of all x € P(k) such that x is a club
subset of sup(x).

Every set of ordinals C, splits into two:
» acc(C) :={ae C|sup(CNa)=a>0}
» nacc(C) := C \ acc(C).

When we write “there is a limit a < k", we mean "Ja € acc(k)".
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2. forallao<kand t € T, thereisse T, suchthat tUs e T.

To each T, we associate the notion of forcing P(T) := (T, D).
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Kk-trees

Definition
In this talk, a k-tree is a nonempty subset T C <FH,,, satisfying:
1. for all a < k, the set T, := T N“H,, has size < k;

2. forallao<kand t € T, thereisse T, suchthat tUs e T.
To each T, we associate the notion of forcing P(T) := (T, D).
Definition
A k-tree T is Aronszajn iff it has no cofinal branches.

Definition
A k-tree T is Souslin iff it is Aronszajn and P(T) has the k-cc.

3/25



AT-Souslin trees

Jensen proved that, in L, for all (regular uncountable) « that is not
weakly compact, there is a k-Souslin tree.

4/25



AT-Souslin trees

Jensen proved that, in L, for all (regular uncountable) « that is not
weakly compact, there is a k-Souslin tree. His proof shows:

Theorem (Jensen, 1972)
For all uncountable A, GCH + [, yields a A*-Souslin tree.

/25



AT-Souslin trees

Jensen proved that, in L, for all (regular uncountable) « that is not
weakly compact, there is a k-Souslin tree. His proof shows:

Theorem (Jensen, 1972)

For all uncountable A, GCH + [, yields a A*-Souslin tree.
This was recently improved:

Theorem (Rinot, 2017)

For all uncountable X\, GCH + T(A\") yields a A*-Souslin tree.

/25



AT-Souslin trees

A tree T is coherent iff {ov € dom(s) Ndom(t) | s(a) # t(a)} is
finite for all s, t € T.

Theorem (Jensen, 1972)

For all uncountable A, GCH + O, yields a AT-Souslin tree.
This was recently improved:

Theorem (Rinot, 2017)

For all uncountable X\, GCH + T(A\") yields a A*-Souslin tree.

/25



AT-Souslin trees

A tree T is coherent iff {ov € dom(s) Ndom(t) | s(a) # t(a)} is
finite for all s, t € T.

Theorem (Veli¢kovi¢, 1986)

For all uncountable \, ]y yields a coherent \*-Souslin tree.

This was recently improved:

Theorem (Rinot, 2017)
For all uncountable X\, GCH + T(A\") yields a A*-Souslin tree.

/25



AT-Souslin trees

A tree T is coherent iff {ov € dom(s) Ndom(t) | s(a) # t(a)} is
finite for all s, t € T.

Theorem (Veli¢kovi¢, 1986)

For all uncountable \, ]y yields a coherent \*-Souslin tree.

This was recently improved:

Theorem (Rinot, 2017)

For all uncountable X\, GCH + T(A\") yields a A*-Souslin tree.
Even more recently:

Theorem (Brodsky-Rinot, 20100)
For all singular \, GCH + O(\") yields a coherent A*-Souslin tree.

/ 25



AT-Souslin trees

In this talk, | would like to discuss the techniques that go into the
proofs, and to report on progress made on a related problem.

This was recently improved:
Theorem (Rinot, 2017)
For all uncountable X\, GCH + T(A\") yields a A*-Souslin tree.

Even more recently:

Theorem (Brodsky-Rinot, 20100)
For all singular A\, GCH + O(A\") yields a coherent A\*-Souslin tree.
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A related problem

Conjecture
For every uncountable cardinal A, GCH = —CTP(\™).

Collapsing Tree Property
CTP(k) asserts that the two hold:
1. there exists a k-Aronszajn tree;

2. every k-Aronszajn tree is collapsing.

It is now inevitable to discuss square principles...
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Definition

O¢(k, < p): exists a sequence (C, | o < k) such that for limit a:
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Square principles

Recall our conjecture
For every uncountable cardinal A\, GCH = —~CTP(A™).

Equivalently

For every uncountable cardinal A, if GCH + O+ (AT, < A™) holds,
then there is a AT-Aronszajn tree T s.t. P(T) preserves cardinals.

Theorem (Ben-David and Shelah, 1986)

For every singular cardinal X, if GCH + O\(A1, < AT) holds,
then there is a \T-Aronszajn tree T s.t. P(T) is A-distributive.
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and we want to relax it to & = A7
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» Jensen constructed a A*-Souslin tree from GCH + [¢(A 1)
with € = ), and we relaxed it to £ = \™.

» Ben-David and Shelah constructed a non-collapsing
AT-Aronszajn tree from GCH + Og(A1, < AT) with € = A,
and we want to relax it to & = A7

The constructions under £ = X use this assumption crucially:

» Ben-David and Shelah exploits the fact that for A singular,
Ox(AT, < A1) may be witnessed by a sequence (C, | a« < AT)
for which |C,| < A for all o < AT,

The definition of limit level T, involves throwing away one
canonical limit from (Js_,, T.

This does not jam the later stages of the construction, since
they build a A-splitting tree, while |C,| < A for all .
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To sum up

A problem of a similar flavor

» Jensen constructed a AT-Souslin tree from GCH + C¢(AT)
with € = ), and we relaxed it to £ = \™.

» Ben-David and Shelah constructed a non-collapsing
AT-Aronszajn tree from GCH + O (AT, < AT) with £ = ),
and we want to relax it to & = A7

The constructions under £ = X use this assumption crucially.

So, “relaxing & = X to & = A", in fact, amounts to finding a
different construction.
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Coherent Souslin trees

Exercise

Suppose that {}(x) holds, and there exists a [J.(x)-sequence
(Cq | @ < k) satisfying the following:
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Coherent Souslin trees

Exercise
Suppose that {}(x) holds, and there exists a [J.(x)-sequence
(Cq | @ < k) satisfying the following:
» For every cofinal A C &, there is a limit @ < k such that
sup(nacc(Cy) NA) = a.
Then there exists a x-Souslin tree.

For a quick proof
See “How to construct a Souslin tree the right way” on my
webpage.
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Coherent Souslin trees

Proposition (Brodsky-Rinot, 2017)

Suppose that {}(x) holds, and there exists a [J.(x)-sequence
(Cq | @ < k) satisfying the following:

» For every sequence (A; | i < k) of cofinal subsets of &, there is
a limit @ < & such that sup(nacc(C,) NA;) = a for all i < a.
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Coherent Souslin trees

Proposition (Brodsky-Rinot, 2017)
Suppose that {}(x) holds, and there exists a [J.(x)-sequence
(Cq | @ < k) satisfying the following:
» For every sequence (A; | i < k) of cofinal subsets of &, there is
a limit @ < & such that sup(nacc(C,) NA;) = a for all i < a.

Then there exists a coherent k-Souslin tree.

Note
Wiog, the A;'s are pairwise disjoint. Therefore, |C,| = |a.
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Coherent Souslin trees

Proposition (Brodsky-Rinot, 2017)
Suppose that {}(x) holds, and there exists a [J.(x)-sequence
(Cq | @ < k) satisfying the following:
» For every sequence (A; | i < k) of cofinal subsets of &, there is
a limit @ < & such that sup(nacc(C,) NA;) = a for all i < a.

Then there exists a coherent k-Souslin tree.

About the proof
Uses the microscopic approach for Souslin-tree constructions.
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Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201c0)

Suppose that (k) holds, and there exists a [, (x, < k)-sequence
C = (Cy | @ < k) satisfying the following:
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Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201c0)
Suppose that {(x) holds, and there exists a [J,;(x, < x)-sequence
C = (Cy | @ < k) satisfying the following:
» For every club E C &, there is
a limit o < & such that sup(nacc(C) N E) = « for all C € C,,.

Recall
Co ={CsNa|pf <k,sup(CsgNa)=al.
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Distributive Aronszajn trees

Proposition (Brodsky-Rinot, 201c0)
S_’uppose that {(k) holds, and there exists a O (k, < k)-sequence
C = (Cy | @ < k) satisfying the following:
» For every club E C &, there is

a limit o < & such that sup(nacc(C) N E) = « for all C € C,,.
Then there exists a corresponding tree T(C) which is x-Aronszajn.
Note
Ben-David and Shelah used {)(k) to seal cofinal branches.

We use club-guessing, instead.
(Instead of throwing away canonical limits, we inject noise)
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C = (Cy | @ < k) satisfying the following:
» For every club E C &, there is
a limit o < & such that sup(nacc(C) N E) = « for all C € C,,.
Then there exists a corresponding tree T(C) which is k-Aronszajn.
Furthermore, for every cardinal 8, if the following holds:

» For every sequence (A; | i < 6) of cofinal subsets of x, there is
a limit @ < & such that sup(nacc(C,) N A;) = « for all i < 6.

=,

Then T(C) is O-distributive.

About the proof

Uses walks on ordinals. B
From C, we cook up D, and then the tree T(C) is T(p5).
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To sum up

There are a few machines that take C¢(k, < p1)-sequences C as

inputs, and produce corresponding trees T(C) as outputs.
We already mentioned two:

» The microscopic approach for Souslin-tree constructions;

» Walks on ordinals.
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To sum up

There are a few machines that take C¢(k, < p1)-sequences C as

=,

inputs, and produce corresponding trees T(C) as outputs.
We already mentioned two:

» The microscopic approach for Souslin-tree constructions;

» Walks on ordinals.

Whether the outcome tree T(fl is Aronszajn/Souslin/Collapsing...

depends on further features of C.
So, if we were to use these machines, then we have to find a way
to improve the C's.

12/25
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(Cq | @ < k). How do we proceed?

14 /25



Postprocessing functions

So, someone provides us with a raw C¢(k, < pt)-sequence
(Cq | @ < k). How do we proceed?

Definition
® : K(k) — K(k) is a postprocessing function iff for all x € K(k):

14 /25



Postprocessing functions

So, someone provides us with a raw C¢(k, < pt)-sequence
(Cq | @ < k). How do we proceed?

Definition
® : K(k) — K(k) is a postprocessing function iff for all x € K(k):

Recall
x € K(k) iff x is a club in some limit ordinal o < k.

14 /25



Postprocessing functions

So, someone provides us with a raw C¢(k, < pt)-sequence
(Cq | @ < k). How do we proceed?

Definition

¢ : (k) = K(r) is a postprocessing function iff for all x € K(k):
» ®(x) is a club in sup(x);

Recall
x € K(k) iff x is a club in some limit ordinal o < k.

14 /25



Postprocessing functions

So, someone provides us with a raw C¢(k, < pt)-sequence
(Cq | @ < k). How do we proceed?

Definition

¢ : (k) = K(r) is a postprocessing function iff for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);

Recall
x € K(k) iff x is a club in some limit ordinal o < k.

14 /25



Postprocessing functions

So, someone provides us with a raw C¢(k, < pt)-sequence
(Cq | @ < k). How do we proceed?

Definition

¢ : (k) = K(r) is a postprocessing function iff for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
> for every & € acc(P(x)), P(x)Na = d(xNa).

Recall
x € K(k) iff x is a club in some limit ordinal o < k.

14 /25



Postprocessing functions

So, someone provides us with a raw C¢(k, < pt)-sequence
(Co | @ < K). How do we proceed?

Definition

¢ : (k) = K(r) is a postprocessing function iff for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
> for every & € acc(P(x)), P(x)Na = d(xNa).

By convention, let ®(x) := {sup(x)} for all x € P(x) \ K(k).

14 /25
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So, someone provides us with a raw C¢(k, < pt)-sequence
(Cq | @ < k). How do we proceed?

Definition

¢ : (k) = K(r) is a postprocessing function iff for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
> for every & € acc(P(x)), P(x)Na = d(xNa).

By convention, let ®(x) := {sup(x)} for all x € P(x) \ K(k).

Lemma (Brodsky-Rinot, 20100)
IFC=(Cyla<k)isa O¢(k, < p)-sequence, and min{&, u} < &,
then C® := (&(C,) |a < k) isa O¢(k, < p)-sequence, as well.
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Postprocessing functions (cont.)

Definition

® : K(k) — K(k) is a postprocessing function iff for all x € K(k):

» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
> for every & € acc(P(x)), P(x)Na = d(xNa).

So the collection of postprocessing functions forms a monoid that
acts on the class of square sequences.

15/25



Postprocessing functions (cont.)

Definition

® : K(k) — K(k) is a postprocessing function iff for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
» for every & € acc(P(x)), (x)Na = d(xNa).

So the collection of postprocessing functions forms a monoid that
acts on the class of square sequences.

This means that we can start with an arbitrary square sequence C:
then move to C®, and then to C®1°® and hopefully, after finitely
many steps, we will end up with a useful sequence C®no-o®o

15/25



Postprocessing functions (cont.)

Definition

® : K(k) — K(k) is a postprocessing function iff for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
» for every & € acc(P(x)), (x)Na = d(xNa).

So the collection of postprocessing functions forms a monoid that
acts on the class of square sequences.

This means that we can start with an arbitrary square sequence C:
then move to C®°, and then to C®1°%, and hopefully, after finitely
many steps, we will end up with a useful sequence C®no-o®o

Our current practical record stands on n = 11.

15/25
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Definition

® : K(k) — K(k) is a postprocessing function iff for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
» for every & € acc(P(x)), (x)Na = d(xNa).

So the collection of postprocessing functions forms a monoid that
acts on the class of square sequences.

This means that we can start with an arbitrary square sequence C:
then move to C®°, and then to C®1°%, and hopefully, after finitely
many steps, we will end up with a useful sequence C®no-o®o

Our current practical record stands on n = 11.

Question
What kind of postprocessing functions are there?
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Postprocessing functions - example #1

Recall (postprocessing function)

A map ¢ : K(k) — K(r) satisfying for all x € K(k):
» ®(x) is a club in sup(x);
» acc(P(x)) C acc(x);
» for every & € acc(P(x)), P(x)Na = d(xNa).

For all x € K(k), let:

®(x) = acc(x).
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» for every & € acc(®(x)), P(x)Na = d(xNa).

For all x € K(k), let:

®(x) = acc(x).

Well, the preceding doesn't quite work. Here is how it's done:
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O(x) == {aCC(X)7 if sup(acc(x)) = sup(x);
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Postprocessing functions - example #2

For some fixed € < k:

O(x) = {{a € x |otp(xNa) > e}, if otp(f<) > €
X, otherwise.
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O(x) = {{a € x| otp(xNa) > e}, if otp(f<) > €
X, otherwise.
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Postprocessing functions - example #2

For some fixed € < k:

O(x) = {{a € x| otp(xNa) > e}, if otp(f<) > €
X, otherwise.

More generally, for a fixed closed subset ¥ of «:

O(x) = {{a € x|otp(xNa) € X}, if otp(x) = sup(X Notp(x));
| x\ (x(sup(Z Notp(x)))), otherwise.

Applications
A clever choice of X could transform a C¢(k, < u)-sequence into a
Oer(k, < p')-sequence with & < & or 1/ < p.
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Postprocessing functions - example #3

For some fixed club D C k:

( DnNx, if sup(D N x) = sup(x);
d(x) =
x \ sup(DNx), otherwise.
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Postprocessing functions - example #3

For some fixed club D C k:

( DnNx, if sup(D N x) = sup(x);
d(x) =
x \ sup(DNx), otherwise.

Another useful option:

O(x) = {sup(DNa) | a € x}, if sup(D Nsup(x)) = sup(x);
. x \ sup(D Nsup(x)),  otherwise

Applications

A clever choice of D could equip a C¢(r, < p1)-sequence with some
club-guessing features.
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Postprocessing functions - example #4

For some fixed A C k:

O(x) = cl(nacc(x) N A), if sup(nacc(x) N A) = sup(x);
X \ sup(nacc(x) N A), otherwise.

20 /25



Postprocessing functions - example #4

For some fixed A C k:

O(x) = cl(nacc(x) N A), if sup(nacc(x) N A) = sup(x);
X \ sup(nacc(x) N A), otherwise.

Applications
A dichotomy argument could provide A that would transform a
O¢(k, < p)-sequence into a Og/(k, < p)-sequence with ' < &.
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Postprocessing functions - example #5

Theorem (Brodsky-Rinot, 20100)

Suppose that 2) = \*, S C E;;(/\) is stationary, and (C, | « € S)
is a sequence such that each C, is a club in « of order-type < .
Then there exists a postprocessing function ® : (A1) — K(AT)
satisfying the following.
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Theorem (Brodsky-Rinot, 20100)

Suppose that 2* = \*, S C E} f(/\) is stationary, and (C, | a € S)
is a sequence such that each C, is a club in « of order-type < .
Then there exists a postprocessing function ® : (A1) — K(AT)
satisfying the following.

For every cofinal A C AT, there exist stationarily many oo € S s.t.:

1. nacc(®(C,)) C A;
2. otp(P(C,)) = cf(a).

Corollary (Shelah, 2010)

If 2% = A%, then {(S) holds for every stationary S C EJ_ f()\)

Corollary (Zeman, 2010)

For A singular, if 22 = AT and [0} holds, then {>(S) holds for every
SC Ec’\fa) that reflects stationarily often.
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Postprocessing functions - example #5

Theorem (Brodsky-Rinot, 20100)

Suppose that 2) = \*, S C E;;(/\) is stationary, and (C, | « € S)
is a sequence such that each C, is a club in « of order-type < .
Then there exists a postprocessing function ® : (A1) — K(AT)
satisfying the following.

For every cofinal A C AT, there exist stationarily many oo € S s.t.:

1. nacc(®(Cy)) C A;
2. otp(P(C,)) = cf(a).
Not enough for intended applications

Hitting a single cofinal set A is nice, but we need to hit many A;'s.
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such that every sequence (A; | i < k) of cofinal subsets of K may
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Postprocessing functions - example #5

Corollary (Brodsky-Rinot, 20100)

Suppose (C, | a < k) is a O¢(k, < p1)-sequence, and 2/l = &.
For cofinally many 6 < ||, there exists a postprocessing function
&y : K(r) — K(k) satisfying the following.

For every sequence (A; | i < 6) of cofinal subsets of «, there are
stat. many a < k& s.t. sup(nacc(®yp(Cy)) NA;) = a for all i < 0.

Lemma (Brodsky-Rinot, 20100)

Assume (k). Then there is a postprocessing ® : K(k) — K(k)
such that every sequence (A; | i < k) of cofinal subsets of K may
be encoded by a single stationary set G. For all x € K(k):
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Postprocessing functions - example #5

Corollary (Brodsky-Rinot, 20100)

Suppose (C, | a < k) is a O¢(k, < p1)-sequence, and 2/l = &.
For cofinally many 6 < ||, there exists a postprocessing function
&y : K(r) — K(k) satisfying the following.

For every sequence (A; | i < 6) of cofinal subsets of «, there are
stat. many a < k& s.t. sup(nacc(®yp(Cy)) NA;) = a for all i < 0.

Next problem
Each 0 has its own ®y. We need to integrate them together!
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Postprocessing functions - example #5

Corollary (Brodsky-Rinot, 20100)

Suppose (C, | a < k) is a O¢(k, < p1)-sequence, and 2/l = &.
For cofinally many 6 < ||, there exists a postprocessing function
&y : K(r) — K(k) satisfying the following.

For every sequence (A; | i < 6) of cofinal subsets of «, there are
stat. many a < k& s.t. sup(nacc(®yp(Cy)) NA;) = a for all i < 0.

Remark

A statement parallel to the preceding, obtained by replacing £ < &
with p < k holds true as well.

(The proof, however, is entirely different)
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Mixing postprocessing functions

It turns out that the monoid of postprocessing functions is closed
under various mixing operations. We found a few. Here's one.
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Mixing lemma (Brodsky-Rinot, 20100)

Suppose (C, | o < k) is a O¢(k, < p)-sequence, min{&, u} < k.
For every © C k and every sequence (Sy | 6 € ©) of stationary
subsets of k, there is a postprocessing function ® : (k) — K(k)
such that, for cofinally many 6 € ©,
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Suppose (C, | o < k) is a O¢(k, < p)-sequence, min{&, u} < k.
For every © C k and every sequence (Sy | 6 € ©) of stationary
subsets of k, there is a postprocessing function ® : (k) — K(k)
such that, for cofinally many 6 € ©,

Sp:={a € Sy | min(®(C,)) = 6}

is stationary.
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Mixing postprocessing functions

It turns out that the monoid of postprocessing functions is closed
under various mixing operations. We found a few. Here's one.

Mixing lemma (Brodsky-Rinot, 20100)

Suppose (C, | o < k) is a O¢(k, < p)-sequence, min{&, u} < k.
For every © C k and every sequence (Sy | 6 € ©) of stationary
subsets of k, there is a postprocessing function ® : (k) — K(k)
such that, for cofinally many 6 € ©,

Sp:={a € Sy | min(®(C,)) = 6}
is stationary.

This means

To each 6 such that Sy is stationary, we may find a corresponding
postprocessing function ®y, and then we can mix them together
letting ®'(x) = ®p(x) iff min(P(x)) = 0.

23 /25



An application

Conjecture
For every uncountable cardinal A, if GCH + O+ (A1, < A™) holds,
then there is a AT-Aronszajn tree T s.t. P(T) preserves cardinals.

Theorem (Brodsky-Rinot, 20100)

For every singular cardinal ), if GCH + O,+ (A1, < \) holds,
then there is a A™-Aronszajn tree T s.t. P(T) is A-distributive.
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Corollary
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An application

Conjecture

For every uncountable cardinal A, if GCH + O+ (A1, < A™) holds,
then there is a AT-Aronszajn tree T s.t. P(T) preserves cardinals.

Theorem (Brodsky-Rinot, 20100)

For every singular cardinal ), if GCH + O,+ (A1, < \) holds,
then there is a A™-Aronszajn tree T s.t. P(T) is A-distributive.

An unrelated application of the mixing lemma

If O(x) holds, then any fat subset of x may be split into x many
fat sets.
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there are also some disadvantages.
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Blowing up

We have demonstrated the power of postprocessing functions, but
there are also some disadvantages.

Most promimently, the requirement “acc(®(x)) C acc(x)” prevents
us from blowing-up the order-type of elements of a square.

For this, we developed a separate tool. Here is an application.

Theorem (Brodsky-Rinot, 20100)

Assume GCH, X is a singular cardinal, and there is a non-reflecting
stationary subset of E;;(/\).

If (I} holds, then there is a Oy2(AT, < A1)-sequence 6 for which
the microscopic approach to Souslin-tree constructions produces a
AT-Souslin tree which is moreover free.
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