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Ladder systems. A discussion

Definition
A ladder for a limit ordinal α is a cofinal subset of α.

A ladder for a successor ordinal α + 1 is the singleton {α}.

Definition
A ladder system over a cardinal κ is a sequence, 〈Aα | α < κ〉,
such that each Aα is a ladder for α.

Remark
The existence of ladder systems follows from the axiom of choice.
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Ladder systems. Famous applications

Partitioning a stationary set

The standard proof of the fact that any stationary subset of ω1 can
be partitioned into uncountably many mutually disjoint stationary
sets builds on an analysis of ladder systems over ω1.

Strong colorings, ω1 6→ [ω1]2ω1

Todorcevic established the existence of a function f : [ω1]2 → ω1

such that f “[U]2 = ω1 for every uncountable U ⊆ ω1. This
function f is determined by a ladder system over ω1.
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A particular ladder system

Definition (Jensen, 1960’s)

�λ asserts the existence of a ladder system over λ+,
〈Cα | α < λ+〉, such that for all α < λ+:

I (Ladders are closed) Cα is a club in α;

I (Ladders are of bounded type) otp(Cα) ≤ λ;

I (Coherence) if sup(Cα ∩ β) = β, then Cα ∩ β = Cβ.
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I (Ladders are closed) Cα is a club in α;

I (Ladders are of bounded type) otp(Cα) ≤ λ;

I (Coherence) if sup(Cα ∩ β) = β, then Cα ∩ β = Cβ.

Famous applications

The existence of various sorts of λ+-trees; The existence of
non-reflecting stationary subsets of λ+; The existence of other
incompact objects.
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A particular ladder system

Definition (Jensen, 1960’s)

�λ asserts the existence of a ladder system over λ+,
〈Cα | α < λ+〉, such that for all α < λ+:

I (Ladders are closed) Cα is a club in α;

I (Ladders are of bounded type) otp(Cα) ≤ λ;

I (Coherence) if sup(Cα ∩ β) = β, then Cα ∩ β = Cβ.

Today’s talk would be centered around the above principle, but let
us dedicate some time to discuss abstract ladder systems.
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Triviality of ladder systems

Means of triviality

A ladder system 〈Aα | α < κ〉 is considered to be trivial, if, in some
sense, it is determined by a single κ-sized object.

Example of such sense:
“There exists A ⊆ κ such that Aα = A ∩ α for club many α < κ.”
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Triviality of ladder systems

Means of triviality

A ladder system 〈Aα | α < κ〉 is considered to be trivial, if, in some
sense, it is determined by a single κ-sized object.
Example of such sense:
“There exists A ⊆ κ such that Aα = A ∩ α for club many α < κ.”

If κ is a large cardinal, then we may necessarily face means of trivi-
ality.

Fact (Rowbottom, 1970’s)

If κ is measurable, then every ladder system 〈Aα | α < κ〉, admits
a set A ⊆ κ such that Aα = A ∩ α for stationary many α < κ.

6 / 36



Triviality of ladder systems

Means of triviality

A ladder system 〈Aα | α < κ〉 is considered to be trivial, if, in some
sense, it is determined by a single κ-sized object.
Example of such sense:
“There exists A ⊆ κ such that Aα = A ∩ α for club many α < κ.”

On the other hand, if κ is non-Mahlo, then for every cofinal A ⊆ κ,
the following set contains a club:

{α < κ | cf(α) < otp(A ∩ α)}.

This suggests that non-triviality may be insured here, by setting a
global bound on otp(Aα), e.g., letting otp(Aα) = cf(α) for all α.
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Triviality of ladder systems

Means of triviality

A ladder system 〈Aα | α < κ〉 is considered to be trivial, if, in some
sense, it is determined by a single κ-sized object.

It turns out that requiring that otp(Aα) = cf(α) for all α does not
eliminate all means of triviality. For instance, it may be the case
that any sequence of functions defined on the ladders is necessarily
induced from a single κ-sized object.

Fact (Devlin-Shelah, 1978)

MAω1 implies that any ladder system 〈Aα | α < ω1〉 satisfying
otp(Aα) = cf(α) for every α, is trivial in the following sense.
For every sequence of local functions 〈fα : Aα → 2 | α < ω1〉 there
exists a global function f : ω1 → 2 such that for each α:

fα = f � Aα (mod finite).
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Nontrivial ladder systems over ω1

In contrast, the following concept yields a ladder system which is
resistant to Devlin and Shelah’s notion of triviality.

Definition (Ostaszweski’s ♣)

♣ asserts the existence of a ladder system 〈Aα | α < ω1〉 such that
for every cofinal A ⊆ ω1, there exists a limit α < ω1 with Aα ⊆ A.

Indeed, if 〈Aα | α < ω1〉 is a ♣-sequence, then for every global
f : ω1 → 2, there exists a limit α < ω1 for which f � Aα is
constant.
Thus, if fα : Aα → 2 partitions Aα into two cofinal subsets for all
limit α, then no global f trivializes the sequence 〈fα | α < ω1〉.
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Improve your square!

Suppose that κ = λ+ is a successor cardinal. Thus, we are
interested in a ladder system 〈Aα | α < κ〉 with ALL of the
following features:

1. the set {otp(Aα) | α < κ} is bounded below κ;

2. the ladders are closed;

3. the ladders cohere;

4. yields a canonical partition of κ into mutually disjoint
stationary sets;

5. induces strong colorings;

6. a non-triviality condition à la Devlin-Shelah.
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The Ostaszewski square

10 / 36



λ-sequences

We propose a principle which combines �λ together with ♣λ+ .

For clarity, let us adopt the next ad-hoc terminology:

Definition
A sequence 〈Ai | i < λ〉 is a λ-sequence if the following two holds:

1. each Ai is a cofinal subset of λ+;

2. if i < λ is a limit ordinal, then Ai is moreover closed.

Remark. Clause (2) may be viewed as a continuity condition.
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The Ostaszewski square

Definition
♣ λ asserts the existence of a ladder system

−→
C = 〈Cα | α < λ+〉

such that:

I otp(Cα) ≤ λ for all α < λ+;

I Cα is a club in α for all limit α < λ+;

I if sup(Cα ∩ β) = β, then Cα ∩ β = Cβ;
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Definition
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I
−→
C is a �λ-sequence. Let Cα(i) denote the ith element of Cα.
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The Ostaszewski square

Definition
♣ λ asserts the existence of a ladder system

−→
C = 〈Cα | α < λ+〉

such that:

I
−→
C is a �λ-sequence. Let Cα(i) denote the ith element of Cα.

I Suppose that 〈Ai | i < λ〉 is a λ-sequence. Then for every
cofinal B ⊆ λ+, and every limit θ < λ, there exists some
α < λ+ such that:

1. otp(Cα) = θ;
2. for all i < θ, Cα(i) ∈ Ai ;
3. for all i < θ, there exists βi ∈ B with Cα(i) < βi < Cα(i + 1).

12 / 36



The Ostaszewski square (cont.)

♣ λ asserts the existence of a �λ-sequence 〈Cα | α < λ+〉 such
that for every λ-sequence 〈Ai | i < λ〉, every cofinal B ⊆ λ+, and
every limit θ < λ, there exists some α < λ+ such that:

1. the inverse collapse of Cα is an element of
∏

i<θ Ai ;

2. if γ < δ belong to Cα, then B ∩ (γ, δ) 6= ∅.
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The Ostaszewski square (cont.)

♣ λ asserts the existence of a �λ-sequence 〈Cα | α < λ+〉 such
that for every λ-sequence 〈Ai | i < λ〉, every cofinal B ⊆ λ+, and
every limit θ < λ, there exists some α < λ+ such that:

1. the inverse collapse of Cα is an element of
∏

i<θ Ai ;

2. if γ < δ belong to Cα, then B ∩ (γ, δ) 6= ∅.

13 / 36



The Ostaszewski square (cont.)

♣ λ asserts the existence of a �λ-sequence 〈Cα | α < λ+〉 such
that for every λ-sequence 〈Ai | i < λ〉, every cofinal B ⊆ λ+, and
every limit θ < λ, there exists some α < λ+ such that:

1. the inverse collapse of Cα is an element of
∏

i<θ Ai ;

2. if γ < δ belong to Cα, then B ∩ (γ, δ) 6= ∅.

Feature 1. Club guessing

For every club D ⊆ λ+, there exists α < λ+ such that Cα ⊆ D.
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The Ostaszewski square (cont.)

♣ λ asserts the existence of a �λ-sequence 〈Cα | α < λ+〉 such
that for every λ-sequence 〈Ai | i < λ〉, every cofinal B ⊆ λ+, and
every limit θ < λ, there exists some α < λ+ such that:

1. the inverse collapse of Cα is an element of
∏

i<θ Ai ;

2. if γ < δ belong to Cα, then B ∩ (γ, δ) 6= ∅.

Feature 2. ♣λ+
For every cofinal A ⊆ λ+, there exists α < λ+ s.t. nacc(Cα) ⊆ A.a

anacc(Cα) = Cα \ acc(Cα), where acc(Cα) := {β ∈ Cα | sup(Cα ∩ β) = β}.

13 / 36



The Ostaszewski square (cont.)

♣ λ asserts the existence of a �λ-sequence 〈Cα | α < λ+〉 such
that for every λ-sequence 〈Ai | i < λ〉, every cofinal B ⊆ λ+, and
every limit θ < λ, there exists some α < λ+ such that:

1. the inverse collapse of Cα is an element of
∏

i<θ Ai ;

2. if γ < δ belong to Cα, then B ∩ (γ, δ) 6= ∅.

Feature 3. Canonical partition to stationary sets

Denote Sθ := {α < λ+ | otp(Cα) = θ}.
Then 〈Sθ | 0 ∈ θ ∈ acc(λ)〉 is a canonical partition of the set of
limit ordinals < λ+ into λ many mutually disjoint stationary sets.
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The Ostaszewski square (cont.)

♣ λ asserts the existence of a �λ-sequence 〈Cα | α < λ+〉 such
that for every λ-sequence 〈Ai | i < λ〉, every cofinal B ⊆ λ+, and
every limit θ < λ, there exists some α < λ+ such that:

1. the inverse collapse of Cα is an element of
∏

i<θ Ai ;

2. if γ < δ belong to Cα, then B ∩ (γ, δ) 6= ∅.

Feature 4. Simultaneous ♣λ+ & Club guessing

For every cofinal A ⊆ λ+, every club D ⊆ λ+, and every θ < λ,
there exists α ∈ Sθ such that nacc(Cα) ⊆ A, and acc(Cα) ⊆ D.
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The Ostaszewski square (cont.)

♣ λ asserts the existence of a �λ-sequence 〈Cα | α < λ+〉 such
that for every λ-sequence 〈Ai | i < λ〉, every cofinal B ⊆ λ+, and
every limit θ < λ, there exists some α < λ+ such that:

1. the inverse collapse of Cα is an element of
∏

i<θ Ai ;

2. if γ < δ belong to Cα, then B ∩ (γ, δ) 6= ∅.

Further features
We shall now turn to discuss further features.
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Simple constructions of higher Souslin trees
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λ+-Souslin trees

Jensen proved that “GCH +�λ +♦S for all stationary S ⊆ λ+”
yields the existence of a λ+-Souslin tree, for every singular λ.
We now suggest a simple construction from a related hypothesis.

Proposition

Suppose that λ is an uncountable cardinal.
If ♣ λ +♦λ+ holds, then there exists a λ+-Souslin tree.

Conventions
A κ-tree T is a tree of height κ, whose underlying set is κ, and
levels are of size < κ.
The αth-level is denoted Tα, and we write T � β :=

⋃
α<β Tα.

T is κ-Souslin if it is ever-branching and has no κ-sized antichains.
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λ+-Souslin trees

Proposition

Suppose that λ is an uncountable cardinal.
If ♣ λ +♦λ+ holds, then there exists a λ+-Souslin tree.

Proof.
Let 〈Cα | α < λ+〉 witness ♣ λ, and 〈Sγ | γ < λ+〉 witness ♦λ+ .
We build the λ+-Souslin tree, T, by recursion on the levels.

Set T0 := {0}. If T � α + 1 is defined, Tα+1 is obtained by
providing each element of Tα with two successors in Tα+1.
Assume now that α is a limit ordinal; for every x ∈ T � α, we
attach a sequence xα which is increasing and cofinal in T � α, and
then Tα is defined as the limit of all these sequences.
Consequently, the outcome Tα is of size ≤ |T � α| ≤ λ.
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λ+-Souslin trees (cont.)

For every x ∈ T � α, pick xα = 〈xα(γ) | γ ∈ Cα \ ht(x) + 1〉 s.t.:

1. ht(xα(γ)) = γ for all γ ∈ dom(xα);

2. x < xα(γ1) < xα(γ2) whenever γ1 < γ2;

3. If γ ∈ nacc(dom(xα)), and Sγ is a maximal antichain in T � γ,
then xα(γ) happens to be above some element from Sγ .
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λ+-Souslin trees (cont.)

For every x ∈ T � α, pick xα = 〈xα(γ) | γ ∈ Cα \ ht(x) + 1〉 s.t.:

1. ht(xα(γ)) = γ for all γ ∈ dom(xα);

2. x < xα(γ1) < xα(γ2) whenever γ1 < γ2;

3. If γ ∈ nacc(dom(xα)), and Sγ is a maximal antichain in T � γ,
then xα(γ) happens to be above some element from Sγ .

If we make sure to choose xα(γ) in a canonical way (e.g., using a
well-ordering), then the coherence of the square sequence implies
that the branches cohere: sup(Cα ∩ δ) = δ implies xδ = xα � δ.
In turn, we get that the whole construction may be carried, ending
up with a λ+-tree.
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λ+-Souslin trees (cont.)

For every x ∈ T � α, pick xα = 〈xα(γ) | γ ∈ Cα \ ht(x) + 1〉 s.t.:

1. ht(xα(γ)) = γ for all γ ∈ dom(xα);

2. x < xα(γ1) < xα(γ2) whenever γ1 < γ2;

3. If γ ∈ nacc(dom(xα)), and Sγ is a maximal antichain in T � γ,
then xα(γ) happens to be above some element from Sγ .

Sousliness: towards a contradiction, suppose that A ⊆ λ+ is an
antichain in T of size λ+. By ♦λ+ , the following set is stationary

A′ := {γ < λ+ | A ∩ γ = Sγ is a maximal antichain in T � γ}.
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then xα(γ) happens to be above some element from Sγ .

Sousliness: towards a contradiction, suppose that A ⊆ λ+ is an
antichain in T of size λ+. By ♦λ+ , the following set is stationary

A′ := {γ < λ+ | A ∩ γ = Sγ is a maximal antichain in T � γ}

Let 〈Ai | i < λ〉 be a λ-sequence with Ai+1 = A′ for all i < λ. Pick
α < λ+ such that Cα(i) ∈ Ai for all i < otp(Cα).
Then nacc(Cα) ⊆ A′, and hence clause (3) above applies to the
construction of xα for each and every x ∈ T � α.
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λ+-Souslin trees (cont.)

For every x ∈ T � α, pick xα = 〈xα(γ) | γ ∈ Cα \ ht(x) + 1〉 s.t.:

1. ht(xα(γ)) = γ for all γ ∈ dom(xα);

2. x < xα(γ1) < xα(γ2) whenever γ1 < γ2;

3. If γ ∈ nacc(dom(xα)), and Sγ is a maximal antichain in T � γ,
then xα(γ) happens to be above some element from Sγ .

Sousliness: towards a contradiction suppose that A ⊆ λ+ is an an-
tichain in T of size λ+. By ♦λ+ , the following set is stationary

A′ := {γ < λ+ | A ∩ γ = Sγ is a maximal antichain in T � γ}

Let 〈Ai | i < λ〉 be a λ-sequence with Ai+1 = A′ for all i < λ. Pick
α < λ+ such that Cα(i) ∈ Ai for all i < otp(Cα).
Then nacc(Cα) ⊆ A′, and hence clause (3) above applies to all xα.
As every element of Tα is the limit of some xα, every element of
Tα happens to be above some element from A ∩ α. So, A ∩ α is a
maximal antichain in T. This is a contradiction. �
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λ+-Souslin trees. The aftermath

So, what do we gain from the fact that we may guess a λ-sequence
if at the end of the day we are only concerned with guessing a
single set?

Suppose we wanted the resulted tree to be, in additional, rigid.
Then fix a ♦λ+ sequence that guesses functions 〈fγ | γ < λ+〉.
Given an hypothetical maximal antichain A, and a non-trivial
automorphism f , the following sets would be cofinal (in fact, stat.):

A0 := {γ < λ+ | A ∩ γ = Sγ is a maximal antichain in T � γ};
A1 := {γ < λ+ | f � γ = fγ is a n.t. automorphism of T � γ}.

So, we could find Cα whose odd nacc points are in A0, and even
nacc points are in A1. Meaning that we could overcome A and f
along the way. Similarly, we may overcome λ many obstructions in
a very elegant way.
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Similarly, we may overcome λ many obstructions in
a very elegant way.
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λ+-Souslin trees. The aftermath

So, what do we gain from the fact that we may guess a λ-sequence
if at the end of the day we are only concerned with guessing a
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Suppose we wanted the resulted tree to be, in additional, rigid.
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λ+-Souslin trees. The aftermath

Question
What do we gain from the fact that we may guess a λ-sequence if
we are only concerned with guessing a single cofinal set?

Answer
We can smoothly construct complicated objects, taking into
account λ many independent considerations.
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λ+-Souslin trees. The aftermath

We can smoothly construct complicated objects, having in mind λ
many independent considerations.

Question
“smoothly”?

Answer
Jensen’s original construction consists of two distinct components;
one which is responsible for insuring that the construction may be
carried up to height λ+, and the other responsible for sealing
potential large antichains.
This distinction affects the completeness degree of the tree.
In contrast, here, the potential antichains are sealed along the way.
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λ+-Souslin trees. The aftermath

We can smoothly construct complicated objects, having in mind λ
many independent considerations.

A complaint

“smoothly”. . . okay! But Jensen’s construction is from

GCH +�λ +♦S for all stationary S ⊆ λ+,

while the other construction requires ♣ λ!!

Answer
If you are serious about purchasing my ♣ λ, let me make a price
quote.
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Ostaszewski square - the price

It should be clear that the usual fine-structural-type of arguments
yield that ♣ λ holds in L for all λ. But that’s an high price to pay.

Main Theorem
Suppose that �λ holds for a given cardinal λ.

1. If λ is a limit cardinal, then λλ = λ+ entails ♣ λ.

2. If λ is a successor, then λ<λ < λλ = λ+ entails ♣ λ.

Corollary

Assume GCH. Then for every uncountable cardinal λ, TFAE:

I �λ;

I ♣ λ.

So, for the Jensen setup, you pay no extra! In fact, you pay less,
since �λ + GCH implies ♣ λ +♦λ+ .
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Reflection
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Reflection of stationary sets

Definition
We say that a stationary subset S ⊆ κ reflects at an ordinal α < κ,
if S ∩ α is stationary (as a subset of α).

Fact (Hanf-Scott, 1960’s)

If κ is a weakly compact cardinal, then every stationary subset of κ
reflects at some α < κ.

Proof.
By Todorcevic, κ is weakly compact iff every ladder system
〈Aα | α < κ〉 whose ladders are closed, is trivial in the following
sense. There exists a club C ⊆ κ such that for all β < κ, there
exists α ≥ β for which Aα ∩ β = C ∩ β .
Suppose now that S ⊆ κ is stationary and non-reflecting. Then
there exists a ladder system as above with Aα ∩ S = ∅ for all limit
α. This contradicts the fact that there exists a limit β ∈ S∩C .
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Weak sqaure

A �λ-sequence 〈Cα | α < λ+〉 is non-trivial in the above sense.

Indeed, since the ladders cohere, Sθ = {α < λ+ | otp(Cα) = θ}
does not reflect for any θ < λ, whereas by Fodor’s lemma, there
must exist some θ < λ for which Sθ is stationary.

Definition (Jensen, 1960’s)

�∗λ asserts the existence of a ladder system, 〈Cα | α < λ+〉, s.t.:

I otp(Cα) ≤ λ;

I Cα is closed;

I for all β < λ+, {Cα ∩ β | α < λ+} is of size at most λ.

�∗λ follows from �λ, but also from λ<λ = λ, hence the main
interest in �∗λ is whenever λ is singular.
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Squares and reflection of stationary sets

Theorem (Cummings-Foreman-Magidor, 2001)

It is relatively consistent with the existence of infinitely many
supercompact cardinals, that all of the following holds
simultaneously:

I GCH;

I �∗ℵω ;

I every stationary subset of ℵω+1 reflects.

So, unlike square, weak square does not imply non-reflection.
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Theorem (Cummings-Foreman-Magidor, 2001)

It is relatively consistent with the existence of infinitely many
supercompact cardinals, that all of the following holds
simultaneously:

I GCH;

I �∗ℵω ;

I every stationary subset of ℵω+1 reflects.

Cummings-Foreman-Magidor and Aspero-Krueger-Yoshinobu found
that (for a singular λ,) �∗λ implies sorts of non-reflection, but of
generalized stationary sets (in the sense of Pκ(λ),Pκ(λ+).)
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Squares and reflection of stationary sets

Theorem (Cummings-Foreman-Magidor, 2001)

It is relatively consistent with the existence of infinitely many
supercompact cardinals, that all of the following holds
simultaneously:

I GCH;

I �∗ℵω ;

I every stationary subset of ℵω+1 reflects.

We found out that �∗λ does entail ordinary non-reflection; it is just
that the non-reflection takes place in an outer universe...
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Weak squares and reflection of stationary sets

Theorem
Suppose that 2λ = λ+ for a strong limit singular cardinal λ.
If �∗λ holds, then in V Add(λ+,1), there exists a non-reflecting
stationary subset of λ+.
So, this aspect of non-triviality of the weak square system is
witnessed in a generic extension.

Compare with the following.

Example

Suppose that λ > κ > cf(λ), where λ is a strong limit, and κ is a
Laver-indestructible supercompact cardinal.
Then 2λ = λ+ holds for the strong limit singular cardinal λ, while
in V Add(λ+,1), every stationary subset of {α < λ+ | cf(α) = cf(λ)}
do reflect.
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Strong Colorings
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Strong colorings

Suppose that
−→
C = 〈Cα | α < κ〉 is a ladder system whose ladders

are closed. For every α < β < κ, let β = β0 > · · · > βk+1 = α

denote the minimal walk from β down to α along
−→
C .

Let [α, β]n denote the nth element in the walk from β to α.

Fact (Todorcevic, Shelah, 1980’s)

Suppose that S is a stationary subset of κ such that S ∩ Cα = ∅
for every limit α < κ. (So, S is non-reflecting).
Then there exists an oscillating function o : [κ]2 → ω such that

S \
⋃{

[α, β]o(α,β) | α < β in A
}

is non-stationary for every cofinal A ⊆ κ.
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Simply definable strong colorings
Suppose that

−→
C = 〈Cα | α < λ+〉 witnesses ♣ λ, and let [α, β]n

denote the nth element in the
−→
C -walk from β to α.

Proposition

For every cofinal B ⊆ λ+, there exists an n < ω such that
for every cofinal A ⊆ λ+ , the set

{[α, β]n | α ∈ A, β ∈ B, α < β}

is co-bounded in λ+.
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Proposition

For every cofinal B ⊆ λ+, there exists an n < ω such that
for every cofinal A ⊆ λ+ , the set

{[α, β]n | α ∈ A, β ∈ B, α < β}

is co-bounded in λ+.

Corollary

For every cofinal B ⊆ λ+, there exists an n < ω such that for every
cofinal A ⊆ λ+, the set

{otp(C[α,β]n
) | α ∈ A, β ∈ B, α < β}

contains each and every limit ordinal < λ.
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Simply definable strong colorings
Suppose that

−→
C = 〈Cα | α < λ+〉 witnesses ♣ λ, and let [α, β]n

denote the nth element in the
−→
C -walk from β to α.

Proposition

For every cofinal B ⊆ λ+, there exists an n < ω such that
for every cofinal A ⊆ λ+ , the set

{[α, β]n | α ∈ A, β ∈ B, α < β}

is co-bounded in λ+.

Remark
The above is optimal in the sense that for every n < ω, there exists
a cofinal B ⊆ λ+, such that

{[α, β]n | α, β ∈ B, α < β}

omits any limit ordinal < λ+.
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Simply definable strong colorings
Suppose that

−→
C = 〈Cα | α < λ+〉 witnesses ♣ λ, and let [α, β]n

denote the nth element in the
−→
C -walk from β to α.

Proposition

For every cofinal B ⊆ λ+, there exists an n < ω such that
for every cofinal A ⊆ λ+ , the set

{[α, β]n | α ∈ A, β ∈ B, α < β}

is co-bounded in λ+.

Conjecture

There exists a one-place function o : λ+ → ω such that for every
cofinal A,B ⊆ λ+, the set

{[α, β]o(β) | α ∈ A, β ∈ B, α < β}

is co-bounded in λ+.
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Squares and small forcings
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Squares and small forcing notions

Some people (including the speaker) speculated at some point in
time that �λ cannot be introduced by a forcing notion of
size � λ. This indeed sounds plausible, However:

Theorem (Cummings-Foreman-Magidor, 2001)

It is relatively consistent with the existence of a supercompact
cardinal that �ℵω is introduced by a forcing of size ℵ1.

The idea of the proof is to cook up a model in which �ℵω fails,
while {α < ℵω+1 | cf(α) > ω1} does carry a so-called partial
square. Then, to overcome the lack of coherence over
{α < ℵω+1 | cf(α) = ω1}, they Levy collapse ℵ1 into countable
cardinality. The latter trivially overcomes the failure of �ℵω , and is
a forcing notion of size ℵ1.
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Squares and small forcing notions

Theorem (Cummings-Foreman-Magidor, 2001)

It is relatively consistent with the existence of a supercompact
cardinal that �ℵω is introduced by coll(ω, ω1).

A rant
Insuring coherence by collapsing cardinals? this is cheating!!
Let me correct my conjecture.
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Squares and small forcing notions

Theorem (Cummings-Foreman-Magidor, 2001)

It is relatively consistent with the existence of a supercompact
cardinal that �ℵω is introduced by coll(ω, ω1).

Speculation, revised

Square/weak square cannot be introduced by a small forcing that
does not collapse cardinals.
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Squares and small forcing notions

Theorem (Cummings-Foreman-Magidor, 2001)

It is relatively consistent with the existence of a supercompact
cardinal that �ℵω is introduced by coll(ω, ω1).

False speculation

Square/weak square cannot be introduced by a small forcing that
does not collapse cardinals.

Theorem
It is relatively consistent with the existence of two supercompact
cardinals that �∗ℵω1

is introduced by a cofinality preserving forcing

of size ℵ3.

33 / 36



Squares and small forcing notions

Theorem (Cummings-Foreman-Magidor, 2001)

It is relatively consistent with the existence of a supercompact
cardinal that �ℵω is introduced by coll(ω, ω1).

Theorem
It is relatively consistent with the existence of two supercompact
cardinals that �∗ℵω1

is introduced by a cofinality preserving forcing

of size ℵ3.

Conjecture

As ℵ1-sized notion of forcing suffices to introduce �ℵω , then
ℵ2-sized notion of forcing should suffice to introduce (in a
cofinality-preserving manner!) �∗ℵω1

.
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Open Problems
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Two problems

Question
Suppose that ♣ λ +♦λ+ holds for a given singular cardinal λ.
Does there exists an homogenous λ+-Souslin tree?

Theorem (Dolinar-Džamonja, 2010)

�ω1 may be introduced by a forcing notion whose working parts
are finite. (that is, the part in the forcing conditions which
approximates the generic square sequence is finite.)

Conjecture

�∗ℵω1
may be introduced by a small, cofinality preserving forcing

notion whose working parts are finite.
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Epilogue

Summary

I ♣ λ is a particular form of �λ whose intrinsic complexity
allows to derive complex objects (such as trees, partitions of
stationary sets, and strong colorings) in a canonical way;

I ♣ λ and �λ are equivalent, assuming GCH;

I weak square may be introduced by a small forcing that
preserves the cardinal structure;

I weak square implies the existence of a non-reflecting
stationary set in a generic extension by Cohen forcing.
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