Antichains in partially ordered sets of singular cofinality

Singular Cardinal Combinatorics and Inner Model Theory

05-Mar-07, Gainesville, Florida

Assaf Rinot Tel-Aviv University

http://www.tau.ac.il/~rinot

Definitions

Suppose $\langle P, \leq \rangle$ is a poset.

Notation. For $A \subseteq P$, let:

- $\overline{A} := \{x \in P \mid \exists y \in A(y \le x)\};$
- $\underline{A} := \{x \in P \mid \exists y \in A(x \le y)\}.$

Definition. $cf(P, \leq) := min \{ |D| : D \subseteq P, P \subseteq \underline{D} \};$ For $A \subseteq P$, $cf_P(A) := min \{ |D| : D \subseteq P, A \subseteq \underline{D} \}.$

Definition. $A \subseteq P$ is said to be an *antichain* iff $x \not\leq y$ and $y \not\leq x$ for any two distinct $x, y \in A$.

Motivation

Theorem (Hausdorff, 1908). If $\langle P, \leq \rangle$ is a linearly ordered set, then $cf(P, \leq)$ is a regular cardinal.

Theorem (Erdös-Tarski, 1943). If $\langle P, \leq \rangle$ is a poset with no infinite antichain, then *P* is the finite union of updirected posets.

Theorem (Pouzet, 1979). If $\langle P, \leq \rangle$ is an updirected poset with no infinite antichain, then it contains a co-final subset which is isomorphic to a product of finitely many regular cardinals.

Corollary (Pouzet, 1979). If $\langle P, \leq \rangle$ is a poset and $cf(P, \leq)$ is a singular cardinal, then P has an infinite antichain.

The Milner-Sauer conjecture

Conjecture (Milner-Sauer, 1981). If $\langle P, \leq \rangle$ is a poset and $cf(P, \leq) = \lambda > cf(\lambda) = \kappa$, then *P* must contain an antichain of size κ .

(Appears implicitly already in Pouzet, 1979)

Consistency results

The conjecture is consistent and was known to follow from GCH-type assumptions, e.g., for $\lambda > cf(\lambda) = \kappa$:

Theorem (Milner-Prikry '81). If $\mu^{<\kappa} < \lambda$ for all $\mu < \lambda$, then any poset of cofinality λ contains an antichain of size κ .

Theorem (Milner-Pouzet '82). If $\lambda^{<\kappa} = \lambda$, then any poset of cofinality λ contains an antichain of size κ .

Theorem (Hajnal-Sauer '86). If λ is a strong limit, then any poset of cofinality λ contains λ^{κ} antichains of size κ .

More recent consistency results

Theorem (Milner-Pouzet, 1997). If $\lambda^{<\kappa} = \lambda$, then any poset of cofinality λ contains λ^{κ} antichains of size κ .

Theorem (Magidor, 2002, *unpublished*). If $cf([\lambda]^{<\kappa}, \subseteq) = \lambda$, then any poset of cofinality λ contains an antichain of size κ .

and independently, with a completely different proof:

Theorem (Gitik-R., 2005). If $cf([\lambda]^{<\kappa}, \subseteq) = \lambda$, then any poset of cofinality λ contains λ^{κ} antichains of size κ .

$\neg cf([\lambda]^{<cf(\lambda)}, \subseteq) = \lambda$ does not suffice

Theorem (Gitik, 2006). Assuming GCH and the existence of a cardinal θ being $\theta^{+\omega_1+1}$ -strong, there exists a cardinals-preserving forcing notion \mathbb{P} such that: $V^{\mathbb{P}} \models \exists \lambda. \operatorname{cf}([\lambda]^{<\operatorname{cf}(\lambda)}, \subseteq) > \lambda > \operatorname{cf}(\lambda) + \text{``any poset of cofinality } \lambda$ contains an antichain of size $\operatorname{cf}(\lambda)$ ''.

Some ZFC observations

✓ Any tree (or even pseudotree) of cofinality $\lambda > cf(\lambda)$ contains an antichain of size $cf(\lambda)$.

✓ If $\langle P, \leq \rangle$ is of cofinality λ , and sup $\{|\{x\}| : x \in P\} < \lambda$, then P contains an antichain of size λ .

✓ If there exists a counter-example of cofinality λ , then there exists a poset $\langle P, \leq \rangle$ such that: $\Rightarrow \operatorname{cf}_P(\overline{\{x\}}) = |P| = \lambda$ for any $x \in P$; $\Rightarrow P$ does not contain a chain of size λ ; $\Rightarrow P$ does not contain an antichain of size $\operatorname{cf}(\lambda)$.

Prevalent Singular Cardinals

Definition. A singular cardinal λ is a *prevalent singular* cardinal iff $\exists \mu \in [cf(\lambda), \lambda)$ with $cov(\lambda, \mu, cf(\lambda), 2) = \lambda$, i.e., if there exists a family $\mathcal{F} \subseteq \mathcal{P}(\lambda)$ such that $|\mathcal{F}| = \lambda$, $sup\{|A| : A \in \mathcal{F}\} < \lambda$, and $[\lambda]^{<cf(\lambda)} \subseteq \bigcup_{A \in \mathcal{F}} \mathcal{P}(A)$.

In Gitik's model, indeed $cf([\lambda]^{<cf(\lambda)}, \subseteq) > \lambda$, however, λ remained a prevalent singular cardinal.

Conventions

From now on, λ denotes a singular cardinal, $\kappa := cf(\lambda)$, and $\langle P, \leq \rangle$ denotes a poset of cofinality λ .

Main Result

Theorem. If λ is a prevalent singular cardinal then any poset of cofinality λ contains λ^{κ} antichains of size κ .

Corollary. The negation of the Milner-Sauer conjecture - if consistent - requires knowledge in cardinal arithmetic that is not yet available.

The notion of a stable subposet

Definition. We say that a subset $P' \in [P]^{\lambda}$ is **stable** iff $\operatorname{cf}_{P}(P' \setminus \overline{X}) = \lambda$ for all $X \in [P']^{<\kappa}$.

Lemma 1. If *P* has a stable subposet, then *P* contains an antichain of size κ .

<u>*Proof.*</u> Let $P' \subseteq P$ be stable. We build an antichain $\{x_{\alpha} \mid \alpha < \kappa\}$ by induction on $\alpha < \kappa$.

Suppose $X := \{x_{\beta} \mid \beta < \alpha\} \subseteq P'$ has been defined. By $X \in [P']^{<\kappa}$, $\operatorname{cf}_{P}(P' \setminus \overline{X}) = \lambda$. Since $\operatorname{cf}_{P}(\underline{X}) \leq |X| < \lambda$, we may find $x_{\alpha} \in P'$ such that $x_{\alpha} \notin (\overline{X} \cup \underline{X})$.

The family of bad subsets

Definition. For $P' \subseteq P$, let:

$$\wp(P') := \{ X \in [P']^{<\kappa} \mid \mathsf{cf}_P(P' \setminus \overline{X}) < \lambda \}.$$

Lemma 2. The following are equivalent: (a) P contains a stable subset. (b) There are $P', Y \subseteq P$, $cf_P(P') = |P'| = \lambda > cf_P(Y)$, such that $Y \cap X \neq \emptyset$ for all $X \in \wp(P')$.

Lemma 3. For any $\mathcal{F} \subseteq \wp(P)$ of cardinality $\leq \lambda$, there exists $Y \in [P]^{\kappa}$ with $\underline{Y} \cap A \neq \emptyset$ for all $A \in \mathcal{F}$. <u>*Proof.*</u> Y is constructed by diagonalization, very much like the construction of a Luzin set.

Towards a proof of the main theorem

Theorem 2. If λ is a prevalent singular cardinal then any poset of cofinality λ contains a stable subset. <u>*Proof*</u> (sketch). By considering a cofinal subset, we

may assume that $|P| = \lambda$. By hypothesis, we may find $\mu < \lambda$ and $\mathcal{F} \subseteq [P]^{<\mu}$ of cardinality λ such that each $X \in \wp(P)$ is contained in some $B \in \mathcal{F}$.

We recursively construct a sequence $\{Y_{\alpha} \mid \alpha < \mu\} \subseteq [P]^{\kappa}$ using Lemma 3. Then argue that $Y := \bigcup_{\alpha < \kappa} \underline{Y_{\alpha}}$ is such that $cf_P(Y) \leq \mu < \lambda$ and $Y \cap X \neq \emptyset$ for all $X \in \wp(P)$. Recalling Lemma 2, our proof is complete. \Box

Towards a proof of the main theorem (cont.)

Corollary. If λ is a prevalent singular cardinal then any poset of cofinality λ contains an antichain of size κ .

Thus, we have established the existence of a single antichain. Next, we shall improve the result, obtaining λ^{κ} many antichains.

Antichain sequences

Definition (Hajnal-Sauer '86). Assume $\mathcal{A} = \langle A_{\alpha} \mid \alpha < \kappa \rangle$ is a family of sets. \mathcal{A} is said to be an **antichain sequence** iff: (a) For all $\beta < \alpha < \kappa$, $|A_{\beta}| \leq |A_{\alpha}|$ and $A_{\alpha} \subseteq P$. (b) Any $X \subseteq \bigcup_{\alpha < \kappa} A_{\alpha}$ such that $|X \cap A_{\alpha}| \leq 1$ for all $\alpha < \kappa$, is an antichain.

The **cofinality** of \mathcal{A} is $cf_P(\bigcup_{\alpha < \kappa} A_\alpha)$.

Antichain sequence:

 $\mathcal{A} = \oplus_{\alpha < \kappa} A_{\alpha}$

 A_{β}

• • •

• • •

۸

 A_0

 A_1

 $A_{\alpha} \qquad \beta < \alpha < \kappa$

*

Why everybody likes antichain sequences

Lemma 4. If *P* has an antichain sequence of cofinality λ , then *P* contains λ^{κ} antichains of size κ . <u>*Proof.*</u> Suppose $\mathcal{A} = \langle A_{\alpha} \mid \alpha < \kappa \rangle$ is an antichain sequence. For all $\alpha < \kappa$, set $\lambda_{\alpha} = |A_{\alpha}|$. Finally, since $\langle \lambda_{\alpha} \mid \alpha < \kappa \rangle$ is non-decreasing, converging to λ :

$$|\{\operatorname{Im}(f) \mid f \in \prod_{\alpha < \kappa} A_{\alpha}\}| = \prod_{\alpha < \kappa} \lambda_{\alpha} = \lambda^{\kappa}.$$

Surprise, Surprise

Not only that a stable subset exemplifies the existence of a single antichain, but actually:

Theorem 3. The following are equivalent:

- (a) *P* contains a stable subset.
- (b) P contains an antichain sequence of cofinality λ .

Main Result

Corollary. If λ is a prevalent singular cardinal then any poset of cofinality λ contains λ^{κ} antichains of size κ .

A related problem

Problem. Does there (consistently) exists a topological space of density and weight λ such that its hereditary compactness degree equals $cf(\lambda)$?

Observation. A counter-example of cofinality λ (to the Milner-Sauer conjecture) would induce such space.

Theorem. If λ is a prevalent singular cardinal, then the answer to the above problem is "No".

Where do the weight assumption come from?

The Milner-Sauer conjecture concerns posets of singular cofinality, so you would expect its topological analogue would concern spaces of singular density.

Theorem. If \aleph_{ω_1} is a prevalent singular cardinal, then any topological space of density <u>and weight</u> \aleph_{ω_1} is not hereditarily Lindelöf. (No separation axioms assumed)

Theorem (Juhász-Shelah, 2007).

There consistently exists a regular topological space of density \aleph_{ω_1} , being hereditarily Lindelöf.

Open problem

For $\lambda > cf(\lambda) = \kappa$,

Theorem (Gitik, 2005). Suppose $\lambda^{<\kappa} > \lambda$. If $A \subseteq \lambda$ codes the cardinals structure up to λ , and a stationary subset of $\mathcal{P}_{\kappa}(\lambda)$ of size λ , then $L[A] \models \lambda^{<\kappa} = \lambda$.

Problem. Suppose λ is not a prevalent cardinal. Does there exist a set $A \subseteq \lambda$ coding the cardinals structure up to λ , and $L[A] \models ``\lambda$ is a prevalent singular cardinal''?

References

[1] A. Rinot, Antichains in partially ordered sets of singular cofinality, to appear in Arch. Math. Logic. http://dx.doi.org/10.1007/s00153-007-0049-z

[2] E.C. Milner, N. Sauer, Remarks on the cofinality of a partially ordered set, and a generalization of König's lemma. Discrete Math., Vol. 35 (1981), 165-171. http://dx.doi.org/10.1016/0012-365X(81)90205-3