
ℵ3-trees

P.O.I. Workshop in pure and descriptive set theory
Università di Torino, Italy

26-September-2015

Assaf Rinot
Bar-Ilan University

1 / 27

Partial bibliography

This talk centers around the following works:

[BR1] A. Brodsky and A. Rinot, A microscopic approach to
Souslin-tree constructions, in preparation.

[BR2] A. Brodsky and A. Rinot, Reduced powers of Souslin trees,
submitted July 2015.

[RS] A. Rinot and R. Schindler, Square with built-in diamond-plus,
in preparation.

The second paper is available at http://www.assafrinot.com

2 / 27

κ-trees

Definition

I A tree is a poset (T ,C) in which t↓ := {s ∈ T | s C t} is
well-ordered for all t ∈ T ;

I The height of t ∈ T is ht(t) := otp(t↓,C);

I Tα = {t ∈ T | ht(t) = α} is the αth-level of the tree;

I T � α = {t ∈ T | ht(t) < α};
I The height of the tree is min{α ∈ Ord | Tα = ∅};
I (T ,C) is χ−complete if any C-increasing sequence of length
< χ admits a bound;

By convention, all trees in this lecture are Hausdorff trees:

(x↓ = y↓)⇒ (x = y).

3 / 27

κ-trees

Definition

I A tree is a poset (T ,C) in which t↓ := {s ∈ T | s C t} is
well-ordered for all t ∈ T ;

I The height of t ∈ T is ht(t) := otp(t↓,C);

I Tα = {t ∈ T | ht(t) = α} is the αth-level of the tree;

I T � α = {t ∈ T | ht(t) < α};
I The height of the tree is min{α ∈ Ord | Tα = ∅};
I (T ,C) is χ−complete if any C-increasing sequence of length
< χ admits a bound;

By convention, all trees in this lecture are Hausdorff trees:

(x↓ = y↓)⇒ (x = y).

3 / 27

κ-trees

Definition

I A tree is a poset (T ,C) in which t↓ := {s ∈ T | s C t} is
well-ordered for all t ∈ T ;

I The height of t ∈ T is ht(t) := otp(t↓,C);

I Tα = {t ∈ T | ht(t) = α} is the αth-level of the tree;

I T � α = {t ∈ T | ht(t) < α};
I The height of the tree is min{α ∈ Ord | Tα = ∅};
I (T ,C) is χ−complete if any C-increasing sequence of length
< χ admits a bound;

By convention, all trees in this lecture are Hausdorff trees:

(x↓ = y↓)⇒ (x = y).

3 / 27

κ-trees

Definition

I A tree is a poset (T ,C) in which t↓ := {s ∈ T | s C t} is
well-ordered for all t ∈ T ;

I The height of t ∈ T is ht(t) := otp(t↓,C);

I Tα = {t ∈ T | ht(t) = α} is the αth-level of the tree;

I T � α = {t ∈ T | ht(t) < α};

I The height of the tree is min{α ∈ Ord | Tα = ∅};
I (T ,C) is χ−complete if any C-increasing sequence of length
< χ admits a bound;

By convention, all trees in this lecture are Hausdorff trees:

(x↓ = y↓)⇒ (x = y).

3 / 27

κ-trees

Definition

I A tree is a poset (T ,C) in which t↓ := {s ∈ T | s C t} is
well-ordered for all t ∈ T ;

I The height of t ∈ T is ht(t) := otp(t↓,C);

I Tα = {t ∈ T | ht(t) = α} is the αth-level of the tree;

I T � α = {t ∈ T | ht(t) < α};
I The height of the tree is min{α ∈ Ord | Tα = ∅};

I (T ,C) is χ−complete if any C-increasing sequence of length
< χ admits a bound;

By convention, all trees in this lecture are Hausdorff trees:

(x↓ = y↓)⇒ (x = y).

3 / 27

κ-trees

Definition

I A tree is a poset (T ,C) in which t↓ := {s ∈ T | s C t} is
well-ordered for all t ∈ T ;

I The height of t ∈ T is ht(t) := otp(t↓,C);

I Tα = {t ∈ T | ht(t) = α} is the αth-level of the tree;

I T � α = {t ∈ T | ht(t) < α};
I The height of the tree is min{α ∈ Ord | Tα = ∅};
I (T ,C) is χ−complete if any C-increasing sequence of length
< χ admits a bound;

By convention, all trees in this lecture are Hausdorff trees:

(x↓ = y↓)⇒ (x = y).

3 / 27

κ-trees

Definition

I A tree is a poset (T ,C) in which t↓ := {s ∈ T | s C t} is
well-ordered for all t ∈ T ;

I The height of t ∈ T is ht(t) := otp(t↓,C);

I Tα = {t ∈ T | ht(t) = α} is the αth-level of the tree;

I T � α = {t ∈ T | ht(t) < α};
I The height of the tree is min{α ∈ Ord | Tα = ∅};
I (T ,C) is χ−complete if any C-increasing sequence of length
< χ admits a bound;

By convention, all trees in this lecture are Hausdorff trees:

(x↓ = y↓)⇒ (x = y).

3 / 27

Particular trees of interest

By convention, κ stands for a regular uncountable cardinal.

Definition

I A κ-tree is a tree of height κ whose levels are of size < κ;

I A κ-Aronszajn tree is a κ-tree having no cofinal branches;

I A κ-Kurepa tree is a κ-tree is having at least κ+ many cofinal
branches;

I A κ-Souslin tree is a κ-Aronszajn tree having no antichains of
size κ;

I A λ+-tree is special if it is the union of λ many antichains.

4 / 27

Particular trees of interest

By convention, κ stands for a regular uncountable cardinal.

Definition

I A κ-tree is a tree of height κ whose levels are of size < κ;

I A κ-Aronszajn tree is a κ-tree having no cofinal branches;

I A κ-Kurepa tree is a κ-tree is having at least κ+ many cofinal
branches;

I A κ-Souslin tree is a κ-Aronszajn tree having no antichains of
size κ;

I A λ+-tree is special if it is the union of λ many antichains.

4 / 27

Particular trees of interest

By convention, κ stands for a regular uncountable cardinal.

Definition

I A κ-tree is a tree of height κ whose levels are of size < κ;

I A κ-Aronszajn tree is a κ-tree having no cofinal branches;

I A κ-Kurepa tree is a κ-tree is having at least κ+ many cofinal
branches;

I A κ-Souslin tree is a κ-Aronszajn tree having no antichains of
size κ;

I A λ+-tree is special if it is the union of λ many antichains.

4 / 27

Particular trees of interest

By convention, κ stands for a regular uncountable cardinal.

Definition

I A κ-tree is a tree of height κ whose levels are of size < κ;

I A κ-Aronszajn tree is a κ-tree having no cofinal branches;

I A κ-Kurepa tree is a κ-tree is having at least κ+ many cofinal
branches;

I A κ-Souslin tree is a κ-Aronszajn tree having no antichains of
size κ;

I A λ+-tree is special if it is the union of λ many antichains.

4 / 27

Particular trees of interest

By convention, κ stands for a regular uncountable cardinal.

Definition

I A κ-tree is a tree of height κ whose levels are of size < κ;

I A κ-Aronszajn tree is a κ-tree having no cofinal branches;

I A κ-Kurepa tree is a κ-tree is having at least κ+ many cofinal
branches;

I A κ-Souslin tree is a κ-Aronszajn tree having no antichains of
size κ;

I A λ+-tree is special if it is the union of λ many antichains.

4 / 27

I’ve got the power

The I -power of a tree

Given a tree (T ,C) and a set I , let

T I := {f : I → T | ht ◦ f is constant},

and f J g iff f (i)C g(i) for all i ∈ I .

Lemma (Kurepa, 1952)

For every κ-tree (T ,C), T 2 is not κ-Souslin.

5 / 27

I’ve got the power

The I -power of a tree

Given a tree (T ,C) and a set I , let

T I := {f : I → T | ht ◦ f is constant},

and f J g iff f (i)C g(i) for all i ∈ I .

Lemma (Kurepa, 1952)

For every κ-tree (T ,C), T 2 is not κ-Souslin.

5 / 27

I’ve got the power

The I -power of a tree

Given a tree (T ,C) and a set I , let

T I := {f : I → T | ht ◦ f is constant},

and f J g iff f (i)C g(i) for all i ∈ I .

Lemma (Kurepa, 1952)

For every κ-tree (T ,C), T 2 is not κ-Souslin.

5 / 27

Reduced powers

The reduced I -power of a tree

Given a tree (T ,C), an infinite set I , and a uniform ultrafilter U
over I , let

T I/U := {[f]U | f ∈ T I},

where

f =U g iff {i ∈ I | f (i) = g(i)} ∈ U ,
and [f]U J [g]U iff {i ∈ I | f (i)C g(i)} ∈ U .

Lemma (essentially Kurepa, 1952)

For every κ-tree (T ,C), every infinite set I , and every uniform
ultrafilter U over I , T I/U is not κ-Souslin.

Question
But is the reduced I -power of a κ-Souslin tree at least
κ-Aronszajn?

6 / 27

Reduced powers

The reduced I -power of a tree

Given a tree (T ,C), an infinite set I , and a uniform ultrafilter U
over I , let

T I/U := {[f]U | f ∈ T I},

where f =U g iff {i ∈ I | f (i) = g(i)} ∈ U ,
and

[f]U J [g]U iff {i ∈ I | f (i)C g(i)} ∈ U .

Lemma (essentially Kurepa, 1952)

For every κ-tree (T ,C), every infinite set I , and every uniform
ultrafilter U over I , T I/U is not κ-Souslin.

Question
But is the reduced I -power of a κ-Souslin tree at least
κ-Aronszajn?

6 / 27

Reduced powers

The reduced I -power of a tree

Given a tree (T ,C), an infinite set I , and a uniform ultrafilter U
over I , let

T I/U := {[f]U | f ∈ T I},

where f =U g iff {i ∈ I | f (i) = g(i)} ∈ U ,
and [f]U J [g]U iff {i ∈ I | f (i)C g(i)} ∈ U .

Lemma (essentially Kurepa, 1952)

For every κ-tree (T ,C), every infinite set I , and every uniform
ultrafilter U over I , T I/U is not κ-Souslin.

Question
But is the reduced I -power of a κ-Souslin tree at least
κ-Aronszajn?

6 / 27

Reduced powers

The reduced I -power of a tree

Given a tree (T ,C), an infinite set I , and a uniform ultrafilter U
over I , let

T I/U := {[f]U | f ∈ T I},

where f =U g iff {i ∈ I | f (i) = g(i)} ∈ U ,
and [f]U J [g]U iff {i ∈ I | f (i)C g(i)} ∈ U .

Lemma (essentially Kurepa, 1952)

For every κ-tree (T ,C), every infinite set I , and every uniform
ultrafilter U over I , T I/U is not κ-Souslin.

Question
But is the reduced I -power of a κ-Souslin tree at least
κ-Aronszajn?

6 / 27

Reduced powers

The reduced I -power of a tree

Given a tree (T ,C), an infinite set I , and a uniform ultrafilter U
over I , let

T I/U := {[f]U | f ∈ T I},

where f =U g iff {i ∈ I | f (i) = g(i)} ∈ U ,
and [f]U J [g]U iff {i ∈ I | f (i)C g(i)} ∈ U .

Lemma (essentially Kurepa, 1952)

For every κ-tree (T ,C), every infinite set I , and every uniform
ultrafilter U over I , T I/U is not κ-Souslin.

Question
But is the reduced I -power of a κ-Souslin tree at least
κ-Aronszajn?

6 / 27

Reduced powers of Souslin tree

The good news (Devlin, 1983)

Consistently, there exists an ℵ2-Souslin tree whose reduced
ℵ0-power is ℵ2-Aronszajn.

7 / 27

Reduced powers of Souslin tree

The good news (Devlin, 1983)

Consistently, there exists an ℵ2-Souslin tree whose reduced
ℵ0-power is ℵ2-Aronszajn.

The bad news (Devlin, 1981)

Consistently, there exists an ℵ2-Souslin tree whose reduced
ℵ0-power is not ℵ2-Aronszajn.

7 / 27

Reduced powers of Souslin tree

The good news (Devlin, 1983)

Consistently, there exists an ℵ2-Souslin tree whose reduced
ℵ0-power is ℵ2-Aronszajn.

The bad news (Devlin, 1981)

Consistently, there exists an ℵ2-Souslin tree whose reduced
ℵ0-power is not ℵ2-Aronszajn.

Theorem (Cummings, 1997)

If ♦ λ holds for an uncountable cardinal λ<λ = λ, then there exists
a λ-complete λ+-Souslin tree whose reduced ℵ0-power is not
λ+-Aronszajn.

7 / 27

Reduced powers of Souslin tree

The good news (Devlin, 1983)

Consistently, there exists an ℵ2-Souslin tree whose reduced
ℵ0-power is ℵ2-Aronszajn.

The bad news (Devlin, 1981)

Consistently, there exists an ℵ2-Souslin tree whose reduced
ℵ0-power is ℵ2-Kurepa.

Theorem (Cummings, 1997)

If ♦ λ holds for an uncountable cardinal λ<λ = λ, then there exists
a λ-complete λ+-Souslin tree whose reduced ℵ0-power is not
λ+-Aronszajn.

7 / 27

Various powers

In Luminy 2010, I told Cummings that I can tweak his construction
so that for every infinite cardinal θ < λ, the reduced θ-power is not
λ+-Aronszajn.

He replied: isn’t that always the case? (for this sort of trees)

Theorem ([BR2])

There consistently exist an ℵ6-Souslin tree (T ,C) and a sequence
of uniform ultrafilters 〈Un | n < 6〉 such that for all n < 6,
Tℵn/Un is ℵ6-Aronszajn iff n is not a prime number.

8 / 27

Various powers

In Luminy 2010, I told Cummings that I can tweak his construction
so that for every infinite cardinal θ < λ, the reduced θ-power is not
λ+-Aronszajn.

He replied: isn’t that always the case? (for this sort of trees)

Theorem ([BR2])

There consistently exist an ℵ6-Souslin tree (T ,C) and a sequence
of uniform ultrafilters 〈Un | n < 6〉 such that for all n < 6,
Tℵn/Un is ℵ6-Aronszajn iff n is not a prime number.

8 / 27

Various powers

In Luminy 2010, I told Cummings that I can tweak his construction
so that for every infinite cardinal θ < λ, the reduced θ-power is not
λ+-Aronszajn.

He replied: isn’t that always the case? (for this sort of trees)

Theorem ([BR2])

There consistently exist an ℵ6-Souslin tree (T ,C) and a sequence
of uniform ultrafilters 〈Un | n < 6〉 such that for all n < 6,
Tℵn/Un is ℵ6-Aronszajn iff n is not a prime number.

8 / 27

Kurepa’s lemma revisited

9 / 27

Almost Souslin trees

Recall
For every ℵ1-tree (T ,C), T 2 is not ℵ1-Souslin.

10 / 27

Almost Souslin trees

Recall
For every ℵ1-tree (T ,C), T 2 is not ℵ1-Souslin.

Definition (Devlin-Shelah, 1977)

An ℵ1-tree is Almost Souslin if for every of its antichains A, we
have that {ht(x) | x ∈ A} is nonstationary.

10 / 27

Almost Souslin trees

Recall
For every ℵ1-tree (T ,C), T 2 is not ℵ1-Souslin.

Definition (Devlin-Shelah, 1977)

An ℵ1-tree is Almost Souslin if for every of its antichains A, we
have that {ht(x) | x ∈ A} is nonstationary.

Note
An almost Souslin ℵ1-tree cannot contain a special tree.

10 / 27

Almost Souslin trees

Recall
For every ℵ1-tree (T ,C), T 2 is not ℵ1-Souslin.

Definition (Devlin-Shelah, 1977)

An ℵ1-tree is Almost Souslin if for every of its antichains A, we
have that {ht(x) | x ∈ A} is nonstationary.

Theorem (Jensen 1970’s, Hanazawa 1983)

Consistently, ∃ ℵ1-Souslin tree whose square is almost Souslin.

10 / 27

Almost Souslin trees

Recall
For every ℵ1-tree (T ,C), T 2 is not ℵ1-Souslin.

Definition (Devlin-Shelah, 1977)

An ℵ1-tree is Almost Souslin if for every of its antichains A, we
have that {ht(x) | x ∈ A} is nonstationary.

Theorem (Jensen 1970’s, Hanazawa 1983)

Consistently, ∃ ℵ1-Souslin tree whose square is almost Souslin.

Theorem (Jensen-Johnsbraten, 1974)

Consistently, ∃ ℵ1-Souslin tree whose square is not almost Souslin.

10 / 27

Almost Souslin trees

Recall
For every λ+-tree (T ,C), and U ⊆ P(I), T I/U is not λ+-Souslin.

10 / 27

Almost Souslin trees

Recall
For every λ+-tree (T ,C), and U ⊆ P(I), T I/U is not λ+-Souslin.

Definition
A λ+-tree is Almost Souslin if for every of its antichains A, we
have that {ht(x) | x ∈ A} ∩ Eλ

+

cf(λ) is nonstationary.

10 / 27

Almost Souslin trees

Recall
For every λ+-tree (T ,C), and U ⊆ P(I), T I/U is not λ+-Souslin.

Definition
A λ+-tree is Almost Souslin if for every of its antichains A, we
have that {ht(x) | x ∈ A} ∩ Eλ

+

cf(λ) is nonstationary.

A test
An almost Souslin λ+-tree cannot contain a special tree.

10 / 27

Almost Souslin trees

Recall
For every λ+-tree (T ,C), and U ⊆ P(I), T I/U is not λ+-Souslin.

Definition
A λ+-tree is Almost Souslin if for every of its antichains A, we
have that {ht(x) | x ∈ A} ∩ Eλ

+

cf(λ) is nonstationary.

Theorem ([BR2])

Con: ∃ ℵ2-Souslin tree whose reduced ℵ0-power is almost Souslin.

10 / 27

Almost Souslin trees

Recall
For every λ+-tree (T ,C), and U ⊆ P(I), T I/U is not λ+-Souslin.

Definition
A λ+-tree is Almost Souslin if for every of its antichains A, we
have that {ht(x) | x ∈ A} ∩ Eλ

+

cf(λ) is nonstationary.

Theorem ([BR2])

Con: ∃ ℵ2-Souslin tree whose reduced ℵ0-power is almost Souslin.

Theorem ([BR2])

Con: ∃ ℵ2-Souslin tree whose reduced ℵ0-power is not almost Sou.

10 / 27

Better seen at the level of ℵ3

Theorem ([BR2])

Assume V = L.
Then there exist trees T0,T1,T2,T3, and uniform ultrafilters U0

over ℵ0, U1 over ℵ1, such that:

T Tℵ0/U0 Tℵ1/U1

T0 ℵ3-S. ℵ3-Aronszajn + almost S. ℵ3-Aronszajn + almost S.
T1 ℵ3-S. ℵ3-Kurepa + ¬ almost S. ℵ3-Kurepa + ¬ almost S.
T2 ℵ3-S. ℵ3-Aronszajn + almost S. ℵ3-Kurepa + ¬ almost S.
T3 ℵ3-S. ¬ℵ3-Aronszajn ℵ3-Aronszajn + almost S.

Let us now describe the concepts and tools that are used in
proving the above.

11 / 27

Better seen at the level of ℵ3

Theorem ([BR2])

Assume V = L.
Then there exist trees T0,T1,T2,T3, and uniform ultrafilters U0

over ℵ0, U1 over ℵ1, such that:

T Tℵ0/U0 Tℵ1/U1

T0 ℵ3-S. ℵ3-Aronszajn + almost S. ℵ3-Aronszajn + almost S.

T1 ℵ3-S. ℵ3-Kurepa + ¬ almost S. ℵ3-Kurepa + ¬ almost S.
T2 ℵ3-S. ℵ3-Aronszajn + almost S. ℵ3-Kurepa + ¬ almost S.
T3 ℵ3-S. ¬ℵ3-Aronszajn ℵ3-Aronszajn + almost S.

Let us now describe the concepts and tools that are used in
proving the above.

11 / 27

Better seen at the level of ℵ3

Theorem ([BR2])

Assume V = L.
Then there exist trees T0,T1,T2,T3, and uniform ultrafilters U0

over ℵ0, U1 over ℵ1, such that:

T Tℵ0/U0 Tℵ1/U1

T0 ℵ3-S. ℵ3-Aronszajn + almost S. ℵ3-Aronszajn + almost S.
T1 ℵ3-S. ℵ3-Kurepa + ¬ almost S. ℵ3-Kurepa + ¬ almost S.

T2 ℵ3-S. ℵ3-Aronszajn + almost S. ℵ3-Kurepa + ¬ almost S.
T3 ℵ3-S. ¬ℵ3-Aronszajn ℵ3-Aronszajn + almost S.

Let us now describe the concepts and tools that are used in
proving the above.

11 / 27

Better seen at the level of ℵ3

Theorem ([BR2])

Assume V = L.
Then there exist trees T0,T1,T2,T3, and uniform ultrafilters U0

over ℵ0, U1 over ℵ1, such that:

T Tℵ0/U0 Tℵ1/U1

T0 ℵ3-S. ℵ3-Aronszajn + almost S. ℵ3-Aronszajn + almost S.
T1 ℵ3-S. ℵ3-Kurepa + ¬ almost S. ℵ3-Kurepa + ¬ almost S.
T2 ℵ3-S. ℵ3-Aronszajn + almost S. ℵ3-Kurepa + ¬ almost S.

T3 ℵ3-S. ¬ℵ3-Aronszajn ℵ3-Aronszajn + almost S.

Let us now describe the concepts and tools that are used in
proving the above.

11 / 27

Better seen at the level of ℵ3

Theorem ([BR2])

Assume V = L.
Then there exist trees T0,T1,T2,T3, and uniform ultrafilters U0

over ℵ0, U1 over ℵ1, such that:

T Tℵ0/U0 Tℵ1/U1

T0 ℵ3-S. ℵ3-Aronszajn + almost S. ℵ3-Aronszajn + almost S.
T1 ℵ3-S. ℵ3-Kurepa + ¬ almost S. ℵ3-Kurepa + ¬ almost S.
T2 ℵ3-S. ℵ3-Aronszajn + almost S. ℵ3-Kurepa + ¬ almost S.
T3 ℵ3-S. ¬ℵ3-Aronszajn ℵ3-Aronszajn + almost S.

Let us now describe the concepts and tools that are used in
proving the above.

11 / 27

Better seen at the level of ℵ3

Theorem ([BR2])

Assume V = L.
Then there exist trees T0,T1,T2,T3, and uniform ultrafilters U0

over ℵ0, U1 over ℵ1, such that:

T Tℵ0/U0 Tℵ1/U1

T0 ℵ3-S. ℵ3-Aronszajn + almost S. ℵ3-Aronszajn + almost S.
T1 ℵ3-S. ℵ3-Kurepa + ¬ almost S. ℵ3-Kurepa + ¬ almost S.
T2 ℵ3-S. ℵ3-Aronszajn + almost S. ℵ3-Kurepa + ¬ almost S.
T3 ℵ3-S. ¬ℵ3-Aronszajn ℵ3-Aronszajn + almost S.

Let us now describe the concepts and tools that are used in
proving the above.

11 / 27

Preventing objects from appearing in the reduced power

Definition
Suppose that (T ,C) is a tree, and I is a nonempty set.
For every g ∈ T I , the derived tree along g is the collection:

{f ∈ T I | ∀i ∈ I (f (i) is C-compatible with g(i))}.

12 / 27

Preventing objects from appearing in the reduced power

Definition
Suppose that (T ,C) is a tree, and I is a nonempty set.
For every g ∈ T I , the derived tree along g is the collection:

{f ∈ T I | ∀i ∈ I (f (i) is C-compatible with g(i))}.

Definition
A κ-Souslin tree (T ,C) is said to be χ-free if for every nonzero
τ < χ, and every injective g ∈ T τ , the derived tree along g is
again κ-Souslin.

12 / 27

Preventing objects from appearing in the reduced power

Remark
Why injective?

Definition
A κ-Souslin tree (T ,C) is said to be χ-free if for every nonzero
τ < χ, and every injective g ∈ T τ , the derived tree along g is
again κ-Souslin.

12 / 27

Preventing objects from appearing in the reduced power

Remark
Why injective? Because of Kurepa’s lemma.

Definition
A κ-Souslin tree (T ,C) is said to be χ-free if for every nonzero
τ < χ, and every injective g ∈ T τ , the derived tree along g is
again κ-Souslin.

12 / 27

Preventing objects from appearing in the reduced power

Definition
A filter F over a cardinal θ is said to be selective if it is uniform,
and for every function f with dom(f) ∈ F , one of the following
holds:

I there exists some A ∈ F+ such that f � A is constant, or

I there exists some B ∈ F+ such that f � B is injective.

Definition
A κ-Souslin tree (T ,C) is said to be χ-free if for every nonzero
τ < χ, and every injective g ∈ T τ , the derived tree along g is
again κ-Souslin.

12 / 27

Preventing objects from appearing in the reduced power

Definition
A filter F over a cardinal θ is said to be selective if it is uniform,
and for every function f with dom(f) ∈ F , one of the following
holds:

I there exists some A ∈ F+ such that f � A is constant, or

I there exists some B ∈ F+ such that f � B is injective.

Remarks

I for every infinite cardinal θ, Fbd
θ := {Z ⊆ θ | sup(θ \ Z) < θ}

is a selective filter;

12 / 27

Preventing objects from appearing in the reduced power

Definition
A filter F over a cardinal θ is said to be selective if it is uniform,
and for every function f with dom(f) ∈ F , one of the following
holds:

I there exists some A ∈ F+ such that f � A is constant, or

I there exists some B ∈ F+ such that f � B is injective.

Remarks

I for every infinite cardinal θ, Fbd
θ := {Z ⊆ θ | sup(θ \ Z) < θ}

is a selective filter;

I (essentially Rudin, 1956) If θ is regular, and 2θ = θ+, then
there exists a selective ultrafilter over θ;

12 / 27

Preventing objects from appearing in the reduced power

Definition
A filter F over a cardinal θ is said to be selective if it is uniform,
and for every function f with dom(f) ∈ F , one of the following
holds:

I there exists some A ∈ F+ such that f � A is constant, or

I there exists some B ∈ F+ such that f � B is injective.

Remarks

I for every infinite cardinal θ, Fbd
θ := {Z ⊆ θ | sup(θ \ Z) < θ}

is a selective filter;

I (essentially Rudin, 1956) If θ is regular, and 2θ = θ+, then
there exists a selective ultrafilter over θ;

I (Kunen, 1976) after adding ℵ2 random reals to a model of
GCH, there are no selective ultrafilters over ω.

12 / 27

Preventing objects from appearing in the reduced power

Definition
A filter F over a cardinal θ is said to be selective if it is uniform,
and for every function f with dom(f) ∈ F , one of the following
holds:

I there exists some A ∈ F+ such that f � A is constant, or

I there exists some B ∈ F+ such that f � B is injective.

Lemma 1
If (T ,C) is a θ+-free κ-Souslin tree, then for every selective
ultrafilter U over θ, the reduced θ-power T θ/U is κ-Aronszajn.

12 / 27

Preventing objects from appearing in the reduced power

Definition
A filter F over a cardinal θ is said to be selective if it is uniform,
and for every function f with dom(f) ∈ F , one of the following
holds:

I there exists some A ∈ F+ such that f � A is constant, or

I there exists some B ∈ F+ such that f � B is injective.

Lemma 1
If (T ,C) is a θ+-free κ-Souslin tree, then for every selective
ultrafilter U over θ, the reduced θ-power T θ/U is κ-Aronszajn.

Lemma 2
If (T ,C) is a θ+-free λ+-Souslin tree, then for every selective
ultrafilter U over θ, the reduced θ-power T θ/U is almost Souslin.

12 / 27

The tree T0

Theorem (essentially Jensen, 1960’s)

If ♦(Eℵ3
ℵ2

) holds and ℵℵ2
3 = ℵ3, then there exists an ℵ2-complete

ℵ2-free ℵ3-Souslin tree.

Corollary ([BR2])

If ♦(Eℵ3
ℵ2

) + GCH holds, then there exist an ℵ3-Souslin tree T0,
and selective ultrafilters U0 ⊆ P(ℵ0), U1 ⊆ P(ℵ1) such that
Tℵ0

0 /U0 and Tℵ1
0 /U1 are ℵ3-Aronszajn and almost Souslin.

13 / 27

The tree T0

Theorem (essentially Jensen, 1960’s)

If ♦(Eℵ3
ℵ2

) holds and ℵℵ2
3 = ℵ3, then there exists an ℵ2-complete

ℵ2-free ℵ3-Souslin tree.

Corollary ([BR2])

If ♦(Eℵ3
ℵ2

) + GCH holds, then there exist an ℵ3-Souslin tree T0,
and selective ultrafilters U0 ⊆ P(ℵ0), U1 ⊆ P(ℵ1) such that
Tℵ0

0 /U0 and Tℵ1
0 /U1 are ℵ3-Aronszajn and almost Souslin.

13 / 27

Injecting objects to the reduced power

Definition (essentially Laver, 1980’s)

Suppose that X ⊆ <κκ is a downward-closed family such that
(X ,⊂) is a κ-tree, and F is a filter over some index set I .

An (F ,X)-ascent path through a κ-tree (T ,C) is a sequence
~f = 〈fx | x ∈ X 〉 such that:

1. fx : I → Tht(x) is a function for each x ∈ X ;

2. {i ∈ I | fx (i)C fy (i)} ∈ F for all x ⊂ y from X ;

3. {i ∈ I | fx (i) 6= fy (i)} ∈ F for all x 6= y from X with
ht(x) = ht(y).

14 / 27

Injecting objects to the reduced power

Definition (essentially Laver, 1980’s)

Suppose that X ⊆ <κκ is a downward-closed family such that
(X ,⊂) is a κ-tree, and F is a filter over some index set I .
An (F ,X)-ascent path through a κ-tree (T ,C) is a sequence
~f = 〈fx | x ∈ X 〉 such that:

1. fx : I → Tht(x) is a function for each x ∈ X ;

2. {i ∈ I | fx (i)C fy (i)} ∈ F for all x ⊂ y from X ;

3. {i ∈ I | fx (i) 6= fy (i)} ∈ F for all x 6= y from X with
ht(x) = ht(y).

14 / 27

Injecting objects to the reduced power

Definition (essentially Laver, 1980’s)

Suppose that X ⊆ <κκ is a downward-closed family such that
(X ,⊂) is a κ-tree, and F is a filter over some index set I .
An (F ,X)-ascent path through a κ-tree (T ,C) is a sequence
~f = 〈fx | x ∈ X 〉 such that:

1. fx : I → Tht(x) is a function for each x ∈ X ;

2. {i ∈ I | fx (i)C fy (i)} ∈ F for all x ⊂ y from X ;

3. {i ∈ I | fx (i) 6= fy (i)} ∈ F for all x 6= y from X with
ht(x) = ht(y).

14 / 27

Injecting objects to the reduced power

Definition (essentially Laver, 1980’s)

Suppose that X ⊆ <κκ is a downward-closed family such that
(X ,⊂) is a κ-tree, and F is a filter over some index set I .
An (F ,X)-ascent path through a κ-tree (T ,C) is a sequence
~f = 〈fx | x ∈ X 〉 such that:

1. fx : I → Tht(x) is a function for each x ∈ X ;

2. {i ∈ I | fx (i)C fy (i)} ∈ F for all x ⊂ y from X ;

3. {i ∈ I | fx (i) 6= fy (i)} ∈ F for all x 6= y from X with
ht(x) = ht(y).

14 / 27

Injecting objects to the reduced power

Definition (essentially Laver, 1980’s)

Suppose that X ⊆ <κκ is a downward-closed family such that
(X ,⊂) is a κ-tree, and F is a filter over some index set I .
An (F ,X)-ascent path through a κ-tree (T ,C) is a sequence
~f = 〈fx | x ∈ X 〉 such that:

1. fx : I → Tht(x) is a function for each x ∈ X ;

2. {i ∈ I | fx (i)C fy (i)} ∈ F for all x ⊂ y from X ;

3. {i ∈ I | fx (i) 6= fy (i)} ∈ F for all x 6= y from X with
ht(x) = ht(y).

14 / 27

Injecting objects to the reduced power

Definition (essentially Laver, 1980’s)

Suppose that X ⊆ <κκ is a downward-closed family such that
(X ,⊂) is a κ-tree, and F is a filter over some index set I .
An (F ,X)-ascent path through a κ-tree (T ,C) is a sequence
~f = 〈fx | x ∈ X 〉 such that:

1. fx : I → Tht(x) is a function for each x ∈ X ;

2. {i ∈ I | fx (i)C fy (i)} ∈ F for all x ⊂ y from X ;

3. {i ∈ I | fx (i) 6= fy (i)} ∈ F for all x 6= y from X with
ht(x) = ht(y).

Proposition

If (T ,C) admits an (Fbd
θ ,X)-ascent path, then the reduced

θ-power tree (by any uniform ultrafilter over θ) contains a copy of
the tree (X ,⊂).

14 / 27

Injecting objects to the reduced power

Definition (essentially Laver, 1980’s)

Suppose that X ⊆ <κκ is a downward-closed family such that
(X ,⊂) is a κ-tree, and F is a filter over some index set I .
An (F ,X)-ascent path through a κ-tree (T ,C) is a sequence
~f = 〈fx | x ∈ X 〉 such that:

1. fx : I → Tht(x) is a function for each x ∈ X ;

2. {i ∈ I | fx (i)C fy (i)} ∈ F for all x ⊂ y from X ;

3. {i ∈ I | fx (i) 6= fy (i)} ∈ F for all x 6= y from X with
ht(x) = ht(y).

Notation
For an infinite cardinal θ, let Ffin

θ := {Z ⊆ θ | |θ \ Z | < ℵ0}.

14 / 27

Injecting objects to the reduced power

Definition (essentially Laver, 1980’s)

Suppose that X ⊆ <κκ is a downward-closed family such that
(X ,⊂) is a κ-tree, and F is a filter over some index set I .
An (F ,X)-ascent path through a κ-tree (T ,C) is a sequence
~f = 〈fx | x ∈ X 〉 such that:

1. fx : I → Tht(x) is a function for each x ∈ X ;

2. {i ∈ I | fx (i)C fy (i)} ∈ F for all x ⊂ y from X ;

3. {i ∈ I | fx (i) 6= fy (i)} ∈ F for all x 6= y from X with
ht(x) = ht(y).

Proposition

If (T ,C) admits an (Ffin
θ ,X)-ascent path, then for every infinite

µ ≤ θ, the reduced µ-power tree (by any uniform ultrafilter over µ)
contains a copy of the tree (X ,⊂).

14 / 27

The tree T1

Theorem ([BR2])

Suppose that �ℵ2 +♦∗(ℵ3) holds and ℵℵ2
3 = ℵ3.

Then there are:

I an ℵ3-Souslin tree T1 ⊆ <ℵ32;

I an ℵ3-Kurepa tree K ⊆ <ℵ32;

I a special ℵ3-tree S ⊆ <ℵ3(ℵ2 \ 2),

such that (T1,⊂) admits an (Ffin
ℵ2
,X)-ascent path, for X := K] S.

In particular, the reduced ℵ0-power and ℵ1-power (by any uniform
ultrafilters) are ℵ3-Kurepa and not almost Souslin.

15 / 27

Intertwining the two strategies

16 / 27

1+1=?

So far, we have described a strategy for constructing κ-Souslin
trees whose θ0-power omits prescribed objects, and another
strategy for constructing κ-Souslin trees whose θ1-power contains
a prescribed object. Could these strategies live side by side?

The answer is clearly negative if θ0 = θ1. But even if θ0 6= θ1,
there are further obstructions.

Suppose we would like to construct an ℵ3-Souslin tree (T ,C)
whose reduced ℵ0-power is ℵ3-Aronszajn and almost Souslin, and
whose reduced ℵ1-power is ℵ3-Kurepa and not almost Souslin.

Given the preceding strategies, it would be best if we can construct
an ℵ3-Souslin tree which is ℵ1-free, and admits an (Fbd

ℵ1
,X)-ascent

path for X = K] S , where K is ℵ3-Kurepa, and S is special.

17 / 27

1+1=?

So far, we have described a strategy for constructing κ-Souslin
trees whose θ0-power omits prescribed objects, and another
strategy for constructing κ-Souslin trees whose θ1-power contains
a prescribed object. Could these strategies live side by side?
The answer is clearly negative if θ0 = θ1. But even if θ0 6= θ1,
there are further obstructions.

Suppose we would like to construct an ℵ3-Souslin tree (T ,C)
whose reduced ℵ0-power is ℵ3-Aronszajn and almost Souslin, and
whose reduced ℵ1-power is ℵ3-Kurepa and not almost Souslin.

Given the preceding strategies, it would be best if we can construct
an ℵ3-Souslin tree which is ℵ1-free, and admits an (Fbd

ℵ1
,X)-ascent

path for X = K] S , where K is ℵ3-Kurepa, and S is special.

17 / 27

1+1=?

So far, we have described a strategy for constructing κ-Souslin
trees whose θ0-power omits prescribed objects, and another
strategy for constructing κ-Souslin trees whose θ1-power contains
a prescribed object. Could these strategies live side by side?
The answer is clearly negative if θ0 = θ1. But even if θ0 6= θ1,
there are further obstructions.

Suppose we would like to construct an ℵ3-Souslin tree (T ,C)
whose reduced ℵ0-power is ℵ3-Aronszajn and almost Souslin, and
whose reduced ℵ1-power is ℵ3-Kurepa and not almost Souslin.

Given the preceding strategies, it would be best if we can construct
an ℵ3-Souslin tree which is ℵ1-free, and admits an (Fbd

ℵ1
,X)-ascent

path for X = K] S , where K is ℵ3-Kurepa, and S is special.

17 / 27

1+1=?

So far, we have described a strategy for constructing κ-Souslin
trees whose θ0-power omits prescribed objects, and another
strategy for constructing κ-Souslin trees whose θ1-power contains
a prescribed object. Could these strategies live side by side?
The answer is clearly negative if θ0 = θ1. But even if θ0 6= θ1,
there are further obstructions.

Suppose we would like to construct an ℵ3-Souslin tree (T ,C)
whose reduced ℵ0-power is ℵ3-Aronszajn and almost Souslin, and
whose reduced ℵ1-power is ℵ3-Kurepa and not almost Souslin.

Given the preceding strategies, it would be best if we can construct
an ℵ3-Souslin tree which is ℵ1-free, and admits an (Fbd

ℵ1
,X)-ascent

path for X = K] S , where K is ℵ3-Kurepa, and S is special.

17 / 27

The tree T2

Let’s try to construct such a tree!

By recursion:
On stage α < ℵ3, we would construct Tα, as well as 〈fx | x ∈ Xα〉.
Let ϕ : ℵ3 → ℵ3 be the monotone enumeration of a fast enough
club (with respect to the objects we care about).
The base case α = 0 is trivial: let T0 := {∅}, and f∅ = ℵ1 × {∅}.
The successor case α + 1: let Tα+1 = {t_〈ε〉 | t ∈ Tα, ε < ϕ(α)},
and fx (i) = fx�α(i)_〈x(α)〉 for all x ∈ Xα+1 and i < ℵ1.

18 / 27

The tree T2

Let’s try to construct such a tree! By recursion:
On stage α < ℵ3, we would construct Tα, as well as 〈fx | x ∈ Xα〉.

Let ϕ : ℵ3 → ℵ3 be the monotone enumeration of a fast enough
club (with respect to the objects we care about).
The base case α = 0 is trivial: let T0 := {∅}, and f∅ = ℵ1 × {∅}.
The successor case α + 1: let Tα+1 = {t_〈ε〉 | t ∈ Tα, ε < ϕ(α)},
and fx (i) = fx�α(i)_〈x(α)〉 for all x ∈ Xα+1 and i < ℵ1.

18 / 27

The tree T2

Let’s try to construct such a tree! By recursion:
On stage α < ℵ3, we would construct Tα, as well as 〈fx | x ∈ Xα〉.
Let ϕ : ℵ3 → ℵ3 be the monotone enumeration of a fast enough
club (with respect to the objects we care about).

The base case α = 0 is trivial: let T0 := {∅}, and f∅ = ℵ1 × {∅}.
The successor case α + 1: let Tα+1 = {t_〈ε〉 | t ∈ Tα, ε < ϕ(α)},
and fx (i) = fx�α(i)_〈x(α)〉 for all x ∈ Xα+1 and i < ℵ1.

18 / 27

The tree T2

Let’s try to construct such a tree! By recursion:
On stage α < ℵ3, we would construct Tα, as well as 〈fx | x ∈ Xα〉.
Let ϕ : ℵ3 → ℵ3 be the monotone enumeration of a fast enough
club (with respect to the objects we care about).
The base case α = 0 is trivial: let T0 := {∅}, and f∅ = ℵ1 × {∅}.

The successor case α + 1: let Tα+1 = {t_〈ε〉 | t ∈ Tα, ε < ϕ(α)},
and fx (i) = fx�α(i)_〈x(α)〉 for all x ∈ Xα+1 and i < ℵ1.

18 / 27

The tree T2

Let’s try to construct such a tree! By recursion:
On stage α < ℵ3, we would construct Tα, as well as 〈fx | x ∈ Xα〉.
Let ϕ : ℵ3 → ℵ3 be the monotone enumeration of a fast enough
club (with respect to the objects we care about).
The base case α = 0 is trivial: let T0 := {∅}, and f∅ = ℵ1 × {∅}.
The successor case α + 1: let Tα+1 = {t_〈ε〉 | t ∈ Tα, ε < ϕ(α)},
and fx (i) = fx�α(i)_〈x(α)〉 for all x ∈ Xα+1 and i < ℵ1.

18 / 27

The tree T2 (cont.)

On limit stage α, we need to construct:

(1) Tα so that every t ∈ T � α admits an extension in Tα;

(2) for each x ∈ Xα, fx : ℵ1 → Tα s.t. {i < ℵ1 | fx�β(i)C fx (i)} is
co-countable for all β < α.

Clause (1) usually involves the process of constructing for every
t ∈ (T � α), some canonical branch bαt which goes through t and
is cofinal in T � α. Of course, to be able to climb all the way up to
level α, we need to advise with some coherent ladder system
~C = 〈Cα | α < ℵ3〉 that will guarantee that we never get stuck.
That is, if ᾱ ∈ acc(Cα) and t ∈ T � ᾱ, then bᾱt ⊆ bαt .

Clause (2) does not leave us much of a room. Again, we must
make some preparations to avoid getting stuck.

19 / 27

The tree T2 (cont.)

On limit stage α, we need to construct:

(1) Tα so that every t ∈ T � α admits an extension in Tα;

(2) for each x ∈ Xα, fx : ℵ1 → Tα s.t. {i < ℵ1 | fx�β(i)C fx (i)} is
co-countable for all β < α.

Clause (1) usually involves the process of constructing for every
t ∈ (T � α), some canonical branch bαt which goes through t and
is cofinal in T � α.

Of course, to be able to climb all the way up to
level α, we need to advise with some coherent ladder system
~C = 〈Cα | α < ℵ3〉 that will guarantee that we never get stuck.
That is, if ᾱ ∈ acc(Cα) and t ∈ T � ᾱ, then bᾱt ⊆ bαt .

Clause (2) does not leave us much of a room. Again, we must
make some preparations to avoid getting stuck.

19 / 27

The tree T2 (cont.)

On limit stage α, we need to construct:

(1) Tα so that every t ∈ T � α admits an extension in Tα;

(2) for each x ∈ Xα, fx : ℵ1 → Tα s.t. {i < ℵ1 | fx�β(i)C fx (i)} is
co-countable for all β < α.

Clause (1) usually involves the process of constructing for every
t ∈ (T � α), some canonical branch bαt which goes through t and
is cofinal in T � α. Of course, to be able to climb all the way up to
level α, we need to advise with some coherent ladder system
~C = 〈Cα | α < ℵ3〉 that will guarantee that we never get stuck.

That is, if ᾱ ∈ acc(Cα) and t ∈ T � ᾱ, then bᾱt ⊆ bαt .

Clause (2) does not leave us much of a room. Again, we must
make some preparations to avoid getting stuck.

19 / 27

The tree T2 (cont.)

On limit stage α, we need to construct:

(1) Tα so that every t ∈ T � α admits an extension in Tα;

(2) for each x ∈ Xα, fx : ℵ1 → Tα s.t. {i < ℵ1 | fx�β(i)C fx (i)} is
co-countable for all β < α.

Clause (1) usually involves the process of constructing for every
t ∈ (T � α), some canonical branch bαt which goes through t and
is cofinal in T � α. Of course, to be able to climb all the way up to
level α, we need to advise with some coherent ladder system
~C = 〈Cα | α < ℵ3〉 that will guarantee that we never get stuck.
That is, if ᾱ ∈ acc(Cα) and t ∈ T � ᾱ, then bᾱt ⊆ bαt .

Clause (2) does not leave us much of a room. Again, we must
make some preparations to avoid getting stuck.

19 / 27

The tree T2 (cont.)

On limit stage α, we need to construct:

(1) Tα so that every t ∈ T � α admits an extension in Tα;

(2) for each x ∈ Xα, fx : ℵ1 → Tα s.t. {i < ℵ1 | fx�β(i)C fx (i)} is
co-countable for all β < α.

Clause (1) usually involves the process of constructing for every
t ∈ (T � α), some canonical branch bαt which goes through t and
is cofinal in T � α. Of course, to be able to climb all the way up to
level α, we need to advise with some coherent ladder system
~C = 〈Cα | α < ℵ3〉 that will guarantee that we never get stuck.
That is, if ᾱ ∈ acc(Cα) and t ∈ T � ᾱ, then bᾱt ⊆ bαt .

Clause (2) does not leave us much of a room.

Again, we must
make some preparations to avoid getting stuck.

19 / 27

The tree T2 (cont.)

On limit stage α, we need to construct:

(1) Tα so that every t ∈ T � α admits an extension in Tα;

(2) for each x ∈ Xα, fx : ℵ1 → Tα s.t. {i < ℵ1 | fx�β(i)C fx (i)} is
co-countable for all β < α.

Clause (1) usually involves the process of constructing for every
t ∈ (T � α), some canonical branch bαt which goes through t and
is cofinal in T � α. Of course, to be able to climb all the way up to
level α, we need to advise with some coherent ladder system
~C = 〈Cα | α < ℵ3〉 that will guarantee that we never get stuck.
That is, if ᾱ ∈ acc(Cα) and t ∈ T � ᾱ, then bᾱt ⊆ bαt .

Clause (2) does not leave us much of a room. Again, we must
make some preparations to avoid getting stuck.

19 / 27

The tree T2 (cont.)

On limit stage α, we need to construct:

(1) Tα so that every t ∈ T � α admits an extension in Tα;

(2) for each x ∈ Xα, fx : ℵ1 → Tα s.t. {i < ℵ1 | fx�β(i)C fx (i)} is
co-countable for all β < α.

Clause (1) usually involves the process of constructing for every
t ∈ (T � α), some canonical branch bαt which goes through t and
is cofinal in T � α. Of course, to be able to climb all the way up to
level α, we need to advise with some coherent ladder system
~C = 〈Cα | α < ℵ3〉 that will guarantee that we never get stuck.
That is, if ᾱ ∈ acc(Cα) and t ∈ T � ᾱ, then bᾱt ⊆ bαt .

Clause (2) does not leave us much of a room. Again, we must
make some preparations to avoid getting stuck.

Altogether Tα would consist of limits of canonical branches bαt for
t ∈ T � α, and limits of branches {fx�β(i) | β < α} for x ∈ Xα, and
“i < ℵ1”.

19 / 27

The tree T2 (cont.)

On limit stage α, we need to construct:

(1) Tα so that every t ∈ T � α admits an extension in Tα;

(2) for each x ∈ Xα, fx : ℵ1 → Tα s.t. {i < ℵ1 | fx�β(i)C fx (i)} is
co-countable for all β < α.

Clause (1) usually involves the process of constructing for every
t ∈ (T � α), some canonical branch bαt which goes through t and
is cofinal in T � α. Of course, to be able to climb all the way up to
level α, we need to advise with some coherent ladder system
~C = 〈Cα | α < ℵ3〉 that will guarantee that we never get stuck.
That is, if ᾱ ∈ acc(Cα) and t ∈ T � ᾱ, then bᾱt ⊆ bαt .

Clause (2) does not leave us much of a room. Again, we must
make some preparations to avoid getting stuck.

Altogether Tα would consist of limits of canonical branches bαt for
t ∈ T � α, and limits of branches {fx�β(i) | β ∈ Uα,i} for x ∈ Xα,
unbounded Uα,i ⊆ α, and “i < ℵ1”.

19 / 27

The tree T2 (cont.)

It looks like everything is pretty much determined, and so even if
we manage to avoid getting stuck, we never have the chance to
take care of Sousliness.

It turns out that there is a (rather slim) set of limit ordinals, on
which there is some freedom:
the set of all α < ℵ3 for which otp(Cα) is of the form δ + ω.
This is where antichains must be sealed! (gradually)
BUT we are aiming for an ℵ1-free Souslin tree, which means we
must seal antichains in derived trees along any g ∈ (T � α)<ℵ1 .
For instance, consider g : 2→ Tα, where:

I g(0) = t ∈ Tβ for some β < α, and

I g(1) = fx�β(i) for some x ∈ Xα, and i < ℵ1.

To be able to seal antichains in the derived tree along this g , the
construction of the canonical branch bαt would have to know about
the future limit {fx�β(i) | β < α}. But is this at all possible?

20 / 27

The tree T2 (cont.)

It looks like everything is pretty much determined, and so even if
we manage to avoid getting stuck, we never have the chance to
take care of Sousliness.
It turns out that there is a (rather slim) set of limit ordinals, on
which there is some freedom:
the set of all α < ℵ3 for which otp(Cα) is of the form δ + ω.

This is where antichains must be sealed! (gradually)
BUT we are aiming for an ℵ1-free Souslin tree, which means we
must seal antichains in derived trees along any g ∈ (T � α)<ℵ1 .
For instance, consider g : 2→ Tα, where:

I g(0) = t ∈ Tβ for some β < α, and

I g(1) = fx�β(i) for some x ∈ Xα, and i < ℵ1.

To be able to seal antichains in the derived tree along this g , the
construction of the canonical branch bαt would have to know about
the future limit {fx�β(i) | β < α}. But is this at all possible?

20 / 27

The tree T2 (cont.)

It looks like everything is pretty much determined, and so even if
we manage to avoid getting stuck, we never have the chance to
take care of Sousliness.
It turns out that there is a (rather slim) set of limit ordinals, on
which there is some freedom:
the set of all α < ℵ3 for which otp(Cα) is of the form δ + ω.
This is where antichains must be sealed!

(gradually)
BUT we are aiming for an ℵ1-free Souslin tree, which means we
must seal antichains in derived trees along any g ∈ (T � α)<ℵ1 .
For instance, consider g : 2→ Tα, where:

I g(0) = t ∈ Tβ for some β < α, and

I g(1) = fx�β(i) for some x ∈ Xα, and i < ℵ1.

To be able to seal antichains in the derived tree along this g , the
construction of the canonical branch bαt would have to know about
the future limit {fx�β(i) | β < α}. But is this at all possible?

20 / 27

The tree T2 (cont.)

It looks like everything is pretty much determined, and so even if
we manage to avoid getting stuck, we never have the chance to
take care of Sousliness.
It turns out that there is a (rather slim) set of limit ordinals, on
which there is some freedom:
the set of all α < ℵ3 for which otp(Cα) is of the form δ + ω.
This is where antichains must be sealed! (gradually)

BUT we are aiming for an ℵ1-free Souslin tree, which means we
must seal antichains in derived trees along any g ∈ (T � α)<ℵ1 .
For instance, consider g : 2→ Tα, where:

I g(0) = t ∈ Tβ for some β < α, and

I g(1) = fx�β(i) for some x ∈ Xα, and i < ℵ1.

To be able to seal antichains in the derived tree along this g , the
construction of the canonical branch bαt would have to know about
the future limit {fx�β(i) | β < α}. But is this at all possible?

20 / 27

The tree T2 (cont.)

It looks like everything is pretty much determined, and so even if
we manage to avoid getting stuck, we never have the chance to
take care of Sousliness.
It turns out that there is a (rather slim) set of limit ordinals, on
which there is some freedom:
the set of all α < ℵ3 for which otp(Cα) is of the form δ + ω.
This is where antichains must be sealed! (gradually)
BUT we are aiming for an ℵ1-free Souslin tree, which means we
must seal antichains in derived trees along any g ∈ (T � α)<ℵ1 .

For instance, consider g : 2→ Tα, where:

I g(0) = t ∈ Tβ for some β < α, and

I g(1) = fx�β(i) for some x ∈ Xα, and i < ℵ1.

To be able to seal antichains in the derived tree along this g , the
construction of the canonical branch bαt would have to know about
the future limit {fx�β(i) | β < α}. But is this at all possible?

20 / 27

The tree T2 (cont.)

It looks like everything is pretty much determined, and so even if
we manage to avoid getting stuck, we never have the chance to
take care of Sousliness.
It turns out that there is a (rather slim) set of limit ordinals, on
which there is some freedom:
the set of all α < ℵ3 for which otp(Cα) is of the form δ + ω.
This is where antichains must be sealed! (gradually)
BUT we are aiming for an ℵ1-free Souslin tree, which means we
must seal antichains in derived trees along any g ∈ (T � α)<ℵ1 .
For instance, consider g : 2→ Tα, where:

I g(0) = t ∈ Tβ for some β < α, and

I g(1) = fx�β(i) for some x ∈ Xα, and i < ℵ1.

To be able to seal antichains in the derived tree along this g , the
construction of the canonical branch bαt would have to know about
the future limit {fx�β(i) | β < α}. But is this at all possible?

20 / 27

The tree T2 (cont.)

It looks like everything is pretty much determined, and so even if
we manage to avoid getting stuck, we never have the chance to
take care of Sousliness.
It turns out that there is a (rather slim) set of limit ordinals, on
which there is some freedom:
the set of all α < ℵ3 for which otp(Cα) is of the form δ + ω.
This is where antichains must be sealed! (gradually)
BUT we are aiming for an ℵ1-free Souslin tree, which means we
must seal antichains in derived trees along any g ∈ (T � α)<ℵ1 .
For instance, consider g : 2→ Tα, where:

I g(0) = t ∈ Tβ for some β < α, and

I g(1) = fx�β(i) for some x ∈ Xα, and i < ℵ1.

To be able to seal antichains in the derived tree along this g , the
construction of the canonical branch bαt would have to know about
the future limit {fx�β(i) | β < α}.

But is this at all possible?

20 / 27

The tree T2 (cont.)

It looks like everything is pretty much determined, and so even if
we manage to avoid getting stuck, we never have the chance to
take care of Sousliness.
It turns out that there is a (rather slim) set of limit ordinals, on
which there is some freedom:
the set of all α < ℵ3 for which otp(Cα) is of the form δ + ω.
This is where antichains must be sealed! (gradually)
BUT we are aiming for an ℵ1-free Souslin tree, which means we
must seal antichains in derived trees along any g ∈ (T � α)<ℵ1 .
For instance, consider g : 2→ Tα, where:

I g(0) = t ∈ Tβ for some β < α, and

I g(1) = fx�β(i) for some x ∈ Xα, and i < ℵ1.

To be able to seal antichains in the derived tree along this g , the
construction of the canonical branch bαt would have to know about
the future limit {fx�β(i) | β < α}. But is this at all possible?

20 / 27

The tree T2 (cont.)

Question
Can the construction of a canonical branch bαt for t ∈ T � α
anticipate the future limit {fx�β(i) | β < α} for some x ∈ Xα?

Answer
Yes, provided that all involved constructions are done in some
strictly canonical way AND (of course) that t is aware of x .

Question
Can t ∈ T � α be aware of x ∈ Xα?

Answer
No, unless the tree (X ,⊂) happens to be the outcome of a
construction, where any x ∈ Xα is the limit of a canonical branch
bαy for some y ∈ X � α, using the very same ladder system ~C .

We call such trees ~C -respecting.

21 / 27

The tree T2 (cont.)

Question
Can the construction of a canonical branch bαt for t ∈ T � α
anticipate the future limit {fx�β(i) | β < α} for some x ∈ Xα?

Answer
Yes, provided that all involved constructions are done in some
strictly canonical way AND (of course) that t is aware of x .

Question
Can t ∈ T � α be aware of x ∈ Xα?

Answer
No, unless the tree (X ,⊂) happens to be the outcome of a
construction, where any x ∈ Xα is the limit of a canonical branch
bαy for some y ∈ X � α, using the very same ladder system ~C .

We call such trees ~C -respecting.

21 / 27

The tree T2 (cont.)

Question
Can the construction of a canonical branch bαt for t ∈ T � α
anticipate the future limit {fx�β(i) | β < α} for some x ∈ Xα?

Answer
Yes, provided that all involved constructions are done in some
strictly canonical way AND (of course) that t is aware of x .

Question
Can t ∈ T � α be aware of x ∈ Xα?

Answer
No, unless the tree (X ,⊂) happens to be the outcome of a
construction, where any x ∈ Xα is the limit of a canonical branch
bαy for some y ∈ X � α, using the very same ladder system ~C .

We call such trees ~C -respecting.

21 / 27

The tree T2 (cont.)

Question
Can the construction of a canonical branch bαt for t ∈ T � α
anticipate the future limit {fx�β(i) | β < α} for some x ∈ Xα?

Answer
Yes, provided that all involved constructions are done in some
strictly canonical way AND (of course) that t is aware of x .

Question
Can t ∈ T � α be aware of x ∈ Xα?

Answer
No

, unless the tree (X ,⊂) happens to be the outcome of a
construction, where any x ∈ Xα is the limit of a canonical branch
bαy for some y ∈ X � α, using the very same ladder system ~C .

We call such trees ~C -respecting.

21 / 27

The tree T2 (cont.)

Question
Can the construction of a canonical branch bαt for t ∈ T � α
anticipate the future limit {fx�β(i) | β < α} for some x ∈ Xα?

Answer
Yes, provided that all involved constructions are done in some
strictly canonical way AND (of course) that t is aware of x .

Question
Can t ∈ T � α be aware of x ∈ Xα?

Answer
No, unless the tree (X ,⊂) happens to be the outcome of a
construction, where any x ∈ Xα is the limit of a canonical branch
bαy for some y ∈ X � α, using the very same ladder system ~C .

We call such trees ~C -respecting.

21 / 27

The tree T2 (cont.)

Question
Can the construction of a canonical branch bαt for t ∈ T � α
anticipate the future limit {fx�β(i) | β < α} for some x ∈ Xα?

Answer
Yes, provided that all involved constructions are done in some
strictly canonical way AND (of course) that t is aware of x .

Question
Can t ∈ T � α be aware of x ∈ Xα?

Answer
No, unless the tree (X ,⊂) happens to be the outcome of a
construction, where any x ∈ Xα is the limit of a canonical branch
bαy for some y ∈ X � α, using the very same ladder system ~C .

We call such trees ~C -respecting.

21 / 27

Respecting trees

So, now we have a new obstruction! By definition, ~C -respecting
trees are described in a bottom-up language, while X is supposed
to be the disjoint union of a Kurepa tree and a special tree.

Kurepa trees are typically described in a top-down language (we
identify many whole functions, and verify that they have small
number of traces).
Also, if the special tree is obtained from walks on ordinals, then its
description is also top-down (walking from β down to α).

To overcome this, we appeal to fine structure. In [RS], we
introduce the principle ♦ +

λ which is a strong combination of �λ
and ♦+(λ+); We prove that it holds in L for all infinite cardinals
λ, and that ♦ +

λ entails a �λ-sequence ~C , and a ~C -respecting
λ+-Kurepa tree. Also the special λ+-tree T (ρ0) that encodes the
process of walking along the very same ~C is ~C -respecting.

22 / 27

Respecting trees

So, now we have a new obstruction! By definition, ~C -respecting
trees are described in a bottom-up language, while X is supposed
to be the disjoint union of a Kurepa tree and a special tree.
Kurepa trees are typically described in a top-down language (we
identify many whole functions, and verify that they have small
number of traces).

Also, if the special tree is obtained from walks on ordinals, then its
description is also top-down (walking from β down to α).

To overcome this, we appeal to fine structure. In [RS], we
introduce the principle ♦ +

λ which is a strong combination of �λ
and ♦+(λ+); We prove that it holds in L for all infinite cardinals
λ, and that ♦ +

λ entails a �λ-sequence ~C , and a ~C -respecting
λ+-Kurepa tree. Also the special λ+-tree T (ρ0) that encodes the
process of walking along the very same ~C is ~C -respecting.

22 / 27

Respecting trees

So, now we have a new obstruction! By definition, ~C -respecting
trees are described in a bottom-up language, while X is supposed
to be the disjoint union of a Kurepa tree and a special tree.
Kurepa trees are typically described in a top-down language (we
identify many whole functions, and verify that they have small
number of traces).
Also, if the special tree is obtained from walks on ordinals, then its
description is also top-down (walking from β down to α).

To overcome this, we appeal to fine structure. In [RS], we
introduce the principle ♦ +

λ which is a strong combination of �λ
and ♦+(λ+); We prove that it holds in L for all infinite cardinals
λ, and that ♦ +

λ entails a �λ-sequence ~C , and a ~C -respecting
λ+-Kurepa tree. Also the special λ+-tree T (ρ0) that encodes the
process of walking along the very same ~C is ~C -respecting.

22 / 27

Respecting trees

So, now we have a new obstruction! By definition, ~C -respecting
trees are described in a bottom-up language, while X is supposed
to be the disjoint union of a Kurepa tree and a special tree.
Kurepa trees are typically described in a top-down language (we
identify many whole functions, and verify that they have small
number of traces).
Also, if the special tree is obtained from walks on ordinals, then its
description is also top-down (walking from β down to α).

To overcome this, we appeal to fine structure.

In [RS], we
introduce the principle ♦ +

λ which is a strong combination of �λ
and ♦+(λ+); We prove that it holds in L for all infinite cardinals
λ, and that ♦ +

λ entails a �λ-sequence ~C , and a ~C -respecting
λ+-Kurepa tree. Also the special λ+-tree T (ρ0) that encodes the
process of walking along the very same ~C is ~C -respecting.

22 / 27

Respecting trees

So, now we have a new obstruction! By definition, ~C -respecting
trees are described in a bottom-up language, while X is supposed
to be the disjoint union of a Kurepa tree and a special tree.
Kurepa trees are typically described in a top-down language (we
identify many whole functions, and verify that they have small
number of traces).
Also, if the special tree is obtained from walks on ordinals, then its
description is also top-down (walking from β down to α).

To overcome this, we appeal to fine structure. In [RS], we
introduce the principle ♦ +

λ which is a strong combination of �λ
and ♦+(λ+);

We prove that it holds in L for all infinite cardinals
λ, and that ♦ +

λ entails a �λ-sequence ~C , and a ~C -respecting
λ+-Kurepa tree. Also the special λ+-tree T (ρ0) that encodes the
process of walking along the very same ~C is ~C -respecting.

22 / 27

Respecting trees

So, now we have a new obstruction! By definition, ~C -respecting
trees are described in a bottom-up language, while X is supposed
to be the disjoint union of a Kurepa tree and a special tree.
Kurepa trees are typically described in a top-down language (we
identify many whole functions, and verify that they have small
number of traces).
Also, if the special tree is obtained from walks on ordinals, then its
description is also top-down (walking from β down to α).

To overcome this, we appeal to fine structure. In [RS], we
introduce the principle ♦ +

λ which is a strong combination of �λ
and ♦+(λ+); We prove that it holds in L for all infinite cardinals
λ, and that ♦ +

λ entails a �λ-sequence ~C , and a ~C -respecting
λ+-Kurepa tree.

Also the special λ+-tree T (ρ0) that encodes the
process of walking along the very same ~C is ~C -respecting.

22 / 27

Respecting trees

So, now we have a new obstruction! By definition, ~C -respecting
trees are described in a bottom-up language, while X is supposed
to be the disjoint union of a Kurepa tree and a special tree.
Kurepa trees are typically described in a top-down language (we
identify many whole functions, and verify that they have small
number of traces).
Also, if the special tree is obtained from walks on ordinals, then its
description is also top-down (walking from β down to α).

To overcome this, we appeal to fine structure. In [RS], we
introduce the principle ♦ +

λ which is a strong combination of �λ
and ♦+(λ+); We prove that it holds in L for all infinite cardinals
λ, and that ♦ +

λ entails a �λ-sequence ~C , and a ~C -respecting
λ+-Kurepa tree. Also the special λ+-tree T (ρ0) that encodes the
process of walking along the very same ~C

is ~C -respecting.

22 / 27

Respecting trees

So, now we have a new obstruction! By definition, ~C -respecting
trees are described in a bottom-up language, while X is supposed
to be the disjoint union of a Kurepa tree and a special tree.
Kurepa trees are typically described in a top-down language (we
identify many whole functions, and verify that they have small
number of traces).
Also, if the special tree is obtained from walks on ordinals, then its
description is also top-down (walking from β down to α).

To overcome this, we appeal to fine structure. In [RS], we
introduce the principle ♦ +

λ which is a strong combination of �λ
and ♦+(λ+); We prove that it holds in L for all infinite cardinals
λ, and that ♦ +

λ entails a �λ-sequence ~C , and a ~C -respecting
λ+-Kurepa tree. Also the special λ+-tree T (ρ0) that encodes the
process of walking along the very same ~C is ~C -respecting.

22 / 27

Putting all technologies together

Corollary ([BR2])

Assume ♦ +
ℵ2

+ CH (e.g., V = L).
Then there exists an ℵ3-Souslin tree T2, a selective ultrafilter
U0 ⊆ P(ℵ0), and a uniform ultrafilter U1 ⊆ P(ℵ1), such that

I Tℵ0
2 /U0 is ℵ3-Aronszajn and almost Souslin, and

I Tℵ1
2 /U1 is ℵ3-Kurepa and not almost Souslin.

23 / 27

The good-bad-good tree

Remember that T3 denotes an ℵ3-Souslin tree whose reduced
ℵ0-power is not ℵ3-Aronszajn, and its reduced ℵ1-power is
ℵ3-Aronszajn and Almost Souslin.

I For the ℵ0-power, it is natural to require that T3 admits an
(Fbd
ℵ0
,X)-ascent path, where (X ,⊂) is isomorphic to (ω3,∈).

I For the ℵ1-power, it is natural to require that T3 be ℵ2-free.

Unfortunately, the two requirements are contradictory.
For this, we refine the second requirement, and introduce a
two-cardinals version of freeness.

24 / 27

The good-bad-good tree

Remember that T3 denotes an ℵ3-Souslin tree whose reduced
ℵ0-power is not ℵ3-Aronszajn, and its reduced ℵ1-power is
ℵ3-Aronszajn and Almost Souslin.

I For the ℵ0-power, it is natural to require that T3 admits an
(Fbd
ℵ0
,X)-ascent path, where (X ,⊂) is isomorphic to (ω3,∈).

I For the ℵ1-power, it is natural to require that T3 be ℵ2-free.

Unfortunately, the two requirements are contradictory.
For this, we refine the second requirement, and introduce a
two-cardinals version of freeness.

24 / 27

The good-bad-good tree

Remember that T3 denotes an ℵ3-Souslin tree whose reduced
ℵ0-power is not ℵ3-Aronszajn, and its reduced ℵ1-power is
ℵ3-Aronszajn and Almost Souslin.

I For the ℵ0-power, it is natural to require that T3 admits an
(Fbd
ℵ0
,X)-ascent path, where (X ,⊂) is isomorphic to (ω3,∈).

I For the ℵ1-power, it is natural to require that T3 be ℵ2-free.

Unfortunately, the two requirements are contradictory.
For this, we refine the second requirement, and introduce a
two-cardinals version of freeness.

24 / 27

The good-bad-good tree

Remember that T3 denotes an ℵ3-Souslin tree whose reduced
ℵ0-power is not ℵ3-Aronszajn, and its reduced ℵ1-power is
ℵ3-Aronszajn and Almost Souslin.

I For the ℵ0-power, it is natural to require that T3 admits an
(Fbd
ℵ0
,X)-ascent path, where (X ,⊂) is isomorphic to (ω3,∈).

I For the ℵ1-power, it is natural to require that T3 be ℵ2-free.

Unfortunately, the two requirements are contradictory.

For this, we refine the second requirement, and introduce a
two-cardinals version of freeness.

24 / 27

The good-bad-good tree

Remember that T3 denotes an ℵ3-Souslin tree whose reduced
ℵ0-power is not ℵ3-Aronszajn, and its reduced ℵ1-power is
ℵ3-Aronszajn and Almost Souslin.

I For the ℵ0-power, it is natural to require that T3 admits an
(Fbd
ℵ0
,X)-ascent path, where (X ,⊂) is isomorphic to (ω3,∈).

I For the ℵ1-power, it is natural to require that T3 be ℵ2-free.

Unfortunately, the two requirements are contradictory.
For this, we refine the second requirement, and introduce a
two-cardinals version of freeness.

24 / 27

Two-cardinals freeness

Recall
A κ-Souslin tree (T ,C) is said to be χ-free if ∀ nonzero τ < χ,
and every injective g ∈ T τ , the derived tree along g is again
κ-Souslin.

Definition
A κ-tree (T ,C) is said to be (χ, η)-free if ∀ nonzero τ < χ,
and every injective g ∈ T τ , for every κ-sized subset A of the
derived tree along g , there exist ~x and ~y in A such that

|{i < τ | ¬(~x(i)C ~y(i))}| < η.

25 / 27

Two-cardinals freeness

Recall
A κ-Souslin tree (T ,C) is said to be χ-free if ∀ nonzero τ < χ,
and every injective g ∈ T τ , for every κ-sized subset A of the
derived tree along g , there exist ~x and ~y in A such that

{i < τ | ¬(~x(i)C ~y(i))} = ∅.

Definition
A κ-tree (T ,C) is said to be (χ, η)-free if ∀ nonzero τ < χ,
and every injective g ∈ T τ , for every κ-sized subset A of the
derived tree along g , there exist ~x and ~y in A such that

|{i < τ | ¬(~x(i)C ~y(i))}| < η.

25 / 27

Two-cardinals freeness

Recall
A κ-Souslin tree (T ,C) is said to be χ-free if ∀ nonzero τ < χ,
and every injective g ∈ T τ , for every κ-sized subset A of the
derived tree along g , there exist ~x and ~y in A such that

{i < τ | ¬(~x(i)C ~y(i))} = ∅.

Definition
A κ-tree (T ,C) is said to be (χ, η)-free if ∀ nonzero τ < χ,
and every injective g ∈ T τ , for every κ-sized subset A of the
derived tree along g , there exist ~x and ~y in A such that

|{i < τ | ¬(~x(i)C ~y(i))}| < η.

25 / 27

Two-cardinals freeness

Note

1. A κ-Souslin tree is χ-free iff it is (χ, 1)-free;

2. If χ0 ≥ χ1 and η0 ≤ η1, then (χ0, η0)-free implies
(χ1, η1)-free.

Definition
A κ-tree (T ,C) is said to be (χ, η)-free if ∀ nonzero τ < χ,
and every injective g ∈ T τ , for every κ-sized subset A of the
derived tree along g , there exist ~x and ~y in A such that

|{i < τ | ¬(~x(i)C ~y(i))}| < η.

25 / 27

Two-cardinals freeness

Assume GCH.

Lemma 1 (refined)

If (T ,C) is a (θ+, θ)-free κ-Souslin tree, then for every selective
ultrafilter U over θ, the reduced θ-power T θ/U is κ-Aronszajn.

Lemma 2 (refined)

If (T ,C) is a (θ+, θ)-free λ+-Souslin tree, then for every selective
ultrafilter U over θ, the reduced θ-power T θ/U is almost Souslin.

Definition
A κ-tree (T ,C) is said to be (χ, η)-free if ∀ nonzero τ < χ,
and every injective g ∈ T τ , for every κ-sized subset A of the
derived tree along g , there exist ~x and ~y in A such that

|{i < τ | ¬(~x(i)C ~y(i))}| < η.

25 / 27

Putting everything together

Theorem ([BR2])

Assume ♦ ℵ2 + GCH.
Then there exists an ℵ3-Souslin tree T3, which is (ℵ2,ℵ1)-free and
admits an (Fbd

ℵ0
,X)-ascent path, where (X ,⊂) ∼= (ω3,∈).

In particular, by taking a uniform ultrafilter U0 ⊆ P(ℵ0), and a
selective ultrafilter U1 ⊆ P(ℵ1), we get that:

I Tℵ0
3 /U0 is not ℵ3-Aronszajn;

I Tℵ1
3 /U1 is ℵ3-Aronszajn and almost Souslin.

26 / 27

Putting everything together

Theorem ([BR2])

Assume ♦ ℵ2 + GCH.
Then there exists an ℵ3-Souslin tree T3, which is (ℵ2,ℵ1)-free and
admits an (Fbd

ℵ0
,X)-ascent path, where (X ,⊂) ∼= (ω3,∈).

In particular, by taking a uniform ultrafilter U0 ⊆ P(ℵ0), and a
selective ultrafilter U1 ⊆ P(ℵ1), we get that:

I Tℵ0
3 /U0 is not ℵ3-Aronszajn;

I Tℵ1
3 /U1 is ℵ3-Aronszajn and almost Souslin.

26 / 27

A microscopic approach to Souslin-tree constructions

Now, I have many things to tell you about [BR1], where new
framework for Souslin trees constructions is developed.

As you probably noticed, we presented today four different
constructions from four different hypotheses. Modulo GCH, the
hypotheses were: ♦, �+♦∗, ♦ + and ♦ . However, all of these
hypotheses are simply translations to the old jargon of a single
parameterized proxy principle that we actually use.

Unfortunately, I am out of time now, and cannot elaborate further.
So let me just thank you for your attention!

27 / 27

A microscopic approach to Souslin-tree constructions

Now, I have many things to tell you about [BR1], where new
framework for Souslin trees constructions is developed.

As you probably noticed, we presented today four different
constructions from four different hypotheses.

Modulo GCH, the
hypotheses were: ♦, �+♦∗, ♦ + and ♦ . However, all of these
hypotheses are simply translations to the old jargon of a single
parameterized proxy principle that we actually use.

Unfortunately, I am out of time now, and cannot elaborate further.
So let me just thank you for your attention!

27 / 27

A microscopic approach to Souslin-tree constructions

Now, I have many things to tell you about [BR1], where new
framework for Souslin trees constructions is developed.

As you probably noticed, we presented today four different
constructions from four different hypotheses. Modulo GCH, the
hypotheses were:

♦, �+♦∗, ♦ + and ♦ . However, all of these
hypotheses are simply translations to the old jargon of a single
parameterized proxy principle that we actually use.

Unfortunately, I am out of time now, and cannot elaborate further.
So let me just thank you for your attention!

27 / 27

A microscopic approach to Souslin-tree constructions

Now, I have many things to tell you about [BR1], where new
framework for Souslin trees constructions is developed.

As you probably noticed, we presented today four different
constructions from four different hypotheses. Modulo GCH, the
hypotheses were: ♦,

�+♦∗, ♦ + and ♦ . However, all of these
hypotheses are simply translations to the old jargon of a single
parameterized proxy principle that we actually use.

Unfortunately, I am out of time now, and cannot elaborate further.
So let me just thank you for your attention!

27 / 27

A microscopic approach to Souslin-tree constructions

Now, I have many things to tell you about [BR1], where new
framework for Souslin trees constructions is developed.

As you probably noticed, we presented today four different
constructions from four different hypotheses. Modulo GCH, the
hypotheses were: ♦, �+♦∗,

♦ + and ♦ . However, all of these
hypotheses are simply translations to the old jargon of a single
parameterized proxy principle that we actually use.

Unfortunately, I am out of time now, and cannot elaborate further.
So let me just thank you for your attention!

27 / 27

A microscopic approach to Souslin-tree constructions

Now, I have many things to tell you about [BR1], where new
framework for Souslin trees constructions is developed.

As you probably noticed, we presented today four different
constructions from four different hypotheses. Modulo GCH, the
hypotheses were: ♦, �+♦∗, ♦ +

and ♦ . However, all of these
hypotheses are simply translations to the old jargon of a single
parameterized proxy principle that we actually use.

Unfortunately, I am out of time now, and cannot elaborate further.
So let me just thank you for your attention!

27 / 27

A microscopic approach to Souslin-tree constructions

Now, I have many things to tell you about [BR1], where new
framework for Souslin trees constructions is developed.

As you probably noticed, we presented today four different
constructions from four different hypotheses. Modulo GCH, the
hypotheses were: ♦, �+♦∗, ♦ + and ♦ .

However, all of these
hypotheses are simply translations to the old jargon of a single
parameterized proxy principle that we actually use.

Unfortunately, I am out of time now, and cannot elaborate further.
So let me just thank you for your attention!

27 / 27

A microscopic approach to Souslin-tree constructions

Now, I have many things to tell you about [BR1], where new
framework for Souslin trees constructions is developed.

As you probably noticed, we presented today four different
constructions from four different hypotheses. Modulo GCH, the
hypotheses were: ♦, �+♦∗, ♦ + and ♦ . However, all of these
hypotheses are simply translations to the old jargon of a single
parameterized proxy principle that we actually use.

Unfortunately, I am out of time now, and cannot elaborate further.
So let me just thank you for your attention!

27 / 27

A microscopic approach to Souslin-tree constructions

Now, I have many things to tell you about [BR1], where new
framework for Souslin trees constructions is developed.

As you probably noticed, we presented today four different
constructions from four different hypotheses. Modulo GCH, the
hypotheses were: ♦, �+♦∗, ♦ + and ♦ . However, all of these
hypotheses are simply translations to the old jargon of a single
parameterized proxy principle that we actually use.

Unfortunately, I am out of time now, and cannot elaborate further.

So let me just thank you for your attention!

27 / 27

A microscopic approach to Souslin-tree constructions

Now, I have many things to tell you about [BR1], where new
framework for Souslin trees constructions is developed.

As you probably noticed, we presented today four different
constructions from four different hypotheses. Modulo GCH, the
hypotheses were: ♦, �+♦∗, ♦ + and ♦ . However, all of these
hypotheses are simply translations to the old jargon of a single
parameterized proxy principle that we actually use.

Unfortunately, I am out of time now, and cannot elaborate further.
So let me just thank you for your attention!

27 / 27

